JPH02208230A - Production of high-purity, high-viscosity silica glass - Google Patents

Production of high-purity, high-viscosity silica glass

Info

Publication number
JPH02208230A
JPH02208230A JP2857589A JP2857589A JPH02208230A JP H02208230 A JPH02208230 A JP H02208230A JP 2857589 A JP2857589 A JP 2857589A JP 2857589 A JP2857589 A JP 2857589A JP H02208230 A JPH02208230 A JP H02208230A
Authority
JP
Japan
Prior art keywords
gel
atmosphere
silica glass
heat treatment
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2857589A
Other languages
Japanese (ja)
Other versions
JP2732643B2 (en
Inventor
Reiji Oguma
小熊 黎児
Akihiro Hirai
平居 昭宏
Koichi Shiraishi
耕一 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP1028575A priority Critical patent/JP2732643B2/en
Publication of JPH02208230A publication Critical patent/JPH02208230A/en
Application granted granted Critical
Publication of JP2732643B2 publication Critical patent/JP2732643B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/12Other methods of shaping glass by liquid-phase reaction processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

PURPOSE:To obtain the title silica glass useful for semiconductor processing materials, optical fiber-supporting tubes, etc., by heat treatment, in a steam atmosphere, of a gel as silica source produced by the sol-gel process followed by further heat treatment in a dry gas or vacuum to effect baking. CONSTITUTION:A silica source such as SiCl4, halogenated silane or alkoxysilane is gelled by the sol-gel process. The resultant gel is, if needed, washed with water, acid or ammonia water, dried, and heat-treated in a steam-contg. atmosphere at 300-1000 deg.C to eliminate the organic matter, halogens, halides, etc., in the gel. Thence, further heat treatment is made in a dry air atmosphere <=0.5mmHg in steam partial pressure (pref. H2 or He) or in a vacuum at 300-1000 deg.C to diffuse and eliminate the OH group in the gel. The resultant gel is then baked under a similar atmospheric conditions at 1000-2000 deg.C to effect densification, thus obtaining the objective high-purity, high-viscosity transparent silica glass.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は特に半導体用プロセス材料や光フアイバ用支持
管として好適な高純度・高粘性シリカガラスの製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing high-purity, high-viscosity silica glass, which is particularly suitable as a process material for semiconductors and a support tube for optical fibers.

〔従来の技術〕[Conventional technology]

半導体用プロセス材料や光フアイバ用支持管として用い
られるシリカガラスは、金属不純物、ハロゲン、OH基
などの含有量が極めて少ないことが要求される。従来、
こうした用途のシリカガラスの製造方法としては、以下
のような種々の方法が提案されている。
Silica glass used as a process material for semiconductors or a support tube for optical fibers is required to have extremely low contents of metal impurities, halogens, OH groups, and the like. Conventionally,
The following various methods have been proposed as methods for producing silica glass for such uses.

■スリップキャスティング法などにより成形された5i
02成形体を約750℃で仮焼した後、He ”ev 
N eの雰囲気下にて1600℃以上の温度で焼成する
方法(特開昭49−131210号公報)。
■5i molded by slip casting method etc.
After calcining the 02 molded body at about 750°C,
A method of firing at a temperature of 1600°C or higher in an Ne atmosphere (Japanese Patent Laid-Open No. 131210/1983).

■気相反応により形成された5i02成形体を約10m
mHgの雰囲気中にて1100〜1400℃で予備焼結
して脱水した後、急熱溶融する方法(特公昭47−52
72号公報)。
■ Approximately 10 m of 5i02 molded body formed by gas phase reaction
A method of preliminary sintering at 1100 to 1400°C in an mHg atmosphere, dehydration, and rapid heat melting (Japanese Patent Publication No. 47-52
Publication No. 72).

■スリップキャスティング法により成形されたSiO□
成形体を1200℃以下で焼成して可燃物を除去した後
、He雰囲気中又は真空中にて1600℃以上まで急熱
する方法(特公昭53−33!3E15号公報)。
■SiO□ molded by slip casting method
A method in which the molded body is fired at 1200° C. or lower to remove combustible materials, and then rapidly heated to 1600° C. or higher in a He atmosphere or in a vacuum (Japanese Patent Publication No. 53-33!3E15).

■多孔質シリカガラス成形体を塩素含有雰囲気中にて6
00〜1000℃で加熱してOH基を除去した後、窒素
雰囲気中にて加熱してガラスを緻密化させる方法(特公
昭42−23038号公報)。
■ Porous silica glass molded body in chlorine-containing atmosphere
A method of heating at 00 to 1000°C to remove OH groups and then heating in a nitrogen atmosphere to make the glass dense (Japanese Patent Publication No. 42-23038).

■5i02原料(珪酸ゲルを含む)を四塩化珪素などの
雰囲気中にて加熱処理した後、この原料を溶融させてシ
リカガラスを製造する方法(特公昭4B−9143号公
報) ■シリカ原料からゾル−ゲル法により管状ゲルを作製し
た後、He雰囲気又は減圧下にて1200℃程度で加熱
して閉孔化し、更に1500〜2200℃で再加熱する
方法(特開昭82−46933号公報)。
■A method of manufacturing silica glass by heat-treating the 5i02 raw material (including silicic acid gel) in an atmosphere of silicon tetrachloride or the like and then melting this raw material (Japanese Patent Publication No. 4B-9143) ■Sol from the silica raw material - A method in which a tubular gel is produced by a gel method, then heated at about 1200° C. in a He atmosphere or under reduced pressure to close the pores, and then reheated at 1500 to 2200° C. (Japanese Unexamined Patent Publication No. 82-46933).

■シリカ原料からゾル−ゲル法により所定形状のゲルを
調製し、400℃以下で加熱して吸着水を除去し、40
0〜1200℃で加熱して脱炭素を行い、塩化物、フッ
化物を含むHe、Neなどの雰囲気中にて700〜12
00℃で加熱して脱OH基を行い、He、Neなどの雰
囲気中にて700〜1200℃で加熱した後、He雰囲
気中にて1000〜1500℃で加熱して脱ハロゲンを
行い、更に1000〜1800℃で加熱して透明化する
方法(U S P 4.[1B0.048)。
■Prepare a gel of a predetermined shape from silica raw material by the sol-gel method, heat it at 400°C or less to remove adsorbed water,
Decarbonization is performed by heating at 0 to 1200°C, and 700 to 12
After heating at 00°C to remove OH groups, heating at 700 to 1200°C in an atmosphere of He, Ne, etc., removing halogen by heating at 1000 to 1500°C in a He atmosphere, and then removing OH groups at 1000°C. Method of transparency by heating at ~1800°C (US P 4. [1B0.048).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述した従来の方法にはいずれも以下の
ような問題がある。
However, all of the conventional methods described above have the following problems.

すなわち、■、■、■、■の方法では、一般にシリカガ
ラス中のアルカリ金属その他の金属不純物の含有量が多
く、こうしたシリカガラスは特に半導体用プロセス材料
などの用途には使用困難である。
That is, in the methods (1), (2), (2), and (2), the content of alkali metals and other metal impurities in the silica glass is generally large, and such silica glass is difficult to use, especially as a process material for semiconductors.

また、■、■、■の方法ではシリカガラス中のOH基含
有量は低減されるが、CfLなどのハロゲンが残留する
ため低粘性となり、こうしたシリカガラスは高温使用が
制限される。
Furthermore, although the OH group content in the silica glass is reduced in the methods (1), (2), and (4), the viscosity becomes low due to residual halogens such as CfL, which limits the use of such silica glass at high temperatures.

本発明は上記問題点を解決するためになされたものであ
り、金属不純物、OH基、/\ロゲンの含有量が少ない
、高純度かつ高粘性のシリカガラスを製造し得る方法を
提供することを目的とする。
The present invention has been made to solve the above problems, and aims to provide a method for producing high purity and high viscosity silica glass with a low content of metal impurities, OH groups, and /\logene. purpose.

〔課題を解決するための手段と作用〕[Means and actions to solve the problem]

本発明の高純度・高粘性シリカガラスの製造方法は、ゾ
ル−ゲル法によりシリカ源となる原料のゲルを調製し、
このゲルを水蒸気を含む雰囲気中にて300〜1000
℃で熱処理した後、水蒸気分圧0.5 mm)1g以下
の乾燥気体雰囲気中又は真空中にて300〜1000℃
で熱処理し、更に水蒸気分圧0.5 mmHg以下の乾
燥気体雰囲気中又は真空中にて1000〜2000℃で
焼成することを特徴とするものである。
The method for producing high-purity, high-viscosity silica glass of the present invention involves preparing a raw material gel serving as a silica source by a sol-gel method,
This gel was heated to 300 to 1000 in an atmosphere containing water vapor.
After heat treatment at 300 to 1000 °C in a dry gas atmosphere with a water vapor partial pressure of 0.5 mm) or less than 1 g or in vacuum.
It is characterized by being heat treated at 1,000 to 2,000° C. in a dry gas atmosphere with a water vapor partial pressure of 0.5 mmHg or less or in vacuum.

本発明において、シリカ源となる原料としては、5ic
k。、ハロゲン化シラン、アルコキシシラン、アルキル
シラン、金属ケイ酸塩、シリカ微粉末などが挙げられる
In the present invention, 5ic
k. , halogenated silane, alkoxysilane, alkylsilane, metal silicate, fine silica powder, etc.

こうしたシリカ源となる原料はゾル−ゲル法によりゲル
化される。必要に応じて生成したゲルを水、酸、アンモ
ニアなどの溶液で洗浄した後、乾燥する。
Such a raw material serving as a silica source is gelled by a sol-gel method. If necessary, the generated gel is washed with a solution such as water, acid, or ammonia, and then dried.

なお、必要に応じて後述する水蒸気を含む雰囲気での熱
処理の前に、C1,,5OC1x、Si0文。、He見
、CHC文3、フッ化物などの各種ハロゲン化物を含む
雰囲気中にて300〜1000℃で熱処理を行うことに
より金属不純物を除去する。
Note that, if necessary, before heat treatment in an atmosphere containing water vapor, which will be described later, C1,,5OC1x, Si0. , He, CHC 3, metal impurities are removed by heat treatment at 300 to 1000° C. in an atmosphere containing various halides such as fluoride.

次に、上記のようなゲルを水蒸気を含む雰囲気中にて3
00〜1000℃で熱処理する。この工程の目的は、ゲ
ル中の有機物、ハロゲン、ハロゲン化物を除去すること
にある。この工程の処理温度を300〜1000℃とし
たのは以下のような理由による。すなわち、300℃未
満では、前記不純物を実質的に除去することが困難であ
り、高粘性のシリカガラスを得ることができない。一方
、1000℃を超えると、ゲルの緻密化が急速に進行し
、前記不純物がゲル中に取り残されるため、得られるシ
リカガラスは粘性が低く、また気泡の多いものとなる。
Next, the above gel was placed in an atmosphere containing water vapor for 3
Heat treatment at 00-1000°C. The purpose of this step is to remove organic substances, halogens, and halides in the gel. The reason why the treatment temperature in this step was set to 300 to 1000°C is as follows. That is, if the temperature is lower than 300°C, it is difficult to substantially remove the impurities, and high viscosity silica glass cannot be obtained. On the other hand, if the temperature exceeds 1000°C, the gel becomes denser rapidly and the impurities are left behind in the gel, resulting in the resulting silica glass having low viscosity and many bubbles.

その後、水蒸気分圧0.5 mmHg以下の乾燥気体雰
囲気中又は真空中にて300〜1000℃で熱処理する
。この工程の目的は、実質的に無水の雰囲気で加熱処理
することにより、ゲル中に含有されているOH基を拡散
させて除去することにある。この際、雰囲気ガスとして
はHeやH2のような透過性の高いガスを用いることが
望ましい。この工程は真空中で行なってもよい。また、
この工程は減圧下でも、加圧下でも可能であるが、いず
れにしても水蒸気分圧が0.5 mmHg以下であるこ
とが必要である。この工程の水蒸気分圧を0.5 mm
Hg以下と限定したのは以下のような理由による。すな
わち、水蒸気分圧が0.5 mmHgを超える場合、例
えば水蒸気分圧1 mmHgでは、粘性が4X10”ポ
イズ(この粘性では事実上粘性流動が起らない)になる
温度(歪点)が1080℃となり、更に水素分圧を高め
たときには歪点が1080〜1000℃の低粘性シリカ
ガラスしか得られない。これに対して、水蒸気分圧0.
5 mmHg以下、例えば0.4 mmHgでは、歪点
が1100℃以上の高粘性シリカガラスが得られ、更に
水蒸気分圧が低い場合には歪点が1100〜1150℃
の高粘性シリカガラスを得ることができる。この工程の
処理温度を300〜1000℃と限定したのは以下のよ
うな理由による。すなわち、300℃未満では、吸着水
の除去は可能であるが、ゲルと反応してゲル中にOH基
として残留している水分を除去するには極めて長時間を
要するため、現実的ではない。一方、1000℃を超え
ると、ゲルの緻密化が急速に進行し、ゲル中からのOH
基の拡散が充分でない状態で緻密ガラス化が完了する。
Thereafter, heat treatment is performed at 300 to 1000° C. in a dry gas atmosphere with a water vapor partial pressure of 0.5 mmHg or less or in vacuum. The purpose of this step is to diffuse and remove the OH groups contained in the gel by heat treatment in a substantially anhydrous atmosphere. At this time, it is desirable to use a highly permeable gas such as He or H2 as the atmospheric gas. This step may be performed in vacuum. Also,
This step can be carried out under reduced pressure or increased pressure, but in either case it is necessary that the water vapor partial pressure is 0.5 mmHg or less. The water vapor partial pressure in this process was set to 0.5 mm.
The reason why it was limited to Hg or less is as follows. That is, when the water vapor partial pressure exceeds 0.5 mmHg, for example, when the water vapor partial pressure is 1 mmHg, the temperature (strain point) at which the viscosity becomes 4 x 10" poise (at this viscosity, viscous flow does not occur in fact) is 1080 ° C. Therefore, when the hydrogen partial pressure is further increased, only a low-viscosity silica glass with a strain point of 1080 to 1000°C can be obtained.On the other hand, when the water vapor partial pressure is 0.
At 5 mmHg or less, for example 0.4 mmHg, a highly viscous silica glass with a strain point of 1100°C or more is obtained, and when the water vapor partial pressure is further low, the strain point is 1100 to 1150°C.
Highly viscous silica glass can be obtained. The reason why the processing temperature in this step was limited to 300 to 1000°C is as follows. That is, at temperatures below 300° C., it is possible to remove the adsorbed water, but it is not practical because it takes a very long time to react with the gel and remove the water remaining as OH groups in the gel. On the other hand, when the temperature exceeds 1000°C, the gel densification progresses rapidly and OH from the gel is released.
Dense vitrification is completed in a state where the groups are not sufficiently diffused.

この結果、その後にOH基を除去しようとしても長時間
を要し、通常の時間内の処理では高粘性のシリカガラス
を得ることができない。また、次工程の1000〜20
00℃における加熱処理でガラス中に気泡が発生する原
因となる。
As a result, even if an attempt is made to remove the OH groups thereafter, it takes a long time, and highly viscous silica glass cannot be obtained by processing within a normal time. In addition, 1000 to 20
Heat treatment at 00°C causes bubbles to be generated in the glass.

更に、水蒸気分圧0.5 mmHg以下の乾燥気体雰囲
気中又は真空中にて1000〜2000℃で焼成する。
Furthermore, it is fired at 1000 to 2000°C in a dry gas atmosphere with a water vapor partial pressure of 0.5 mmHg or less or in vacuum.

この工程の目的は、ゲルを焼成して緻密化することによ
り、高純度、高粘性の透明シリカガラスを得ることにあ
る。この際にも、乾燥気体としてはHeやH2のような
透過性の高いガスを用いることが望ましい。この工程は
真空中で行なってもよい。また、この工程は減圧下でも
、加圧下でも可能であるが、いずれにしても水蒸気分圧
が0.5 mmHg以下であることが必要である。この
工程の水蒸気分圧を0.5 mm)1g以下と限定した
のは以下のような理由による。すなわち、前工程で水蒸
気分圧0.5 mmHg以下でOH基を充分に除去した
としても、緻密化完了までに水蒸気分圧が0.5 mm
Hgを超えると、雰囲気中の水分との再結合により、低
粘性シリカガラスしか得られないおそれがある。この工
程の処理温度を1000〜2000℃と限定したのは以
下のような理由による。すなわち、1000℃未満では
、緻密化に長時間を要するため、現実的ではない。一方
、2000℃を超えると、粘性流動が大きくなり、焼成
体の形状を維持することが困難となる。
The purpose of this step is to obtain transparent silica glass with high purity and high viscosity by baking the gel and making it dense. Also in this case, it is desirable to use a highly permeable gas such as He or H2 as the drying gas. This step may be performed in vacuum. Further, this step can be carried out under reduced pressure or increased pressure, but in either case, it is necessary that the water vapor partial pressure is 0.5 mmHg or less. The reason why the water vapor partial pressure in this step was limited to 0.5 mm) 1 g or less is as follows. In other words, even if the OH groups are sufficiently removed at a water vapor partial pressure of 0.5 mmHg or less in the previous step, the water vapor partial pressure will still reach 0.5 mmHg by the time densification is completed.
If it exceeds Hg, there is a risk that only low-viscosity silica glass will be obtained due to recombination with moisture in the atmosphere. The reason why the treatment temperature in this step was limited to 1000 to 2000°C is as follows. That is, if the temperature is less than 1000°C, it will take a long time for densification, which is not practical. On the other hand, when the temperature exceeds 2000°C, viscous flow becomes large and it becomes difficult to maintain the shape of the fired body.

これらの工程により、高純度で高粘性を示す透明なシリ
カガラスを得ることができる。
Through these steps, transparent silica glass having high purity and high viscosity can be obtained.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1 テトラエトキシシラy300 ml、0.02N塩酸2
00m1、微粉末シリカ80gを混合・撹拌し、超音波
照射、遠心分離、ろ過を行い、均質度の高いゾルを得た
。このゾルをpH5に調整した後、直ちに内径100 
mmの回転円筒に注入し、その遠心力で円筒内壁にゾル
を伺着させながらゲル化させた。得られたゲルを乾燥し
た後、雰囲気処理炉に装入し、0文2を2%含有するH
eを0.2文/winの流量で流しながら700℃まで
昇温し、700℃で1時間保持した。その後、雰囲気ガ
スを40℃の純水を通過させて水分を含有させたHeに
切換え、700℃で2時間保持した。その後、雰囲気ガ
スを水分を含まない(露点−40℃以下、水蒸気分圧0
.1 mmHg以下の)Heに切換え、700℃で4時
間保持した。
Example 1 Tetraethoxysilane 300 ml, 0.02N hydrochloric acid 2
00ml and 80g of finely powdered silica were mixed and stirred, followed by ultrasonic irradiation, centrifugation, and filtration to obtain a highly homogeneous sol. After adjusting this sol to pH 5, immediately
The sol was injected into a rotating cylinder of mm diameter, and the centrifugal force caused the sol to adhere to the inner wall of the cylinder and form a gel. After drying the obtained gel, it was placed in an atmosphere treatment furnace and treated with H containing 2% of Omon2.
The temperature was raised to 700° C. while flowing e at a flow rate of 0.2 sentences/win, and held at 700° C. for 1 hour. Thereafter, the atmospheric gas was changed to He containing water by passing pure water at 40°C, and the temperature was maintained at 700°C for 2 hours. After that, the atmospheric gas is made free of moisture (dew point -40°C or lower, water vapor partial pressure 0).
.. The temperature was changed to He (below 1 mmHg) and maintained at 700°C for 4 hours.

次いで、このゲルを1700℃まで加熱可能な炉に移し
、水分を含まないHeガスを0.2Jlj/winの流
量で流しながら、10℃/winの昇温速度で昇温し、
1650℃で10分間保持した。これにより、外径5O
n+m、内径40m+n、長さ75mmの透明なガラス
体が得られた。
Next, this gel was transferred to a furnace capable of heating up to 1700 ° C., and the temperature was raised at a temperature increase rate of 10 ° C./win while flowing He gas containing no moisture at a flow rate of 0.2 Jlj/win.
It was held at 1650°C for 10 minutes. As a result, the outer diameter is 50
A transparent glass body with an inner diameter of 40 m+n and a length of 75 mm was obtained.

得られたガラス体の不純物含有量は、金属不純物:合計
1 ppm以下、OH:2ppm以下、0文:5 pp
m以下、C: 5 ppm以下であった。このガラス体
の粘性をファイバーエロンゲーション法で測定したとこ
ろ、歪点は1140℃と極めて高い値であった。また、
1300℃にて片持ち(一端側固定)で水平保持しても
変形は少なかった。
The impurity content of the obtained glass body is: metal impurities: 1 ppm or less in total, OH: 2 ppm or less, 0 parts: 5 ppm
C: 5 ppm or less. When the viscosity of this glass body was measured by the fiber elongation method, the strain point was an extremely high value of 1140°C. Also,
Even when held horizontally with a cantilever (one end fixed) at 1300°C, there was little deformation.

比較例1 水蒸気処理を省略した以外は上記実施例1と全く同様に
してガラス体を得た。得られたガラス体の不純物含有量
は、金属不純物:合計1 ppm以下、OH:2pPm
以下であったが、0文:210ppmと高い値を示した
。前記と同様にこのガラス体の粘性を測定したところ、
歪点は1080℃で、実施例1よりも50℃の低い値と
なった。また、1300℃にて片持ちで水平保持したと
ころ、容易に変形して円弧状となった。
Comparative Example 1 A glass body was obtained in exactly the same manner as in Example 1 above, except that the steam treatment was omitted. The impurity content of the obtained glass body was as follows: metal impurities: 1 ppm or less in total, OH: 2 pPm
However, 0 sentences showed a high value of 210 ppm. When the viscosity of this glass body was measured in the same manner as above,
The strain point was 1080°C, which was 50°C lower than that of Example 1. Furthermore, when held horizontally with a cantilever at 1300°C, it was easily deformed into an arc shape.

比較例2 塩素処理、水蒸気処理及び乾燥雰囲気処理を省略した以
外は上記実施例1と全く同様にしてガラス体を得た。得
られたガラス体の不純物含有量は、金属不純物:合計1
5ppm 、 OH: 150 ppmであった。この
ガラス体の歪点は1080℃と低かった。また、このガ
ラス体は若干気泡の多いものであった。
Comparative Example 2 A glass body was obtained in exactly the same manner as in Example 1 above, except that the chlorine treatment, steam treatment, and dry atmosphere treatment were omitted. The impurity content of the obtained glass body was: metal impurities: total 1
5 ppm, OH: 150 ppm. The strain point of this glass body was as low as 1080°C. Moreover, this glass body had a slightly large number of bubbles.

実施例2 半導体用ポリシリコン製造の副産物である高純度5iC
u。500gを純水3文に注入し、得られたゲルを乾燥
し、粒径10pm〜2mmに粉砕した。
Example 2 High purity 5iC, a by-product of semiconductor polysilicon production
u. 500 g was injected into 3 cups of pure water, and the resulting gel was dried and ground to a particle size of 10 pm to 2 mm.

このゲルを石英ガラス製ポートに入れ、800℃に加熱
した管状炉に装入し、40℃の純水を通過させて水分を
含有させた空気を0.2文/minの流量で流しながら
、2時間保持した。その後、雰囲気を露点−40℃以下
、水蒸気分圧0.1 mmHg+7) Heに切換え、
0.2文/minの流量で流しながら、5時間保持した
。次いで、そのまま30℃/hの昇温速度で1250℃
まで昇温し、1時間保持して焼結を終了した。このよう
にして粒径1.5 mm以下の透明なシリカガラス粉を
得た。
This gel was placed in a quartz glass port and placed in a tubular furnace heated to 800°C, and while air containing moisture through 40°C pure water was flowed at a flow rate of 0.2 g/min. It was held for 2 hours. After that, the atmosphere was changed to He with a dew point of -40°C or less and a water vapor partial pressure of 0.1 mmHg + 7).
It was maintained for 5 hours while flowing at a flow rate of 0.2 sentences/min. Then, the temperature was increased to 1250°C at a heating rate of 30°C/h.
The sintering was completed by raising the temperature to a temperature of 100.degree. C. and maintaining the temperature for 1 hour. In this way, transparent silica glass powder with a particle size of 1.5 mm or less was obtained.

得られたガラス粉の不純物含有量は、金属不純物二合計
1 ppm以下、OH: 10ppm以下、C文=5 
ppra以下であった。また、このガラス粉を用いて作
製した単結晶引上用るつぼの不純物含有量は、金属不純
物二合計1 ppm以下、OH:5pp+w以下、C1
:5ppm以下、B : 0.01ppm以下と極めて
高純度であり、気泡もなく、歪点は1140℃と高い値
を示した。
The impurity content of the obtained glass powder was 1 ppm or less in total for two metal impurities, OH: 10 ppm or less, C content = 5
It was less than ppra. In addition, the impurity content of the single crystal pulling crucible made using this glass powder is 1 ppm or less in total of two metal impurities, OH: 5 pp+w or less, C1
B: 5 ppm or less, B: 0.01 ppm or less, with extremely high purity, no bubbles, and a high strain point of 1140°C.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明方法によれば、金属不純物、
OH基、ハロゲンの含有量が少ない、高純度力つ高粘性
のシリカガラスを製造することができ、こうしたシリカ
ガラスを半導体用プロセスチューブ、単結晶引上用るつ
ぼ、光フアイバ用支持管などとして好適に使用すること
ができる。
As detailed above, according to the method of the present invention, metal impurities,
It is possible to produce high-purity, strong, and highly viscous silica glass with low content of OH groups and halogens, and this silica glass is suitable for semiconductor process tubes, crucibles for pulling single crystals, support tubes for optical fibers, etc. It can be used for.

出願人代理人 弁理士 鈴江武彦Applicant's agent: Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims] ゾル−ゲル法によりシリカ源となる原料のゲルを調製し
、このゲルを水蒸気を含む雰囲気中にて300〜100
0℃で熱処理した後、水蒸気分圧0.5mmHg以下の
乾燥気体雰囲気中又は真空中にて300〜1000℃で
熱処理し、更に水蒸気分圧0.5mmHg以下の乾燥気
体雰囲気中又は真空中にて1000〜2000℃で焼成
することを特徴とする高純度・高粘性シリカガラスの製
造方法。
A raw material gel that is a silica source is prepared by the sol-gel method, and this gel is heated to 300 to 100% in an atmosphere containing water vapor.
After heat treatment at 0°C, heat treatment at 300 to 1000°C in a dry gas atmosphere with a water vapor partial pressure of 0.5 mmHg or less or in a vacuum, and further in a dry gas atmosphere with a water vapor partial pressure of 0.5 mmHg or less or in a vacuum. A method for producing high purity and high viscosity silica glass, which comprises firing at 1000 to 2000°C.
JP1028575A 1989-02-09 1989-02-09 Manufacturing method of high purity and high viscosity silica glass Expired - Fee Related JP2732643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1028575A JP2732643B2 (en) 1989-02-09 1989-02-09 Manufacturing method of high purity and high viscosity silica glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1028575A JP2732643B2 (en) 1989-02-09 1989-02-09 Manufacturing method of high purity and high viscosity silica glass

Publications (2)

Publication Number Publication Date
JPH02208230A true JPH02208230A (en) 1990-08-17
JP2732643B2 JP2732643B2 (en) 1998-03-30

Family

ID=12252409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1028575A Expired - Fee Related JP2732643B2 (en) 1989-02-09 1989-02-09 Manufacturing method of high purity and high viscosity silica glass

Country Status (1)

Country Link
JP (1) JP2732643B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0677872A1 (en) * 1994-04-11 1995-10-18 Dow Corning Corporation Method of forming Si-O containing coatings
KR20000060200A (en) * 1999-03-12 2000-10-16 윤종용 Manufacturing method of silica glass for sol-gel process
KR100326173B1 (en) * 1999-12-30 2002-02-27 윤종용 Control method of heat treatment in fabrication process for high purity silica glass
JP2006176377A (en) * 2004-12-24 2006-07-06 Shinetsu Quartz Prod Co Ltd Method for manufacturing synthetic silica glass having controlled oh group concentration and silica glass body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0677872A1 (en) * 1994-04-11 1995-10-18 Dow Corning Corporation Method of forming Si-O containing coatings
KR20000060200A (en) * 1999-03-12 2000-10-16 윤종용 Manufacturing method of silica glass for sol-gel process
KR100326173B1 (en) * 1999-12-30 2002-02-27 윤종용 Control method of heat treatment in fabrication process for high purity silica glass
JP2006176377A (en) * 2004-12-24 2006-07-06 Shinetsu Quartz Prod Co Ltd Method for manufacturing synthetic silica glass having controlled oh group concentration and silica glass body

Also Published As

Publication number Publication date
JP2732643B2 (en) 1998-03-30

Similar Documents

Publication Publication Date Title
JP5048445B2 (en) Black synthetic quartz glass with transparent layer
KR100219250B1 (en) Synthetic silica glass powder
JP3092675B2 (en) Oxynitride glass and method for producing the same
JPH02208230A (en) Production of high-purity, high-viscosity silica glass
JP3818603B2 (en) Method for producing quartz glass
JP4204398B2 (en) Method for producing quartz glass
JP3187510B2 (en) Method of manufacturing member for heat treatment of semiconductor wafer
JP2671062B2 (en) Method for manufacturing quartz glass crucible
JPH0776093B2 (en) Quartz glass manufacturing method
JP2675819B2 (en) Manufacturing method of quartz glass
JP3724084B2 (en) Method for producing synthetic quartz powder and quartz glass molded body
JP3036993B2 (en) Manufacturing method of synthetic quartz glass member
JPH02172832A (en) Synthesized quartz glass and production thereof
JPH01320232A (en) Production of quartz glass
JPH0717389B2 (en) Method for producing synthetic quartz glass
JP3859303B2 (en) Method for producing synthetic quartz glass powder and quartz glass molded body
JP3371399B2 (en) Cristobalite crystalline phase-containing silica glass and method for producing the same
JPH0264027A (en) Production of silica glass
JPH07115881B2 (en) Quartz glass material for heat treatment
JPH0226848A (en) Production of high-purity quartz glass
JPH04238824A (en) Production of synthetic optical quartz glass having high viscosity
JPH04325431A (en) Production of optical fiber
JPH0745326B2 (en) Method for producing synthetic quartz glass ingot and synthetic quartz crucible
JP2001192225A (en) Method for manufacturing quartz glass
JPH0729790B2 (en) Method for producing anhydrous synthetic quartz glass

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees