JP2000016820A - Silica glass granule and its production - Google Patents

Silica glass granule and its production

Info

Publication number
JP2000016820A
JP2000016820A JP20284498A JP20284498A JP2000016820A JP 2000016820 A JP2000016820 A JP 2000016820A JP 20284498 A JP20284498 A JP 20284498A JP 20284498 A JP20284498 A JP 20284498A JP 2000016820 A JP2000016820 A JP 2000016820A
Authority
JP
Japan
Prior art keywords
silica
silica glass
temperature
boiling point
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20284498A
Other languages
Japanese (ja)
Other versions
JP4068225B2 (en
Inventor
Haruo Seiji
晴生 政氏
Keiji Toyama
景司 外山
Mitsuru Eguchi
充 江口
Kazuaki Higuchi
一明 樋口
Masatoshi Sakai
正年 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuso Shirutekku Kk
Original Assignee
Fuso Shirutekku Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuso Shirutekku Kk filed Critical Fuso Shirutekku Kk
Priority to JP20284498A priority Critical patent/JP4068225B2/en
Publication of JP2000016820A publication Critical patent/JP2000016820A/en
Application granted granted Critical
Publication of JP4068225B2 publication Critical patent/JP4068225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/09Other methods of shaping glass by fusing powdered glass in a shaping mould
    • C03B19/095Other methods of shaping glass by fusing powdered glass in a shaping mould by centrifuging, e.g. arc discharge in rotating mould
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/10Forming beads
    • C03B19/1005Forming solid beads
    • C03B19/106Forming solid beads by chemical vapour deposition; by liquid phase reaction
    • C03B19/1065Forming solid beads by chemical vapour deposition; by liquid phase reaction by liquid phase reactions, e.g. by means of a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • C03C2203/26Wet processes, e.g. sol-gel process using alkoxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/20Wet processes, e.g. sol-gel process
    • C03C2203/30Additives
    • C03C2203/32Catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Silicon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain granular silica causing no foams in a silica glass product in processing the silica glass product, consequently having neither a problem of giving rise to crystal defects of silica in the use of it as a crucible for pulling up, for example, single crystal silicon nor a defect of deformation at a high temperature and a method for producing the granular silica. SOLUTION: This silica glass granule has an OH group content based on an infrared absorption spectrum of <=100 weight ppm (a value obtained by calculating a beta coefficient from a transmission infrared absorption spectrum after melt vitrification at 2.6 μm and 2.73 wavelength) and the ratio of the number of four-membered rings/the number of many-membered rings based on a laser Raman spectrum of >=0.0470 by its area ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、シリカガラス粉粒
体及びその製造法に関し、更に詳しくは、半導体を製造
する際の、例えば単結晶シリコンの引上げ用ルツボ、不
純物ドープ用拡散チューブ、半導体用治具として、また
大規模集積回路のパターン転写用フォトマスク用ガラス
基板、光通信用ファイバー、光学材料等の製造原料とし
て有用なシリカガラス粉粒体及びその製造法に関する。
The present invention relates to a silica glass powder and a method for producing the same, and more particularly, to a crucible for pulling single crystal silicon, a diffusion tube for impurity doping, and a semiconductor. The present invention relates to a silica glass powder useful as a jig and as a raw material for producing a glass substrate for a photomask for pattern transfer of a large-scale integrated circuit, a fiber for optical communication, an optical material, and a method for producing the same.

【0002】[0002]

【従来の技術】半導体用の高純度シリコン単結晶の引上
げに用いられるルツボ、あるいは半導体用デバイス等に
用いられる石英ガラス治具、拡散管等は、従来、酸洗浄
等により精製された天然石英が用いられていた。しか
し、デバイスの高集積化に伴いシリコンウェハ欠陥の極
小化、不純物元素の混入可能性の低減等が一層求められ
るようになって来ていることから、シリカガラス原料は
天然石英から合成シリカに変りつつある。
2. Description of the Related Art Crucibles used for pulling high-purity silicon single crystals for semiconductors, quartz glass jigs used for semiconductor devices, diffusion tubes, etc. are conventionally made of natural quartz purified by acid washing or the like. Was used. However, with the increasing integration of devices, the miniaturization of defects on silicon wafers and the reduction of the possibility of contamination with impurity elements have become more demanding, and the raw material for silica glass has changed from natural quartz to synthetic silica. It is getting.

【0003】合成シリカを製造する方法としては、原料
として四塩化ケイ素あるいはアルキルシリケートを使用
するものの二種類に大別される。四塩化ケイ素を原料と
する方法においては、酸水素炎中での火炎加水分解の際
に腐食性の強い塩化水素を副生すると共に、合成したシ
リカ中に微量の塩素が残存するおそれがある。一方、ア
ルキルシリケートを原料とする方法では、塩化水素が副
生することがなく、また塩素を含まない合成シリカが得
られる点でより有利である。従って、高純度シリカの製
造において、後者の方法が使用されている。
[0003] Methods for producing synthetic silica are roughly classified into two types, one using silicon tetrachloride or an alkyl silicate as a raw material. In the method using silicon tetrachloride as a raw material, highly corrosive hydrogen chloride is produced as a by-product during flame hydrolysis in an oxyhydrogen flame, and a small amount of chlorine may remain in the synthesized silica. On the other hand, the method using an alkyl silicate as a raw material is more advantageous in that hydrogen chloride is not produced as a by-product and a synthetic silica containing no chlorine can be obtained. Therefore, the latter method is used in the production of high-purity silica.

【0004】アルキルシリケートを原料とするシリカ
は、1000℃以上の高温で長時間の焼成処理を行って
も、石英ガラス製品中に、加水分解によって生成したシ
ラノール基(Si‐OH)が数100ppm程度残存す
る。該シラノール基はルツボとして使用した場合に、ル
ツボ中に微小な泡を作り出す。この泡は単結晶引上げ時
に破裂し、シリコン単結晶内に結晶欠陥を引起こす可能
性を有する。また、治具又は管として使用する場合に
は、残存するシラノール基は高温での軟化を引起こす。
従って、デバイス製造工程で長時間高温にさらされる治
具、管は変形し易くなる。
Silica made of alkyl silicate as a raw material has about several hundred ppm of silanol groups (Si-OH) generated by hydrolysis in quartz glass products even after a long-term calcination treatment at a high temperature of 1000 ° C. or more. Will remain. When used as a crucible, the silanol groups create fine bubbles in the crucible. This bubble may burst when the single crystal is pulled up, causing a crystal defect in the silicon single crystal. When used as a jig or tube, the remaining silanol groups cause softening at high temperatures.
Therefore, jigs and tubes exposed to high temperatures for a long time in the device manufacturing process are easily deformed.

【0005】シラノール基を低減しようという試みは、
これまでにいくつか知られている。特開平2‐2894
16号公報は、非晶質シリカを水蒸気分圧の低い雰囲気
中で二段階に加熱することによって、低シラノールシリ
カを製造する方法を開示している。該方法によれば、内
部シラノールを120ppm以下に低減できるとしてい
る。該方法におけるシラノール基濃度は、拡散反射法に
よる赤外吸収の吸光度値を指標として算出している。し
かし、該方法は実際の使用に則したシラノール基濃度の
測定法ではなく、実際に溶融ガラス化を行い透過法によ
る赤外吸収吸光度を測定する必要がある。従って、実際
上は未だシラノール基の低減が十分ではなく、上記の欠
点を解消するまでには至っていなかった。
Attempts to reduce silanol groups have been
Some are known so far. JP-A-2-2-2894
No. 16 discloses a method of producing low silanol silica by heating amorphous silica in an atmosphere having a low steam partial pressure in two stages. According to this method, internal silanol can be reduced to 120 ppm or less. The silanol group concentration in this method is calculated using an absorbance value of infrared absorption by a diffuse reflection method as an index. However, this method is not a method of measuring the silanol group concentration in accordance with actual use, but it is necessary to actually carry out melt vitrification and measure infrared absorption absorbance by a transmission method. Therefore, in practice, the reduction of silanol groups has not been sufficient, and the above-mentioned drawbacks have not been solved.

【0006】特開平8‐26742号公報は、合成石英
ガラス粉末が硼素を1×10-1〜1×10-4ppm含
み、かつ、内部シラノール基濃度が150ppm以下、
孤立シラノール基が5ppm以下である合成石英ガラス
粉末を開示している。しかし、硼素含有量を所定範囲に
しなければならず、製造工程が複雑となり、かつ合成石
英ガラス粉末自体も高価になり実用的でない。また、上
記と同様にシラノール基濃度の測定法が実際的ではな
く、未だシラノール基の低減が十分ではないという問題
があった。
JP-A-8-26742 discloses that a synthetic quartz glass powder contains 1 × 10 -1 to 1 × 10 -4 ppm of boron, and has an internal silanol group concentration of 150 ppm or less.
A synthetic quartz glass powder having an isolated silanol group of 5 ppm or less is disclosed. However, the boron content must be within a predetermined range, which complicates the production process, and the synthetic quartz glass powder itself is expensive and impractical. Further, there is a problem that the method for measuring the concentration of silanol groups is not practical, and the reduction of silanol groups is not yet sufficient.

【0007】[0007]

【発明が解決しようとする課題】本発明は、シリカガラ
ス製品に加工した際に、シリカガラス製品中に気泡が生
じず、従って、例えば単結晶シリコンの引上げ用ルツボ
としての使用にあたってシリカの結晶欠陥を引起こす等
の問題がなくかつ高温で変形するという欠点もない粉粒
状シリカ及びその製造法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention relates to a method for producing a silica glass product, which does not generate bubbles in the silica glass product, and thus, for example, when used as a crucible for pulling single crystal silicon, crystal defects of the silica. The present invention provides a particulate silica and a method for producing the same, which do not have a problem of causing deformation of the silica at high temperatures.

【0008】[0008]

【課題を解決するための手段】本発明者らは、シリカガ
ラス製品中に気泡を生じ、従って、例えば単結晶シリコ
ンの引上げ用ルツボとしての使用にあたってシリカの結
晶欠陥を引起こす等の要因となるシラノール基をいかに
して除去し得るかについて種々の検討を行った。その結
果、下記所定の方法を用いれば、驚くべきことに従来の
方法では考えられないほどシラノール基を容易に低減し
得ることを見出した。該方法により製造した新規なシリ
カガラス粉粒体は、従来品と異なる優れた特性、即ち、
製品に加工した後、製品中に気泡が生じず、従って、使
用にあたってシリカの結晶欠陥等を引起こすことがなく
かつ高温で変形することもないことを見出し、本発明を
完成するに至ったのである。
SUMMARY OF THE INVENTION The present inventors have found that bubbles are generated in a silica glass product, which may cause crystal defects of silica when used as a crucible for pulling single-crystal silicon, for example. Various investigations were made on how the silanol group can be removed. As a result, it was surprisingly found that the use of the following prescribed method makes it possible to easily reduce silanol groups in a manner that would not be considered in conventional methods. The novel silica glass powder produced by the method has excellent properties different from conventional products, that is,
After processing into a product, it was found that no bubbles were generated in the product, and therefore, it did not cause crystal defects or the like of silica at the time of use and did not deform at a high temperature. is there.

【0009】即ち、本発明は、(1)赤外吸収スペクト
ルに基くOH基含有量が、シリカガラス粉粒体重量に対
して100重量ppm以下(溶融ガラス化後の透過法赤
外吸収スペクトルの2.6μm及び2.73μmの波長
における透過率からベータ係数を算出して得た値であ
る)であり、かつレーザーラマンスペクトルに基く4員
環数/多員環数の比が、その面積比で0.0470以上
であることを特徴とするシリカガラス粉粒体である。
That is, according to the present invention, (1) the OH group content based on the infrared absorption spectrum is not more than 100 ppm by weight based on the weight of the silica glass powder (the transmission infrared absorption spectrum after melt vitrification). Is a value obtained by calculating the beta coefficient from the transmittance at wavelengths of 2.6 μm and 2.73 μm), and the ratio of the number of 4-membered rings / multi-membered rings based on the laser Raman spectrum is the area ratio. Is not less than 0.0470.

【0010】好ましい態様として、(2)分散状態で有
機シリケートを加水分解してシリカ粉粒体ゲルを生成さ
せ、次いで該シリカ粉粒体ゲルを分離し、焼成してシリ
カガラス粉粒体を製造する方法において、塩基性触媒の
存在下に50℃から還流温度以下の温度で有機シリケー
トを加水分解し、次いで、分離したシリカ粉粒体ゲルを
熱水又は水蒸気により加熱処理することを特徴とする上
記(1)記載のシリカガラス粉粒体の製造法、(3)塩
基性触媒がアンモニアである上記(2)記載の方法、
(4)有機シリケートを50〜70℃の温度で加水分解
する上記(2)又は(3)記載の方法、(5)加水分解
を、実質的に水と相溶しない有機溶媒であって、かつ有
機シリケートの加水分解に伴って副生するアルコールの
沸点より高い沸点を有する有機溶媒中で、前記アルコー
ルの沸点以上かつ前記有機溶媒の沸点より下の温度で、
該副生するアルコールを連続的に留出除去しながら行う
ことを特徴とする上記(2)〜(4)記載の方法、
(6)有機シリケートが、メチルシリケート、エチルシ
リケート及びプロピルシリケートから成る群から選ばれ
る一つ又はそれ以上のアルキルシリケートである上記
(5)記載の方法、(7)有機シリケートが、メチルシ
リケート、エチルシリケート及びイソプロピルシリケー
トから成る群から選ばれる一つ又はそれ以上のアルキル
シリケートである上記(5)記載の方法を挙げることが
できる。
In a preferred embodiment, (2) the silica gel is produced by hydrolyzing the organic silicate in a dispersed state, and then the silica gel is separated and calcined to produce silica glass powder. In the method, the organic silicate is hydrolyzed at a temperature of 50 ° C. to a reflux temperature or lower in the presence of a basic catalyst, and then the separated silica powder gel is heat-treated with hot water or steam. (3) the method for producing a silica glass powder according to the above (1), (3) the method according to the above (2), wherein the basic catalyst is ammonia,
(4) The method according to the above (2) or (3), wherein the organic silicate is hydrolyzed at a temperature of 50 to 70 ° C., (5) an organic solvent substantially incompatible with water for the hydrolysis, and In an organic solvent having a boiling point higher than the boiling point of the alcohol by-produced with the hydrolysis of the organic silicate, at a temperature equal to or higher than the boiling point of the alcohol and lower than the boiling point of the organic solvent,
The method according to any one of the above (2) to (4), wherein the reaction is carried out while continuously distilling and removing the by-product alcohol.
(6) The method according to the above (5), wherein the organic silicate is one or more alkyl silicates selected from the group consisting of methyl silicate, ethyl silicate and propyl silicate, (7) the organic silicate is methyl silicate, ethyl silicate The method according to the above (5), which is one or more alkyl silicates selected from the group consisting of silicates and isopropyl silicates, may be mentioned.

【0011】上記のように、実質的に水と相溶しない有
機溶媒であって、かつ有機シリケートの加水分解に伴っ
て副生するアルコールの沸点より高い沸点を有する有機
溶媒中で、かつ前記アルコールの沸点以上かつ前記有機
溶媒の沸点より下の温度で、該副生するアルコールを連
続的に留出除去しながら加水分解を行うと、加水分解に
伴って副生するアルコールによる水と有機溶媒との相溶
化が生じない。従って、柔軟な扱いにくいゲルが生じて
操作性を悪化させることがなく、かつ生成するシリカの
粒子形状及び粒径分布をも容易に制御し得るという利点
をもたらすのである。
As described above, in an organic solvent which is substantially incompatible with water and which has a boiling point higher than that of alcohol by-produced by hydrolysis of the organic silicate, When the hydrolysis is carried out at a temperature equal to or higher than the boiling point and lower than the boiling point of the organic solvent while continuously distilling and removing the by-produced alcohol, water and the organic solvent due to the by-produced alcohol accompanying the hydrolysis are removed. Does not occur. Therefore, there is an advantage that the operability is not deteriorated due to the generation of a soft and difficult-to-handle gel, and the particle shape and particle size distribution of the generated silica can be easily controlled.

【0012】[0012]

【発明の実施の形態】本発明において、シリカガラス粉
粒体のOH基含有量は、シリカガラス粉粒体重量に対し
て100重量ppm以下である。OH基含有量が、上記
上限を超えては、シリカガラス製品に加工した際に製品
中に気泡が生じ、従って、例えば単結晶シリコンの引上
げ用ルツボとしての使用にあたってシリカの結晶欠陥を
引起こすばかりか高温で変形するという欠点が生ずる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the silica glass powder has an OH group content of 100 ppm by weight or less based on the weight of the silica glass powder. When the OH group content exceeds the above upper limit, bubbles are generated in the product when the product is processed into a silica glass product, and thus, when used as a crucible for pulling single crystal silicon, for example, crystal defects of silica are caused. At high temperatures.

【0013】ここで、シリカガラス粉粒体中のOH基含
有量は、赤外吸収スペクトルの2.6μm及び2.73
μmの波長における透過率からベータ係数を算出して求
めた値である。また、赤外吸収スペクトルによる測定に
供した試料は、天然石英るつぼの内面にアーク溶融法に
よりシリカガラス粉粒体から成る合成シリカ層を形成
し、次いで該シリカ層を1〜2mmの薄板として切出し
て調製したものである。
Here, the OH group content in the silica glass powder is determined to be 2.6 μm and 2.73 in the infrared absorption spectrum.
This is a value obtained by calculating a beta coefficient from the transmittance at a wavelength of μm. The sample subjected to measurement by the infrared absorption spectrum was formed by forming a synthetic silica layer composed of silica glass particles on the inner surface of a natural quartz crucible by an arc melting method, and then cutting out the silica layer as a thin plate of 1 to 2 mm. It was prepared by

【0014】本発明のシリカガラス粉粒体において、そ
の4員環数が、レーザーラマンスペクトルの4員環/多
員環の面積比で0.0470以上である。4員環数が、
上記下限未満では高温で変形するという欠点が生ずる。
該測定に使用した試料は、赤外吸収スペクトルによる測
定と同じ方法で調製したものである。
In the silica glass powder of the present invention, the number of 4-membered rings is 0.0470 or more in terms of the area ratio of 4-membered rings / multi-membered rings in the laser Raman spectrum. The 4-membered ring number is
If it is less than the above lower limit, there is a disadvantage that it is deformed at a high temperature.
The sample used for the measurement was prepared by the same method as the measurement by the infrared absorption spectrum.

【0015】上記本発明のシリカは、下記の方法により
製造することができる。
The silica of the present invention can be produced by the following method.

【0016】即ち、分散状態で有機シリケートを加水分
解してシリカ粉粒体ゲルを生成させ、次いで該シリカ粉
粒体ゲルを分離し、焼成してシリカガラス粉粒体を製造
する方法において、塩基性触媒の存在下に50℃から還
流温度以下の温度で有機シリケートを加水分解し、次い
で、分離したシリカ粉粒体ゲルを熱水又は水蒸気により
加熱処理することを特徴とする方法である。
That is, in a method for producing silica glass particles by hydrolyzing an organic silicate in a dispersed state to form silica powder particles, and then separating and firing the silica powder particles, The method comprises hydrolyzing an organic silicate at a temperature of 50 ° C. to a reflux temperature or lower in the presence of a neutral catalyst, and then subjecting the separated silica powder gel to heat treatment with hot water or steam.

【0017】該方法において使用する塩基性触媒として
は、例えばアンモニア、メチルアミン、モノエタノール
アミン、炭酸アンモニウム等が挙げられる。このうちで
特に好ましくはアンモニアが使用される。触媒の添加量
は、その強度、使用する有機シリケートの加水分解性、
反応温度等により決定され、このような加水分解反応に
慣用的な量でよい。該塩基性触媒を使用することによ
り、生成したシリカ粉粒体ゲルの細孔径を、酸触媒を使
用したものに比べてはるかに大きくすることができる。
これによりシリカ粉粒体ゲルを焼成処理するに際して、
酸触媒を使用したものでは1100℃程度の焼成温度で
細孔が消滅するのに対して、塩基性触媒を使用したもの
では1200℃程度まで細孔が維持される。従って、上
記焼成における加熱によりシラノール‐シラノール間の
縮合で生成する水の逃げ道を十分に確保することができ
て、これにより、ゲル中に存在するシラノール基を十分
に除去し得てOH基量の低減を図ることができるのであ
る。
The basic catalyst used in the method includes, for example, ammonia, methylamine, monoethanolamine, ammonium carbonate and the like. Of these, ammonia is particularly preferably used. The amount of catalyst added depends on its strength, hydrolyzability of the organic silicate used,
The amount may be determined by the reaction temperature or the like, and may be a conventional amount for such a hydrolysis reaction. The use of the basic catalyst makes it possible to increase the pore diameter of the resulting silica powder gel much more than that using an acid catalyst.
When firing the silica powder gel by this,
In the case of using an acid catalyst, the pores disappear at a firing temperature of about 1100 ° C, whereas in the case of using a basic catalyst, the pores are maintained up to about 1200 ° C. Accordingly, it is possible to sufficiently secure an escape route of water generated by the condensation between silanol and silanol by heating in the above-mentioned calcination, whereby the silanol groups present in the gel can be sufficiently removed, and the amount of OH groups can be reduced. The reduction can be achieved.

【0018】有機シリケートを加水分解する温度は、5
0℃から還流温度以下、好ましくは50〜70℃であ
る。該温度を上記範囲に保つことにより、生成したシリ
カ粉粒体ゲルの細孔径をより大きなものにすることがで
きる。上記温度未満では、生成するシリカ粉粒体ゲルの
細孔径が小さくなり、シリカ粉粒体ゲルを焼成処理する
際に、細孔がつぶれ、本発明の効果を達成できない。
The temperature at which the organic silicate is hydrolyzed is 5
The temperature is from 0 ° C to the reflux temperature or lower, preferably 50 to 70 ° C. By keeping the temperature within the above range, the pore size of the generated silica powder gel can be made larger. If the temperature is lower than the above-mentioned temperature, the pore diameter of the generated silica powder gel becomes small, and the pores are crushed when the silica powder gel is calcined, so that the effects of the present invention cannot be achieved.

【0019】生成後、分離したシリカ粉粒体ゲルを熱水
又は水蒸気により加熱処理する方法に特に制限はない。
熱水又は水蒸気による加熱処理は、好ましくは150℃
以上、特に好ましくは200℃以上に保たれた熱水又は
水蒸気にシリカ粉粒体ゲルをさらし、シリカ粉粒体ゲル
の温度上昇を確認しつつ、シリカ粉粒体ゲルの温度が上
記の熱水又は水蒸気温度付近まで上昇した時点をもって
終了する。
After the formation, there is no particular limitation on the method of subjecting the separated silica powder gel to heat treatment with hot water or steam.
Heat treatment with hot water or steam is preferably 150 ° C.
As described above, particularly preferably, the silica powder gel is exposed to hot water or steam kept at 200 ° C. or higher, and the temperature of the silica powder gel is adjusted to the above hot water while checking the temperature rise of the silica powder gel. Or, it ends when the temperature rises to near the steam temperature.

【0020】有機シリケートを加水分解してシリカ粉粒
体ゲルを生成させ、次いで該シリカ粉粒体ゲルを分離
し、焼成してシリカガラス粉粒体を製造する方法につい
て特に制限はなく、種々の方法を使用することができ
る。
There is no particular limitation on the method for producing silica powder granules by hydrolyzing an organic silicate to form silica powder granules, then separating and firing the silica powder granules to produce silica glass powder granules. A method can be used.

【0021】とりわけ、本出願人の特願平8‐1754
63号に記載の方法を使用することが好ましい。即ち、
加水分解を、実質的に水と相溶しない有機溶媒であっ
て、かつ有機シリケートの加水分解に伴って副生するア
ルコールの沸点より高い沸点を有する有機溶媒中で、前
記アルコールの沸点以上かつ前記有機溶媒の沸点より下
の温度で、該副生するアルコールを連続的に留出除去し
ながら行う方法である。
In particular, Japanese Patent Application No. 8-1754 of the applicant of the present invention.
It is preferable to use the method described in No. 63. That is,
Hydrolysis, in an organic solvent that is substantially incompatible with water, and in an organic solvent having a boiling point higher than the boiling point of the alcohol by-produced with the hydrolysis of the organic silicate, the boiling point of the alcohol or higher and the In this method, the by-product alcohol is continuously distilled off at a temperature lower than the boiling point of the organic solvent.

【0022】上記方法において、有機シリケートとして
は、直鎖状又は分枝状の低級アルキルシリケート、例え
ばメチルシリケート、エチルシリケート、プロピルシリ
ケート(n-プロピルシリケート及びイソプロピルシリケ
ート)、これらの混合物又はこれらの縮合物(ダイマ
ー、オリゴマー等)等を使用し得る。あるいは、2種以
上のアルコキシ基を有する混合エステル(例えばメチル
エチルエステル:Si(OMe)2 (OEt)2 等)も
使用し得る。OR基が炭素原子数4個以上のアルコキシ
基である有機シリケートも使用できるが、副生するアル
コールの沸点が水より高くなって、アルコール留去を行
うと水の補給を要する、あるいは加水分解速度が遅くな
り、原料単位重量当たりのシリカ生成量が減少するので
経済的でない等の点を考慮すると、メチルシリケート、
エチルシリケート及びプロピルシリケート(特には、イ
ソプロピルシリケート)から選択されるアルキルシリケ
ートが好ましい。
In the above method, the organic silicate may be a linear or branched lower alkyl silicate, for example, methyl silicate, ethyl silicate, propyl silicate (n-propyl silicate and isopropyl silicate), a mixture thereof or a condensation thereof. Products (dimers, oligomers, etc.) and the like can be used. Alternatively, a mixed ester having two or more alkoxy groups (for example, methyl ethyl ester: Si (OMe) 2 (OEt) 2 or the like) may be used. Although an organic silicate in which the OR group is an alkoxy group having 4 or more carbon atoms can be used, the boiling point of the by-produced alcohol becomes higher than that of water. Is slow, and the amount of silica produced per unit weight of the raw material is reduced, so it is not economical.
Alkyl silicates selected from ethyl silicate and propyl silicate (particularly isopropyl silicate) are preferred.

【0023】該方法においては、加水分解反応を実質的
に水と相溶しない溶媒中で行い、その際に、上記反応で
副生するアルコールを連続的に留出除去することを特徴
とするものである。そこで、使用する有機溶媒は、実質
的に水と相溶しないことの他に、副生するアルコールの
沸点より高い沸点を有することが必要である。使用でき
る溶媒の具体例としては、芳香族炭化水素系溶媒、例え
ばベンゼン(沸点約80℃)、トルエン(沸点約111
℃)、キシレン(沸点約138.4 ℃(o-)、139.1 ℃(m-)、
144.4 ℃(p-))、ドデシルベンゼン(沸点約180 ℃)
等;脂肪族炭化水素系溶媒、例えばn-ヘキサン(沸点約
68.7℃)、デカン(沸点約174 ℃)、ドデカン(沸点約
216 ℃)等;ハロゲン系疎水溶媒、例えばトリクレン
(沸点約87℃)、テトラクロロエチレン(沸点約121
℃)等;非極性エーテル溶媒、例えばアニソール(沸点
約153.8 ℃)、ジブチルエーテル(沸点約142.4 ℃)等
を挙げることができる。好ましくはこれらの溶媒の中
で、使用する有機シリケートから副生するアルコールの
沸点より高い沸点を有する溶媒を選択する。溶媒の量
は、使用する水の量によって決まる。通常、水と等量
(容積)もしくはそれ以上の溶媒を使用する。
The method is characterized in that the hydrolysis reaction is carried out in a solvent substantially incompatible with water, and at that time, alcohol by-produced in the reaction is continuously distilled off. It is. Therefore, the organic solvent used needs to have a boiling point higher than that of the by-produced alcohol, in addition to being substantially incompatible with water. Specific examples of solvents that can be used include aromatic hydrocarbon solvents such as benzene (boiling point of about 80 ° C.) and toluene (boiling point of about 111 ° C.).
℃), xylene (boiling point about 138.4 ℃ (o-), 139.1 ℃ (m-),
144.4 ° C (p-)), dodecylbenzene (boiling point about 180 ° C)
Etc .; aliphatic hydrocarbon solvents such as n-hexane (boiling point of about
68.7 ° C), decane (boiling point approx. 174 ° C), dodecane (boiling point approx.
216 ° C.); halogen-based hydrophobic solvents such as tricrene (boiling point: about 87 ° C.), tetrachloroethylene (boiling point: about 121 ° C.)
° C) and the like; non-polar ether solvents such as anisole (boiling point: about 153.8 ° C) and dibutyl ether (boiling point: about 142.4 ° C). Preferably, among these solvents, a solvent having a boiling point higher than that of the alcohol by-produced from the organic silicate to be used is selected. The amount of solvent depends on the amount of water used. Usually, an equivalent (volume) or more solvent of water is used.

【0024】加水分解のために添加する水の量は、好ま
しくは有機シリケートのOR基(アルキルシリケートの
場合はアルコキシ基)1当量に対して1当量以上であ
る。1当量未満では、収率が低下する。なお、水の量の
上限値は特に限定されないが、実用的には、有機シリケ
ートのOR基1当量に対して4当量以下である。
The amount of water added for the hydrolysis is preferably at least 1 equivalent to 1 equivalent of OR group (alkoxy group in the case of alkyl silicate) of the organic silicate. If it is less than 1 equivalent, the yield will decrease. The upper limit of the amount of water is not particularly limited, but is practically 4 equivalents or less per 1 equivalent of the OR group of the organic silicate.

【0025】加水分解反応は、上記した有機溶媒、有機
シリケート及び水、更に触媒を混合して行う。しかしこ
れらの成分は、そのままでは水相と有機相とに分離した
状態であるので、強制的に例えば撹拌して、分散状態と
する。生成した水滴の界面で水と有機シリケートを接触
させ、加水分解させる。このように、反応は、有機溶媒
中に分散した水滴の中で進行するので、撹拌の強さや撹
拌方法を変化させることによって水滴の大きさを調整
し、シリカガラス粉粒体の粒径を制御できる。また、水
と有機溶媒の仕込み比率を変化させることによっても、
粒径を制御できる。例えば水の量に対して有機溶媒の量
を2〜6倍(容積)にすると、大部分の粒子(最終的に
得られるシリカガラス粉粒体)の粒径が10〜500 μmの
範囲にあるようにすることができる。
The hydrolysis reaction is carried out by mixing the above-mentioned organic solvent, organic silicate, water and a catalyst. However, since these components are separated into an aqueous phase and an organic phase as they are, they are forcibly stirred, for example, to be in a dispersed state. The water and the organic silicate are brought into contact at the interface of the generated water droplets to cause hydrolysis. As described above, since the reaction proceeds in water droplets dispersed in the organic solvent, the size of the water droplets is adjusted by changing the stirring intensity and the stirring method, and the particle size of the silica glass powder particles is controlled. it can. Also, by changing the charge ratio of water and organic solvent,
Particle size can be controlled. For example, when the amount of the organic solvent is 2 to 6 times (volume) the amount of water, the particle diameter of most of the particles (finally obtained silica glass powder) is in the range of 10 to 500 μm. You can do so.

【0026】また、水と溶媒との配合比及び撹拌速度を
変化させることにより、粒子形状を球状又は破砕状に制
御することもできる。使用する溶媒によって配合比率は
変化するが、概ね溶媒の割合が大きいと球状になりやす
く、水の割合が大きいと破砕状になりやすい傾向があ
る。撹拌速度は速いほど、球状になりやすい。
The particle shape can be controlled to be spherical or crushed by changing the mixing ratio of water and the solvent and the stirring speed. The compounding ratio varies depending on the solvent used, but generally when the proportion of the solvent is large, it tends to be spherical, and when the proportion of water is large, it tends to be crushed. The higher the stirring speed, the easier it is to be spherical.

【0027】加水分解反応の進行と共に副生するアルコ
ールを連続的に留出除去するために、上記した加水分解
反応を、副生するアルコールの沸点以上でかつ有機溶媒
の沸点より下の温度に加熱して行う。ただし、有機溶媒
の沸点が100 ℃以上の場合には、水の蒸発除去を避ける
ために、加熱温度は100 ℃未満にする。加熱温度(即ち
反応温度)が副生するアルコールの沸点未満であると副
生したアルコールが除去されないので、親水性の有機溶
媒であるアルコールの存在が水相と有機相との相溶化を
促進して懸濁状態を破壊し、その結果、反応液全体がゲ
ル化して、いわゆる寒天状のゲルが生成し、粉粒状のゲ
ルが得られなくなる。また加熱温度が有機溶媒の沸点以
上であると、有機溶媒も留出除去されてしまうので、水
と有機溶媒との良好な懸濁状態が得られず、寒天状ゲル
となりやすい。このように、副生するアルコールを連続
的に留出除去することによって、懸濁状態を維持したま
ま加水分解反応を進めて、粉粒状態で硬質ゲルまで至ら
しめる。
In order to continuously distill and remove the alcohol by-produced as the hydrolysis reaction proceeds, the above-mentioned hydrolysis reaction is heated to a temperature above the boiling point of the alcohol by-produced and below the boiling point of the organic solvent. Do it. However, when the boiling point of the organic solvent is 100 ° C or higher, the heating temperature should be lower than 100 ° C in order to avoid evaporation of water. If the heating temperature (that is, the reaction temperature) is lower than the boiling point of the by-produced alcohol, the by-produced alcohol is not removed. Therefore, the presence of the alcohol, which is a hydrophilic organic solvent, promotes the compatibilization between the aqueous phase and the organic phase. As a result, the suspension is destroyed. As a result, the whole reaction solution is gelled, so-called agar-like gel is formed, and a powder-like gel cannot be obtained. If the heating temperature is equal to or higher than the boiling point of the organic solvent, the organic solvent is also distilled off, so that a good suspension state of water and the organic solvent cannot be obtained and an agar gel is easily formed. As described above, by continuously distilling and removing the by-produced alcohol, the hydrolysis reaction proceeds while maintaining the suspension state, and the hard gel is obtained in the state of powder and granules.

【0028】得られたシリカ粉粒体ゲルは硬質のゲルで
あり、取り扱いが容易であるので、常法に従い、例えば
濾過によって容易に反応混合物から分離できる。分離し
た粉粒体ゲルは、十分に水洗し、有機溶媒や不純物イオ
ンを除去することが好ましい。十分に洗浄することによ
り、後の焼成時の炭化を防止でき、また水溶性の金属イ
オン等が除去され、高純度のシリカガラス粉粒体を得る
ことができる。
The obtained silica powder gel is a hard gel and easy to handle, so that it can be easily separated from the reaction mixture by a conventional method, for example, by filtration. It is preferable that the separated powder gel is sufficiently washed with water to remove an organic solvent and impurity ions. By sufficiently washing, carbonization during subsequent firing can be prevented, and water-soluble metal ions and the like are removed, so that high-purity silica glass particles can be obtained.

【0029】次に、シリカ粉粒体ゲルは、常法に従い焼
成して、シリカガラス粉粒体とする。焼成は、シラノー
ルを除去するため、好ましくは1000℃以上の高温で数時
間、特に好ましくは1100℃以上の高温で10時間以上行わ
れる。シラノールを除去するためには焼成温度はより高
い方が好ましいが、温度が高すぎると粒子同志の融着を
招いたり、焼成時の容器の材質がシリカ自体では耐えら
れなくなり、不純物混入の恐れが生ずる。従って、焼成
温度は1100〜1300℃程度が特に好ましい。な
お、焼成工程の前に乾燥工程を行うと、粉粒体ゲルの嵩
を大幅に減じることができ、次の焼成工程の負担を軽減
することができるので、好ましい。乾燥は、通常150 〜
200 ℃で1〜2時間行う。
Next, the silica powder gel is fired according to a conventional method to obtain silica glass powder. The calcination is preferably performed at a high temperature of 1000 ° C. or more for several hours, particularly preferably at a high temperature of 1100 ° C. or more for 10 hours or more to remove silanol. In order to remove silanol, it is preferable that the firing temperature is higher.However, if the temperature is too high, fusion of particles may be caused, or the material of the container during firing may not withstand silica itself, and there is a risk of impurity contamination. Occurs. Therefore, the firing temperature is particularly preferably about 1100 to 1300 ° C. Note that it is preferable to perform the drying step before the firing step, because the bulk of the powder gel can be significantly reduced and the load of the subsequent firing step can be reduced. Drying is usually 150 ~
Perform at 200 DEG C. for 1-2 hours.

【0030】上記方法においては、加水分解に伴って副
生するアルコールを連続的に除去するので、有機シリケ
ートの加水分解が進行すると共に、生成したSiO2
重縮合が進んで、シリカガラス粒子の収率が向上する。
しかも、反応終了後、副生するアルコールがほとんど残
留しないので、得られるシリカゲルは硬質であり、取り
扱いおよび分離操作が容易である。例えば、特開昭58-1
76136 号公報記載の方法では、柔軟なゲル状物の粉粒体
が生成するので、実施例では低温で長時間(例えば90℃
で20時間)の乾燥工程を行っており、これは長時間の圧
迫による粒子の変形や割れの原因となっていた。上記方
法では、このような不都合は生じない。
In the above method, alcohol produced as a by-product of the hydrolysis is continuously removed, so that the hydrolysis of the organic silicate proceeds and the polycondensation of the produced SiO 2 proceeds, and the silica glass particles The yield is improved.
Moreover, since almost no by-product alcohol remains after the reaction, the obtained silica gel is hard and easy to handle and separate. For example, JP-A-58-1
In the method described in Japanese Patent No. 76136, a soft gel-like material is produced, and therefore, in the embodiment, the temperature is low at a low temperature for a long time (for example, 90 ° C.).
Drying process for 20 hours), which caused deformation and cracking of the particles due to prolonged compression. The above method does not cause such a disadvantage.

【0031】以下、実施例、比較例により本発明を更に
詳しく説明するが、本発明はこれら実施例に限定される
ものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.

【0032】[0032]

【実施例】下記の実施例及び比較例における各特性値は
以下のようにして測定した。 <OH基含有量>赤外分光光度計を使用した。赤外吸収
スペクトルの2.6μm及び2.73μmの波長におけ
る透過率からベータ係数を算出して求めた。 <4員環数>レーザーラマン分光光度計を使用した。 <耐熱性(ベンディングテスト)>長さ50mm×幅5
mm×厚み2mmの試験片を作成した。該試験片を図1
に示すようにセットし、電気炉中で室温から1.5時間
で1400℃まで昇温して、その温度で2時間保持した
後のΔhを測定して評価した。
EXAMPLES Each characteristic value in the following examples and comparative examples was measured as follows. <OH group content> An infrared spectrophotometer was used. The beta coefficient was calculated from the transmittance at wavelengths of 2.6 μm and 2.73 μm in the infrared absorption spectrum. <4-membered ring number> A laser Raman spectrophotometer was used. <Heat resistance (bending test)> Length 50 mm x width 5
A test piece having a size of 2 mm x 2 mm was prepared. Fig. 1
The temperature was raised from room temperature to 1400 ° C. in 1.5 hours in an electric furnace in 1.5 hours, and Δh after holding at that temperature for 2 hours was measured and evaluated.

【0033】[0033]

【実施例1】攪拌機、温度計、加熱装置を備えた反応器
に、メタノール1200重量部、水1200重量部、2
8%アンモニア水0.2重量部及びテトラメチルオルト
シリケート1200重量部を仕込んだ。次いで、該反応
混合物を攪拌して均一にした後、攪拌を停止し、続いて
60℃まで加熱して、テトラメチルオルトシリケートを
加水分解してシリカ粉粒体ゲルを形成せしめた。加水分
解完了後、反応器から該ゲルを取り出して、圧力容器中
に移し、次いで、200℃の水蒸気によりシリカ粉粒体
ゲルの温度が180℃に達するまで加熱処理を行った。
Example 1 A reactor equipped with a stirrer, a thermometer and a heating device was charged with 1200 parts by weight of methanol, 1200 parts by weight of water,
0.2 parts by weight of 8% aqueous ammonia and 1200 parts by weight of tetramethyl orthosilicate were charged. Next, the reaction mixture was stirred to be uniform, and then the stirring was stopped, followed by heating to 60 ° C. to hydrolyze tetramethyl orthosilicate to form a silica powder gel. After completion of the hydrolysis, the gel was taken out of the reactor, transferred into a pressure vessel, and then subjected to heat treatment with 200 ° C steam until the temperature of the silica powder gel reached 180 ° C.

【0034】該加熱処理終了後、得られたシリカ粉粒体
ゲルを濾別し、水洗し、次いで電気乾燥機にて減圧下、
200℃で1時間乾燥した。乾燥したシリカ粉粒体ゲル
を、電気炉中で、30℃/時間の昇温速度にて1200
℃まで昇温し、この温度で20時間保持してシリカガラ
ス粉粒体を得た。
After the completion of the heat treatment, the resulting silica powder gel was filtered off, washed with water, and then reduced under reduced pressure using an electric dryer.
Dried at 200 ° C. for 1 hour. The dried silica powder granules are placed in an electric furnace at a rate of 30 ° C./hour at a rate of 1200 ° C.
C., and kept at this temperature for 20 hours to obtain silica glass powder.

【0035】得られたシリカガラス粉粒体を天然石英か
ら作成した石英ルツボ内面に、アーク溶融法で高温で吹
き付けることにより、約3mm厚の合成シリカ層を形成
せしめた。次に、該ルツボの一部を切出して、光学顕微
鏡により観察した結果、合成シリカ層内部に殆ど気泡を
有していないことが分かった。更に、該試料を使用して
OH基の定量、4員環数の測定及び耐熱性の測定を実施
した。
The obtained silica glass powder was sprayed on the inner surface of a quartz crucible made of natural quartz at a high temperature by an arc melting method to form a synthetic silica layer having a thickness of about 3 mm. Next, a part of the crucible was cut out and observed with an optical microscope. As a result, it was found that the synthetic silica layer had almost no air bubbles. Furthermore, quantification of OH groups, measurement of the number of 4-membered rings, and measurement of heat resistance were performed using the sample.

【0036】その結果、OH基含有量が95.6重量p
pmであり、4員環数(4員環/多員環の面積比)が
0.0498であり、かつ耐熱性(Δh)が39.3m
mであった。
As a result, the OH group content was 95.6 weight p.
pm, the number of 4-membered rings (area ratio of 4-membered rings / multi-membered rings) is 0.0498, and the heat resistance (Δh) is 39.3 m.
m.

【0037】[0037]

【実施例2】蒸留精製したテトラメチルオルトシリケー
ト 152重量部をガラス製の四つ口フラスコに入れ、ここ
に、蒸留精製しておいたキシレン300 重量部、蒸留水90
重量部及び28%アンモニア水0.025重量部を添加
した。次いで、このフラスコを加熱しながら撹拌(速度
300rpm)した。15分後、反応液温が64℃に達するとメタ
ノールが留出し始めた。さらに30分間、液温が95℃にな
るまで加熱を続けてメタノールの留出を継続した後、撹
拌を止め、室温まで放冷した。生成したシリカ粉粒体ゲ
ルを濾過により分離した後、圧力容器中に移し、次い
で、200℃の水蒸気によりシリカ粉粒体ゲルの温度が
180℃に達するまで加熱処理を行った。
Example 2 152 parts by weight of distilled and purified tetramethyl orthosilicate was placed in a four-neck glass flask, and 300 parts by weight of distilled and purified xylene and 90 parts of distilled water were placed therein.
Parts by weight and 0.025 parts by weight of 28% aqueous ammonia were added. Then, the flask was stirred while heating (speed
300 rpm). After 15 minutes, when the temperature of the reaction solution reached 64 ° C., methanol began to be distilled off. After heating was continued for a further 30 minutes until the liquid temperature reached 95 ° C. and the distillation of methanol was continued, stirring was stopped and the mixture was allowed to cool to room temperature. The resulting silica powder gel was separated by filtration, transferred into a pressure vessel, and then subjected to heat treatment with 200 ° C steam until the temperature of the silica powder gel reached 180 ° C.

【0038】該加熱処理終了後、得られたシリカ粉粒体
ゲルを濾別し、水洗し、次いで電気乾燥機で、200 ℃に
て1時間乾燥した。次いで、電気炉中で、200 ℃/時間
の昇温速度にて1200℃まで昇温し、この温度で20時間保
持して、球状のシリカガラス粉粒体を得た。
After the completion of the heat treatment, the obtained silica powder gel was filtered off, washed with water, and then dried at 200 ° C. for 1 hour by an electric drier. Then, the temperature was raised to 1200 ° C. at a rate of 200 ° C./hour in an electric furnace, and the temperature was maintained for 20 hours to obtain spherical silica glass particles.

【0039】得られたシリカガラス粉粒体を実施例1と
同一にして、光学顕微鏡による観察、更には、OH基の
定量、4員環数の測定及び耐熱性の測定を実施した。光
学顕微鏡観察の結果、合成シリカ層内部に殆ど気泡を有
していないことが分かった。
The obtained silica glass powder was used in the same manner as in Example 1 and observed with an optical microscope, and further, quantification of OH groups, measurement of the number of 4-membered rings, and measurement of heat resistance were performed. As a result of observation with an optical microscope, it was found that there were almost no bubbles inside the synthetic silica layer.

【0040】また、OH基含有量、4員環数及び耐熱性
は実施例1とほぼ同程度であり、良好であった。
The OH group content, the number of 4-membered rings and the heat resistance were almost the same as in Example 1, and were good.

【0041】[0041]

【比較例1】(氷酢酸使用の場合)28%アンモニア水
0.2重量部に代えて、氷酢酸1.2重量部を使用した
以外は、実施例1と同一に実施して、各性状を測定し
た。光学顕微鏡観察の結果、合成シリカ層内部に多くの
気泡が観察された。OH基含有量は145.0重量pp
mと実施例1と比較して著しく高く、かつ4員環数は
0.0458と実施例1と比較して著しく低かった。ま
た、耐熱性は著しく悪いものであった。
[Comparative Example 1] (In the case of using glacial acetic acid) The same procedures as in Example 1 were carried out except for using 1.2 parts by weight of glacial acetic acid instead of 0.2 parts by weight of 28% ammonia water, and Was measured. As a result of observation with an optical microscope, many bubbles were observed inside the synthetic silica layer. OH group content is 145.0 weight pp
m was significantly higher than that of Example 1, and the 4-membered ring number was 0.0458, which was significantly lower than that of Example 1. Also, the heat resistance was extremely poor.

【0042】[0042]

【比較例2】(反応温度が低い場合)反応温度を40℃
にした以外は、実施例1と同一に実施して、各性状を測
定した。光学顕微鏡観察の結果、合成シリカ層内部に多
くの気泡が観察された。OH基含有量は180.0重量
ppmと実施例1と比較して著しく高かった。また、4
員環数は著しく低く、かつ耐熱性は著しく悪いものであ
った。
Comparative Example 2 (When the reaction temperature is low)
Each property was measured in the same manner as in Example 1 except for the above. As a result of observation with an optical microscope, many bubbles were observed inside the synthetic silica layer. The OH group content was 180.0 ppm by weight, which was significantly higher than that of Example 1. Also, 4
The number of ring members was extremely low, and the heat resistance was extremely poor.

【0043】[0043]

【比較例3】(水蒸気処理をしなかった場合)水蒸気に
よる加熱処理を実施しなかった以外は、実施例1と同一
に実施して、各性状を測定した。光学顕微鏡観察の結
果、合成シリカ層内部に多くの気泡が観察された。
Comparative Example 3 (In the case where steam treatment was not performed) The same operation as in Example 1 was performed except that the heat treatment with steam was not performed, and each property was measured. As a result of observation with an optical microscope, many bubbles were observed inside the synthetic silica layer.

【0044】[0044]

【比較例4】(酢酸使用の場合)28%アンモニア水
0.025重量部に代えて、酢酸1.5gを使用した以
外は、実施例2と同一に実施して、各性状を測定した。
光学顕微鏡観察の結果、合成シリカ層内部に多くの気泡
が観察された。OH基含有量は著しく高く、4員環数は
著しく低く、かつ耐熱性は著しく悪いものであった。
Comparative Example 4 (Using acetic acid) Each property was measured in the same manner as in Example 2, except that 1.5 g of acetic acid was used instead of 0.025 parts by weight of 28% aqueous ammonia.
As a result of observation with an optical microscope, many bubbles were observed inside the synthetic silica layer. The OH group content was extremely high, the number of 4-membered rings was extremely low, and the heat resistance was extremely poor.

【0045】[0045]

【比較例5】特開平8‐26742号公報記載の方法に
よりシリカガラス粉粒体を得た。次いで、該シリカガラ
ス粉粒体について、実施例1と同一にして、光学顕微鏡
による観察、更には、OH基の定量、4員環数の測定及
び耐熱性の測定を実施した。光学顕微鏡観察の結果、合
成シリカ層内部に実施例1と比較してより多くの気泡が
観察された。OH基含有量は124.0重量ppmと実
施例1と比較して著しく高く、また耐熱性は42.3m
mと実施例1と比較して悪かった。
Comparative Example 5 A silica glass powder was obtained by the method described in JP-A-8-26742. Then, the silica glass powder was observed in the same manner as in Example 1 by an optical microscope, and further, quantification of OH groups, measurement of the number of 4-membered rings, and measurement of heat resistance were performed. As a result of observation with an optical microscope, more air bubbles were observed inside the synthetic silica layer than in Example 1. The OH group content was 124.0 wt ppm, which was significantly higher than that of Example 1, and the heat resistance was 42.3 m.
m was worse than that of Example 1.

【0046】[0046]

【参考例1】天然石英IOTA‐6(米国ユニミン社
製)を使用して、実施例1と同一に実施して、各性状を
測定した。
Reference Example 1 Using natural quartz IOTA-6 (manufactured by Unimin Corporation, USA), the same operation as in Example 1 was carried out, and each property was measured.

【0047】光学顕微鏡により観察した結果、シリカ層
内部に殆ど気泡を有していないことが分かった。また、
OH基含有量が94.1重量ppmであり、4員環数
(4員環/多員環の面積比)が0.0462であり、か
つ耐熱性が25.5mmであった。
As a result of observation with an optical microscope, it was found that the silica layer had almost no air bubbles. Also,
The OH group content was 94.1 ppm by weight, the number of 4-membered rings (area ratio of 4-membered ring / multi-membered ring) was 0.0462, and the heat resistance was 25.5 mm.

【0048】以上の結果から、本発明のシリカガラス粉
粒体は天然石英にほぼ匹敵するOH基含有量を有してお
り、かつ天然石英により近い耐熱性を有していることが
分かった。
From the above results, it was found that the silica glass powder of the present invention has an OH group content almost equal to that of natural quartz and has heat resistance closer to that of natural quartz.

【0049】[0049]

【発明の効果】本発明は、シリカガラス製品に加工した
際に、シリカガラス製品中に気泡が生じず、従って、例
えば単結晶シリコンの引上げ用ルツボとしての使用にあ
たってシリカの結晶欠陥を引起こす等の問題がなくかつ
高温で変形するという欠点もない粉粒状シリカ及びその
製造法を提供する。
According to the present invention, when processed into a silica glass product, no bubbles are generated in the silica glass product, and therefore, for example, crystal defects of silica are caused when used as a crucible for pulling single crystal silicon. The present invention provides a particulate silica and a method for producing the same, which do not have the problems described above and do not have the disadvantage of deforming at high temperatures.

【図面の簡単な説明】[Brief description of the drawings]

【図1】耐熱性測定装置(ベンディングテスト装置)の
概略図である。
FIG. 1 is a schematic diagram of a heat resistance measuring device (bending test device).

【符号の説明】[Explanation of symbols]

1:試験片(加熱前) 2:試験片(加熱後) 1: Test piece (before heating) 2: Test piece (after heating)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江口 充 京都府福知山市長田野町1−5 株式会社 扶桑シルテック内 (72)発明者 樋口 一明 京都府福知山市長田野町1−5 株式会社 扶桑シルテック内 (72)発明者 酒井 正年 京都府福知山市長田野町1−5 株式会社 扶桑シルテック内 Fターム(参考) 4G014 AH04 4G062 AA10 BB02 CC05 MM02 MM27 MM40  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Mitsuru Eguchi 1-5 Nagatanocho, Fukuchiyama-shi, Kyoto Prefecture Fuso Siltec Co., Ltd. (72) Inventor Kazuaki Higuchi 1-5 Nagatano-cho, Fukuchiyama City, Kyoto Fuso Siltec Co., Ltd. (72) Inventor Masatoshi Sakai 1-5 Nagatano-cho, Fukuchiyama-shi, Kyoto F-term in Fuso Siltec Co., Ltd. 4G014 AH04 4G062 AA10 BB02 CC05 MM02 MM27 MM40

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 赤外吸収スペクトルに基くOH基含有量
が、シリカガラス粉粒体重量に対して100重量ppm
以下(溶融ガラス化後の透過法赤外吸収スペクトルの
2.6μm及び2.73μmの波長における透過率から
ベータ係数を算出して得た値である)であり、かつレー
ザーラマンスペクトルに基く4員環数/多員環数の比
が、その面積比で0.0470以上であることを特徴と
するシリカガラス粉粒体。
1. An OH group content based on an infrared absorption spectrum is 100 ppm by weight based on the weight of silica glass powder.
The following is a value obtained by calculating the beta coefficient from the transmittance at wavelengths of 2.6 μm and 2.73 μm in the transmission infrared absorption spectrum after melt vitrification, and a 4-membered value based on the laser Raman spectrum. A silica glass powder characterized in that the ratio of the number of rings / the number of multi-membered rings is 0.0470 or more in terms of the area ratio.
【請求項2】 分散状態で有機シリケートを加水分解し
てシリカ粉粒体ゲルを生成させ、次いで該シリカ粉粒体
ゲルを分離し、焼成してシリカガラス粉粒体を製造する
方法において、塩基性触媒の存在下に50℃から還流温
度以下の温度で有機シリケートを加水分解し、次いで、
分離したシリカ粉粒体ゲルを熱水又は水蒸気により加熱
処理することを特徴とする請求項1記載のシリカガラス
粉粒体の製造法。
2. A method for producing a silica glass powder by hydrolyzing an organic silicate in a dispersed state to form a silica powder gel, and then separating and firing the silica powder gel. Hydrolyzing the organosilicate in the presence of a neutral catalyst at a temperature of from 50 ° C. to a reflux temperature,
2. The method for producing silica glass particles according to claim 1, wherein the separated silica particle gel is heat-treated with hot water or steam.
【請求項3】 塩基性触媒がアンモニアである請求項2
記載の方法。
3. The method according to claim 2, wherein the basic catalyst is ammonia.
The described method.
【請求項4】 加水分解を、実質的に水と相溶しない有
機溶媒であって、かつ有機シリケートの加水分解に伴っ
て副生するアルコールの沸点より高い沸点を有する有機
溶媒中で、前記アルコールの沸点以上かつ前記有機溶媒
の沸点より下の温度で、該副生するアルコールを連続的
に留出除去しながら行うことを特徴とする請求項2又は
3記載の方法。
4. The method according to claim 1, wherein the hydrolysis is carried out in an organic solvent which is substantially incompatible with water and which has a boiling point higher than that of the alcohol by-produced with the hydrolysis of the organic silicate. 4. The method according to claim 2, wherein the by-product alcohol is continuously distilled off at a temperature equal to or higher than the boiling point of the organic solvent and lower than the boiling point of the organic solvent.
JP20284498A 1998-07-03 1998-07-03 Silica glass powder and method for producing the same Expired - Lifetime JP4068225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20284498A JP4068225B2 (en) 1998-07-03 1998-07-03 Silica glass powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20284498A JP4068225B2 (en) 1998-07-03 1998-07-03 Silica glass powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000016820A true JP2000016820A (en) 2000-01-18
JP4068225B2 JP4068225B2 (en) 2008-03-26

Family

ID=16464138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20284498A Expired - Lifetime JP4068225B2 (en) 1998-07-03 1998-07-03 Silica glass powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4068225B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080239A (en) * 2000-09-06 2002-03-19 Sumitomo Metal Ind Ltd Synthetic quarts glass for optical piece and method of manufacturing synthetic quarts glass
WO2013094318A1 (en) 2011-12-22 2013-06-27 ジャパンスーパークォーツ株式会社 Method for evaluating silica glass crucible, method for producing silicon single crystals
JP2013134056A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for determining three-dimensional distribution of infrared absorption spectrum of silica glass crucible, and method for manufacturing silicon monocrystal
JP2013139353A (en) * 2011-12-29 2013-07-18 Sumco Corp Method for inspecting abnormal site in silica glass crucible
JP2015180881A (en) * 2015-05-13 2015-10-15 株式会社Sumco Method for determining three-dimensional distribution of infrared absorption spectrum of silica glass crucible, and method for producing silicon single crystal
CN116873605A (en) * 2023-09-06 2023-10-13 溧阳吉达电子材料有限公司 Transfer device is used in silica gel production

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5599573B2 (en) 2009-04-10 2014-10-01 出光興産株式会社 Glass and lithium battery comprising solid electrolyte particles

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002080239A (en) * 2000-09-06 2002-03-19 Sumitomo Metal Ind Ltd Synthetic quarts glass for optical piece and method of manufacturing synthetic quarts glass
JP4663860B2 (en) * 2000-09-06 2011-04-06 株式会社オハラ Synthetic quartz glass for optical members and method for producing synthetic quartz glass
WO2013094318A1 (en) 2011-12-22 2013-06-27 ジャパンスーパークォーツ株式会社 Method for evaluating silica glass crucible, method for producing silicon single crystals
JP2013134056A (en) * 2011-12-22 2013-07-08 Japan Siper Quarts Corp Method for determining three-dimensional distribution of infrared absorption spectrum of silica glass crucible, and method for manufacturing silicon monocrystal
KR20140104500A (en) 2011-12-22 2014-08-28 가부시키가이샤 섬코 Method for evaluating silica glass crucible, method for producing silicon single crystals
US9809902B2 (en) 2011-12-22 2017-11-07 Sumco Corporation Method for evaluating silica glass crucible, method for producing silicon single crystals
JP2013139353A (en) * 2011-12-29 2013-07-18 Sumco Corp Method for inspecting abnormal site in silica glass crucible
JP2015180881A (en) * 2015-05-13 2015-10-15 株式会社Sumco Method for determining three-dimensional distribution of infrared absorption spectrum of silica glass crucible, and method for producing silicon single crystal
CN116873605A (en) * 2023-09-06 2023-10-13 溧阳吉达电子材料有限公司 Transfer device is used in silica gel production
CN116873605B (en) * 2023-09-06 2023-12-01 溧阳吉达电子材料有限公司 Transfer device is used in silica gel production

Also Published As

Publication number Publication date
JP4068225B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
JP5399246B2 (en) Sol-gel method
TWI788278B (en) Glass fibres and pre-forms made of homogeneous quartz glass
CN108658451A (en) The high-purity silicon dioxide granule applied for quartz glass and the method for preparing the particle
JPH072513A (en) Production of synthetic quartz glass powder
TW201029925A (en) Method for the production of high purity SiO2 from silicate solutions
KR100219250B1 (en) Synthetic silica glass powder
JP3128451B2 (en) Manufacturing method of synthetic quartz glass
US6071838A (en) Silica gel, synthetic quartz glass powder, quartz glass shaped product molding, and processes for producing these
JP3152410B2 (en) Manufacturing method of synthetic quartz glass member
JP2000016820A (en) Silica glass granule and its production
KR100789124B1 (en) A high-purity pyrogenically prepared silicon dioxide, a process for the preparation of the same, and a silica glass and articles obtained by using the same
EP0844212B1 (en) Silica gel, synthetic quartz glass powder and shaped product of quartz glass
JPH02188489A (en) Method for regenerating quartz crucible for pulling up silicon single crystal
WO2022209515A1 (en) Fluorine-containing silica glass powder and method for producing fluorine-containing silica glass powder
JP2000169163A (en) Synthetic quartz glass powder containing aluminum, synthetic quartz glass formed body containing aluminum, and production of the same
JP2504148B2 (en) Method for producing silica glass
JP3859303B2 (en) Method for producing synthetic quartz glass powder and quartz glass molded body
JP3724084B2 (en) Method for producing synthetic quartz powder and quartz glass molded body
JP3689926B2 (en) High-purity synthetic quartz glass powder, method for producing the same, and high-purity synthetic quartz glass molded body using the same
JPH02208230A (en) Production of high-purity, high-viscosity silica glass
JPH08208214A (en) Silica gel and its production, and production of synthetic silica glass powder
JPH08208217A (en) Production of synthetic quartz glass powder and molded material of quartz glass
JPH035329A (en) Production of synthetic quartz glass
JP2001192225A (en) Method for manufacturing quartz glass
JP2581612B2 (en) Method for producing doped silica particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term