JP3188624B2 - High purity synthetic silica glass for far ultraviolet rays and method for producing the same - Google Patents

High purity synthetic silica glass for far ultraviolet rays and method for producing the same

Info

Publication number
JP3188624B2
JP3188624B2 JP06738796A JP6738796A JP3188624B2 JP 3188624 B2 JP3188624 B2 JP 3188624B2 JP 06738796 A JP06738796 A JP 06738796A JP 6738796 A JP6738796 A JP 6738796A JP 3188624 B2 JP3188624 B2 JP 3188624B2
Authority
JP
Japan
Prior art keywords
silica glass
ultraviolet rays
less
molecules
synthetic silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06738796A
Other languages
Japanese (ja)
Other versions
JPH09235134A (en
Inventor
茂 山形
満葉 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP06738796A priority Critical patent/JP3188624B2/en
Publication of JPH09235134A publication Critical patent/JPH09235134A/en
Application granted granted Critical
Publication of JP3188624B2 publication Critical patent/JP3188624B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0085Compositions for glass with special properties for UV-transmitting glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/40Gas-phase processes
    • C03C2203/42Gas-phase processes using silicon halides as starting materials

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、遠紫外線用高純度合成
シリカガラス及びその製造方法、さらに詳しくは遠紫外
域のエキシマレーザー、エキシマランプ光に対して透過
率の高いランプ、光ファイバー、レンズ、プリズム、ウ
インドウ、ミラー用高純度合成シリカガラス及びその製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-purity synthetic silica glass for far ultraviolet rays and a method for producing the same, and more particularly to an excimer laser in the deep ultraviolet region, a lamp having a high transmittance for excimer lamp light, an optical fiber, a lens, and the like. The present invention relates to a high-purity synthetic silica glass for a prism, a window, and a mirror and a method for producing the same.

【0002】[0002]

【従来技術】従来、ウエハ上に電子回路パターンを描画
する光リソグラフィーに用いられる光線としてはg線や
i線などの水銀ランプによる紫外線が利用されてきた。
ところが、近年、半導体素子の微細化が高まり、今日で
はクオーターミクロン以下(0.25μm以下)の微細
パターンを用いた超LSIの量産化が始まろうとしてい
る。このような超微細パターンを形成するには現在使用
しているg線やi線ではその解像度に限界があり、より
波長の短い光が注目され、特に最も完成度の高いエキシ
マレーザーが注目を集めいている。前記エキシマレーザ
ーは高出力レーザーであり、発振効率とガス寿命の点か
ら従来、KrF(248nm)、XeCl(308n
m)、XeF(351、353nm)が好適に用いられ
ていた。しかし前記クオーターミクロン以下の微細なパ
ターンを形成する波長としては不十分で、波長165〜
195nm(以下遠紫外線という)で発振するXe2
キシマレーザー(172nm)、ArClエキシマレー
ザー(175nm)、ArFエキシマレーザー(193
nm)、Xe2エキシマランプ(172nm)又はAr
Clエキシマランプ(175nm)の使用が検討される
ようになった。それに伴い光学用部材も前記遠紫外線に
よってダメージを受けない部材が要求されるようになっ
てきた。
2. Description of the Related Art Heretofore, ultraviolet rays from a mercury lamp such as a g-line or an i-line have been used as light rays used in photolithography for drawing an electronic circuit pattern on a wafer.
However, in recent years, the miniaturization of semiconductor devices has increased, and today, mass production of ultra LSI using a fine pattern of quarter micron or less (0.25 μm or less) is about to begin. In order to form such an ultrafine pattern, the resolution of the currently used g-line and i-line is limited, and light of shorter wavelength is attracting attention. In particular, the most complete excimer laser attracts attention. Have been. The excimer laser is a high-power laser, and is conventionally known from KrF (248 nm) and XeCl (308 n) in terms of oscillation efficiency and gas life.
m) and XeF (351, 353 nm) were suitably used. However, the wavelength for forming a fine pattern of the quarter micron or less is insufficient, and the wavelength is 165 to 165 μm.
Xe 2 excimer laser (172 nm), ArCl excimer laser (175 nm), ArF excimer laser (193 nm) oscillating at 195 nm (hereinafter referred to as far ultraviolet)
nm), Xe 2 excimer lamp (172 nm) or Ar
The use of a Cl excimer lamp (175 nm) has been considered. Accordingly, a member which is not damaged by the far ultraviolet ray has been required for the optical member.

【0003】[0003]

【発明が解決しようとする課題】上記遠紫外線によって
ダメージを受けないシリカガラス部材として、本発明者
等はOH基や水素分子を高濃度で含有するとともに遷移
金属元素等の含有量を10wtppb以下としたシリカ
ガラスを特公平6−24997号公報や特公平6−48
734号公報で提案した。ところが、前記シリカガラス
を用いて遠紫外線用部材を作成し使用したところ、光の
透過率の低下が起こるとともに、絶対屈折率の上昇、複
屈折率の増大が生じ、部材の使用寿命は短いものであっ
た。その原因について検討していたところ、(i)シリ
カガラス中にOH基が高濃度で含有されると、波長16
5〜195nmの遠紫外線の透過率が低下し、使用遠紫
外線のフォトンエネルギーの吸収が増加することにな
り、シリカガラスのダメージが大きくなること、(i
i)高濃度のOH基の含有は同時に水分子をも含有する
ことになり、該水分子が遠紫外線を吸収しシリカガラス
のダメージを大きくすること、(iii)メカニズムが
不明であるが、高濃度の水素と同時に酸素、二酸化炭素
を含有するシリカガラスはダメージを受けやすいこと、
等に起因することがわかった。
As a silica glass member which is not damaged by the far ultraviolet rays, the inventors of the present invention have a high concentration of OH groups and hydrogen molecules and a content of transition metal elements etc. of 10 wtppb or less. No. 6-24997 and Japanese Patent Publication No. 6-48
No. 734. However, when a member for far ultraviolet rays is prepared and used by using the silica glass, a decrease in light transmittance occurs, an increase in absolute refractive index, an increase in birefringence occurs, and the service life of the member is short. Met. When the cause was examined, (i) when the OH group was contained in the silica glass at a high concentration, the wavelength 16
The transmittance of 5-195 nm far ultraviolet rays is reduced, the absorption of photon energy of used far ultraviolet rays is increased, and the damage of silica glass is increased, (i.
i) Inclusion of a high concentration of OH groups also includes water molecules at the same time, and the water molecules absorb far ultraviolet rays to increase the damage of silica glass. (iii) The mechanism is unknown, Silica glass containing oxygen and carbon dioxide at the same time as the concentration of hydrogen is easily damaged,
And so on.

【0004】そこで、本発明者等は、合成シリカガラス
の遷移金属元素濃度を1wtppb以下、OH基含有濃
度、二酸化炭素放出量、酸素欠損型欠陥濃度及び水蒸気
の放出濃度を特定の範囲以下とすることで、遠紫外線に
対する透過率が高く、屈折率変化の少ない安定したシリ
カガラスが得られることを見出した。さらに、シリカガ
ラスの前記限定に加えて酸素放出量及び水素濃度をも特
定の範囲とすることでより高出力の遠紫外線に対しても
透過率が高く、屈折率変化が少ない上に安定化したシリ
カガラスが得られることを見出し、本発明を完成したも
のである。すなわち、
Therefore, the present inventors have set the transition metal element concentration of the synthetic silica glass to 1 wtppb or less, the OH group content, the amount of carbon dioxide released, the oxygen-deficient defect concentration, and the concentration of water vapor released to specific ranges or less. As a result, they have found that a stable silica glass having a high transmittance to far ultraviolet rays and a small change in refractive index can be obtained. Furthermore, in addition to the above-mentioned limitation of silica glass, by setting the oxygen release amount and the hydrogen concentration in a specific range, the transmittance is higher even for higher output far ultraviolet rays, and the change in the refractive index is small and stabilized. The inventors have found that silica glass can be obtained, and have completed the present invention. That is,

【0005】本発明は、高純度で、遠紫外線の照射に対
して透過率が高く、屈折率変化の少ない安定したシリカ
ガラスを提供することを目的とする。
It is an object of the present invention to provide a stable silica glass having a high purity, a high transmittance to irradiation of far ultraviolet rays, and a small change in refractive index.

【0006】本発明は、波長165〜195nmの遠紫
外線の照射に対して透過率が高く、屈折率変化の少ない
安定したシリカガラスを提供することを目的とする。
An object of the present invention is to provide a stable silica glass having a high transmittance and a small change in refractive index with respect to irradiation with far ultraviolet rays having a wavelength of 165 to 195 nm.

【0007】また、本発明は、波長165〜175nm
の遠紫外線の照射に対して透過率が高く、屈折率変化の
少ない安定したシリカガラスを提供することを目的とす
る。
[0007] The present invention also provides a light emitting device having a wavelength of 165 to 175 nm.
It is an object of the present invention to provide a stable silica glass having a high transmittance with respect to the irradiation of far ultraviolet rays and a small change in refractive index.

【0008】さらに、本発明は、上記シリカガラスの製
造方法を提供することを目的とする。
Another object of the present invention is to provide a method for producing the above silica glass.

【0009】[0009]

【課題を解決するための手段】上記目的を達成する本発
明は、遠紫外線用シリカガラスにおいて、前記シリカガ
ラスが合成シリカガラスであって、そのOH基濃度が1
0〜400wtppm、酸素欠損型欠陥濃度が5×10
16個/cm3以下、1000℃真空下における二酸化炭
素放出量が5×1015分子/cm2以下及び水蒸気放出
濃度が5×1017分子/cm3以下である遠紫外線用高
純度合成シリカガラス、及び前記シリカガラスの酸素放
出量が5×1014分子/cm2以下及び水素濃度が1×
1016分子/cm3〜1×1020分子/cm3の範囲であ
る遠紫外線用高純度合成シリカカガラス並びにその製造
方法に係る。
In order to achieve the above object, the present invention provides a silica glass for far ultraviolet light, wherein the silica glass is a synthetic silica glass, and the OH group concentration of the silica glass is 1%.
0 to 400 wtppm, oxygen deficiency type defect concentration is 5 × 10
High-purity synthetic silica glass for deep ultraviolet rays having a carbon dioxide emission amount of 16 × 10 3 / cm 3 or less, a carbon dioxide emission amount under a vacuum of 1000 ° C. of 5 × 10 15 molecules / cm 2 or less, and a water vapor emission concentration of 5 × 10 17 molecules / cm 3 or less. And the silica glass has an oxygen release of 5 × 10 14 molecules / cm 2 or less and a hydrogen concentration of 1 ×
The present invention relates to a high-purity synthetic silica glass for far ultraviolet light having a range of 10 16 molecules / cm 3 to 1 × 10 20 molecules / cm 3 and a method for producing the same.

【0010】上記本発明のシリカガラスは、波長165
〜195nmの遠紫外線、特にエキシマレーザー、エキ
シマランプ光に対して透過率が高く屈折率変化の少ない
シリカガラスであって、珪素化合物を原料とする、アル
ミニウム、チタン、バナジウム、クロム、マンガン、
鉄、コバルト、ニッケル、銅又はガリウム等の遷移金属
元素濃度がそれぞれ1wtppb以下の合成シリカガラ
スである。このように本発明のシリカガラスは高純度で
あることを必須とすることから不純物含有量の多い天然
石英を原料とすることができない。
The silica glass of the present invention has a wavelength of 165.
A silica glass having a high transmittance and a small change in refractive index for far ultraviolet rays of up to 195 nm, in particular, excimer laser and excimer lamp light, and using a silicon compound as a raw material, aluminum, titanium, vanadium, chromium, manganese,
It is a synthetic silica glass having a transition metal element concentration of 1 wtppb or less, such as iron, cobalt, nickel, copper, or gallium. As described above, since the silica glass of the present invention must have high purity, natural silica having a high impurity content cannot be used as a raw material.

【0011】本発明のシリカガラスは、上記のように高
純度であるとともに、OH基濃度が10〜400wtp
pm、酸素欠損型欠陥濃度が5×1016個/cm3
下、1000℃真空下における水蒸気放出濃度が5×1
17分子/cm3以下の合成シリカガラスである。OH
基濃度が前記範囲未満ではシリカガラス中の酸素欠損型
欠陥濃度を減少する効果がなく、またOH基濃度が40
0wtppmを超えるとOH基自体による紫外域吸収端
付近の透過率の低下を起こして好ましくない。また、シ
リカガラス中の酸素欠損型欠陥濃度が上記範囲を超える
と、酸素欠損型欠陥に基づく7.6eV(163nm)
付近の吸収が多く現れ、遠紫外線の透過率の低下を招
く。さらに、シリカガラス中に水分子が存在すると7.
5eV(165nm)付近に吸収が起こるので、水蒸気
放出濃度が前記範囲を超えると遠紫外線の透過率の低下
を招く。本発明のシリカガラスをより高出力の遠紫外線
用として使用するには前記に加えて酸素放出量を5×1
14分子/cm2以下、水素分子濃度を1×1016分子
/cm3〜1×1020分子/cm3とするのがよい。酸素
放出量が5×1014分子/cm2を超えると紫外線吸収
作用が大きくなり短波長用シリカガラスとしては好まし
くなく、また水素分子濃度が前記範囲を逸脱すると、水
素分子による遠紫外線照射で受けたガラスの網目構造の
ダメージの修復作用が低下して好ましくない。特に、キ
セノンエキシマレーザーやキセノンエキシマランプ(1
72nm)等の用途に使用する場合には、OH基濃度を
10〜100wtppm、酸素欠損型欠陥濃度を1×1
16個/cm3以下、1000℃真空下における水蒸気
の放出濃度を1×1017分子/cm3以下とするのがよ
い。より好ましくは、前記に加えて、酸素放出量を1×
1014分子/cm2以下、水素分子濃度を1×1016
子/cm3〜1×1019分子/cm3とするのがよい。前
記範囲を充足すことにより165〜175nmの遠紫外
線に対しても透過率の高いシリカガラスが得られる。
The silica glass of the present invention has a high purity as described above and an OH group concentration of 10 to 400 wtp.
pm, oxygen deficiency type defect concentration is 5 × 10 16 defects / cm 3 or less, and water vapor emission concentration under vacuum at 1000 ° C. is 5 × 1
It is a synthetic silica glass having 0 17 molecules / cm 3 or less. OH
When the group concentration is less than the above range, there is no effect of reducing the concentration of oxygen-deficient defects in the silica glass, and the OH group concentration is 40%.
If it exceeds 0 wtppm, the transmittance near the ultraviolet absorption edge is lowered by the OH group itself, which is not preferable. When the oxygen-deficient defect concentration in the silica glass exceeds the above range, 7.6 eV (163 nm) based on the oxygen-deficient defect is used.
A lot of absorption in the vicinity appears, leading to a decrease in the transmittance of far ultraviolet rays. Furthermore, if water molecules are present in the silica glass, 7.
Absorption occurs around 5 eV (165 nm), so that when the water vapor emission concentration exceeds the above range, the transmittance of far ultraviolet rays decreases. In order to use the silica glass of the present invention for higher output far ultraviolet rays, in addition to the above, the amount of released oxygen is 5 × 1
It is preferable to set the concentration of the hydrogen molecule to 0 14 molecules / cm 2 or less and 1 × 10 16 molecules / cm 3 to 1 × 10 20 molecules / cm 3 . When the oxygen release amount exceeds 5 × 10 14 molecules / cm 2 , the ultraviolet absorbing effect becomes large, which is not preferable for silica glass for short wavelength. The effect of repairing damage to the network structure of the broken glass is undesirably reduced. In particular, xenon excimer lasers and xenon excimer lamps (1
72 nm), the OH group concentration is 10 to 100 wtppm and the oxygen deficiency defect concentration is 1 × 1
0 16 / cm 3 or less, preferably set to release water vapor concentration 1 × 10 17 molecules / cm 3 or less under 1000 ° C. vacuum. More preferably, in addition to the above, the amount of released oxygen is 1 ×
It is preferred that the concentration of hydrogen be 10 14 molecules / cm 2 or less and the concentration of hydrogen molecules be 1 × 10 16 molecules / cm 3 to 1 × 10 19 molecules / cm 3 . By satisfying the above range, a silica glass having a high transmittance even for far ultraviolet rays of 165 to 175 nm can be obtained.

【0012】本発明のシリカガラスは、以下の製造方法
で製造される。すなわち
The silica glass of the present invention is manufactured by the following manufacturing method. Ie

【0013】(i)スート体の製造 蒸留等の手段で高純度化したSiCl4、HSiCl3
(CH32SiCl2、CH3SiCl3、CH3Si(O
CH33、Si(OCH34等の珪素化合物を火炎加水
分解法でスートを形成しそれを堆積させてスート体を作
成する。前記火炎加水分解法としては、酸水素炎加水分
解法、プロパン炎加水分解等が挙げられる。前記スート
体に含有されるOH基濃度は、バーナーに供給する燃焼
ガスの供給流量と珪素化合物の供給流量との比率を変え
ることで10〜400wtppmの範囲に制御する。前
記制御方法として例えばシリカガラス中のOH基含有量
を増加する場合には酸水素ガス又はプロパンガスの供給
流量を珪素化合物のガスに対して増加する方法等が採ら
れる。
(I) Production of a soot body SiCl 4 , HSiCl 3 , which has been highly purified by means such as distillation,
(CH 3 ) 2 SiCl 2 , CH 3 SiCl 3 , CH 3 Si (O
A soot body is formed by forming soot from a silicon compound such as CH 3 ) 3 and Si (OCH 3 ) 4 by a flame hydrolysis method and depositing the soot. Examples of the flame hydrolysis method include an oxyhydrogen flame hydrolysis method and a propane flame hydrolysis. The OH group concentration contained in the soot body is controlled in the range of 10 to 400 wtppm by changing the ratio between the supply flow rate of the combustion gas supplied to the burner and the supply flow rate of the silicon compound. As the control method, for example, when increasing the OH group content in the silica glass, a method of increasing the supply flow rate of the oxyhydrogen gas or the propane gas with respect to the gas of the silicon compound is adopted.

【0014】(ii)シリカガラスインゴットの製造 上記スート体を真空下で1300〜1700℃、好まし
くは1400〜1600℃の温度で、帯域加熱法でゆっ
くり下方から上方に向けて加熱し透明で気泡を含有しな
いシリカガラスインゴットを製造する。前記真空度は1
00Pa以下、好ましくは10Pa以下がよい。また前
記ガラス化において、真空度と溶融温度とを変えること
でシリカガラス中のOH基含有濃度を制御することもで
きる。例えば真空度を低めにするとともに溶融温度を下
げるとOH基の含有量が増加する。
(Ii) Production of silica glass ingot The soot body is heated in a vacuum at a temperature of 1300 to 1700 ° C., preferably 1400 to 1600 ° C., slowly from the bottom to the top by a zone heating method to remove transparent bubbles. A silica glass ingot containing no silica glass is produced. The degree of vacuum is 1
00Pa or less, preferably 10Pa or less is good. In the vitrification, the OH group content in the silica glass can be controlled by changing the degree of vacuum and the melting temperature. For example, when the degree of vacuum is lowered and the melting temperature is lowered, the OH group content increases.

【0015】(iii)シリカガラスの製造 得られたシリカガラスインゴットを加熱処理してシリカ
ガラスインゴット中の内部歪みを除去したのち、切断、
研削、研磨して所定の寸法のシリカガラスに加工する。
前記内部歪み除去の加熱温度としては約1100℃の温
度が採用される。
(Iii) Production of silica glass The obtained silica glass ingot is heat-treated to remove internal strain in the silica glass ingot, and then cut.
It is ground and polished and processed into silica glass of a predetermined size.
As a heating temperature for removing the internal strain, a temperature of about 1100 ° C. is adopted.

【0016】(iv)脱ガス処理 上記シリカガラスは、次いで真空度100Pa以下、8
00〜1200℃で1〜100時間の加熱による脱ガス
処理を行う。前記脱ガス処理によりより高い透過率のシ
リカガラスが得られる。また、上記(iii)の内部歪
み除去処理を高真空下で行うことにより、同時に脱ガス
処理することも可能である。
(Iv) Degassing treatment The silica glass is then subjected to a vacuum degree of 100 Pa or less,
A degassing process is performed by heating at 00 to 1200 ° C. for 1 to 100 hours. By the degassing treatment, a silica glass having a higher transmittance can be obtained. Further, by performing the internal strain removal treatment (iii) under a high vacuum, degassing treatment can be performed at the same time.

【0017】(v)水素分子ドープ処理 上記脱ガス処理したシリカガラスを100〜900℃、
常圧又は加圧下、好ましくは100〜500℃、1〜2
000kgf/cm2で1〜100時間、水素含有ガス
雰囲気中で処理して水素濃度1×1016分子/cm3
1×1020分子/cm3、好ましくは1×1016分子/
cm3〜1×1019分子/cm3の範囲のシリカガラスが
製造される。
(V) Hydrogen molecule doping treatment The degassed silica glass is treated at 100 to 900 ° C.
Under normal pressure or under pressure, preferably 100 to 500 ° C, 1 to 2
000 kgf / cm 2 for 1 to 100 hours in a hydrogen-containing gas atmosphere to obtain a hydrogen concentration of 1 × 10 16 molecules / cm 3 to
1 × 10 20 molecules / cm 3 , preferably 1 × 10 16 molecules / cm 3
Silica glass in the range of cm 3 to 1 × 10 19 molecules / cm 3 is produced.

【0018】[0018]

【発明の実施の態様】次に具体例に基づいて本発明を詳
細に説明するが、本発明はそれにより限定されるもので
はない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to specific examples, but the present invention is not limited thereto.

【0019】[0019]

【実施例】【Example】

実施例1〜7 (1)スート体の作成 蒸留精製してアルミニウム、チタン、バナジウム、クロ
ム、マンガン、鉄、コバルト、ニッケル、銅又はガリウ
ム等の遷移金属濃度を除去した四塩化珪素(SiC
4)ガスを2リットル/分と固定し、酸素及び水素ガ
スを各々2〜20リットル/分、6〜60リットル/分
の範囲の割合でバーナーに供給し、スート法でOH基含
有量数10〜数100wtppmのスート体を形成し
た。なお、キャリアガスとしてアルゴンを使用した。
Examples 1 to 7 (1) Preparation of soot body Silicon tetrachloride (SiC) which was purified by distillation to remove transition metal concentration such as aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper or gallium
l 4 ) Fix the gas at 2 liters / minute, supply oxygen and hydrogen gas to the burner at a rate of 2 to 20 liters / minute and 6 to 60 liters / minute respectively, and measure the OH group content number by the soot method. A soot body of 10 to several 100 wtppm was formed. Note that argon was used as a carrier gas.

【0020】(2)シリカガラスインゴットの製造 上記スート体を円筒型高純度グラファイトヒーターを内
装したステンレススチール製電気炉内に設置し、電気炉
内を約8Paの真空度にするとともに約1550℃の温
度の帯域をゆっくり下方から上方へ移動しながら加熱溶
融して透明シリカガラスインゴットを製造した。得られ
たシリカガラスインゴット中のアルミニウム、チタン、
バナジウム、クロム、マンガン、鉄、コバルト、ニッケ
ル、銅又はガリウムの遷移金属元素の濃度は0.5wt
ppb以下であり、目視で気泡の存在は確認できなかっ
た。
(2) Production of silica glass ingot The soot body was placed in a stainless steel electric furnace equipped with a cylindrical high-purity graphite heater. It was heated and melted while slowly moving the temperature zone from below to above to produce a transparent silica glass ingot. Aluminum, titanium in the obtained silica glass ingot,
The concentration of transition metal element of vanadium, chromium, manganese, iron, cobalt, nickel, copper or gallium is 0.5wt
ppb or less, and the presence of air bubbles could not be confirmed visually.

【0021】(3)シリカガラスインゴットの加工 上記シリカガラスからサンプルを切断し、研削したの
ち、その両面を鏡面研磨仕上げして、OH基含有濃度及
び酸素欠損型欠陥濃度測定用サンプルとして縦10mm
×横30mm×厚さ10mmの板体、水蒸気と二酸化炭
素放出濃度測定用サンプルとして縦20mm×横20m
m×厚さ1mmの板体、及びXe2エキシマランプ照射
用サンプルとして縦20mm×横30mm×厚さ10m
mの板体を作成し、それぞれのサンプルについて、OH
基含有濃度、酸素欠損型欠陥含有量、水蒸気の放出濃
度、及びXe2エキシマランプ照射後の172nmの光
線の透過率を測定した。その結果を、表1に示す。ま
た、実施例4、5、7の製造条件で製造したシリカガラ
スについて含有する不純物を分析し、その結果を表2に
示す。
(3) Processing of Silica Glass Ingot A sample was cut from the above silica glass and ground, and both surfaces thereof were mirror-polished to obtain a sample for measuring the OH group-containing concentration and oxygen-deficient defect concentration of 10 mm in length.
× 30 mm wide × 10 mm thick plate, 20 mm long × 20 m wide as sample for measuring water vapor and carbon dioxide emission concentration
mx 1mm thick plate and 20mm long x 30mm wide x 10m thick as Xe 2 excimer lamp irradiation sample
m, and for each sample, OH
The group-containing concentration, oxygen-deficient defect content, water vapor release concentration, and transmittance of 172 nm light after irradiation with a Xe 2 excimer lamp were measured. Table 1 shows the results. In addition, impurities contained in the silica glass manufactured under the manufacturing conditions of Examples 4, 5, and 7 were analyzed, and the results are shown in Table 2.

【0022】(4)脱ガス処理 前記製造方法において四塩化珪素ガスと酸素及び水素ガ
スの供給量を変えて作成したOH基含有量が10wtp
pm、50wtppm、100wtppm、200wt
ppm及び350wtppmの各種シリカガラスサンプ
ルについて真空度100Pa以下、1000℃で5時間
加熱して脱ガス処理を行った。
(4) Degassing treatment The OH group content produced by changing the supply amounts of silicon tetrachloride gas, oxygen and hydrogen gas in the above production method is 10 wtp.
pm, 50wtppm, 100wtppm, 200wt
Degassing treatment was performed on various types of silica glass samples of ppm and 350 wtppm by heating at 1000 ° C. for 5 hours at a degree of vacuum of 100 Pa or less.

【0023】[0023]

【表1】 [Table 1]

【0024】比較例1〜5 シリカガラス体の形成をプラズマ法(比較例1、2)、
ダレクト法(比較例3、4)及びスート体を透明ガラス
化前に塩素含有雰囲気加熱処理による脱水処理を行うこ
とを含めるスート法(比較例5)で形成し、それを実施
例1と同様にして透明シリカガラスインゴットを作成し
た。比較例2、4についてはさらに実施例2、4〜7と
同様の条件で脱ガス処理を行った。得られたシリカガラ
スインゴットについて実施例1と同様にOH基含有量、
酸素欠損型欠陥濃度、水蒸気の放出濃度、及びXe2
キシマランプ照射後の172nmの光線の透過率を測定
し、その結果を表2に示す。
Comparative Examples 1 to 5 A silica glass body was formed by a plasma method (Comparative Examples 1 and 2),
The direct method (Comparative Examples 3 and 4) and the soot body were formed by a soot method (Comparative Example 5) including performing a dehydration treatment by heat treatment in a chlorine-containing atmosphere before vitrification. To produce a transparent silica glass ingot. For Comparative Examples 2 and 4, degassing was further performed under the same conditions as in Examples 2, 4 to 7. The OH group content of the obtained silica glass ingot in the same manner as in Example 1,
The oxygen-deficient defect concentration, the water vapor emission concentration, and the transmittance of a 172 nm light beam after irradiation with a Xe 2 excimer lamp were measured. The results are shown in Table 2.

【0025】[0025]

【表2】 [Table 2]

【0026】実施例8〜15 実施例6で製造した透明シリカガラスインゴットから直
径100mm、厚さ30mmの成型体を作成し、脱ガス
処理及び水素分子ドープ処理を行った。
Examples 8 to 15 A molded body having a diameter of 100 mm and a thickness of 30 mm was prepared from the transparent silica glass ingot produced in Example 6, and subjected to a degassing treatment and a hydrogen molecule doping treatment.

【0027】(i)脱ガス処理 実施例8〜15のサンプルについて、実施例8、9で
は、800℃、103Paで10時間の処理;実施例1
0〜12では800℃、102Paで20時間の処理;
実施例13〜15では、1000℃、102Paで40
時間の処理、をそれぞれ行った。
(I) Degassing treatment For the samples of Examples 8 to 15, in Examples 8 and 9, treatment at 800 ° C. and 10 3 Pa for 10 hours;
For 0 to 12, treatment at 800 ° C. and 10 2 Pa for 20 hours;
In Examples 13 to 15, at 1000 ° C. and 10 2 Pa, 40
Time treatment.

【0028】(ii)水素分子ドープ処理 上記脱ガス処理したシリカガラス成形体について表3で
示す雰囲気ガス、圧力、温度、時間条件の水素ドープ処
理を行った。
(Ii) Hydrogen Molecule Doping Treatment The degassing-treated silica glass molded body was subjected to hydrogen doping treatment under the atmosphere gas, pressure, temperature, and time conditions shown in Table 3.

【0029】上記各処理を行ったシリカガラスについ
て、水素分子濃度、水蒸気放出濃度、酸素放出量、二酸
化炭素放出量、OH基濃度、塩素濃度、複屈折率、波長
165nmの遠紫外線の初期透過率及びXe2エキシマ
ランプ照射後の波長165nmの遠紫外線の透過率を測
定した。その結果を表3に示す。
With respect to the silica glass subjected to each of the above treatments, the hydrogen molecule concentration, the water vapor release concentration, the oxygen release amount, the carbon dioxide release amount, the OH group concentration, the chlorine concentration, the birefringence, and the initial transmittance of far ultraviolet rays having a wavelength of 165 nm. The transmittance of far ultraviolet rays having a wavelength of 165 nm after irradiation with a Xe 2 excimer lamp was measured. Table 3 shows the results.

【0030】[0030]

【表3】 [Table 3]

【0031】比較例6〜10 シリカガラスを表4に示す合成法で製造し、それぞれに
ついて脱ガス処理、水素ドープ処理を行った。得られた
シリカガラスについて水素濃度、水蒸気放出濃度、酸素
放出量、二酸化炭素放出量、OH基濃度、塩素濃度、複
屈折率、波長165nmの遠紫外線の初期透過率及びX
2エキシマランプ照射後の波長165nmの遠紫外線
の透過率を測定した。その結果を表4に示す。
Comparative Examples 6 to 10 Silica glass was produced by the synthesis methods shown in Table 4, and each of them was subjected to degassing treatment and hydrogen doping treatment. About the obtained silica glass, hydrogen concentration, water vapor release concentration, oxygen release amount, carbon dioxide release amount, OH group concentration, chlorine concentration, birefringence, initial transmittance of far-ultraviolet light having a wavelength of 165 nm, and X
The transmittance of far ultraviolet rays having a wavelength of 165 nm after irradiation with an e 2 excimer lamp was measured. Table 4 shows the results.

【0032】[0032]

【表4】 [Table 4]

【0033】上記実施例1〜15及び比較例10のシリ
カガラス中の不純物金属濃度を測定し、表5に示す。
The impurity metal concentrations in the silica glasses of Examples 1 to 15 and Comparative Example 10 were measured and are shown in Table 5.

【0034】[0034]

【表5】 [Table 5]

【0035】上記実施例及び比較例の各物性値の測定法
は下記の方法による。
The methods for measuring the physical properties of the above Examples and Comparative Examples are as follows.

【0036】(i)OH基含有量の測定法 D.M. DODD and D.B. FRASE
R,Optical determination o
f OH in fused silica,Jour
nal of Applied Physics,Vo
l.37(1966)p.3911文献記載の測定法。
(I) Method for measuring OH group content M. DODD and D. B. FRASE
R, Optical determination o
f OH in fused silica, Jour
nal of Applied Physics, Vo
l. 37 (1966) p. Measurement method described in 3911 document.

【0037】(ii)酸素欠損型欠陥の測定法 H.HOSONO,et al., Experime
ntal evidence for the Si−
Si bond model of the7.6eV
band in SiO2 glass, Phys
ical Review B,Vol.44, No.
21(1991)pp.12043〜45文献記載の測
定法。
(Ii) Method for Measuring Oxygen-Deficient Defects HOSONO, et al. , Experime
ntal evidence for the Si-
Si bond model of the 7.6 eV
band in SiO 2 glass, Phys
ical Review B, Vol. 44, No.
21 (1991) pp. 12043 to 45 Measurement method described in literature.

【0038】(iii)水蒸気、二酸化炭素、酸素の1
000℃真空下におけるガス放出量測定 Y.MORIMOTO,et al.,Analysi
s of gas release from vit
reous silica, Journalof N
on−Crystalline Solids, Vo
l.139(1992)pp.35〜46文献記載の測
定法。
(Iii) one of water vapor, carbon dioxide and oxygen
Measurement of outgassing amount under vacuum at 000 ° C. MORIMOTO, et al. , Analysi
s of gas release from vit
reous silica, Journalof N
on-Crystalline Solids, Vo
l. 139 (1992) pp. Measurement methods described in 35-46 documents.

【0039】(iv)Xe2エキシマランプ照射後の波
長172nmの透過率の測定法。 サイズ30×20×10mm、両面鏡面研磨仕上したサ
ンプルに波長172nm、ランプエネルギー密度10m
W/cm2のXe2 エキシマ ランプを使用してシリカ
ガラスに1000時間照射した時の透過率を測定する測
定法。
(Iv) A method for measuring the transmittance at a wavelength of 172 nm after irradiation with a Xe 2 excimer lamp. Size 30 × 20 × 10mm, wavelength 172nm, lamp energy density 10m for double-sided mirror-polished sample
A measuring method for measuring the transmittance when silica glass is irradiated for 1000 hours using a W / cm 2 Xe 2 excimer lamp.

【0040】(v)Xe2エキシマランプ照射後の16
5nmの透過率の測定法。 サイズ30×20×10mm、両面鏡面研磨仕上したサ
ンプルに波長172nm、エネルギー密度10mW/c
2のエキシマ光を500時間照射した時の165nm
透過率を測定する測定法。 (vi)水素分子濃度の測定法。 V.K.KHOTICHENKO、et al., D
eterminingthe content of
hydrogen dissolvedin quar
tz glass using the method
s ofRaman scattering and
massspectrometry, Journal
of AppliedSpectroscopy,
Vol.46, No.6, pp 632〜635
(1987)文献記載の測定法。
(V) 16 after irradiation with Xe 2 excimer lamp
Method for measuring the transmittance at 5 nm. 172 nm wavelength, energy density 10 mW / c on a sample of size 30 × 20 × 10 mm, mirror-polished on both sides
165 nm when irradiated with excimer light of m 2 for 500 hours
A measuring method for measuring transmittance. (Vi) Method for measuring hydrogen molecule concentration. V. K. KHOTICHENKO, et al. , D
terminatingthe content of
hydrogen dissolvedin quar
tz glass using the method
s of Raman scattering and
massspectrometry, Journal
of AppliedSpectroscopy,
Vol. 46, no. 6, pp 632-635
(1987) Measurement method described in the literature.

【0041】(vii)塩素濃度の測定法。 比濁法による測定法。(Vii) Method for measuring chlorine concentration. Measurement method by turbidimetry.

【0042】(viii)複屈折の測定法。 偏光板歪計を使用したレターデーション測定法。(Viii) A method for measuring birefringence. A retardation measurement method using a polarizing plate strain meter.

【0043】(ix)165nmの透過率の測定 真空紫外透過率計による測定法。(Ix) Measurement of transmittance at 165 nm A measuring method using a vacuum ultraviolet transmittance meter.

【0044】(x)シリカガラス中の不純物測定 プラズマ質量分析法により測定(ICP−MS法)及び
原子吸光光度法による測定法。
(X) Measurement of impurities in silica glass Measurement by plasma mass spectrometry (ICP-MS method) and measurement by atomic absorption spectrophotometry.

【0045】〈評価〉上記表1、2から明らかなように
本発明のシリカガラスは波長172nmの遠紫外線に対
して優れた透過率を示し、実施例4、5のシリカガラス
では80%を超える透過率を示す。これに対して従来の
OH基を高濃度で含有する紫外線用シリカガラス(比較
例3、4)及びOH基を含有しないシリカガラス(比較
例1、2、5)では低い透過率を示す。特に、本発明で
規定する濃度の水素及び酸素を含有するシリカガラス
は、165nmの遠紫外線であっても透過率が70%以
上と優れているとともに、複屈折率の増大も起こらな
い。
<Evaluation> As is clear from Tables 1 and 2, the silica glass of the present invention shows excellent transmittance for far ultraviolet rays having a wavelength of 172 nm, and the silica glasses of Examples 4 and 5 exceed 80%. Shows the transmittance. On the other hand, the conventional silica glass for ultraviolet rays containing a high concentration of OH groups (Comparative Examples 3 and 4) and the silica glass containing no OH groups (Comparative Examples 1, 2, and 5) show low transmittance. In particular, silica glass containing hydrogen and oxygen at the concentrations specified in the present invention has an excellent transmittance of 70% or more even with far ultraviolet rays of 165 nm, and does not cause an increase in birefringence.

【0046】[0046]

【発明の効果】本発明のシリカガラスは、波長165〜
195nmの紫外線に対して優れた透過率を示し、遠紫
外線用光学材料として有用である。しかも前記シリカガ
ラスは高純度珪素化合物を原料として従来から知られて
いる火炎加水分解法を利用して製造でき、生産性に優れ
ている。
The silica glass of the present invention has a wavelength of 165 to 165.
It shows excellent transmittance to 195 nm ultraviolet light, and is useful as an optical material for far ultraviolet light. Moreover, the silica glass can be produced by using a conventionally known flame hydrolysis method using a high purity silicon compound as a raw material, and is excellent in productivity.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C03C 3/06 C03B 8/04 C03B 20/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) C03C 3/06 C03B 8/04 C03B 20/00

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】合成シリカガラスからなり、そのOH基濃
度が10〜400wtppm、酸素欠損型欠陥濃度が5
×1016個/cm3以下、1000℃真空下における二
酸化炭素放出量が5×1015分子/cm2以下及び水蒸
気放出濃度が5×1017分子/cm3以下であることを
特徴とする遠紫外線用高純度合成シリカガラス。
1. A synthetic silica glass having an OH group concentration of 10 to 400 wt ppm and an oxygen deficiency type defect concentration of 5
× 10 16 atoms / cm 3 or less, far and wherein the carbon dioxide emissions under 1000 ° C. vacuum is 5 × 10 15 molecules / cm 2 or less and water vapor release concentration 5 × is 10 17 molecules / cm 3 or less High purity synthetic silica glass for ultraviolet rays.
【請求項2】OH基濃度が10〜100wtppm、酸
素欠損型欠陥濃度が1×1016個/cm3以下、100
0℃真空下における二酸化炭素放出量が1×1015分子
/cm2以下及び水蒸気放出濃度が1×1017分子/c
3以下であることを特徴とする請求項1記載の遠紫外
線用高純度合成シリカガラス。
2. An OH group concentration of 10 to 100 wt ppm, an oxygen deficiency type defect concentration of 1 × 10 16 / cm 3 or less,
A carbon dioxide emission amount under a vacuum of 0 ° C. is 1 × 10 15 molecules / cm 2 or less, and a water vapor emission concentration is 1 × 10 17 molecules / c.
2. The high-purity synthetic silica glass for far ultraviolet rays according to claim 1, wherein m is 3 or less.
【請求項3】請求項1記載の遠紫外線用高純度合成シリ
カガラスにおいて、さらに酸素放出量が5×1014分子
/cm2以下で、かつシリカガラス中の水素濃度が1×
1016分子/cm3〜1×1020分子/cm3であること
を特徴とする遠紫外線用高純度合成シリカガラス。
3. The high-purity synthetic silica glass for deep ultraviolet rays according to claim 1, wherein the amount of released oxygen is 5 × 10 14 molecules / cm 2 or less and the hydrogen concentration in the silica glass is 1 ×.
A high-purity synthetic silica glass for far ultraviolet rays, which has a molecular weight of 10 16 molecules / cm 3 to 1 × 10 20 molecules / cm 3 .
【請求項4】請求項3記載のシリカガラスにおいて、酸
素放出量が1×1014分子/cm2以下で、かつシリカ
ガラス中の水素濃度が1×1016分子/cm3〜1×1
19分子/cm3であることを特徴とする遠紫外線用高
純度合成シリカガラス。
4. The silica glass according to claim 3, wherein the amount of released oxygen is 1 × 10 14 molecules / cm 2 or less and the hydrogen concentration in the silica glass is 1 × 10 16 molecules / cm 3 to 1 × 1.
A high-purity synthetic silica glass for far-ultraviolet light having a molecular weight of 0 19 molecules / cm 3 .
【請求項5】遷移金属元素のアルミニウム、チタン、バ
ナジウム、クロム、マンガン、鉄、コバルト、ニッケ
ル、銅及びガリウムの各濃度が1wtppb以下である
ことを特徴とする請求項1ないし4のいずれか1記載の
遠紫外線用高純度合成シリカガラス。
5. The method according to claim 1, wherein the concentrations of the transition metal elements aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper and gallium are 1 wtppb or less. The high-purity synthetic silica glass for deep ultraviolet rays described above.
【請求項6】波長165nmの遠紫外線に対する透過率
が厚さ10mmのシリカガラスで50〜80%であるこ
とを特徴とする請求項3又は4記載の遠紫外線用高純度
合成シリカガラス。
6. The high-purity synthetic silica glass for far ultraviolet rays according to claim 3, wherein the transmittance for far ultraviolet rays having a wavelength of 165 nm is 50 to 80% of silica glass having a thickness of 10 mm.
【請求項7】複屈折量が10nm/cm以下であること
を特徴とする請求項3又は4記載の遠紫外線用高純度合
成シリカガラス。
7. The high-purity synthetic silica glass for deep ultraviolet rays according to claim 3, wherein the birefringence is 10 nm / cm or less.
【請求項8】塩素含有量が50wtppm以下であるこ
とを特徴とする請求項3又は4記載の遠紫外線用高純度
合成シリカガラス。
8. The high purity synthetic silica glass for deep ultraviolet rays according to claim 3, wherein the chlorine content is 50 wtppm or less.
【請求項9】珪素化合物を用いて火炎加水分解法により
OH基を含有する不透明白色スート体を作成し、次いで
前記スート体を真空度100Pa以下で、1300〜1
700℃の温度で帯域加熱溶融して透明ガラス化するこ
とを特徴とする遠紫外線用高純度合成シリカガラスの製
造方法。
9. An opaque white soot containing an OH group is prepared by a flame hydrolysis method using a silicon compound.
A method for producing a high-purity synthetic silica glass for far-ultraviolet light, wherein the glass is transparently vitrified by heating in a zone at a temperature of 700 ° C.
【請求項10】スート体を帯域加熱溶融して得たシリカ
ガラスをさらに真空度100Pa以下、800〜120
0℃の温度で脱ガス処理することを特徴とする請求項9
記載の遠紫外線用高純度合成シリカガラスの製造方法。
10. A silica glass obtained by zone-heating and melting a soot body is further subjected to a vacuum degree of 100 Pa or less and 800 to 120.
10. A degassing process at a temperature of 0 ° C.
The method for producing a high-purity synthetic silica glass for deep ultraviolet rays described above.
【請求項11】請求項10において脱ガス処理したシリ
カガラスを、さらに900℃以下、常圧又は加圧下で水
素含有ガス雰囲気中で水素ドープ処理をすることを特徴
とする遠紫外線用高純度合成シリカガラスの製造方法。
11. A high-purity synthesis for deep ultraviolet rays, wherein the silica glass degassed in claim 10 is further subjected to hydrogen doping in a hydrogen-containing gas atmosphere at 900 ° C. or lower at normal pressure or under pressure. A method for producing silica glass.
【請求項12】水素ドープ処理を100〜500℃、1
〜2000kgf/cm2で1〜100時間行うことを
特徴とする請求項11記載の遠紫外線用高純度合成シリ
カガラスの製造方法。
12. A hydrogen doping treatment at 100 to 500 ° C.,
The method for producing a high-purity synthetic silica glass for deep ultraviolet rays according to claim 11, wherein the treatment is performed at a pressure of 2000 kgf / cm 2 for 1 to 100 hours.
JP06738796A 1995-12-27 1996-02-29 High purity synthetic silica glass for far ultraviolet rays and method for producing the same Expired - Lifetime JP3188624B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06738796A JP3188624B2 (en) 1995-12-27 1996-02-29 High purity synthetic silica glass for far ultraviolet rays and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP35126595 1995-12-27
JP7-351265 1995-12-27
JP06738796A JP3188624B2 (en) 1995-12-27 1996-02-29 High purity synthetic silica glass for far ultraviolet rays and method for producing the same

Publications (2)

Publication Number Publication Date
JPH09235134A JPH09235134A (en) 1997-09-09
JP3188624B2 true JP3188624B2 (en) 2001-07-16

Family

ID=26408594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06738796A Expired - Lifetime JP3188624B2 (en) 1995-12-27 1996-02-29 High purity synthetic silica glass for far ultraviolet rays and method for producing the same

Country Status (1)

Country Link
JP (1) JP3188624B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6806199B2 (en) 2000-03-16 2004-10-19 Shin-Etsu Handotai Co., Ltd. Method for manufacturing silicon mirror wafer, silicon mirror wafer, and heat treatment furnace

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW581747B (en) 1999-02-16 2004-04-01 Nikon Corp Synthetic quartz glass optical member for ultraviolet light
EP1125897B1 (en) * 1999-06-10 2013-05-22 Asahi Glass Company, Limited Synthetic quartz glass and method for preparing the same
WO2001020401A1 (en) * 1999-09-13 2001-03-22 Asahi Glass Company, Limited Pellicle and method for manufacture thereof
JP3069562B1 (en) * 1999-10-19 2000-07-24 信越石英株式会社 Silica glass optical material for excimer laser and excimer lamp and method for producing the same
JP3228732B2 (en) * 1999-11-24 2001-11-12 信越石英株式会社 Method for producing silica glass optical material for projection lens used in vacuum ultraviolet lithography
DE10159961C2 (en) * 2001-12-06 2003-12-24 Heraeus Quarzglas Quartz glass blank for an optical component and method of making and using same
JP4104338B2 (en) * 2002-01-31 2008-06-18 信越石英株式会社 Synthetic quartz glass material for ArF exposure equipment
KR100952093B1 (en) * 2002-04-23 2010-04-13 아사히 가라스 가부시키가이샤 Synthetic quartz glass for optical member, projection exposure device, and projection exposure method
JP4470479B2 (en) * 2003-12-17 2010-06-02 旭硝子株式会社 Synthetic quartz glass for optical members and method for producing the same
US7534733B2 (en) 2004-02-23 2009-05-19 Corning Incorporated Synthetic silica glass optical material having high resistance to laser induced damage
WO2005101456A1 (en) * 2004-04-12 2005-10-27 Shin-Etsu Quartz Products Co., Ltd. Synthetic quartz glass tube for excimer uv lamp and method for production thereof
US20110130265A1 (en) 2005-03-01 2011-06-02 Masafumi Mizuguchi Synthetic silica glass molded body, method of molding the same, and method of inspecting synthetic silica glass molded body
JP2006294440A (en) * 2005-04-12 2006-10-26 Shinetsu Quartz Prod Co Ltd Deformed synthetic quartz tube for excimer uv lamp, and its manufacturing method
JP2006335577A (en) * 2005-05-31 2006-12-14 Shinetsu Quartz Prod Co Ltd Synthetic quartz glass tube for high transmission excimer uv lamp and its producing method
US20060281623A1 (en) * 2005-06-10 2006-12-14 General Electric Company Free-formed quartz glass ingots and method for making the same
US7934390B2 (en) 2006-05-17 2011-05-03 Carl Zeiss Smt Gmbh Method for manufacturing a lens of synthetic quartz glass with increased H2 content
DE102007057486A1 (en) * 2006-11-30 2008-07-10 Corning Inc. Optical component for photo-mask substrate and optical wave guide used in photolithography, has light-incident axis and comprises deuteroxyl-doped silica glass having preset absorption edge
JP2009046328A (en) * 2007-08-15 2009-03-05 Shinetsu Quartz Prod Co Ltd Silica glass for photocatalyst and its production method
JP4702898B2 (en) * 2007-09-18 2011-06-15 信越石英株式会社 Method for producing quartz glass crucible for pulling silicon single crystal
JP5106090B2 (en) * 2007-12-26 2012-12-26 信越石英株式会社 Silica glass for photocatalyst and method for producing the same
EP2508491B1 (en) * 2011-04-05 2017-01-11 Heraeus Quarzglas GmbH & Co. KG A synthetic silica glass, especially for the cladding of an optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6806199B2 (en) 2000-03-16 2004-10-19 Shin-Etsu Handotai Co., Ltd. Method for manufacturing silicon mirror wafer, silicon mirror wafer, and heat treatment furnace

Also Published As

Publication number Publication date
JPH09235134A (en) 1997-09-09

Similar Documents

Publication Publication Date Title
JP3188624B2 (en) High purity synthetic silica glass for far ultraviolet rays and method for producing the same
JP3069562B1 (en) Silica glass optical material for excimer laser and excimer lamp and method for producing the same
EP0917523B1 (en) Synthetic silica glass used with uv-rays and method producing the same
US6242136B1 (en) Vacuum ultraviolet transmitting silicon oxyfluoride lithography glass
EP1125897B1 (en) Synthetic quartz glass and method for preparing the same
WO1993000307A1 (en) Synthetic quartz glass optical member for excimer laser and production thereof
JP3228676B2 (en) High purity silica glass for far ultraviolet rays and method for producing the same
JP2859095B2 (en) Synthetic quartz mask substrate for excimer laser lithography
JP3403317B2 (en) High power synthetic silica glass optical material for vacuum ultraviolet light and method for producing the same
JP2001151531A (en) Silica glass optical material for projection lens used to vacuum uv ray lighography, its manufacturing method and projection lens
JP2008063181A (en) Synthetic quartz glass substrate for excimer laser and production method therefor
JP4066632B2 (en) Synthetic quartz glass optical body and manufacturing method thereof
EP1061052B1 (en) Synthetic silica glass optical members and process for the production thereof
JP2002114531A (en) Fluorine added glass
EP1740512A1 (en) Optical member made of synthetic quartz glass, and process for its production
JPH0627013B2 (en) Synthetic silica glass optical body for ultraviolet laser and manufacturing method thereof
JP3472234B2 (en) Silica glass optical material for excimer laser and excimer lamp
JPH06166528A (en) Production of ultraviolet-laser resistant optical member
JP3071362B2 (en) Synthetic quartz mask substrate for ArF excimer laser lithography and method of manufacturing the same
EP1067097A1 (en) Synthetic quartz glass and method for preparation thereof
JPH0616449A (en) Synthetic quartz glass optical member for excimer laser and its production
JP2001247318A (en) Synthesized silica glass optical member ahd method for producing the same
JPH0558668A (en) Synthetic quartz glass optical member for uv ray laser
JP4240709B2 (en) Synthetic quartz glass and manufacturing method thereof
JP2002087840A (en) Silica glass optical material for projection lens and projection lens used in vacuum ultraviolet ray lithography

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010424

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 13

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term