JP2000239040A - Quartz glass material for optical member for f2 excimer laser, and optical member - Google Patents

Quartz glass material for optical member for f2 excimer laser, and optical member

Info

Publication number
JP2000239040A
JP2000239040A JP11371654A JP37165499A JP2000239040A JP 2000239040 A JP2000239040 A JP 2000239040A JP 11371654 A JP11371654 A JP 11371654A JP 37165499 A JP37165499 A JP 37165499A JP 2000239040 A JP2000239040 A JP 2000239040A
Authority
JP
Japan
Prior art keywords
excimer laser
quartz glass
optical member
wavelength
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11371654A
Other languages
Japanese (ja)
Other versions
JP3654500B2 (en
Inventor
Nobuo Ohashi
宣夫 大橋
Akira Fujinoki
朗 藤ノ木
Hiroyuki Nishimura
裕幸 西村
Hideo Hosono
秀雄 細野
Toru Ogawa
透 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Semiconductor Leading Edge Technologies Inc
Original Assignee
Shin Etsu Quartz Products Co Ltd
Semiconductor Leading Edge Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd, Semiconductor Leading Edge Technologies Inc filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP37165499A priority Critical patent/JP3654500B2/en
Publication of JP2000239040A publication Critical patent/JP2000239040A/en
Application granted granted Critical
Publication of JP3654500B2 publication Critical patent/JP3654500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/12Doped silica-based glasses containing boron or halide containing fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/21Doped silica-based glasses containing non-metals other than boron or halide containing molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a material having a high light transmittance at an oscillation wavelength of an F2 excimer laser by respectively specifying the OH group concentration, F concentration and H concentration. SOLUTION: This material is obtained by regulating the OH group concentration to <=5 ppm, the F concentration to 0.1-2 mol% and the H concentration to <=5×1016 molecules/cm3. The material is further excellent in laser resistance to irradiation with an F2 excimer laser. The material preferably has >=70% internal transmittance at 157 nm which is the F2 excimer laser oscillation wavelength and/or >=90% internal transmittance at 163 nm and/or <=5% lowering of transmittance at 157 nm wavelength based on 10 mm after irradiation of 3×105 pulses of the F2 excimer laser at 10 mJ/cm2 energy density per pulse and/or <=2×10-5 difference n between the maximum value and the minimum value of the refractive index and/or <=0.5 nm/cm amount of refractive index when making measurement at 633 nm wavelength. Thereby, the resultant material is useful for a lens a window, etc., for transmitting the F2 excimer laser.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、レンズ、ウインド
ウ、フィルター、ビームスプリッター、フォトマスク等
のF2 エキシマレーザーに使用することができるF2
キシマレーザー光学部材用合成石英ガラス材料及び光学
部材に関する。
The present invention relates to a lens, window, filter, beam splitter, to F 2 excimer laser optical member for the synthetic quartz glass material and an optical member that can be used in F 2 excimer laser, such as a photomask.

【0002】[0002]

【従来の技術】従来より、光を用いてマスク上のパター
ンをウエーハ上に転写する光リソグラフィ技術は電子線
やX線を用いる他の技術に比較してコスト面で優れてい
ることから集積回路を製造するための露光装置として広
く用いられている。
2. Description of the Related Art Conventionally, an optical lithography technique for transferring a pattern on a mask onto a wafer using light is superior in cost as compared with other techniques using electron beams or X-rays. Is widely used as an exposure apparatus for manufacturing a semiconductor device.

【0003】近年、LSIの微細化、集積化に伴い、光
源である光の短波長化が進められており、従来は、線幅
0.5〜0.4μmのパターン形成を可能にする波長3
65nmのi線や、線幅0.25〜0.35μmのパタ
ーン形成を可能にする波長248nmのKrFエキシマ
レーザーを用いた露光装置が実用的に使われてきた。そ
して最近では、線幅0.13〜0.20μmのパターン
形成を可能にする波長193nmのArFエキシマレー
ザーを用いた露光装置も開発され始めている。
In recent years, with the miniaturization and integration of LSIs, the wavelength of light as a light source has been shortened. Conventionally, a wavelength of 3 to 4 μm, which can form a pattern with a line width of 0.5 to 0.4 μm, has been used.
An exposure apparatus using a KrF excimer laser having a wavelength of 248 nm, which can form a 65 nm i-line or a pattern having a line width of 0.25 to 0.35 μm, has been practically used. Recently, an exposure apparatus using an ArF excimer laser having a wavelength of 193 nm, which can form a pattern having a line width of 0.13 to 0.20 μm, has also been developed.

【0004】さらに、ArFの次世代のリソグラフィ技
術として、電子ビーム直描技術、X線等倍露光技術、F
2 エキシマレーザー露光技術等が検討されており、この
中で電子ビーム直描技術はそのスループットに、X線等
倍露光技術にはマスク作製にクリティカルな課題があ
り、F2 レーザー露光技術はArF露光技術の延長にあ
る点で次世代の露光技術として最も注目されている。
Further, next-generation lithography techniques of ArF include electron beam direct writing technique, X-ray equal magnification exposure technique,
2 has been considered excimer laser exposure technique or the like, an electron beam direct描技procedure in this in its throughput, the X-ray magnification exposure technique have critical challenges mask making, F 2 laser exposure technique ArF exposure Because of the extension of the technology, it is receiving the most attention as the next-generation exposure technology.

【0005】従来のKrF、ArF等のエキシマレーザ
ー用の光学材料としては、透過率、耐レーザー性、均質
性等の観点から石英ガラス、特に高純度の合成石英ガラ
スが用いられている。KrF、ArFの波長領域では石
英ガラスは高い光透過性を示し、耐レーザー性は製造条
件の最適化によって高められ、エキシマレーザー用の光
学材料、特に投影レンズとしても使用可能なものが得ら
れている。
As conventional optical materials for excimer lasers such as KrF and ArF, quartz glass, particularly high-purity synthetic quartz glass, is used from the viewpoints of transmittance, laser resistance, homogeneity and the like. In the wavelength range of KrF and ArF, quartz glass shows high light transmittance, laser resistance is improved by optimizing the manufacturing conditions, and optical materials for excimer lasers, particularly those usable as projection lenses, are obtained. I have.

【0006】しかしながら、F2 エキシマレーザー用の
光学材料としては、その発振波長が157nmとArF
よりもさらに短いため、KrF、ArF用の従来の合成
石英ガラスでは、十分な透過率が得られず使用できなか
った。このため使用できる光学材料は螢石しかなく、装
置設計上の大きな制約となっていた。
However, as an optical material for an F 2 excimer laser, its oscillation wavelength is 157 nm and ArF
Therefore, the conventional synthetic quartz glass for KrF and ArF could not be used because a sufficient transmittance was not obtained. For this reason, the only optical material that can be used is fluorite, which has been a major constraint on device design.

【0007】一方、石英ガラスの157nmに対する透
過率の向上にはフッ素を石英ガラスに中にドープするこ
とで大幅に改善されることが知られている。特開平4−
195101号には石英ガラスにフッ素をドープするこ
とにより、155〜400nmの波長域において欠陥吸
収を軽減もしくは失わせ、かつ高エネルギー紫外線を長
期にわたって照射しても欠陥を起こさなくする方法が示
されている。
On the other hand, it is known that the transmittance of 157 nm of quartz glass can be greatly improved by doping fluorine glass into quartz glass. JP-A-4-
No. 195101 discloses a method in which quartz glass is doped with fluorine to reduce or eliminate defect absorption in a wavelength range of 155 to 400 nm and to prevent defects even when irradiated with high-energy ultraviolet rays for a long period of time. I have.

【0008】また特開平8−67530号には石英ガラ
スにフッ素を1mol%以上およびOH基濃度10pp
m以上ドープすることでArFエキシマレーザーに対す
る安定性を向上せしめる技術が開示されているが、同公
報には同時にF2 エキシマレーザー波長領域である15
7nm付近の紫外線透過率が大幅に改善されている事が
示されている。
Japanese Patent Application Laid-Open No. Hei 8-67530 discloses that quartz glass contains 1 mol% or more of fluorine and an OH group concentration of 10 pp.
Although by doping or m of improving the stability against ArF excimer laser technology has been disclosed, the same publication at the same time F 2 excimer laser wavelength region 15
It is shown that the ultraviolet transmittance around 7 nm is greatly improved.

【0009】[0009]

【発明が解決しようとする課題】確かに、石英ガラスに
フッ素を含有させる事でArFエキシマレーザーに対す
る光学的な安定性は増加するが、照射する紫外線レーザ
ーをより短波長のF2 エキシマレーザーにした場合に
は、それだけではエキシマレーザーの照射に伴い欠陥の
生成が十分に抑制されない事が判った。
[SUMMARY OF THE INVENTION Indeed, although the optical stability against ArF excimer laser by fluorine is contained in the quartz glass increases, and the F 2 excimer laser of shorter wavelength ultraviolet laser irradiation In this case, it was found that the generation of defects alone was not sufficiently suppressed by the irradiation of the excimer laser.

【0010】本発明の発明者は、特に照射する紫外線を
2 エキシマレーザーにした場合、F2 エキシマレーザ
ー照射時の石英ガラスの物性とダメージ挙動を検討した
結果、F2 エキシマレーザー用石英ガラスとしてふさわ
しいガラス特性を見出して本発明に至ったものである。
[0010] The inventors of the present invention, the ultraviolet rays to be particularly irradiated when the F 2 excimer laser, F 2 excimer laser properties of quartz glass during the irradiation and damage behavior results of studying, as a silica glass for F 2 excimer laser The present inventors have found suitable glass properties and have led to the present invention.

【0011】即ち、本発明は、F2 エキシマレーザーの
発振波長である157nmでの光透過率が高く、F2
キシマレーザー照射に対する耐レーザー性が高いF2
キシマレーザー用光学石英ガラスを提供することを目的
とする。
[0011] Namely, the present invention is that the light transmittance at an oscillation wavelength of F 2 excimer laser 157nm high withstand laser resistance against F 2 excimer laser irradiation to provide a high F 2 excimer laser for optical quartz glass With the goal.

【0012】[0012]

【課題を解決するための手段】本発明は、F2 エキシマ
レーザー用の光学石英ガラスに関し、OH基濃度が5p
pm以下、フッ素を0.1〜2mol%含有し、水素濃
度を5×1016分子/cm以下としたことを特徴と
する。
The present invention relates to an optical quartz glass for an F 2 excimer laser, which has an OH group concentration of 5p.
pm or less, contains fluorine of 0.1 to 2 mol%, and has a hydrogen concentration of 5 × 10 16 molecules / cm 3 or less.

【0013】石英ガラス中には、酸素過剰型の欠陥であ
るパーオキシリンケージ(Si−O−O−Si)や溶存
酸素分子、酸素欠乏欠陥であるSi−Si結合や酸素空
孔(Si…Si)、その他OH基、H2O 等が存在し、
これらの影響でF2 エキシマレーザーの発振波長である
157nmという短波長領域では透過率が低下するが、
フッ素をドープさせることにより、石英ガラス中の構造
欠陥を終端することでArFエキシマレーザーなどの高
エネルギー紫外線レーザーに対する安定性を向上させ、
157nmの透過率が向上する。
In quartz glass, oxygen-excess type defects such as peroxylinkage (Si--O--O--Si) and dissolved oxygen molecules, and oxygen deficiency defects such as Si--Si bonds and oxygen vacancies (Si... Si ), Other OH groups, H 2 O, etc.
Due to these effects, the transmittance decreases in the short wavelength region of 157 nm, which is the oscillation wavelength of the F 2 excimer laser,
By doping with fluorine, by terminating structural defects in quartz glass, the stability to high-energy ultraviolet lasers such as ArF excimer lasers is improved,
The transmittance at 157 nm is improved.

【0014】しかしながら、そのような石英ガラスにお
いてもF2 エキシマレーザー照射によってE’センター
(イープライムセンター)が誘起され、このE’センタ
ー生成による光吸収は紫外吸収端にまで影響し、157
nmの光透過率をも低下させ、ひいてはF2 エキシマレ
ーザー照射に対するレーザー耐性を低下させる原因とな
ることが確認された。このE’センターの生成抑制には
フッ素を適切な濃度ドープすると同時に7.6eV(1
63nm)に吸収を有する酸素欠乏欠陥を十分に低減す
る必要があることが判明した。
However, even in such a quartz glass, an E 'center (e-prime center) is induced by the irradiation of the F 2 excimer laser, and the light absorption due to the generation of the E' center affects even the ultraviolet absorption edge.
It has been confirmed that this also causes a decrease in the light transmittance in nm and a decrease in the laser resistance to F 2 excimer laser irradiation. In order to suppress the formation of the E ′ center, 7.6 eV (1
It has been found that it is necessary to sufficiently reduce oxygen deficiency defects having an absorption at 63 nm).

【0015】本発明は広範なフッ素濃度についてその影
響を検討した結果であって、フッ素の含有量を0.1m
ol%〜2mol%としたことが特徴である。含有させ
るフッ素量が、0.1mol%未満ではそれらの効果が
十分でなく、また2mol%を超える量をドープした場
合酸素欠乏欠陥を誘起しやすいので、0.1〜2mol
%の範囲が好適で、0.7mol%から1.5mol%
の範囲が特に望ましいからである。
The present invention is a result of examining the influence of a wide range of fluorine concentration, and shows that the fluorine content is 0.1 m
Characteristically, it is set to ol% to 2 mol%. When the amount of fluorine to be contained is less than 0.1 mol%, the effects thereof are not sufficient, and when the amount is more than 2 mol%, oxygen deficiency defects are easily induced.
% Is preferred, from 0.7 mol% to 1.5 mol%
Is particularly desirable.

【0016】なお、フッ素濃度の表示には当業者間でm
ol%表示と重量%表示の2通りでなされているが、こ
れらの関係は以下の式で与えられ相互の比較をすること
ができる。 MOL%=0.32×重量%
It should be noted that the display of the fluorine concentration may be made by those skilled in the art.
The relationship is expressed in two ways, ol% and weight%, and these relationships are given by the following formulas and can be compared with each other. MOL% = 0.32 x weight%

【0017】一方、OH基は従来ArFエキシマレーザ
ーに対する安定性を増すと考えられてきたが、限度を超
えたOH基が存在すると、F2 エキシマレーザー照射に
よってNBOHC(Non-Bridged Oxygen Hole Center)
が生成するので、F2 エキシマレーザー照射による欠陥
生成の原因となることが考えられた。
On the other hand, OH groups have conventionally been considered to increase the stability to an ArF excimer laser. However, if an OH group exceeding the limit is present, NBOHC (Non-Bridged Oxygen Hole Center) is irradiated by F 2 excimer laser irradiation.
Is generated, which is considered to be a cause of defect generation by F 2 excimer laser irradiation.

【0018】そこで本発明の更なる特徴は、OH基濃度
の限界を5ppm以下としたことである。実際にOH基
を10ppm以上含有する石英ガラスにF2 エキシマレ
ーザーを照射した場合、215nm吸収ピークのE’セ
ンターの生成と同時に強烈な260nm吸収ピークのN
BOHCの生成が確認された。それと同時にOH基の3
680cm-1における赤外吸収ピークは約26cm-1
波数側にシフトし、そのピーク強度も約6%減少した。
Therefore, a further feature of the present invention is that the limit of the OH group concentration is set to 5 ppm or less. When an F 2 excimer laser is actually irradiated on quartz glass containing 10 ppm or more of OH groups, the generation of the E ′ center at the 215 nm absorption peak and the intense 260 nm absorption peak N
The formation of BOHC was confirmed. At the same time, 3
Infrared absorption peak at 680 cm -1 is shifted to about 26cm -1 wave number side lower, the peak intensity was decreased by about 6%.

【0019】これは、従来のKrF、ArF照射の時に
は見られなかった現象であり、従来のKrF(5.0e
V)、ArF(6.4eV)程度のエネルギーではほと
んど影響を受けなかったのが、F2(7.9eV)の高
エネルギー線によって、Si−OHのO−H間の結合が
影響を受け、NBOHCが生成したためと考えられる。
従って、OH基濃度は5ppm以下、好ましくは1pp
m以下がよい。
This is a phenomenon that has not been observed in the conventional KrF and ArF irradiations.
V), which was hardly affected by the energy of about ArF (6.4 eV), but the high-energy line of F 2 (7.9 eV) affected the O—H bond of Si—OH, It is considered that NBOHC was generated.
Therefore, the OH group concentration is 5 ppm or less, preferably 1 pp.
m or less is good.

【0020】本発明は前記したごとく、本発明の石英ガ
ラス材料及び光学部材中の水素濃度が5×1016分子
/cm以下であることである。一般に水素分子は石英
ガラスのエキシマレーザー耐久性を向上させることが知
られている。特許第2134624号、特許18980
31号、特許2140768号には石英ガラスに水素を
5×1016分子/cm以上含有させることでKrF
エキシマレーザー、ArFエキシマレーザーに対する耐
久性を向上する技術が示されるているし、Fエキシマ
レーザーに関しては特開平8−75901号、特開平1
0−6521号においてもフッ素と水素分子を同じに石
英ガラス中に含有せしめることにより石英ガラスのF
に対する耐久性が向上している旨の記載がある。しかし
発明者等はOH基が5ppm以下、F濃度が0.1〜2
mol%の範囲の石英ガラスにおいては、水素分子はむ
しろFエキシマレーザーに対する耐久性を低下させる
ことを見出し、本発明に至った。
According to the present invention, as described above, the hydrogen concentration in the quartz glass material and the optical member of the present invention is 5 × 10 16 molecules / cm 3 or less. It is generally known that hydrogen molecules improve the excimer laser durability of quartz glass. Patent No. 2134624, Patent 18980
No. 31 and Japanese Patent No. 2140768 disclose KrF by adding hydrogen to quartz glass in an amount of 5 × 10 16 molecules / cm 3 or more.
Excimer laser, to a technology of improving the durability is indicated for ArF excimer laser, JP-A-8-75901 with respect to F 2 excimer laser, JP-A-1
No. 0-6521, fluorine and hydrogen molecules are also contained in quartz glass in the same manner, whereby F 2
There is a statement that the durability to the steel has been improved. However, the inventors have found that the OH group is 5 ppm or less and the F concentration is 0.1 to 2 ppm.
In the quartz glass in the range of mol%, hydrogen molecules have rather found to decrease the durability to the F 2 excimer laser, leading to the present invention.

【0021】また、本発明の有効な手段として、F2
キシマレーザー発振波長である157nmにおける内部
透過率が70%以上有するように構成するを特徴とす
る。
As an effective means of the present invention, the present invention is characterized in that the internal transmittance at 157 nm, which is the oscillation wavelength of the F 2 excimer laser, is at least 70%.

【0022】これは、フッ素濃度、OH基濃度、酸素欠
乏欠陥の抑制を適正に行うことが必要であり、吸収端を
長波長側にシフトさせる効果がある金属不純物を極力低
減させることで得ることができる。このような透過率を
達成するには、遷移金属類としてCu、Ni、Ti、C
r、Feの総和が30ppb以下、アルカリ金属は総量
50ppb以下、アルカリ土類金属不純物の総量が80
ppb以下に低減することが必要である。
It is necessary to appropriately suppress the fluorine concentration, the OH group concentration, and the oxygen deficiency defect, and to obtain a metal impurity having an effect of shifting the absorption edge to the longer wavelength side as much as possible. Can be. In order to achieve such transmittance, Cu, Ni, Ti, C are used as transition metals.
The total of r and Fe is 30 ppb or less, the total amount of alkali metal is 50 ppb or less, and the total amount of alkaline earth metal impurities is 80 ppb.
It is necessary to reduce it to ppb or less.

【0023】さらに溶存ガスの影響を大きく受けるため
に、酸素ガス、オゾンガスがシリカ中に存在すると紫外
領域の吸収の原因となり、吸収端を長波長側にシフトさ
せると同時にNBOHCの生成の重要な原因となる。よ
って、157nmの透過率はレーザーに対する安定性に
対してはそれ自体が重要な尺度であり、これが内部透過
率として70%以上、好ましくは80%以上である事が
必要である。
Further, if oxygen gas and ozone gas are present in silica, the absorption in the ultraviolet region is caused by the influence of the dissolved gas, which shifts the absorption edge to the longer wavelength side and at the same time is an important cause of NBOHC generation. Becomes Therefore, the transmittance at 157 nm is itself an important measure for the stability to the laser, and it is necessary that the internal transmittance is 70% or more, preferably 80% or more.

【0024】さらに、本発明の有効な手段として、16
3nmにおける内部透過率を90%以上に構成すること
を特徴とする。酸素欠損型欠陥は163nmにもエキシ
マレーザー照射により容易にE’センターを形成する
が、表1に示すように、この波長における内部透過率が
90%以上であれば実質的に問題がないことがわかっ
た。
Further, as an effective means of the present invention, 16
The internal transmittance at 3 nm is set to 90% or more. Oxygen-deficient defects easily form an E 'center even at 163 nm by excimer laser irradiation, but as shown in Table 1, there is no substantial problem if the internal transmittance at this wavelength is 90% or more. all right.

【0025】更に、本発明の有効な手段として、F2
キシマレーザーをパルス当たりのエネルギー密度10m
J/cm2で3×105パルス照射後の波長157nmに
おける透過率低下が10mm当たり5%以下であるよう
に構成することを特徴とする。
Further, as an effective means of the present invention, an F 2 excimer laser is irradiated with an energy density of 10 m per pulse.
It is characterized in that the transmittance at a wavelength of 157 nm after irradiation of 3 × 10 5 pulses at J / cm 2 is 5% or less per 10 mm.

【0026】光学材料として実用的な安定性を保証する
ためには、本発明のF2 エキシマレーザー透過用光学石
英ガラスは、F2 エキシマレーザーを10mJ/cm2
エネルギー密度で3×105パルス照射後の波長157
nmにおける透過率低下が厚さ10mmあたり5%以下
であることが必要である。これは実際の使用における透
過エネルギーが0.1mJ/cm2 であると想定した場
合、3×107パルス〜3×109パルスの間の透過率低
下に相当し、交換可能な光学部品としては満足できる耐
久性を保証するためである。
In order to ensure practical stability as an optical material, the optical quartz glass for transmitting an F 2 excimer laser according to the present invention is obtained by applying an F 2 excimer laser at an energy density of 10 mJ / cm 2 to 3 × 10 5 pulses. Wavelength 157 after irradiation
It is necessary that the transmittance decrease in nm is 5% or less per 10 mm in thickness. This corresponds to a decrease in transmittance between 3 × 10 7 pulses and 3 × 10 9 pulses, assuming that the transmitted energy in actual use is 0.1 mJ / cm 2. This is to ensure satisfactory durability.

【0027】更に、本発明は本発明の石英ガラス材料
内、若しくはそれによる作成される光学部材内における
屈折率の分布の均一性において、最小値と最大値の差Δ
nが2×10−5以下であることを特徴とする。これ
は、本発明の目的用途に適う光学部材である以上、備え
ることが好ましい要件である。
Furthermore, the present invention relates to the difference Δ between the minimum value and the maximum value in the uniformity of the refractive index distribution in the quartz glass material of the present invention or in the optical member produced therefrom.
n is 2 × 10 −5 or less. Since this is an optical member suitable for the intended use of the present invention, it is a preferable requirement to provide it.

【0028】また、波長633nmで測定したときの複
屈折量が0.5nm/cm以下で構成することも本発明
の有効な手段である。精密な複屈折測定は、He/Ne
レーザー(波長633nm)を用いたエリプソメーター
等を用いて複屈折による偏光の光路差であるリタデーシ
ョン(Δnd)を測定し、例えば、厚さ5cmの試料で
リタデーションが10nmと計測された場合は、複屈折
量はリタデーションを厚さで割って2nm/cmと計算
される。
It is also an effective means of the present invention that the birefringence when measured at a wavelength of 633 nm is 0.5 nm / cm or less. Precise birefringence measurement is performed using He / Ne
The retardation (Δnd), which is the difference in the optical path of polarized light due to birefringence, is measured using an ellipsometer or the like using a laser (wavelength 633 nm). The amount of refraction is calculated as 2 nm / cm by dividing retardation by thickness.

【0029】このような場合、10nmのリタデーショ
ンは測定波長である633nmとの関係から10/63
3=0.0158λとなり、使用波長が157nmの場
合には0.063λと4倍以上になり、問題が生じる範
囲となる。また光弾性定数が波長依存性があるために、
633nmで計測される複屈折量が157nmの光に対
してはより大きな複屈折を与える事になる。この意味で
2 エキシマレーザー用光学材料は633nmの波長に
対する複屈折量としては従来の1/4の0.5nm/c
m以下である事が重要である。
In such a case, the retardation of 10 nm is 10/63 based on the relationship with the measurement wavelength of 633 nm.
3 = 0.0158λ, and when the wavelength used is 157 nm, the value is 0.063λ, which is four times or more, which is a range in which a problem occurs. Also, because the photoelastic constant has wavelength dependence,
A light having a birefringence amount of 157 nm measured at 633 nm gives a larger birefringence. In this sense, the optical material for an F 2 excimer laser has a birefringence at a wavelength of 633 nm of 0.5 nm / c which is 1/4 of the conventional value.
It is important that it is less than m.

【0030】[0030]

【発明の実施の形態】以下、図面を参照して本発明の好
適な実施形態を例示的に詳しく説明する。但しこの実施
形態に記載されている構成部品の寸法、材質、形状、そ
の相対的配置等は特に特定的な記載がないかぎりは、こ
の発明の範囲をそれに限定する趣旨ではなく、単なる説
明例にすぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will now be described in detail with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention unless otherwise specified, and are merely illustrative examples. Only.

【0031】以下の比較例及び実施例に記載の石英ガラ
ス中のF 含有量はラーザーラマン分光法により測定され
る。(J.Material Sci. 28(1993)2738-2744) 本発明にいう内部透過率Tは、厚さ10mmあたりの内
部透過率を指し、厚さ10mmあたりの試料の見掛け透
過率D及び理論透過率T0を用いて算出される。 即
ち、R:反射率及びn:屈折率とすると、 R=(n−1)2/(n+1)2 ・・・・(1) T0=(1−R)2 ・・・・(2) T=D/T0 ・・・・(3) で求められる。
The F content in the quartz glass described in the following comparative examples and examples is measured by Lazer-Raman spectroscopy. (J. Material Sci. 28 (1993) 2738-2744) The internal transmittance T referred to in the present invention refers to the internal transmittance per 10 mm thickness, the apparent transmittance D and the theoretical transmittance of a sample per 10 mm thickness. It is calculated using T0. That is, assuming that R is the reflectance and n is the refractive index, R = (n−1) 2 / (n + 1) 2 (1) T 0 = (1-R) 2 (2) T = D / T 0 (3)

【0032】Fを含む石英ガラスの屈折率はF濃度によ
り屈折率が変わるために、内部透過率の算出にはその都
度屈折率を測定する必要があるが、157nm領域の屈
折率の正確な測定は非常に困難である。このため本発明
においてはF濃度が0.1mol%〜2.0mol%の
範囲にある石英ガラスの屈折率を、それぞれ1.689
〜1.677の範囲とし、これを用いて内部透過率の計
算を行った。実際上は厚さ10mmの試料を非常に精密
に研磨し、この見掛け透過率が61.1%以上、好まし
くは69.8%以上であれば良い。
Since the refractive index of the quartz glass containing F changes depending on the F concentration, it is necessary to measure the refractive index each time when calculating the internal transmittance. However, the accurate measurement of the refractive index in the 157 nm region is required. Is very difficult. Therefore, in the present invention, the refractive index of quartz glass having an F concentration in the range of 0.1 mol% to 2.0 mol% is 1.689, respectively.
771.677, and the internal transmittance was calculated using this. Actually, a sample having a thickness of 10 mm is polished very precisely, and the apparent transmittance may be 61.1% or more, preferably 69.8% or more.

【0033】さらに、本発明の目的に適う光学部材とし
て使用するには複屈折が重要な要素である。一般に、精
密な複屈折測定はHe/Neレーザー(波長633n
m)を用いたエリプソメーター等を用いてリタデーショ
ン(Δnd)が計測される。そして、複屈折量Sは S=(Δnd)/試料の厚さ・・・・(4) で計算される。リタデーション(Δnd)とは複屈折に
よる偏光の光路差であるが、厚さ5cmの試料でリタデ
ーションが10nmと計測された場合は、複屈折量Sは
リタデーションを厚さで割って2nm/cmと計算され
る。
Further, birefringence is an important factor for use as an optical member for the purpose of the present invention. Generally, precise birefringence measurement is performed using a He / Ne laser (wavelength 633 n).
The retardation (Δnd) is measured using an ellipsometer or the like using m). Then, the birefringence amount S is calculated as S = (Δnd) / thickness of the sample (4). Retardation (Δnd) is the optical path difference of polarized light due to birefringence. When a sample having a thickness of 5 cm is measured to have a retardation of 10 nm, the birefringence S is calculated as 2 nm / cm by dividing the retardation by the thickness. Is done.

【0034】このような場合、10nmのリタデーショ
ンは測定波長である633nmとの関係から10/63
3=0.0158λとなり、光学的にはあまり問題の無
い量であるが、使用波長が157nmの場合には0.0
63λと4倍以上になり、問題が生じる範囲となる。ま
た光弾性定数が波長依存性があるために、633nmで
計測される複屈折量が157nmの光に対してはより大
きな複屈折を与える事があり、問題が深刻化する。この
意味でF2 エキシマレーザー用光学材料は633nmの
波長に対する複屈折量としては従来の1/4の0.5n
m/cm以下である事が重要である。このような低い複
屈折量を達成するにはアニール工程における徐冷点(1
150℃)からの冷却速度を5℃/時間以下に設定し、
なおかつ徐冷の終点温度を600℃以下に設定する必要
がある。
In such a case, the retardation of 10 nm is 10/63 based on the relationship with the measurement wavelength of 633 nm.
3 = 0.0158λ, which is an amount that does not cause a problem optically, but is 0.0 if the wavelength used is 157 nm.
63λ, which is four times or more, which is a range in which a problem occurs. In addition, since the photoelastic constant has wavelength dependency, a larger birefringence may be given to light having a birefringence amount of 157 nm measured at 633 nm, and the problem becomes serious. In this sense, the optical material for an F 2 excimer laser has a birefringence at a wavelength of 633 nm of 0.5 n, which is 1/4 of the conventional value.
It is important that it is not more than m / cm. In order to achieve such a low birefringence, the annealing point (1
The cooling rate from 150 ° C) is set to 5 ° C / hour or less,
In addition, it is necessary to set the end point temperature of the slow cooling to 600 ° C. or less.

【0035】[実施例1]高純度SiCl4 を酸水素火
炎加水分解して生成するシリカ微粒子を回転する基体上
に堆積し、白色不透明のスート体に形成した。得られた
スート体の重量は2kg、嵩密度は0.25g/cm3
であった。それを電気炉にて1000×5時間、塩素と
酸素(混合体積比Cl2 /O2 =20/80)の混合雰
囲気下で処理した後、SiF4 とHe(混合体積比Si
4 /He=5/95)の混合雰囲気下で、1100℃
×15時間熱処理し、引き続きHeガス1atmの雰囲
気中を、最高温度1460℃に設定し炉内をゆっくりと
引き上げて透明ガラス化して石英ガラスインゴットを製
造した。
Example 1 Silica fine particles produced by hydrolyzing high-purity SiCl 4 with oxyhydrogen flame were deposited on a rotating substrate to form a white opaque soot body. The weight of the obtained soot body was 2 kg, and the bulk density was 0.25 g / cm 3
Met. After treating it in an electric furnace for 1000 × 5 hours in a mixed atmosphere of chlorine and oxygen (mixing volume ratio Cl 2 / O 2 = 20/80), SiF 4 and He (mixing volume ratio Si
F 4 / He = 5/95) at 1100 ° C.
Heat treatment was performed for 15 hours, and then the atmosphere of He gas at 1 atm was set to a maximum temperature of 1460 ° C., and the inside of the furnace was slowly pulled up to form a transparent glass to produce a quartz glass ingot.

【0036】さらにこの石英ガラスインゴットを電気炉
内でアニール処理を行った。アニール処理は石英ガラス
インゴットから切り出した石英ガラス円盤を1150℃
に20時間保持した後冷却速度1℃/時間で550℃ま
でゆっくりと冷却した。またアニール中の酸素の混入を
防ぐ目的で雰囲気は窒素の大気圧雰囲気にし、また金属
不純物の混入を防止する目的で合成石英のチャンバーに
入れて行った。この合成石英ガラスで作られたチャンバ
ーにはしばしば水素分子を含有していることがあるため
に、アニール中にチャンバーからの水素分子の拡散を防
ぐ目的で、アニールに先立ち800℃以上の温度で10
時間程度の空焼きを行ない、チャンバーに含有されてい
る水素分子を外部拡散させたものを使用した。得られた
石英ガラスのF2 レーザー照射前後での波長λに対する
見掛け透過率Dを測定し、見掛け透過率Dを縦軸、波長
λを横軸としてその関係を図1及び図3のごとくプロッ
トした。また、吸光度を縦軸に、光エネルギ(eV)を
横軸にとり、その関係を図2のごとくプロットした。
Further, the quartz glass ingot was annealed in an electric furnace. Annealing is performed at 1150 ° C on a quartz glass disk cut from a quartz glass ingot.
And cooled slowly to 550 ° C. at a cooling rate of 1 ° C./hour. In addition, the atmosphere was set to an atmospheric pressure atmosphere of nitrogen in order to prevent mixing of oxygen during annealing, and the chamber was placed in a synthetic quartz chamber in order to prevent mixing of metal impurities. Since a chamber made of this synthetic quartz glass often contains hydrogen molecules, it is necessary to prevent the diffusion of hydrogen molecules from the chamber during annealing at a temperature of 800 ° C. or more prior to annealing.
An air baking was performed for about an hour, and a hydrogen molecule contained in the chamber was diffused to the outside to use. The apparent transmittance D with respect to the wavelength λ of the obtained quartz glass before and after irradiation with the F 2 laser was measured, and the relationship was plotted as shown in FIGS. 1 and 3 with the apparent transmittance D as the vertical axis and the wavelength λ as the horizontal axis. . Further, the absorbance is plotted on the vertical axis and the light energy (eV) is plotted on the horizontal axis, and the relationship is plotted as shown in FIG.

【0037】なお、F2 エキシマレーザー照射は、パル
ス当たりエネルギー密度8mJ/cm2 で3.5×10
5 ショットを400Hzの繰り返し周波数で光路を窒素
で置換して行った。さらに試料の透過率測定はφ30m
m×10mmの試料両面を高精度光学研磨で仕上げ(表
面粗さRMSで3A以下)、日本分光製真空紫外分光光
度計を用い測定チャンバー内を真空にした後、He置換
して測定した。
The F 2 excimer laser irradiation was performed at 3.5 × 10 3 at an energy density of 8 mJ / cm 2 per pulse.
Five shots were performed at a repetition frequency of 400 Hz by replacing the optical path with nitrogen. Furthermore, the transmittance measurement of the sample is φ30m
Both surfaces of the mx10 mm sample were finished by high-precision optical polishing (surface roughness RMS is 3 A or less), and the inside of the measurement chamber was evacuated using a vacuum ultraviolet spectrophotometer manufactured by JASCO.

【0038】そして、前記(3)式及び(4)式を用
い、得られた石英ガラスの163nmの内部透過率、F
2 レーザー照射前後での157nmの内部透過率、63
3nmで測定した複屈折量S、OH基含有量、及びレー
ザーラマン分光光度法で測定したF含有量に関するデー
タを表1に示す。更にレーザーラマン分光光度法で測定
したH2含有量に関するデータを表3に示す。
Using the above equations (3) and (4), the internal transmittance of the obtained quartz glass at 163 nm, F
2 Internal transmittance of 157 nm before and after laser irradiation, 63
Table 1 shows data on the birefringence S measured at 3 nm, the OH group content, and the F content measured by laser Raman spectroscopy. Further, Table 3 shows data on the H2 content measured by laser Raman spectroscopy.

【0039】[0039]

【表1】 [Table 1]

【0040】[実施例2]実施例1の熱処理時のSiF
4 とHeの混合比を(混合体積比SiF4 /He=1/
99)にする以外は同様の条件で石英ガラスインゴット
を製造するとともに、石英ガラスインゴットから切り出
した石英ガラス円盤を熱処理した。そして、前記(3)
式及び(4)式を用い、得られた石英ガラスの163n
mの内部透過率、F2 レーザー照射前後での157nm
の内部透過率、633nmで測定した複屈折量S、OH
基含有量、及びF含有量に関するデータを表1に示す。
[Embodiment 2] SiF during heat treatment of Embodiment 1
4 and He (mixing volume ratio SiF 4 / He = 1 /
A quartz glass ingot was manufactured under the same conditions except that the method was changed to 99), and a quartz glass disk cut from the quartz glass ingot was heat-treated. And the above (3)
Using the formula and the formula (4), 163n
m internal transmittance, 157 nm before and after F 2 laser irradiation
Internal transmittance, birefringence S, OH measured at 633 nm
Table 1 shows data on the group content and the F content.

【0041】[比較例1]高純度SiCl4 を酸水素火
炎加水分解して白色不透明のスート体に形成し、それを
電気炉にて1000×5時間、塩素と酸素(混合体積比
Cl2 /O2 =20/80)の混合雰囲気下で処理した
後、温度を上げて1100℃×15時間熱処理し、引き
続きHe1atmの雰囲気中を、最高温度1480℃に
設定し炉内をゆっくりと引き上げて透明ガラス化して石
英ガラスインゴットを製造した。得られた石英ガラスの
2 レーザー照射前後での波長λに対する見掛け透過率
Dを測定し、見掛け透過率Dを縦軸、波長λを横軸とし
てその関係を図1のごとくプロットした。また、吸光度
を縦軸に、光エネルギ(eV)を横軸にとり、その関係
を図2のごとくプロットした。そして、前記(3)式及
び(4)式を用い、得られた石英ガラスの163nmの
内部透過率、F2 レーザー照射前後での157nmの内
部透過率、633nmで測定した複屈折量S、OH基含
有量、及びF含有量に関するデータを表1に示す。
[Comparative Example 1] High-purity SiCl 4 was hydrolyzed by oxyhydrogen flame to form a white opaque soot body, which was then placed in an electric furnace at 1,000 × 5 hours for chlorine and oxygen (mixing volume ratio Cl 2 / After the treatment in a mixed atmosphere of (O 2 = 20/80), the temperature was raised and the heat treatment was performed at 1100 ° C. × 15 hours. It was vitrified to produce a quartz glass ingot. The apparent transmittance D with respect to the wavelength λ of the obtained quartz glass before and after irradiation with the F 2 laser was measured, and the relationship was plotted as shown in FIG. 1 with the apparent transmittance D as the vertical axis and the wavelength λ as the horizontal axis. Further, the absorbance is plotted on the vertical axis and the light energy (eV) is plotted on the horizontal axis, and the relationship is plotted as shown in FIG. Then, using the above formulas (3) and (4), the obtained quartz glass has an internal transmittance of 163 nm, an internal transmittance of 157 nm before and after F 2 laser irradiation, and a birefringence S, OH measured at 633 nm. Table 1 shows data on the group content and the F content.

【0042】[比較例2]高純度SiCl4 を酸水素火
炎加水分解して白色不透明のスート体に形成し、それを
電気炉にて真空雰囲気下1480℃で透明ガラス化して
石英ガラスインゴットを製造した。得られた石英ガラス
のF2 レーザー照射前後での波長λに対する見掛け透過
率Dを測定し、見掛け透過率Dを縦軸、波長λを横軸と
してその関係を図1のごとくプロットした。また、吸光
度を縦軸に、光エネルギ(eV)を横軸にとり、その関
係を図2のごとくプロットした。そして、前記(3)式
及び(4)式を用い、得られた石英ガラスの163nm
の内部透過率、F2 レーザー照射前後での157nmの
内部透過率、633nmで測定した複屈折量S、OH基
含有量、及びF含有量に関するデータを表1に示す。
Comparative Example 2 High purity SiCl 4 was hydrolyzed by oxyhydrogen flame to form a white opaque soot body, which was transparently vitrified at 1480 ° C. in a vacuum atmosphere in an electric furnace to produce a quartz glass ingot. did. The apparent transmittance D with respect to the wavelength λ of the obtained quartz glass before and after irradiation with the F 2 laser was measured, and the relationship was plotted as shown in FIG. 1 with the apparent transmittance D as the vertical axis and the wavelength λ as the horizontal axis. Further, the absorbance is plotted on the ordinate and the light energy (eV) is plotted on the abscissa, and the relationship is plotted as shown in FIG. Then, using the above equations (3) and (4), the obtained quartz glass was 163 nm thick.
Table 1 shows data on the internal transmittance of the sample, the internal transmittance at 157 nm before and after F 2 laser irradiation, the birefringence S measured at 633 nm, the OH group content, and the F content.

【0043】[比較例3]実施例1で得られた石英ガラ
ス体を純度96%のアルミナ製の炉材を有する電気炉中
で合成石英ガラスのチャンバーを使用せずに、そのまま
実施例1と同じ条件でアニール処理を行った。そして、
前記(3)式及び(4)式を用い、得られた石英ガラス
の163nmの内部透過率、F2 レーザー照射前後での
157nmの内部透過率、633nmで測定した複屈折
量S、OH基含有量、及びF含有量に関するデータを表
1に示す。
Comparative Example 3 The quartz glass body obtained in Example 1 was used in an electric furnace having a furnace material made of alumina having a purity of 96% without using a synthetic quartz glass chamber. Annealing was performed under the same conditions. And
Using the above formulas (3) and (4), the obtained quartz glass has an internal transmittance of 163 nm, an internal transmittance of 157 nm before and after irradiation with F 2 laser, a birefringence S measured at 633 nm, and an OH group content. Table 1 shows the data on the amount and the F content.

【0044】[比較例4]実施例1で得られた石英ガラ
スインゴットから切り出した石英ガラス円盤を電気炉内
で実施例1と同様に石英ガラス製のチャンバーに入れア
ニールを行なった。アニールは窒素の大気雰囲気で11
50℃に20時間保持した後、冷却速度1℃/時間で5
50℃に維持して、窒素と水素の1:1の混合ガスを導
入し20時間熱処理を行なった。熱処理後炉の通電を停
止し自然冷却した。
Comparative Example 4 A quartz glass disk cut from the quartz glass ingot obtained in Example 1 was placed in a quartz glass chamber in an electric furnace and annealed in the same manner as in Example 1. Annealing is performed in an atmosphere of nitrogen 11
After holding at 50 ° C. for 20 hours, the cooling rate was 1 ° C./hour for 5 hours.
While maintaining the temperature at 50 ° C., a 1: 1 mixed gas of nitrogen and hydrogen was introduced, and heat treatment was performed for 20 hours. After the heat treatment, the power supply to the furnace was stopped, and the furnace was naturally cooled.

【0045】得られた石英ガラスのFレーザー照射前
後での波長λに対する見掛け透過率Dを測定し、見掛け
透過率Dを縦軸、波長λを横軸としてその関係を図3の
ごとくプロットした。
The apparent transmittance D with respect to the wavelength λ of the obtained quartz glass before and after irradiation with the F 2 laser was measured, and the relationship was plotted as shown in FIG. 3 with the apparent transmittance D as the vertical axis and the wavelength λ as the horizontal axis. .

【0046】そして、前記(3)式及び(4)式を用
い、得られた石英ガラスの163nmの内部透過率、F
レーザー照射前後での157nmの内部透過率、63
3nmで測定した水素分子含有量、及びF含有量に関す
るデータを表3に示す。
Using the above equations (3) and (4), the internal transmittance of the obtained quartz glass at 163 nm, F
2 Internal transmittance of 157 nm before and after laser irradiation, 63
Table 3 shows data on the hydrogen molecule content measured at 3 nm and the F content.

【0047】尚、表2に実施例1と比較例3とのICP
マススペクトル法による石英ガラスの分析結果を示す。
表中の金属5元素の総和はCu、Ni、Ti、Cr、F
eの総和をさす。
Table 2 shows the ICP of Example 1 and Comparative Example 3.
The analysis result of the quartz glass by the mass spectrum method is shown.
The sum of the five metals in the table is Cu, Ni, Ti, Cr, F
The sum of e.

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【表3】 [Table 3]

【0050】以上のデータからF2 エキシマレーザー照
射後において、実施例1は見掛け透過率が低下しない
が、比較例1および2は見掛け透過率が大きく低下する
ことがわかる。そして、OH基濃度が1ppm以下、フ
ッ素濃度が1.0mol%において、波長163nmの
内部透過率が92%、レーザ照射前後の波長157nm
の内部透過率が89%と高く、また、波長633nmで
測定したときの複屈折量が0.5nm/cm以下であ
り、従来の1/4以下であることが理解される。
From the above data, it can be seen that the apparent transmittance does not decrease in Example 1 after irradiation with the F 2 excimer laser, but the apparent transmittance greatly decreases in Comparative Examples 1 and 2. When the OH group concentration is 1 ppm or less and the fluorine concentration is 1.0 mol%, the internal transmittance at a wavelength of 163 nm is 92%, and the wavelength is 157 nm before and after laser irradiation.
Has a high internal transmittance of 89%, and has a birefringence of 0.5 nm / cm or less when measured at a wavelength of 633 nm, which is 1/4 or less of the conventional value.

【0051】[0051]

【発明の効果】本発明によれば、石英ガラス中のOH基
濃度を5ppm以下、フッ素濃度を0.1〜2mol
%、157nmの内部透過率を70%以上と規定するこ
とにより、F2 エキシマレーザーの発振波長である15
7nmでの光透過率が高く、F2エキシマレーザー照射
に対する耐レーザー性が高いF2 エキシマレーザー透過
用光学石英ガラスが提供される。
According to the present invention, the OH group concentration in quartz glass is 5 ppm or less and the fluorine concentration is 0.1 to 2 mol.
By defining the internal transmittance at 157 nm to be 70% or more, the oscillation wavelength of the F 2 excimer laser is 15%.
An optical quartz glass for F 2 excimer laser transmission having high light transmittance at 7 nm and high laser resistance to F 2 excimer laser irradiation is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施例1、比較例1、2のサンプルのF2
キシマレーザー照射前後の真空紫外スペクトルチャート
である。
FIG. 1 is a vacuum ultraviolet spectrum chart of samples of Example 1 and Comparative Examples 1 and 2 before and after irradiation with an F 2 excimer laser.

【図2】 実施例1、比較例1、2のサンプルのF2
キシマレーザー照射前後の真空紫外の吸収バンド(差ス
ペクトル)である。
FIG. 2 shows absorption bands (difference spectrum) of vacuum ultraviolet light of the samples of Example 1 and Comparative Examples 1 and 2 before and after irradiation with F 2 excimer laser.

【図3】 実施例1、比較例4のサンプルのF2 エキシ
マレーザー照射後の真空紫外スペクトルチャートであ
る。
FIG. 3 is a vacuum ultraviolet spectrum chart of the samples of Example 1 and Comparative Example 4 after irradiation with an F 2 excimer laser.

【符号の説明】[Explanation of symbols]

T 内部透過率 D 見掛け透過率 R 反射率 n 屈折率 λ 波長 T Internal transmittance D Apparent transmittance R Reflectivity n Refractive index λ Wavelength

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年1月18日(2000.1.1
8)
[Submission date] January 18, 2000 (2000.1.1)
8)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図2[Correction target item name] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図2】 実施例1、比較例1、2のサンプルのF2
キシマレーザー照射の真空紫外の吸収バンド(差スペ
クトル)である。
FIG. 2 is an absorption band (difference spectrum) in vacuum ultraviolet of the samples of Example 1 and Comparative Examples 1 and 2 after irradiation with an F 2 excimer laser.

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図3[Correction target item name] Figure 3

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図3】 実施例1、比較例4のサンプルのF2 エキシ
マレーザー照射前後の真空紫外スペクトルチャートであ
る。
FIG. 3 is a vacuum ultraviolet spectrum chart of samples of Example 1 and Comparative Example 4 before and after irradiation with an F 2 excimer laser.

フロントページの続き (72)発明者 藤ノ木 朗 福島県郡山市田村町金屋字川久保88番地 信越石英株式会社石英技術研究所内 (72)発明者 西村 裕幸 福島県郡山市田村町金屋字川久保88番地 信越石英株式会社石英技術研究所内 (72)発明者 細野 秀雄 神奈川県大和市下鶴間2784−2−212 (72)発明者 小川 透 神奈川県横浜市戸塚区吉田町292 株式会 社半導体先端テクノロジーズ内Continued on the front page (72) Inventor: Akira Fujinoki 88, Kawakubo, Kanaya, Tamura-cho, Koriyama, Fukushima Prefecture Inside the Quartz Research Laboratory, Shin-Etsu Quartz Co., Ltd. (72) Hiroyuki Nishimura 88, Kawakubo, Kanaya, Tamura-cho, Koriyama, Fukushima Inside Quartz Research Institute, Inc. (72) Inventor Hideo Hosono 2784-2-212, Shimotsuruma, Yamato City, Kanagawa Prefecture (72) Inventor Toru Ogawa 292, Yoshida-cho, Totsuka-ku, Yokohama-shi, Kanagawa Prefecture

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 OH基濃度が5ppm以下、フッ素濃度
が0.1〜2mol%、水素濃度が5×1016分子/
cm以下であることを特徴とするF2 エキシマレーザ
ー光学部材用合成石英ガラス材料及び光学部材。
1. An OH group concentration of 5 ppm or less, a fluorine concentration of 0.1 to 2 mol%, and a hydrogen concentration of 5 × 10 16 molecules /
A synthetic quartz glass material and an optical member for an F 2 excimer laser optical member, wherein the diameter is not more than cm 3 .
【請求項2】 F2 エキシマレーザー発振波長である1
57nmにおける内部透過率が70%以上であることを
特徴とする請求項1記載のF2 エキシマレーザー光学部
材用合成石英ガラス材料及び光学部材。
2. An F 2 excimer laser oscillation wavelength of 1
The synthetic quartz glass material and optical member for an F 2 excimer laser optical member according to claim 1, wherein the internal transmittance at 57 nm is 70% or more.
【請求項3】 163nmにおける内部透過率が90%
以上であることを特徴とする請求項1、2に記載のF2
エキシマレーザー光学部材用合成石英ガラス材料及び光
学部材。
3. The internal transmittance at 163 nm is 90%.
The F 2 according to claim 1 or 2, wherein
Synthetic quartz glass material and optical member for excimer laser optical member.
【請求項4】 F2 エキシマレーザーをパルス当たりの
エネルギー密度10mJ/cm2 で3×105パルス照
射後の波長157nmにおける透過率低下が10mm当
たり5%以下であることを特徴とする請求項1乃至3記
載のF2 エキシマレーザー光学部材用合成石英ガラス材
料及び光学部材。
4. The method according to claim 1, wherein a decrease in transmittance at a wavelength of 157 nm after irradiation of an F 2 excimer laser at an energy density of 10 mJ / cm 2 per pulse of 3 × 10 5 pulses is 5% or less per 10 mm. 4. A synthetic quartz glass material and an optical member for an F 2 excimer laser optical member according to any one of items 3 to 3.
【請求項5】 屈折率の最大値と最小値の差Δnが2×
10−5以下であることを特徴とする請求項1乃至4記
載のF2 エキシマレーザー光学部材用合成石英ガラス材
料及び光学部材。
5. The difference Δn between the maximum value and the minimum value of the refractive index is 2 ×
The synthetic quartz glass material and optical member for an F 2 excimer laser optical member according to claim 1, wherein the optical member is 10 −5 or less.
【請求項6】 波長633nmで測定したときの複屈折
量が0.5nm/cm以下であることを特徴とする請求
項1乃至5記載の記載のF2 エキシマレーザー光学部材
用合成石英ガラス材料及び光学部材。
6. The synthetic quartz glass material for an F 2 excimer laser optical member according to claim 1, wherein a birefringence when measured at a wavelength of 633 nm is 0.5 nm / cm or less. Optical members.
JP37165499A 1998-12-26 1999-12-27 Quartz glass material and optical member for F2 excimer laser optical member Expired - Fee Related JP3654500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP37165499A JP3654500B2 (en) 1998-12-26 1999-12-27 Quartz glass material and optical member for F2 excimer laser optical member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-376889 1998-12-26
JP37688998 1998-12-26
JP37165499A JP3654500B2 (en) 1998-12-26 1999-12-27 Quartz glass material and optical member for F2 excimer laser optical member

Publications (2)

Publication Number Publication Date
JP2000239040A true JP2000239040A (en) 2000-09-05
JP3654500B2 JP3654500B2 (en) 2005-06-02

Family

ID=26582343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP37165499A Expired - Fee Related JP3654500B2 (en) 1998-12-26 1999-12-27 Quartz glass material and optical member for F2 excimer laser optical member

Country Status (1)

Country Link
JP (1) JP3654500B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001247318A (en) * 2000-03-03 2001-09-11 Shin Etsu Chem Co Ltd Synthesized silica glass optical member ahd method for producing the same
JP2001316123A (en) * 2000-03-01 2001-11-13 Asahi Glass Co Ltd Synthetic quarts glass
WO2001092175A1 (en) * 2000-05-29 2001-12-06 Heraeus Quarzglas Gmbh & Co. Kg Synthetic quartz glass optical material and optical member for f2 excimer lasers
US6587262B1 (en) 1999-02-16 2003-07-01 Nikon Corporation UV synthetic silica glass optical member and reduction projection exposure apparatus using the same
WO2003080526A1 (en) * 2002-03-27 2003-10-02 Japan Science And Technology Agency Synthetic quartz glass
EP1368711A1 (en) * 2001-02-24 2003-12-10 Corning Incorporated Vacuum ultraviolet transmitting silicon oxyfluoride lithography glass
WO2004073052A1 (en) * 2003-02-17 2004-08-26 Nikon Corporation Exposure apparatus and optical member for exposure apparatus
EP1498394A1 (en) * 2002-04-23 2005-01-19 Asahi Glass Company Ltd. Synthetic quartz glass for optical member, projection exposure device, and projection exposure method
US7964522B2 (en) 2006-08-31 2011-06-21 Corning Incorporated F-doped silica glass and process of making same
KR101494470B1 (en) 2008-02-07 2015-02-17 코닝 인코포레이티드 Halide free glasses having low oh, od concentrations

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587262B1 (en) 1999-02-16 2003-07-01 Nikon Corporation UV synthetic silica glass optical member and reduction projection exposure apparatus using the same
JP2001316123A (en) * 2000-03-01 2001-11-13 Asahi Glass Co Ltd Synthetic quarts glass
JP2001247318A (en) * 2000-03-03 2001-09-11 Shin Etsu Chem Co Ltd Synthesized silica glass optical member ahd method for producing the same
US6689705B2 (en) 2000-05-29 2004-02-10 Heraeus Quarzglas Gmbh & Co., Kg Synthetic quartz glass optical material and optical member
JP2001342034A (en) * 2000-05-29 2001-12-11 Shinetsu Quartz Prod Co Ltd Optical material of synthetic quartz glass for f2 excimer laser and optical part
WO2001092175A1 (en) * 2000-05-29 2001-12-06 Heraeus Quarzglas Gmbh & Co. Kg Synthetic quartz glass optical material and optical member for f2 excimer lasers
EP1368711A1 (en) * 2001-02-24 2003-12-10 Corning Incorporated Vacuum ultraviolet transmitting silicon oxyfluoride lithography glass
EP1368711A4 (en) * 2001-02-24 2006-07-19 Corning Inc Vacuum ultraviolet transmitting silicon oxyfluoride lithography glass
WO2003080526A1 (en) * 2002-03-27 2003-10-02 Japan Science And Technology Agency Synthetic quartz glass
JP2003286040A (en) * 2002-03-27 2003-10-07 Japan Science & Technology Corp Synthetic quartz glass
EP1498394A1 (en) * 2002-04-23 2005-01-19 Asahi Glass Company Ltd. Synthetic quartz glass for optical member, projection exposure device, and projection exposure method
EP1498394A4 (en) * 2002-04-23 2006-06-07 Asahi Glass Co Ltd Synthetic quartz glass for optical member, projection exposure device, and projection exposure method
JPWO2004073052A1 (en) * 2003-02-17 2006-06-01 株式会社ニコン Exposure apparatus and optical member for exposure apparatus
US7072026B2 (en) 2003-02-17 2006-07-04 Nikon Corporation Exposure apparatus and optical component for the same
WO2004073052A1 (en) * 2003-02-17 2004-08-26 Nikon Corporation Exposure apparatus and optical member for exposure apparatus
US7964522B2 (en) 2006-08-31 2011-06-21 Corning Incorporated F-doped silica glass and process of making same
KR101494470B1 (en) 2008-02-07 2015-02-17 코닝 인코포레이티드 Halide free glasses having low oh, od concentrations

Also Published As

Publication number Publication date
JP3654500B2 (en) 2005-06-02

Similar Documents

Publication Publication Date Title
US5958809A (en) Fluorine-containing silica glass
KR100382776B1 (en) Quartz glass, optical member containing the same, and manufacturing method thereof
JP2859095B2 (en) Synthetic quartz mask substrate for excimer laser lithography
EP1094040A2 (en) Silica glass optical material for excimer laser and excimer lamp, and method for producing the same
WO2005085952A1 (en) Photomask substrate made of synthetic quartz glass and photomask
US6689705B2 (en) Synthetic quartz glass optical material and optical member
US8323856B2 (en) Mask blanks
JP2000239040A (en) Quartz glass material for optical member for f2 excimer laser, and optical member
JP2770224B2 (en) Quartz glass for optical lithography, optical member including the same, exposure apparatus using the same, and method of manufacturing the same
JPH03109233A (en) Synthetic silica glass optical body for ultraviolet laser beam and its production
JP2936138B2 (en) Quartz glass, optical member including the same, and method of manufacturing the same
JPH06166528A (en) Production of ultraviolet-laser resistant optical member
US6946416B2 (en) Fused silica having improved index homogeneity
EP1130000B1 (en) Synthesized silica glass optical member and method for manufacturing the same
JP3071362B2 (en) Synthetic quartz mask substrate for ArF excimer laser lithography and method of manufacturing the same
JP3472234B2 (en) Silica glass optical material for excimer laser and excimer lamp
US6689706B2 (en) Fused silica containing aluminum
JPH0742133B2 (en) Synthetic quartz glass optical member for ultraviolet laser
JPH1067526A (en) Optical quartz glass element
JPH0648734B2 (en) Optical components for laser light
JP2023133894A (en) Optical member synthetic silica glass, method for manufacturing the same, and optical member
JPWO2004065315A1 (en) Synthetic quartz glass optical member and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050224

R150 Certificate of patent or registration of utility model

Ref document number: 3654500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080311

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130311

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140311

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees