JP3228676B2 - High purity silica glass for far ultraviolet rays and method for producing the same - Google Patents

High purity silica glass for far ultraviolet rays and method for producing the same

Info

Publication number
JP3228676B2
JP3228676B2 JP07814196A JP7814196A JP3228676B2 JP 3228676 B2 JP3228676 B2 JP 3228676B2 JP 07814196 A JP07814196 A JP 07814196A JP 7814196 A JP7814196 A JP 7814196A JP 3228676 B2 JP3228676 B2 JP 3228676B2
Authority
JP
Japan
Prior art keywords
silica glass
less
ultraviolet rays
oxygen
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07814196A
Other languages
Japanese (ja)
Other versions
JPH09241030A (en
Inventor
茂 山形
満葉 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP07814196A priority Critical patent/JP3228676B2/en
Publication of JPH09241030A publication Critical patent/JPH09241030A/en
Application granted granted Critical
Publication of JP3228676B2 publication Critical patent/JP3228676B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/08Doped silica-based glasses containing boron or halide
    • C03C2201/11Doped silica-based glasses containing boron or halide containing chlorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/32Doped silica-based glasses containing metals containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/40Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03C2201/42Doped silica-based glasses containing metals containing transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn containing titanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、遠紫外線用高純度シリ
カガラス及びその製造方法、さらに詳しくは遠紫外域の
エキシマレーザー、エキシマランプ光に対して透過率の
高いランプ、光ファイバー、レンズ、プリズム、ウイン
ドウ、ミラー用高純度合成シリカガラス及びその製造方
法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-purity silica glass for deep ultraviolet rays and a method for producing the same, and more particularly to a lamp, an optical fiber, a lens, and a prism having a high transmittance for excimer laser and excimer lamp light in the far ultraviolet region. High-purity synthetic silica glass for glass, windows and mirrors and a method for producing the same.

【0002】[0002]

【従来技術】従来、ウエハ上に電子回路パターンを描画
する光リソグラフィーに用いられる光線としてはg線や
i線などの水銀ランプによる紫外線が利用されてきた。
ところが、近年、半導体素子の微細化が高まり、今日で
はクオーターミクロン以下(0.25μm以下)の微細
パターンを用いた超LSIの量産化が始まろうとしてい
る。このような超微細パターンを形成するには現在使用
しているg線やi線ではその解像度に限界があり、より
波長の短い光が注目され、特に最も完成度の高いエキシ
マレーザーが注目を集めいている。前記エキシマレーザ
ーは高出力レーザーであり、発振効率とガス寿命の点か
ら従来、KrF(248nm)、XeCl(308n
m)、XeF(351、353nm)が好適に用いられ
ていた。しかし前記クオーターミクロン以下の微細なパ
ターンを形成する波長としては不十分で、波長165〜
195nm(以下遠紫外線という)で発振するXe2
キシマレーザー(172nm)、ArClエキシマレー
ザー(175nm)、ArFエキシマレーザー(193
nm)、Xe2エキシマランプ(172nm)又はAr
Clエキシマランプ(175nm)の使用が検討される
ようになった。それに伴い光学用部材も前記遠紫外線に
よってダメージを受けない部材が要求されるようになっ
てきた。
2. Description of the Related Art Heretofore, ultraviolet rays from a mercury lamp such as a g-line or an i-line have been used as light rays used in photolithography for drawing an electronic circuit pattern on a wafer.
However, in recent years, the miniaturization of semiconductor devices has increased, and today, mass production of ultra LSI using a fine pattern of quarter micron or less (0.25 μm or less) is about to begin. In order to form such an ultrafine pattern, the resolution of the currently used g-line and i-line is limited, and light of shorter wavelength is attracting attention. In particular, the most complete excimer laser attracts attention. Have been. The excimer laser is a high-power laser, and is conventionally known from KrF (248 nm) and XeCl (308 n) in terms of oscillation efficiency and gas life.
m) and XeF (351, 353 nm) were suitably used. However, the wavelength for forming a fine pattern of the quarter micron or less is insufficient, and the wavelength is 165 to 165 μm.
Xe 2 excimer laser (172 nm), ArCl excimer laser (175 nm), ArF excimer laser (193 nm) oscillating at 195 nm (hereinafter referred to as far ultraviolet)
nm), Xe 2 excimer lamp (172 nm) or Ar
The use of a Cl excimer lamp (175 nm) has been considered. Accordingly, a member which is not damaged by the far ultraviolet ray has been required for the optical member.

【0003】[0003]

【発明が解決しようとする課題】上記遠紫外線によって
ダメージを受けないシリカガラスとして、本出願人は、
酸素欠損型欠陥が実質的にないシリカガラスを特公平1
−197343号で提案した。該シリカガラスは約20
0〜400nm域の紫外線に対して高い耐久性を示した
が、より短波長の紫外線に対しては耐久性に劣るもので
あった。そこで、OH基と水素分子を高濃度で含有する
とともに遷移金属元素等の含有量を10wtppb以下
としたシリカガラスを特公平6−24997号公報や特
公平6−48734号公報で提案した。ところが、前記
シリカガラスを用いて遠紫外線用部材を作成し使用した
ところ、波長200nm以下の遠紫外線の透過率が低く
なるとともに、絶対屈折率の上昇や複屈折量の増大が生
じ、部材の使用寿命は短いものであった。
As the silica glass which is not damaged by the far ultraviolet rays, the present applicant has
Silica glass with virtually no oxygen deficiency defects
No. 197343. The silica glass has about 20
It exhibited high durability against ultraviolet rays in the range of 0 to 400 nm, but was inferior in durability to ultraviolet rays having shorter wavelengths. Therefore, a silica glass containing an OH group and a hydrogen molecule at a high concentration and having a content of a transition metal element or the like of 10 wtppb or less was proposed in Japanese Patent Publication Nos. 6-24997 and 6-48734. However, when a member for far-ultraviolet rays was prepared and used using the silica glass, the transmittance of far-ultraviolet rays having a wavelength of 200 nm or less was lowered, the absolute refractive index was increased, and the amount of birefringence was increased. The life was short.

【0004】そこで、波長200nm以下の遠紫外線、
好ましくは波長165〜195nmの遠紫外線に対して
も耐久性の高いシリカガラスを開発すべく鋭意研究をを
続けた結果、酸素欠損型欠陥濃度及び酸素過剰型欠陥濃
度を特定の範囲以下ととするとともに、シリカガラスの
仮想温度を低くすることで前記波長の遠紫外線に対して
もダメージの少ないシリカガラスが得られることを見出
した。また前記シリカガラスを製造するための新規な製
造方法を見出し本発明を完成したものである。
Accordingly, far ultraviolet rays having a wavelength of 200 nm or less,
As a result of intensive studies to develop silica glass having high durability even with respect to far ultraviolet rays having a wavelength of 165 to 195 nm, the concentration of oxygen-deficient defects and the concentration of oxygen-excess defects are reduced to specific ranges or less. At the same time, they have found that by lowering the fictive temperature of the silica glass, a silica glass with less damage to far ultraviolet rays having the above wavelength can be obtained. Further, the present inventors have found a novel production method for producing the silica glass and completed the present invention.

【0005】本発明は、波長165〜195nmの遠紫
外線の照射に対して高い耐久性を示すシリカガラスを提
供することを目的とする。
An object of the present invention is to provide a silica glass having high durability against irradiation of far ultraviolet rays having a wavelength of 165 to 195 nm.

【0006】また、本発明は、波長165〜195nm
の遠紫外線の照射に対して透過率が高く、絶対屈折率及
び複屈折量変化の少ない安定したシリカガラスを提供す
ることを目的とする。
Further, the present invention provides a method for controlling a wavelength of 165 to 195 nm.
It is an object of the present invention to provide a stable silica glass having a high transmittance with respect to irradiation of far ultraviolet rays and a small change in absolute refractive index and birefringence.

【0007】さらに、本発明は、上記シリカガラスの製
造方法を提供することを目的とする。
Another object of the present invention is to provide a method for producing the above silica glass.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明は、設定仮想温度が500〜1000℃、酸素欠損型
欠陥濃度が5×1016個/cm3以下、酸素過剰型欠陥
濃度が5×1016個/cm3以下であることを特徴とす
る遠紫外線用高純度シリカガラス及びその製造方法に係
る。
According to the present invention, which achieves the above object, a set virtual temperature is 500 to 1000 ° C., an oxygen deficiency type defect concentration is 5 × 10 16 / cm 3 or less, and an oxygen excess type defect concentration is 5 × 10 16 / cm 3 or less. The present invention relates to a high-purity silica glass for far-ultraviolet rays characterized by being at most 10 16 / cm 3 and a method for producing the same.

【0009】本発明のシリカガラスは、波長165〜1
95nmの遠紫外線、特にエキシマレーザー、エキシマ
ランプ光に対して透過率が高く、絶対屈折率変化が少な
く、複屈折量変化の少ない安定したシリカガラス、また
YAG高調波レーザ、Arガス高調波レーザ用として有
用なシリカガラスである。前記シリカガラスは超高純度
の珪素化合物を原料とし、アルミニウム、チタン、バナ
ジウム、クロム、マンガン、鉄、コバルト、ニッケル、
銅又はガリウム等の遷移金属元素濃度をそれぞれ1wt
ppb以下としたシリカガラスである。
The silica glass of the present invention has a wavelength of 165-1.
Stable silica glass with high transmittance to 95nm far ultraviolet rays, especially excimer laser and excimer lamp light, little change in absolute refractive index and little change in birefringence, YAG harmonic laser, Ar gas harmonic laser Is a useful silica glass. The silica glass is made of an ultra-high purity silicon compound, and is made of aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel,
Each transition metal element concentration such as copper or gallium is 1wt
It is a silica glass having a ppb or less.

【0010】本発明のシリカガラスは、上記高純度に加
えて、設定仮想温度が500〜1000℃、酸素欠損型
欠陥濃度が5×1016個/cm3以下、酸素過剰型欠陥
濃度が5×1016個/cm3以下のシリカガラスであ
る。通常のシリカガラスの仮想温度は1000℃を超え
るが、それを酸素欠損型欠陥濃度及び酸素過剰型欠陥濃
度を前記範囲にするとともに仮想温度を1000℃以下
に設定することで遠紫外線、特に波長165〜195n
mの紫外線であってもダメージが少なく、使用寿命が長
くなる。シリカガラスの設定仮想温度が低くなればなる
程遠紫外線に対するダメージは少なくてすむが、その一
方でシリカガラスの仮想温度を低く設定するには長時間
の加熱処理が必要である。例えば、仮想温度を500℃
とするにはシリカガラスを500℃で約2000時間以
上加熱処理する必要がある。そのため製造コストからみ
て設定仮想温度を500℃とするのが限度である。ま
た、シリカガラス中に酸素欠損型欠陥が多く存在する
と、7.6eV(163nm)付近に吸収が強く現れ、
遠紫外線の透過率が低下する。そのため、酸素欠損型欠
陥濃度を5×1016個/cm3以下とするのが好まし
い。さらに酸素過剰型欠陥についてもその濃度が5×1
16個/cm3を超えると、紫外吸収端付近の光透過率
が著しく低下するので好ましくない。さらにシリカガラ
スの複屈折量を10nm/cm以下、塩素含有量を10
0wtppm以下とすると、歪みの少ないシリカガラス
が得られ、かつ塩素による紫外域吸収端の長波長側への
移行が少なくなり、耐久性が一段と向上する。特にYA
G高調波レーザ、Arガス高調波レーザ用部材を作成す
る場合には複屈折量を10nm/cm以下、塩素含有量
を100wtppm以下に規制するのが肝要である。
The silica glass of the present invention has, in addition to the above-mentioned high purity, a set fictive temperature of 500 to 1000 ° C., an oxygen deficiency type defect concentration of 5 × 10 16 / cm 3 or less, and an oxygen excess type defect concentration of 5 × 10 16 / cm 3 or less. It is silica glass of 10 16 pieces / cm 3 or less. Although the fictive temperature of ordinary silica glass exceeds 1000 ° C., by setting the fictive temperature at 1000 ° C. or lower while keeping the oxygen-deficient defect concentration and the oxygen-excess type defect concentration in the above ranges, far-ultraviolet rays, particularly at a wavelength of 165 ° C. ~ 195n
Even with ultraviolet light of m, the damage is small and the service life is prolonged. The lower the set virtual temperature of silica glass is, the less damage to far ultraviolet rays is required. On the other hand, to set the virtual temperature of silica glass low requires a long heat treatment. For example, a virtual temperature of 500 ° C.
To do so, it is necessary to heat-treat the silica glass at 500 ° C. for about 2000 hours or more. Therefore, the limit is to set the set virtual temperature to 500 ° C. from the viewpoint of manufacturing cost. Further, when a large number of oxygen-deficient defects are present in the silica glass, the absorption strongly appears around 7.6 eV (163 nm),
The transmittance of far ultraviolet rays decreases. Therefore, the concentration of oxygen-deficient defects is preferably set to 5 × 10 16 defects / cm 3 or less. Further, the concentration of oxygen-excess type defects is 5 × 1.
If it exceeds 0 16 / cm 3 , the light transmittance in the vicinity of the ultraviolet absorption edge is remarkably reduced, which is not preferable. Further, the silica glass has a birefringence of 10 nm / cm or less and a chlorine content of 10 nm / cm.
When the content is 0 wtppm or less, silica glass with less distortion can be obtained, and the shift of the ultraviolet absorption end to the longer wavelength side due to chlorine is reduced, and the durability is further improved. Especially YA
When producing a member for a G harmonic laser or an Ar gas harmonic laser, it is important to regulate the birefringence to 10 nm / cm or less and the chlorine content to 100 wtppm or less.

【0011】上記本発明のシリカガラスは、以下の製造
方法で製造される。すなわち
The silica glass of the present invention is manufactured by the following manufacturing method. Ie

【0012】(i)シリカガラスの製造 (イ)スート法 蒸留等の手段で高純度化したSiCl4、HSiCl3
(CH32SiCl2、CH3SiCl3、CH3Si(O
CH33、Si(OCH34等の珪素化合物を火炎加水
分解法でスートに形成しそれを堆積させて白色不透明ス
ート体を製造する。前記火炎加水分解法としては、酸水
素炎加水分解法、プロパン炎加水分解等が使用される。
得られたスート体を電気炉内で、100Pa以下、好ま
しくは10Pa以下の真空下、1300〜1700℃、
好ましくは1400〜1600℃の温度で、帯域加熱法
でゆっくり下方から上方に向けて加熱することで気泡の
ない透明なガラスインゴットが製造できる。 (ロ)直接法又はプラズマ法 また、上記で使用した珪素化合物を主原料として用いて
ダイレクト法又はプラズマ法で透明シリカガラスを直接
製造することもできる。
(I) Production of silica glass (a) Soot method SiCl 4 , HSiCl 3 , which has been highly purified by means such as distillation,
(CH 3 ) 2 SiCl 2 , CH 3 SiCl 3 , CH 3 Si (O
A silicon compound such as CH 3 ) 3 and Si (OCH 3 ) 4 is formed in soot by a flame hydrolysis method, and the soot is deposited to produce a white opaque soot body. As the flame hydrolysis method, an oxyhydrogen flame hydrolysis method, a propane flame hydrolysis or the like is used.
The obtained soot body is placed in an electric furnace under a vacuum of 100 Pa or less, preferably 10 Pa or less, at 1300 to 1700 ° C.,
A transparent glass ingot without bubbles can be produced by heating slowly from below to above by a zone heating method, preferably at a temperature of 1400 to 1600 ° C. (B) Direct method or plasma method In addition, a transparent silica glass can be directly produced by a direct method or a plasma method using the silicon compound used as a main raw material.

【0014】(ii)シリカガラスの加工 上記製造方法で得られたシリカガラスインゴットを加熱
処理してシリカガラスインゴット中の内部歪みを除去し
たのち、切断、研削、研磨して所定の寸法のシリカガラ
ス部材に加工する。例えばランプチューブ用部材であれ
ば、外径200mm、内径100mm、長さ1000m
mの大型シリンダーから外径5〜50mmのチューブを
加熱溶融引き法により作成したのち、任意の長さに切断
することで製造できる。また、レンズ用部材であれば、
直径100mm、長さ2000mmの大型インゴットか
ら、直径10〜100mm、厚さ10〜100mmの円
柱状物に研削することで作成できる。前記内部歪み除去
温度としては約1100℃の温度を採用するのがよい。
(Ii) Processing of Silica Glass The silica glass ingot obtained by the above manufacturing method is heat-treated to remove internal strain in the silica glass ingot, and then cut, ground and polished to obtain silica glass of a predetermined size. Process into members. For example, if it is a member for a lamp tube, the outer diameter is 200 mm, the inner diameter is 100 mm, and the length is 1000 m.
The tube can be manufactured by preparing a tube having an outer diameter of 5 to 50 mm from a large cylinder of m by a hot-melt drawing method, and then cutting the tube to an arbitrary length. Also, if it is a lens member,
It can be prepared by grinding a large ingot having a diameter of 100 mm and a length of 2000 mm into a columnar object having a diameter of 10 to 100 mm and a thickness of 10 to 100 mm. It is preferable to employ a temperature of about 1100 ° C. as the internal strain removal temperature.

【0015】(iii)仮想温度設定処理 上記シリカガラス部材を次いで500〜1000℃で1
00〜2000時間加熱処理して、シリカガラスの仮想
温度を500〜1000℃に設定する。仮想温度設定処
理時の雰囲気としては、酸素含有ガス雰囲気又は水素含
有ガス雰囲気が採用できるが、好ましくはシリカガラス
に酸素欠損型欠陥がある場合には、酸素含有ガス雰囲気
を、また酸素過剰型欠陥がある場合には水素含有ガス雰
囲気を採るのがよい。
(Iii) Virtual temperature setting treatment The silica glass member is then heated at 500 to 1000 ° C. for 1 hour.
Heat treatment is performed for 00 to 2000 hours to set the fictive temperature of the silica glass to 500 to 1000 ° C. As the atmosphere during the fictive temperature setting process, an oxygen-containing gas atmosphere or a hydrogen-containing gas atmosphere can be employed. Preferably, when the silica glass has an oxygen-deficient defect, the oxygen-containing gas atmosphere is used. In some cases, a hydrogen-containing gas atmosphere is preferably used.

【0016】[0016]

【発明の実施の態様】次に具体例に基づいて本発明を詳
細に説明するが、本発明はそれにより限定されるもので
はない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to specific examples, but the present invention is not limited thereto.

【0017】[0017]

【実施例】【Example】

実施例1〜5 (1)スート体の作成 純度99.9999wt%の四塩化珪素(SiCl4
ガスを2リットル/分と固定し、酸素及び水素ガスを各
々2〜20リットル/分、6〜60リットル/分の範囲
の割合でバーナーに供給し、スート法でOH基含有のス
ート体を堆積させた。使用キャリアガスとしてアルゴン
が好ましい。
Example 1-5 (1) the soot body creating purity 99.9999% of silicon tetrachloride (SiCl 4)
The gas is fixed at 2 liters / minute, and oxygen and hydrogen gas are supplied to the burner at a rate of 2 to 20 liters / minute and 6 to 60 liters / minute, respectively, and a soot body containing an OH group is deposited by a soot method. I let it. Argon is preferred as the carrier gas used.

【0018】(2)シリカガラスインゴットの製造 上記白色不透明スート体を円筒型高純度グラファイトヒ
ーターを内装したステンレススチール製電気炉内に設置
し、電気炉内を約8Paの真空度にするとともに約15
50℃の温度の帯域をゆっくり下方から上方へ移動しな
がら加熱溶融し透明シリカガラスインゴットを製造し
た。製造されたシリカガラスインゴット中のアルミニウ
ム、チタン、バナジウム、クロム、マンガン、鉄、コバ
ルト、ニッケル、銅又はガリウム等の遷移金属元素の濃
度はそれぞれ1wtppb以下であり、目視で気泡の存
在が確認できなかった。また、OH基の含有濃度は、実
施例1〜4は300wtppm、実施例5では50wt
ppm、塩素濃度は全て20wtppmであった。
(2) Production of Silica Glass Ingot The above white opaque soot body was placed in a stainless steel electric furnace equipped with a cylindrical high-purity graphite heater, and the inside of the electric furnace was evacuated to about 8 Pa and about
It was heated and melted while slowly moving from below to above in a zone at a temperature of 50 ° C. to produce a transparent silica glass ingot. The concentrations of transition metal elements such as aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper or gallium in the manufactured silica glass ingot are each 1 wtppb or less, and the presence of bubbles cannot be confirmed visually. Was. Further, the concentration of the OH group was 300 wtppm in Examples 1 to 4, and 50 wt% in Example 5.
ppm and chlorine concentration were all 20 wtppm.

【0019】実施例6〜9 実施例1〜5で使用した高純度四塩化珪素(SiC
4)を用いて、実施例6、7ではダイレクト法で、実
施例8、9ではプラズマ法で高純度シリカガラスを製造
した。
Examples 6 to 9 The high-purity silicon tetrachloride (SiC) used in Examples 1 to 5 was used.
Using l 4 ), high-purity silica glass was manufactured by the direct method in Examples 6 and 7, and by the plasma method in Examples 8 and 9.

【0020】上記実施例1〜9のシリカガラスについて
不純物含有量を測定したところ、表1に示すとおりであ
った。
The contents of impurities in the silica glasses of Examples 1 to 9 were measured, and the results are as shown in Table 1.

【0021】[0021]

【表1】 注)Al、Ti、Feはフレームレス原子吸光光度法に
よる測定法、その他の元素はプラズマ質量分析法(IC
P−MS法)による測定法による。
[Table 1] Note) Al, Ti and Fe are measured by flameless atomic absorption spectrometry, and other elements are measured by plasma mass spectrometry (IC
P-MS method).

【0022】(3)シリカガラスインゴットの加工 上記シリカガラスからサンプルを切断し、研削したの
ち、その両面を鏡面研磨仕上げして、OH基含有濃度分
析用サンプル、酸素欠損型欠陥濃度及び酸素過剰型欠陥
濃度測定用サンプル、仮想温度測定用サンプル、塩素濃
度分析用サンプル、複屈折量測定用サンプル、Xe2
キシマランプ照射用サンプル、及びArFエキシマレー
ザ照射用サンプルを形成し、それぞれのサンプルについ
てそれぞれの測定を行った。その結果を、表2に示す。
(3) Processing of Silica Glass Ingot A sample was cut from the above silica glass, ground, and both surfaces thereof were mirror-polished to obtain an OH group-containing concentration analysis sample, an oxygen deficiency type defect concentration and an oxygen excess type. A sample for defect concentration measurement, a sample for virtual temperature measurement, a sample for chlorine concentration analysis, a sample for birefringence measurement, a sample for Xe 2 excimer lamp irradiation, and a sample for ArF excimer laser irradiation are formed. A measurement was made. Table 2 shows the results.

【0023】[0023]

【表2】 [Table 2]

【0024】比較例1〜5 CVDスート法(比較例1〜4)、プラズマ法(比較例
5)でシリカガラスを形成し、そのまま仮想温度設定処
理することなく実施例1と同様に酸素欠損型欠陥濃度、
酸素過剰型欠陥濃度、仮想温度、OH基濃度、塩素濃
度、複屈折量、Xe2エキシマランプ照射後の165n
mの透過率、及びArFエキシマレーザ照射後の165
nm光の透過率を測定した。その結果を表3に示す。
Comparative Examples 1 to 5 Silica glass was formed by the CVD soot method (Comparative Examples 1 to 4) and the plasma method (Comparative Example 5). Defect concentration,
Oxygen excess defect concentration, fictive temperature, OH group concentration, chlorine concentration, birefringence, 165n after Xe 2 excimer lamp irradiation
m, 165 after irradiation with ArF excimer laser
The transmittance of nm light was measured. Table 3 shows the results.

【0025】[0025]

【表3】 [Table 3]

【0026】上記表2、3から明らかなように本発明の
シリカガラスは遠紫外線照射後でも波長165nmのに
おいて優れた透過率を示し、実施例4、5のシリカガラ
スでは80%を超える透過率を示す。これに対して仮想
温度が1000℃を超えるシリカガラスは低い透過率を
示す。また、仮想温度が1000℃以下であっても、シ
リカガラス中の遷移金属元素の含有量が1wtppmを
超えるシリカガラスは遠紫外線照射後の165nm透過
率が低い。
As is clear from Tables 2 and 3, the silica glass of the present invention shows excellent transmittance at a wavelength of 165 nm even after irradiation with far ultraviolet rays, and the silica glasses of Examples 4 and 5 have a transmittance of more than 80%. Is shown. On the other hand, silica glass having a virtual temperature exceeding 1000 ° C. shows a low transmittance. Even when the fictive temperature is 1000 ° C. or lower, silica glass having a transition metal element content of more than 1 wtppm in silica glass has a low transmittance at 165 nm after irradiation with far ultraviolet rays.

【0027】上記実施例及び比較例の各物性値の測定法
は下記の方法による。 (i)OH基含有量の測定法 D.M. DODD and D.B. FRASE
R,Optical determination o
f OH in fused silica,Jour
nal of Applied Physics,Vo
l.37(1966)p.3911文献記載の測定法。
The methods for measuring the physical properties of the above Examples and Comparative Examples are as follows. (I) Method for measuring OH group content M. DODD and D. B. FRASE
R, Optical determination o
f OH in fused silica, Jour
nal of Applied Physics, Vo
l. 37 (1966) p. Measurement method described in 3911 document.

【0028】(ii)酸素欠損型欠陥の測定法 H.HOSONO,et al., Experime
ntal evidence for the Si−
Si bond model of the7.6eV
band in SiO2 glass, Phys
ical Review B,Vol.44, No.
21pp.12043〜45(1991)文献記載の測
定法。
(Ii) Method of Measuring Oxygen-Deficient Defects HOSONO, et al. , Experime
ntal evidence for the Si-
Si bond model of the 7.6 eV
band in SiO 2 glass, Phys
ical Review B, Vol. 44, No.
21 pp. 12043-45 (1991) Measurement method described in the literature.

【0029】(iii)酸素過剰型欠陥の測定法 J.E.SHELBY, Reaction of h
ydrogen with hydroxyl−fre
e vitreous silica, Journa
l of Applied Physics, Vo
l.51, No.5, pp.2589〜93(19
80)及びD.M.DODD and D.B.FRA
SER, Optical determinatio
n ofOH om fused silica, J
ournal of Applied Physic
s, Vol.37,p.3911(1966)文献記
載の測定法。
(Iii) Method for measuring oxygen-excess type defects E. FIG. SHELBY, Reaction of h
ydogen with hydroxyyl-fre
e vitroous silica, Journa
l of Applied Physics, Vo
l. 51, No. 5, pp. 2589-93 (19
80) and D.I. M. DODD and D. B. FRA
SER, Optical determination
no ofh om fused silica, J
own of Applied Physic
s, Vol. 37, p. 3911 (1966).

【0030】(iv)仮想温度の測定法 A.E.GEISSBERGER and F.L.G
ALEENER,Raman studies of
vitreous SiO2versus ficti
ne temperature, PhysicalR
eview B, Vol.28, No. 6, p
p.3266〜71文献記載の測定法。
(Iv) Measurement method of virtual temperature E. FIG. GEISSBERGER and F. L. G
ALEENER, Raman studies of
vitruous SiO 2 versus fiction
ne temperature, PhysicalR
view B, Vol. 28, No. 6, p
p. 3266-71.

【0031】(v)塩素濃度測定法 比濁法による測定。(V) Method for measuring chlorine concentration Measurement by turbidimetry.

【0032】(vi)複屈折量の測定法。 偏光板歪計を使用したレターデーション測定法。(Vi) A method for measuring the amount of birefringence. A retardation measurement method using a polarizing plate strain meter.

【0033】(vii)165nm透過率の測定法 真空紫外透過率計による測定法。(Vii) Measurement of transmittance at 165 nm Measurement by a vacuum ultraviolet transmittance meter.

【0034】(viii)Xe2エキシマランプ照射後
の波長165nm透過率の測定法。 サイズ30×20×厚さ10mm、両面鏡面研磨仕上し
たサンプルに波長172nm、半値幅14nm、ランプ
エネルギー密度10mW/cm2のXe2 エキシマラン
プを使用してシリカガラスに300時間照射した時の透
過率を測定する方法。
(Viii) A method for measuring the transmittance at a wavelength of 165 nm after irradiation with a Xe 2 excimer lamp. Transmittance when irradiating silica glass for 300 hours using a Xe 2 excimer lamp having a wavelength of 172 nm, a half width of 14 nm, and a lamp energy density of 10 mW / cm 2 , on a sample having a size of 30 × 20 × thickness 10 mm and a double-side mirror polishing finish. How to measure.

【0035】(v)ArFエキシマレ−ザ照射後の16
5nm透過率の測定法。 サイズ30×20×厚さ10mm、両面鏡面研磨仕上し
たサンプルに波長193nm、半値幅3nm、パルス寿
命17nsec、エネルギー密度50mJ/cm2.s
hot、照射ショット数1×106shots(ただし
100Hz)のArFエキシマレ−ザを照射した時の透
過率を測定する方法。
(V) 16 after irradiation with ArF excimer laser
Method for measuring 5 nm transmittance. A sample having a size of 30 × 20 × thickness 10 mm, a mirror-polished double-sided surface, a wavelength of 193 nm, a half width of 3 nm, a pulse life of 17 nsec, and an energy density of 50 mJ / cm 2 . s
A method for measuring the transmittance when irradiating an ArF excimer laser having a number of shots of 1 × 10 6 shots (however, 100 Hz).

【0036】[0036]

【発明の効果】本発明のシリカガラスは、波長165〜
195nmの遠紫外線照射に対して優れた透過率を保持
し、遠紫外線用光学材料として有用である。しかも前記
シリカガラスは高純度の珪素化合物を原料として従来か
ら知られている製造方法で製造したシリカガラスを仮想
温度設定処理することで容易に製造でき、その工業的価
値は高いものがある。
The silica glass of the present invention has a wavelength of 165 to 165.
It retains excellent transmittance with respect to the irradiation of far-ultraviolet light of 195 nm and is useful as an optical material for far-ultraviolet light. Moreover, the silica glass can be easily produced by subjecting silica glass produced from a high-purity silicon compound as a raw material by a conventionally known production method to a fictive temperature setting treatment, and its industrial value is high.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−58667(JP,A) 特開 平7−215735(JP,A) 特開 平5−186234(JP,A) 特開 平3−88742(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03B 20/00 C03B 8/04 C03C 3/06 CA(STN)────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-5-58667 (JP, A) JP-A-7-215735 (JP, A) JP-A-5-186234 (JP, A) 88742 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C03B 20/00 C03B 8/04 C03C 3/06 CA (STN)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高純度の珪素化合物から火炎加水分解法に
より不透明白色スート体を作成し、該スート体を真空度
100Pa以下で、1300〜1700℃の温度で帯域
加熱溶融して透明ガラス化したのち、酸素含有ガス又は
水素含有ガスの雰囲気中、500〜1000℃で100
〜2000時間加熱する仮想温度設定処理をして得た
定仮想温度が500〜1000℃、酸素欠損型欠陥濃度
が5×1016個/cm3以下、酸素過剰型欠陥濃度が5
×1016個/cm3以下の遠紫外線用高純度シリカガラ
ス。
1. A flame hydrolysis method from a high-purity silicon compound.
Create a more opaque white soot body and vacuum the soot body
100Pa or less, band at 1300-1700 ° C
After heating and melting to form a transparent glass, oxygen-containing gas or
100 at 500-1000 ° C in a hydrogen-containing gas atmosphere
The set virtual temperature obtained by performing the virtual temperature setting process of heating up to 2000 hours is 500 to 1000 ° C., the oxygen deficiency type defect concentration is 5 × 10 16 defects / cm 3 or less, and the oxygen excess type defect concentration is 5
× 10 16 / cm 3 or less high-purity silica glass for deep ultraviolet rays.
【請求項2】高純度の珪素化合物からダイレクト法又は
プラズマ法で透明シリカガラス塊を作成したのち、酸素
含有ガス又は水素含有ガスの雰囲気中、500〜100
0℃で100〜2000時間加熱する仮想温度設定処理
して得た設定仮想温度が500〜1000℃、酸素欠損
型欠陥濃度が5×10 16 個/cm 3 以下、酸素過剰型欠
陥濃度が5×10 16 個/cm 3 以下の遠紫外線用高純度
シリカガラス
2. The method according to claim 1, wherein the high purity silicon compound is directly
After creating a transparent silica glass block by the plasma method, oxygen
500 to 100 in an atmosphere of a gas containing hydrogen or a gas containing hydrogen
Virtual temperature setting process for heating at 0 ° C for 100 to 2000 hours
Set hypothetical temperature obtained from 500 to 1000 ° C, oxygen deficiency
Mold defect concentration of 5 × 10 16 / cm 3 or less, oxygen-excess mold defect
High purity for deep ultraviolet rays with a fall concentration of 5 × 10 16 / cm 3 or less
Silica glass .
【請求項3】遷移金属元素のアルミニウム、チタン、バ
ナジウム、クロム、マンガン、鉄、コバルト、ニッケ
ル、銅及びガリウムの各濃度が1wtppb以下である
ことを特徴とする請求項1又は2記載の遠紫外線用高純
度シリカガラス。
Wherein aluminum transition metal elements, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, deep ultraviolet rays according to claim 1, wherein each concentration of copper and gallium is equal to or less than 1wtppb For high purity silica glass.
【請求項4】複屈折量が10nm/cm以下であること
を特徴とする請求項1ないし3のいずれか1記載の遠紫
外線用高純度シリカガラス。
Wherein birefringence is 10 nm / cm or less claims 1 to 3 of any one high-purity silica glass for far ultraviolet rays, wherein it is.
【請求項5】塩素含有量が100wtppm以下である
ことを特徴とする請求項1ないし4のいずれか1記載の
遠紫外線用高純度合成シリカガラス。
5. A method according to claim 1 to 4 of any one of far ultraviolet high-purity synthetic silica glass, wherein the chlorine content is not more than 100 wtppm.
JP07814196A 1996-03-07 1996-03-07 High purity silica glass for far ultraviolet rays and method for producing the same Expired - Lifetime JP3228676B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07814196A JP3228676B2 (en) 1996-03-07 1996-03-07 High purity silica glass for far ultraviolet rays and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07814196A JP3228676B2 (en) 1996-03-07 1996-03-07 High purity silica glass for far ultraviolet rays and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09241030A JPH09241030A (en) 1997-09-16
JP3228676B2 true JP3228676B2 (en) 2001-11-12

Family

ID=13653610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07814196A Expired - Lifetime JP3228676B2 (en) 1996-03-07 1996-03-07 High purity silica glass for far ultraviolet rays and method for producing the same

Country Status (1)

Country Link
JP (1) JP3228676B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353098B1 (en) 1992-05-14 2002-03-05 Ribozyme Pharmaceuticals, Inc. Synthesis, deprotection, analysis and purification of RNA and ribozymes
US6437117B1 (en) 1992-05-14 2002-08-20 Ribozyme Pharmaceuticals, Inc. Synthesis, deprotection, analysis and purification for RNA and ribozymes
US10252933B2 (en) 2016-06-03 2019-04-09 Coorstek Kk Silica glass member and method of manufacturing the same

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3794664B2 (en) * 1998-07-29 2006-07-05 信越化学工業株式会社 Synthetic quartz glass member, manufacturing method thereof, and optical component for excimer laser
JP5050969B2 (en) * 1998-08-24 2012-10-17 旭硝子株式会社 Synthetic quartz glass optical member and manufacturing method thereof
JP4495838B2 (en) * 2000-08-07 2010-07-07 信越化学工業株式会社 Manufacturing method of glass preform for optical fiber
JP2002160936A (en) * 2000-11-20 2002-06-04 Sumitomo Metal Ind Ltd Synthetic quartz glass for light transmission
JP3531870B2 (en) * 2002-03-27 2004-05-31 独立行政法人 科学技術振興機構 Synthetic quartz glass
JP2006344383A (en) * 2003-06-24 2006-12-21 Matsushita Electric Ind Co Ltd Light irradiation device
JP2007026675A (en) * 2003-06-24 2007-02-01 Matsushita Electric Ind Co Ltd Light irradiation device, lamp for it, and light irradiation method
JP4470479B2 (en) * 2003-12-17 2010-06-02 旭硝子株式会社 Synthetic quartz glass for optical members and method for producing the same
JP2009046328A (en) * 2007-08-15 2009-03-05 Shinetsu Quartz Prod Co Ltd Silica glass for photocatalyst and its production method
JP5406439B2 (en) * 2007-08-23 2014-02-05 信越石英株式会社 Chemical-resistant silica glass and method for producing chemical-resistant silica glass
JP5106090B2 (en) * 2007-12-26 2012-12-26 信越石英株式会社 Silica glass for photocatalyst and method for producing the same
US8263511B2 (en) * 2008-12-31 2012-09-11 Corning Incorporated High purity fused silica with low absolute refractive index
JP2019005330A (en) * 2017-06-27 2019-01-17 ネクサス株式会社 Production method of quartz vial

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6353098B1 (en) 1992-05-14 2002-03-05 Ribozyme Pharmaceuticals, Inc. Synthesis, deprotection, analysis and purification of RNA and ribozymes
US6437117B1 (en) 1992-05-14 2002-08-20 Ribozyme Pharmaceuticals, Inc. Synthesis, deprotection, analysis and purification for RNA and ribozymes
US6469158B1 (en) 1992-05-14 2002-10-22 Ribozyme Pharmaceuticals, Incorporated Synthesis, deprotection, analysis and purification of RNA and ribozymes
US6649751B2 (en) 1992-05-14 2003-11-18 Sirna Therapeutics, Inc. Synthesis, deprotection, analysis and purification of RNA and ribozymes
US10252933B2 (en) 2016-06-03 2019-04-09 Coorstek Kk Silica glass member and method of manufacturing the same

Also Published As

Publication number Publication date
JPH09241030A (en) 1997-09-16

Similar Documents

Publication Publication Date Title
JP3188624B2 (en) High purity synthetic silica glass for far ultraviolet rays and method for producing the same
EP0917523B1 (en) Synthetic silica glass used with uv-rays and method producing the same
JP3228676B2 (en) High purity silica glass for far ultraviolet rays and method for producing the same
KR100359947B1 (en) Excimer laser and silica glass optical material for the same and its manufacturing method
US20060246363A1 (en) Photomask substrate made of synthetic quartz glass and photomask
WO1993000307A1 (en) Synthetic quartz glass optical member for excimer laser and production thereof
EP1125897B1 (en) Synthetic quartz glass and method for preparing the same
JP3403317B2 (en) High power synthetic silica glass optical material for vacuum ultraviolet light and method for producing the same
JP2008063181A (en) Synthetic quartz glass substrate for excimer laser and production method therefor
KR20120055564A (en) Tio2-containing silica glass, and optical member for euv lithography
JP4066632B2 (en) Synthetic quartz glass optical body and manufacturing method thereof
JP4193358B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
EP1740512A1 (en) Optical member made of synthetic quartz glass, and process for its production
JP4437886B2 (en) Quartz glass blank for optical members and use thereof
JP2004123420A (en) Synthetic silica glass member for optical use and its manufacturing process
JP4111940B2 (en) Method for producing synthetic silica glass large plate for high output vacuum ultraviolet light
JP3472234B2 (en) Silica glass optical material for excimer laser and excimer lamp
JPH0742133B2 (en) Synthetic quartz glass optical member for ultraviolet laser
JP4831328B2 (en) Method for manufacturing synthetic quartz glass substrate for excimer laser
JP2000143258A (en) PRODUCTION OF SYNTHETIC QUARTZ GLASS FOR ArF EXCIMER LASER LITHOGRAPHY
KR20040075014A (en) Fused silica containing aluminum
JP5050969B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP4663860B2 (en) Synthetic quartz glass for optical members and method for producing synthetic quartz glass
JP2814805B2 (en) Quartz glass substrate for polysilicon TFT LCD
JP2822854B2 (en) Synthetic quartz glass optical member and method of manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080907

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090907

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term