JP3403317B2 - High power synthetic silica glass optical material for vacuum ultraviolet light and method for producing the same - Google Patents
High power synthetic silica glass optical material for vacuum ultraviolet light and method for producing the sameInfo
- Publication number
- JP3403317B2 JP3403317B2 JP14593897A JP14593897A JP3403317B2 JP 3403317 B2 JP3403317 B2 JP 3403317B2 JP 14593897 A JP14593897 A JP 14593897A JP 14593897 A JP14593897 A JP 14593897A JP 3403317 B2 JP3403317 B2 JP 3403317B2
- Authority
- JP
- Japan
- Prior art keywords
- optical material
- silica glass
- concentration
- synthetic silica
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B19/00—Other methods of shaping glass
- C03B19/14—Other methods of shaping glass by gas- or vapour- phase reaction processes
- C03B19/1453—Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/07—Impurity concentration specified
- C03B2201/075—Hydroxyl ion (OH)
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/20—Doped silica-based glasses doped with non-metals other than boron or fluorine
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/20—Doped silica-based glasses doped with non-metals other than boron or fluorine
- C03B2201/21—Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/20—Doped silica-based glasses doped with non-metals other than boron or fluorine
- C03B2201/23—Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Glass Melting And Manufacturing (AREA)
- Glass Compositions (AREA)
- Lasers (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、高出力真空紫外線用合
成シリカガラス光学材料、さらに詳しくは波長165〜
195nmのエキシマレーザー、エキシマランプ等の高
出力真空紫外線を光源とする照射装置に組み込まれるレ
ンズ、プリズム、ウインドウ、リフレクター、チューブ
等の光学材料及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synthetic silica glass optical material for high power vacuum ultraviolet rays, more specifically, a wavelength of 165 to 165.
The present invention relates to an optical material such as a lens, a prism, a window, a reflector, and a tube which is incorporated in an irradiation device using a high-output vacuum ultraviolet ray as a light source such as an 195 nm excimer laser and an excimer lamp, and a manufacturing method thereof.
【0002】[0002]
【従来技術】従来、シリコンウエハ上に電子回路パター
ンを描画する光リソグラフィー装置の光源としてg線や
i線などの水銀ランプによる紫外線が用いられてきた
が、半導体素子の微細化が高まるに従い前記g線やi線
では解像度に限界があり、より波長の短いエキシマレー
ザが注目され、KrFエキシマレーザ(248nm)を
利用した光リソグラフィー装置が開発され実施段階に入
っている。しかしながら、半導体素子の集積度は近い将
来さらに高まることが予測され、それには線幅0.2μ
m以下の微細パターンを描画できる光源が必要とされ
る。前記光源としてはArFエキシマレーザ(193n
m)を主に、Xe2エキシマレーザ(172nm)、A
rClエキシマレーザ(175nm)、Xe2エキシマ
ランプ(172nm)、ArClエキシマランプ(17
5nm)等の波長165〜195nmの高出力の真空紫
外線が考えられ、その開発が始まっている。ところが、
前記高出力真空紫外線は従来の光リソグラフィー装置で
使用する紫外線よりさらに高出力であるところから、そ
の照射を受けた光学材料は透過率の低下、屈折率の上
昇、歪みの発生等のダメージが急激に起り光学材料とし
て使用できなくなる。2. Description of the Related Art Conventionally, ultraviolet rays from a mercury lamp such as g-line and i-line have been used as a light source of an optical lithography apparatus for drawing an electronic circuit pattern on a silicon wafer. Lines and i-lines have a limited resolution, and excimer lasers with shorter wavelengths are drawing attention, and an optical lithography apparatus using a KrF excimer laser (248 nm) has been developed and is in the implementation stage. However, the degree of integration of semiconductor devices is expected to increase in the near future, and the line width of 0.2μ
A light source capable of drawing a fine pattern of m or less is required. As the light source, an ArF excimer laser (193n
m), mainly Xe 2 excimer laser (172 nm), A
rCl excimer laser (175 nm), Xe 2 excimer lamp (172 nm), ArCl excimer lamp (17 nm)
5 nm) and other high-output vacuum ultraviolet rays having a wavelength of 165 to 195 nm are considered, and their development has started. However,
Since the high-power vacuum ultraviolet ray has a higher output than the ultraviolet ray used in the conventional photolithography apparatus, the optical material irradiated with the high-power vacuum ultraviolet ray is rapidly damaged by a decrease in transmittance, an increase in refractive index, a distortion, and the like. Therefore, it cannot be used as an optical material.
【0003】また、現在、半導体素子の洗浄処理法とし
てArFエキシマレーザ(193nm)、Xe2エキシ
マレーザ(172nm)、ArClエキシマレーザ(1
75nm)、Xe2エキシマランプ(172nm)、A
rClエキシマランプ(175nm)等の波長165〜
195nmの高出力真空紫外線を用いたドライ洗浄法が
開発されつつあるが、この洗浄処理装置ではウインドウ
やチューブに大型の光学材料が必要である。ところが、
光学材料が大型化すると高出力真空紫外線によるダメー
ジは一段と大きくなり、光学材料として使用できなくな
る。こうした事情から、前記高出力真空紫外線に対して
もダメージの少ない光学材料の開発が熱望されていた。At present, as a cleaning method for semiconductor devices, ArF excimer laser (193 nm), Xe 2 excimer laser (172 nm), ArCl excimer laser (1
75 nm), Xe 2 excimer lamp (172 nm), A
Wavelength of 165 such as rCl excimer lamp (175 nm)
A dry cleaning method using high-output vacuum ultraviolet rays of 195 nm is being developed, but in this cleaning processing apparatus, a large optical material is required for the window and the tube. However,
As the optical material becomes larger, the damage caused by high-output vacuum ultraviolet rays becomes more serious and it cannot be used as an optical material. Under such circumstances, there has been an eager desire to develop an optical material that is less damaged even by the high-output vacuum ultraviolet ray.
【0004】[0004]
【発明が解決しようとする課題】上記要望に応える光学
材料として本発明者等は、特公平6−48734号公報
で水素ガス濃度が少なくとも5×1016(molecu
les/cm3)以上、OH基濃度が100wtppm
以上のレーザ光用光学部材を、また特公平6−2701
3号公報で水素ガス濃度が少なくとも5×1016(mo
lecules/cm3)以上、OH基濃度が50wt
ppm以上、仮想温度に基づく屈折率変動分布でOH基
の濃度分布に基づく屈折率変動分布を打ち消し、実質的
に屈折率変動分布のない合成シリカガラス光学体を提案
した、しかしながら、前記光学材料を例えば直径200
mm×厚さ30mmを超える大型の光学材料とすると、
含有する水素分子やOH基濃度に不均一分布が起り、初
期透過率に差が生じ、透過率、屈折率に関する耐久性の
低下が起る。また、OH基濃度が100wtppm以上
と高濃度でシリカガラス光学材料に含まれると、真空紫
外域で初期透過率が低くなり、耐久性の低下が起る。つ
まり、前記公報で提案された光学材料は165〜195
nm域の初期透過率が低く、耐久性も低いという問題が
あった。DISCLOSURE OF THE INVENTION As an optical material which meets the above demands, the present inventors have disclosed in Japanese Patent Publication No. 6-48734 that the hydrogen gas concentration is at least 5 × 10 16 (molecu).
les / cm 3 ) or more, OH group concentration is 100 wtppm
The above optical members for laser light are also described in Japanese Patent Publication No. 6-2701.
No. 3, the hydrogen gas concentration is at least 5 × 10 16 (mo
ules / cm 3 ) or more, OH group concentration is 50 wt
ppm or more, the refractive index variation distribution based on the fictive temperature is canceled by the refractive index variation distribution based on the concentration distribution of the OH group, and a synthetic silica glass optical body having substantially no refractive index variation distribution is proposed. For example, diameter 200
mm, a large optical material with a thickness of over 30 mm,
A non-uniform distribution occurs in the concentration of hydrogen molecules and OH groups contained, a difference occurs in the initial transmittance, and the durability regarding the transmittance and the refractive index decreases. Further, when the silica glass optical material is contained in the silica glass optical material at a high concentration of 100 wtppm or more, the initial transmittance becomes low in the vacuum ultraviolet region and the durability is deteriorated. That is, the optical material proposed in the above publication is 165 to 195.
There is a problem that the initial transmittance in the nm range is low and the durability is low.
【0005】そこで、本発明者等は鋭意研究を続けた結
果、光学材料に含まれる不純物濃度を上記公報記載の光
学材料よりさらに高純度とするとともに、OH基濃度や
水素分子濃度を特定の範囲とし、かつそれらの濃度分布
を均一にした上で塩素元素の含有量を少なくすることで
透過率が高く、耐久性にも優れた合成シリカガラス光学
材料が得られることを見出した。また、前記合成シリカ
ガラス光学材料中のOH基濃度を前記範囲よりさらに狭
い範囲に限定することで特に波長165〜175nmの
高出力真空紫外線に対しても初期透過率が高く、耐久性
も高く維持できることをも見出し、本発明を完成したも
のである。すなわち、Accordingly, the inventors of the present invention have conducted extensive studies, and as a result, have made the impurity concentration of the optical material higher than that of the optical material described in the above publication, and have the OH group concentration and the hydrogen molecule concentration within a specific range. It was found that a synthetic silica glass optical material having high transmittance and excellent durability can be obtained by making the concentration distribution uniform and reducing the content of chlorine element. In addition, by limiting the OH group concentration in the synthetic silica glass optical material to a range narrower than the above range, the initial transmittance is high and the durability is maintained high even for high-output vacuum ultraviolet rays having a wavelength of 165 to 175 nm. The inventors have also found out what can be done and completed the present invention. That is,
【0006】本発明は、波長165〜195nmの高出
力真空紫外線に対して初期透過率が高く、耐久性も優れ
たシリカガラス光学材料を提供することを目的とする。An object of the present invention is to provide a silica glass optical material having a high initial transmittance for high-power vacuum ultraviolet rays having a wavelength of 165 to 195 nm and excellent durability.
【0007】また、本発明は、波長165〜175nm
の高出力真空紫外線に対して初期透過率が高く、耐久性
も優れたシリカガラス光学材料を提供することを目的と
する。The present invention also has a wavelength of 165 to 175 nm.
It is an object of the present invention to provide a silica glass optical material which has a high initial transmittance with respect to the high output vacuum ultraviolet ray and has excellent durability.
【0008】さらに、本発明は、上記シリカガラス光学
材料の製造方法を提供することを目的とする。A further object of the present invention is to provide a method for producing the above silica glass optical material.
【0009】[0009]
【課題を解決するための手段】上記目的を達成する本発
明は、超高純度の合成シリカガラスからなる波長165
〜195nmの高出力真空紫外線用合成シリカガラス光
学材料において、OH基濃度が5〜300wtppm、
OH基濃度変動幅(ΔOH/cm)が10wtppm以
下、光学材料全体のOH基濃度変動幅(ΔOH)が30
wtppm以下、水素分子濃度が1×1017〜1×10
19分子/cm3、水素分子濃度変動幅(ΔH2/cm)が
1×1017分子/cm3以下、光学材料全体の水素分子
濃度変動幅(ΔH 2 )が3×10 17 分子/cm 3 以下、塩
素元素含有量が50wtppm以下であることを特徴と
する大型の高出力真空紫外線用合成シリカガラス光学材
料に係る。DISCLOSURE OF THE INVENTION The present invention which achieves the above-mentioned object is a wavelength 165 made of synthetic silica glass of ultra-high purity.
In the synthetic silica glass optical material for high output vacuum ultraviolet rays of ˜195 nm, the OH group concentration is 5 to 300 wtppm,
OH group concentration fluctuation range (ΔOH / cm) is 10 wtppm or less, OH group concentration fluctuation range (ΔOH) of the entire optical material is 30
wtppm or less, hydrogen molecule concentration 1 × 10 17 to 1 × 10
19 molecules / cm 3 , hydrogen molecule concentration fluctuation range (ΔH 2 / cm) of 1 × 10 17 molecules / cm 3 or less, hydrogen molecules of the entire optical material
The present invention relates to a large-sized synthetic silica glass optical material for high-output vacuum ultraviolet rays, which has a concentration fluctuation range (ΔH 2 ) of 3 × 10 17 molecules / cm 3 or less and a chlorine element content of 50 wtppm or less.
【0010】本発明の合成シリカガラス光学材料は、高
出力真空紫外線に対して初期透過率が高く、耐久性も優
れた合成シリカガラス光学材料であるが、前記高出力真
空紫外線とはArFエキシマレーザ(193nm)、X
e2エキシマレーザ(172nm)、ArClエキシマ
レーザ(175nm)、Xe2エキシマランプ(172
nm)、ArClエキシマランプ(175nm)等の波
長165〜195nmの紫外線をいう。また前記超高純
度とは、Li、Na、Kの各アルカリ金属元素濃度が5
wtppb以下、Mg、Ca、Srの各アルカリ土類金
属元素濃度が1wtppb以下、Ti、Cr、Mn、F
e、Co、Ni、Cuの各遷移金属元素濃度が0.1w
tppb以下であることをいう。本発明の合成シリカガ
ラス光学材料は、前記超高純度であるとともに、OH基
濃度が5〜300wtppm、OH基濃度変動幅(ΔO
H/cm)が10wtppm以下、水素分子濃度が1×
1017〜1×1019分子/cm3、水素分子濃度変動幅
(ΔH2/cm)が1×1017分子/cm3以下、塩素元
素含有量が50wtppm以下である。The synthetic silica glass optical material of the present invention is a synthetic silica glass optical material having a high initial transmittance with respect to high-output vacuum ultraviolet rays and excellent durability, and the high-output vacuum ultraviolet rays are ArF excimer lasers. (193 nm), X
e 2 excimer laser (172 nm), ArCl excimer laser (175 nm), Xe 2 excimer lamp (172
nm), an ArCl excimer lamp (175 nm) or the like having a wavelength of 165 to 195 nm. The ultra-high purity means that the concentration of each alkali metal element of Li, Na, and K is 5
wtppb or less, the concentration of each alkaline earth metal element of Mg, Ca, Sr is 1 wtppb or less, Ti, Cr, Mn, F
The concentration of each transition metal element of e, Co, Ni, and Cu is 0.1 w
It is less than or equal to tppb. The synthetic silica glass optical material of the present invention has the above-mentioned ultra-high purity, an OH group concentration of 5 to 300 wtppm, and an OH group concentration fluctuation range (ΔO
H / cm) is 10 wtppm or less, hydrogen molecule concentration is 1 ×
10 17 to 1 × 10 19 molecule / cm 3 , the hydrogen molecule concentration fluctuation range (ΔH 2 / cm) is 1 × 10 17 molecule / cm 3 or less, and the chlorine element content is 50 wtppm or less.
【0011】一般に、OH基はシリカガラス網目構造に
おいて構造の終端部になるが、このOH基が適量シリカ
ガラス中に含まれていると網目構造内の内部歪みが除去
され、Si−O−Siの結合角度が安定値に近づきSi
−Oの平均結合エネルギーが上昇する。その一方で、O
H基はシリカガラスの紫外線吸収端を長波長側にシフト
させる作用があり、高濃度に含まれると透過率を低下さ
せることになる。そこで、本発明の合成シリカガラス光
学材料にあってはOH基濃度を5〜300wtppmの
範囲とする。特に波長165〜175nmの高出力真空
紫外線用の光学材料の場合にはOH基濃度を5〜100
wtppmとするのがよい。前記OH基濃度に差が存在
すると、透過率、絶対屈折率、水素分子濃度の差等を生
じ光学材料の初期特性が悪化する。また、高出力真空紫
外線照射下において光学材料内に光透過率低下の差、屈
折率上昇の差を生じ、耐久性が非常に悪くなる。そのた
め光入射軸方向からみた1cm当たりのOH基濃度変動
幅(ΔOH/cm)を10wtppm以下に、光学材料
全体のOH基濃度変動幅(ΔOH)を30wtppm以
下とする。また、合成シリカガラス中に水素分子が溶存
するとE'センター吸収帯の生成が抑制されるので、本
発明の合成シリカガラス光学材料にあっては水素分子を
1×1017〜1×1019分子/cm3の範囲の濃度で含
有する。勿論、前記水素分子の溶存は均一である必要が
あり、光入射軸方向からみて1cm当たりの水素分子濃
度変動幅(ΔH2/cm)は1×1017分子/cm3以
下、光学材料全体の水素分子濃度変動幅(ΔH2)は3
×1017分子/cm3以下とするのがよい。Generally, the OH group becomes the terminal end of the structure in the silica glass network structure, but if this OH group is contained in the silica glass in an appropriate amount, the internal strain in the network structure is removed, and Si--O--Si is removed. Bond angle of Si approaches the stable value and Si
The average binding energy of —O increases. On the other hand, O
The H group has a function of shifting the ultraviolet absorption edge of silica glass to the long wavelength side, and if contained in a high concentration, the transmittance will be reduced. Therefore, in the synthetic silica glass optical material of the present invention, the OH group concentration is in the range of 5 to 300 wtppm. Particularly in the case of an optical material for high-output vacuum ultraviolet rays having a wavelength of 165 to 175 nm, the OH group concentration is 5 to 100.
It is good to set it as wtppm. If there is a difference in the OH group concentration, a difference in the transmittance, the absolute refractive index, the hydrogen molecule concentration, or the like occurs, and the initial characteristics of the optical material deteriorate. Further, under irradiation with high-output vacuum ultraviolet rays, a difference in decrease in light transmittance and a difference in increase in refractive index occur in the optical material, resulting in very poor durability. Therefore, the fluctuation range (ΔOH / cm) of OH group concentration per 1 cm viewed from the direction of the light incident axis is set to 10 wtppm or less, and the fluctuation range of OH group concentration (ΔOH) of the entire optical material is set to 30 wtppm or less. Moreover, synthetic since silica glass hydrogen molecules to the generation of the dissolved E 'center absorption band is suppressed, 1 × 10 17 ~1 × 10 19 molecules of hydrogen molecules In the synthetic silica glass optical material of the present invention The content is in the range of / cm 3 . Of course, the dissolved hydrogen molecules need to be uniform, and the fluctuation range of hydrogen molecule concentration per 1 cm (ΔH 2 / cm) as viewed from the direction of the light incident axis (ΔH 2 / cm) is 1 × 10 17 molecules / cm 3 or less. Hydrogen molecule concentration fluctuation range (ΔH 2 ) is 3
× preferably set to 10 17 molecules / cm 3 or less.
【0012】上記に加えて、本発明の合成シリカガラス
光学材料は塩素元素の含有量を50wtppm以下とす
る。シリカガラス中の塩素原子はOH基と同様にシリカ
ガラス網目構造の終端部となるが、Si−Clの結合エ
ネルギーがSi−OHの結合エネルギーに比較して小さ
いところから高出力真空紫外線の照射下においてSi−
Clは210nmの吸収帯、いわゆるE'センター吸収
帯生成のプリカーサとなる。それを抑えるために塩素元
素の含有量を前記範囲とする。In addition to the above, the synthetic silica glass optical material of the present invention has a chlorine element content of 50 wtppm or less. The chlorine atom in the silica glass becomes the terminal end of the silica glass network structure like the OH group, but since the bond energy of Si-Cl is smaller than the bond energy of Si-OH, it is exposed to high power vacuum ultraviolet rays. At Si-
Cl absorption band of 210 nm, a precursor of the so-called E 'center absorption band generation. In order to suppress it, the content of chlorine element is set within the above range.
【0013】本発明の合成シリカガラス光学材料はその
耐久性をさらに高めるため仮想温度を700〜1000
℃、その変動幅を50℃以内に設定する。仮想温度を低
く設定することで合成シリカガラスの耐久性は増すが、
仮想温度を低くするには加熱処理時間を長くする必要が
あり実用上から仮想温度の下限を700℃とするのがよ
い。The synthetic silica glass optical material of the present invention has a fictive temperature of 700 to 1000 in order to further improve its durability.
℃, the fluctuation range is set within 50 ℃. Although the durability of synthetic silica glass increases by setting the fictive temperature low,
To lower the fictive temperature, it is necessary to lengthen the heat treatment time, and it is preferable to set the lower limit of the fictive temperature to 700 ° C. for practical use.
【0014】本発明の合成シリカガラス光学材料をリソ
グラフィー装置の光学材料として使用する場合には、上
記特性に加えて3方向脈理フリー、屈折率変動幅(Δ
n)を2×10-6以下、複屈折量を1nm/cm以下と
するのがよい。When the synthetic silica glass optical material of the present invention is used as an optical material for a lithographic apparatus, in addition to the above characteristics, three-direction striae-free and refractive index fluctuation width (Δ
It is preferable that n) is 2 × 10 −6 or less and the birefringence amount is 1 nm / cm or less.
【0015】本発明の高出力真空紫外線用合成シリカガ
ラス光学材料は以下の方法で製造することができる。す
なわちThe synthetic silica glass optical material for high power VUV of the present invention can be manufactured by the following method. Ie
【0016】(i)スート再溶融法
蒸留等の手段で超高純度化したSiCl4、HSiC
l3、(CH3)2SiCl2、CH3SiCl3、CH3S
i(OCH3)3、H Si(OCH3)3、Si(OC
H3)4などの珪素化合物、好ましくはCH3Si(OC
H3)3、H Si(OCH3)3、Si(OCH3)4の塩素
を含まない珪素化合物を酸水素ガスまたはプロパンガス
を使い火炎加水分解して白色不透明のスート体に形成
し、それを電気炉内でOH基濃度の調整を行ったのち、
同じ電気炉内で真空雰囲気下、1300〜1700℃に
加熱して気泡のない合成シリカガラスインゴットを製造
し、それを例えば特開平3−88742号公報、米国特
許第3,485,613号明細書等に記載する棒状に延
伸したシリカガラスインゴットを旋盤上に設定し、ガス
バーナー加熱により前記シリカガラスインゴットを帯状
に順次軟化溶融させ、該棒状シリカガラスインゴットを
回転攪拌する浮遊帯溶融法(FZ法)でOH基濃度の均
一化処理を行う。前記浮遊帯溶融法でOH基濃度の均一
化が図れるとともに脈理除去もできる。得られたシリカ
ガラスインゴットを常圧又は加圧下の水素ガス雰囲気
中、電気炉で600〜1200℃に加熱して水素分子濃
度の均一化と仮想温度の均一化を図ったのち、切断、研
削、研磨して所定の寸法のシリカガラス光学材料に加工
する方法。(I) Soot remelting method
SiCl ultra-purified by means such as distillationFour, HSiC
l3, (CH3)2SiCl2, CH3SiCl3, CH3S
i (OCH3)3, H Si (OCH3)3, Si (OC
H3)FourA silicon compound such as, preferably CH3Si (OC
H3)3, H Si (OCH3)3, Si (OCH3)FourChlorine
Oxyhydrogen gas or propane gas containing no silicon compounds
Flame hydrolysis to form a white opaque soot body
After adjusting the OH group concentration in the electric furnace,
In the same electric furnace, in a vacuum atmosphere at 1300 to 1700 ° C
Production of bubble-free synthetic silica glass ingot by heating
However, it is disclosed in, for example, Japanese Patent Application Laid-Open No. 3-88742, US Patent
Extends into a rod shape as described in U.S. Pat. No. 3,485,613
Place the stretched silica glass ingot on a lathe and
The silica glass ingot is band-shaped by heating with a burner.
Sequentially soften and melt into the rod-shaped silica glass ingot
The floating zone melting method (FZ method) of rotating and stirring is used to equalize the OH group concentration.
Perform unification processing. Uniform OH group concentration by the floating zone melting method
In addition to striking, striae can be removed. Silica obtained
Hydrogen gas atmosphere under normal pressure or pressure in glass ingot
Medium, heated to 600-1200 ℃ in an electric furnace and concentrated hydrogen molecules
After uniforming the temperature and the virtual temperature, cutting and grinding
Machining and polishing to process silica glass optical material of specified size
how to.
【0017】(ii)ダイレクト法
上記の超高純度珪素化合物を酸水素ガスまたはプロパン
ガス火炎中へスプレーし加水分解して得たガラス微粒子
をターゲット上に堆積して直接透明な合成シリカガラス
インゴットを作成し、それを上記と同様に浮遊帯溶融法
によるOH基濃度均一化および脈理除去処理をした後、
水素分子濃度の均一化および仮想温度の設定処理をし、
それを切断、研削、研磨して所定の寸法のシリカガラス
光学材料に加工する方法。(Ii) Direct Method Glass fine particles obtained by spraying the above ultrahigh-purity silicon compound into an oxyhydrogen gas or propane gas flame and hydrolyzing it are deposited on a target to directly obtain a transparent synthetic silica glass ingot. After making it and subjecting it to uniformization of OH group concentration and striae removal treatment by the floating zone melting method in the same manner as above,
Makes the hydrogen molecule concentration uniform and sets the virtual temperature,
A method to cut, grind, and polish it into a silica glass optical material of specified dimensions.
【0018】[0018]
【発明の実施の態様】次に具体例に基づいて本発明を詳
細に説明するが、本発明はそれにより限定されるもので
はない。BEST MODE FOR CARRYING OUT THE INVENTION The present invention will now be described in detail based on specific examples, but the present invention is not limited thereto.
【0019】[0019]
実施例1〜4
(1)スート体の作成
蒸留精製して得た超高純度のCH3Si(OCH3)3ガ
スを合計100リットル/分と固定し、酸素ガス合計及
び水素ガス合計を各々10〜100リットル/分、30
〜300リットル/分の範囲の割合で複数のバーナーに
供給しスート体の作成を行った。OH基含有量が数10
0wtppm含有する白色スート体に形成した。Examples 1 to 4 (1) Preparation of soot body Ultrahigh-purity CH 3 Si (OCH 3 ) 3 gas obtained by distillation purification was fixed at 100 l / min in total, and total oxygen gas and total hydrogen gas were respectively fixed. 10 to 100 liters / minute, 30
The soot body was prepared by supplying the burner to a plurality of burners at a rate of up to 300 liters / minute. OH group content is several tens
A white soot body containing 0 wtppm was formed.
【0020】(2)シリカガラスインゴットの製造
上記スート体を円筒型高純度グラファイトヒーターを内
装したステンレススチール製電気炉内に設置し、電気炉
内を約103Pa以下の真空度にするとともに約600
〜900℃の範囲の所定温度にて加熱処理し、OH基濃
度の調製を行った。OH基濃度は処理時の真空度、温度
及び時間を調整してコントロールした。次いで電気炉
中、真空下で約1400〜1600℃に加熱・再溶融し
て透明シリカガラスインゴットとした。(2) Manufacture of silica glass ingot The above-mentioned soot body is installed in a stainless steel electric furnace containing a cylindrical high-purity graphite heater, and the inside of the electric furnace is set to a vacuum degree of about 10 3 Pa or less. 600
The heat treatment was performed at a predetermined temperature in the range of up to 900 ° C. to adjust the OH group concentration. The OH group concentration was controlled by adjusting the degree of vacuum, temperature and time during the treatment. Then, in a electric furnace, it was heated and remelted at about 1400 to 1600 ° C. under vacuum to obtain a transparent silica glass ingot.
【0021】(3)OH基濃度均一化処理および脈理除
去処理
上記シリカガラスインゴットを直径約60mmの棒状体
とし、それを旋盤上に設置し、酸水素バーナー加熱によ
る浮遊帯溶融法でOH基の均一化処理および脈理除去処
理を行ったのち、直径300mm、厚さ60mmの円柱
状に成形した。(3) OH group concentration homogenizing treatment and striae removing treatment The silica glass ingot is formed into a rod-shaped body having a diameter of about 60 mm, which is placed on a lathe, and the OH group is produced by a floating zone melting method by heating an oxyhydrogen burner. After performing the homogenizing treatment and the striae removing treatment of (1), the material was molded into a cylindrical shape having a diameter of 300 mm and a thickness of 60 mm.
【0022】(4)水素分子濃度均一化処理および仮想
温度設定処理
上記円柱状シリカガラスインゴットをステンレススチー
ル製ジャケットでタングステンメッシュヒーターの電気
炉内に導入し、内部雰囲気を実施例1では1kgf/c
m2、100%水素ガス、実施例2では10kgf/c
m2、100%水素ガスとし、まず1100℃に昇温し
50時間保持し、次いで800℃まで200〜1000
時間の範囲内で徐令し、その後雰囲気を保持しつつ室温
まで放冷した。その後前記円柱状シリカガラスインゴッ
トを外周研削、平行平面研削を行い、直径250mm、
厚さ50mmのシリカガラス光学材料を作成した。(4) Uniformization of Hydrogen Molecule Concentration Treatment and Virtual Temperature Setting Treatment The above cylindrical silica glass ingot was introduced into an electric furnace of a tungsten mesh heater with a stainless steel jacket, and the internal atmosphere was 1 kgf / c in Example 1.
m 2 , 100% hydrogen gas, 10 kgf / c in Example 2
m 2 , 100% hydrogen gas, first heated to 1100 ° C. and maintained for 50 hours, then 200 to 1000 up to 800 ° C.
The temperature was gradually increased within the range of time, and then the temperature was allowed to cool to room temperature while maintaining the atmosphere. After that, the cylindrical silica glass ingot was subjected to outer circumference grinding and parallel surface grinding to obtain a diameter of 250 mm,
A silica glass optical material having a thickness of 50 mm was prepared.
【0023】実施例5、6
(1)シリカガラスインゴットの製造
蒸留精製して得た超高純度のCH3Si(OCH3)3ガ
スを150リットル/分と固定し、酸素ガスと水素ガス
を各々30〜100リットル/分、100〜300リッ
トル/分の割合でバーナーに供給し、ダイレクト法で透
明シリカガラスインゴットを作成した。Examples 5 and 6 (1) Manufacture of silica glass ingot The ultrahigh-purity CH 3 Si (OCH 3 ) 3 gas obtained by distillation purification was fixed at 150 liters / min, and oxygen gas and hydrogen gas were fixed. 30 to 100 l / min and 100 to 300 l / min were supplied to the burner, and a transparent silica glass ingot was prepared by the direct method.
【0024】(2)OH基濃度均一化処理および脈理除
去処理
上記透明シリカガラスインゴットを直径約60mmの棒
状体とし、それを旋盤上に設置し、酸水素バーナー加熱
による浮遊帯溶融法でOH基の均一化処理および脈理除
去処理を行ったのち、直径300mm、厚さ60mmの
円柱状に成形した。(2) OH group concentration homogenizing treatment and striae removing treatment The above transparent silica glass ingot was formed into a rod-shaped body having a diameter of about 60 mm, which was placed on a lathe and subjected to OH by a floating zone melting method by heating with an oxyhydrogen burner. After subjecting the base to homogenization treatment and striae removal treatment, it was molded into a cylindrical shape having a diameter of 300 mm and a thickness of 60 mm.
【0025】(3)水素分子濃度均一化処理および仮想
温度設定処理
実施例5では上記円柱状シリカガラスインゴットをステ
ンレススチール製ジャケットでタングステンメッシュヒ
ーターの電気炉内に導入し、内部雰囲気を10kgf/
cm2、100%水素ガスとし、まず1100℃に昇温
し、50時間保持し、次いで800℃まで100〜50
0時間の範囲内で徐令し、その後雰囲気を保持しつつ室
温まで放冷した。実施例6では前記円柱状シリカガラス
インゴットをステンレススチール製オートクレーブ内に
設置し、内部雰囲気を500kgf/cm2、100%
水素ガスとし、外部ヒーターによりまず1100℃に昇
温し、50時間保持し、次いで800℃まで100〜5
00時間の範囲内で徐令し、その後雰囲気を保持しつつ
室温まで放冷した。その後得られた円柱状シリカガラス
インゴットを外周研削、平行平面研削を行い、直径25
0mm、厚さ50mmのシリカガラス光学材料を作成し
た。(3) Hydrogen molecule concentration homogenizing treatment and virtual temperature setting treatment In Example 5, the cylindrical silica glass ingot was introduced into an electric furnace of a tungsten mesh heater with a stainless steel jacket, and the internal atmosphere was 10 kgf /.
cm 2 , 100% hydrogen gas, first heated to 1100 ° C., held for 50 hours, then heated to 800 ° C. 100-50
The temperature was gradually decreased within the range of 0 hour, and then allowed to cool to room temperature while maintaining the atmosphere. In Example 6, the cylindrical silica glass ingot was placed in a stainless steel autoclave, and the internal atmosphere was 500 kgf / cm 2 , 100%.
Using hydrogen gas, first raise the temperature to 1100 ° C with an external heater, hold for 50 hours, and then increase to 800 ° C for 100 to 5 ° C.
The temperature was gradually decreased within the range of 00 hours, and then allowed to cool to room temperature while maintaining the atmosphere. The cylindrical silica glass ingot thus obtained was then subjected to outer circumference grinding and parallel surface grinding to obtain a diameter of 25
A silica glass optical material having a thickness of 0 mm and a thickness of 50 mm was prepared.
【0026】上記シリカガラス光学材料についてOH基
平均濃度、OH基濃度変動幅(ΔOH/cm)、光学材
料全体のOH基濃度変動幅(ΔOH)、水素分子平均濃
度、水素分子濃度変動幅(ΔH2/cm)、光学材料全
体の水素分子濃度変動幅(ΔH2)、塩素元素含有量、
仮想温度(Tf)及び仮想温度変動幅(ΔTf)、屈折率
差(Δn)、可視光線における複屈折量(nm/c
m)、ArFエキシマレーザ照射、Xe2エキシマレー
ザ照射対する透過率等を測定した。その結果を表1に示
す。Regarding the silica glass optical material, the OH group average concentration, OH group concentration fluctuation range (ΔOH / cm), OH group concentration fluctuation range (ΔOH) of the entire optical material, hydrogen molecule average concentration, hydrogen molecule concentration fluctuation range (ΔH) 2 / cm), fluctuation range of hydrogen molecule concentration in the entire optical material (ΔH 2 ), chlorine element content,
Fictitious temperature (T f ), fluctuating temperature range (ΔT f ), refractive index difference (Δn), birefringence amount in visible light (nm / c)
m), the transmittance for ArF excimer laser irradiation, Xe 2 excimer laser irradiation, etc. were measured. The results are shown in Table 1.
【0027】実施例3のシリカガラス光学材料および実
施例5のシリカガラス光学材料についてその不純物元素
濃度を測定したところ、前者についてはLiが1wtp
pb、Naが4wtppb、Kが<1wtppb、Mg
及びCaがそれぞれ<1wtppb、Srが<0.1w
tppb、Ti、Cr、Mn、Fe、Co、Ni、Cu
がそれぞれ<0.1wtppbであった。また、後者に
ついてはLiが1wtppb、Naが2wtppb、K
が<1wtppb、Mg及びCaが<1wtppb、S
rが<0.1wtppb、Ti、Cr、Mn、Fe、C
o、Ni、Cuがそれぞれ<0.1wtppbであっ
た。When the impurity element concentrations of the silica glass optical material of Example 3 and the silica glass optical material of Example 5 were measured, Li was 1 wtp for the former.
pb, Na 4wtppb, K <1wtppb, Mg
And Ca are <1 wtppb and Sr are <0.1 w, respectively.
tppb, Ti, Cr, Mn, Fe, Co, Ni, Cu
Were <0.1 wtppb respectively. Regarding the latter, Li is 1 wtppb, Na is 2 wtppb, K
<1 wtppb, Mg and Ca <1 wtppb, S
r is <0.1 wtppb, Ti, Cr, Mn, Fe, C
o, Ni, and Cu were <0.1 wtppb, respectively.
【0028】[0028]
【表1】
注):再溶融法 はスート再溶融法を示す。DQ法はダイ
レクト法を示す。[Table 1]
Note): Remelting method Indicates the soot remelting method. DQ method is die
The Rect method is shown.
【0029】比較例1
実施例1で使用した超高純度の珪素化合物を用いてスー
ト体を形成し、塩化水素ガス雰囲気下での脱水処理を含
むスート再溶融法により超高純度合成シリカガラスイン
ゴットを作成した。前記シリカガラスインゴットにOH
基濃度及び水素分子濃度の均一化処理を施さない以外、
実施例1と同様にして、直径250mm、厚さ50mm
の光学材料を得た。前記光学材料についてそのOH基平
均濃度、OH基濃度変動幅(ΔOH/cm)、光学材料
全体のOH基平均濃度変動幅(ΔOH)、水素分子平均
濃度、水素分子濃度変動幅(ΔH2/cm)、光学材料
全体の水素分子濃度変動幅(ΔH2)、塩素元素含有
量、屈折率差(Δn)、仮想温度(Tf)及び仮想温度
変動幅(ΔTf)、可視光線における複屈折量(nm/
cm)、ArFエキシマレーザ照射、Xe2エキシマレ
ーザ照射対する透過率等を測定した。その結果を表2に
示す。Comparative Example 1 An ultrahigh-purity synthetic silica glass ingot was formed by using the ultrahigh-purity silicon compound used in Example 1 to form a soot body and a soot remelting method including dehydration treatment in a hydrogen chloride gas atmosphere. It was created. OH to the silica glass ingot
Other than not subjecting the group concentration and hydrogen molecule concentration to uniformization,
Similar to Example 1, 250 mm in diameter and 50 mm in thickness
Optical material was obtained. Regarding the optical material, its OH group average concentration, OH group concentration fluctuation range (ΔOH / cm), OH group average concentration fluctuation range (ΔOH), hydrogen molecule average concentration, hydrogen molecule concentration fluctuation range (ΔH 2 / cm) ), Hydrogen molecule concentration fluctuation range (ΔH 2 ) of the entire optical material, chlorine element content, refractive index difference (Δn), fictive temperature (T f ) and fictive temperature fluctuation range (ΔT f ), birefringence amount in visible light (Nm /
cm), ArF excimer laser irradiation, Xe 2 excimer laser irradiation, and the like. The results are shown in Table 2.
【0030】比較例2
比較例1と同様にしてOH基フリーの合成シリカガラス
インゴットを作成しそれに脈理除去処理、水素分子濃度
均一化処理及び仮想温度設定処理を行ったのち、直径2
50mm、厚さ50mmに切断し、研削、研磨処理を行
って光学材料を作成した。その光学材料についてOH基
平均濃度、OH基濃度変動幅(ΔOH/cm)、光学材
料全体のOH基濃度変動幅(ΔOH)、水素分子平均濃
度、水素分子濃度変動幅(ΔH2/cm)、光学材料全
体の水素分子濃度変動幅(ΔH2)、塩素元素含有量、
屈折率差(Δn)、仮想温度(Tf)及び仮想温度変動
幅(ΔTf)、可視光線における複屈折量(nm/c
m)、ArFエキシマレーザ照射、Xe2エキシマレー
ザ照射対する透過率等を測定した。その結果を表2に示
す。Comparative Example 2 An OH group-free synthetic silica glass ingot was prepared in the same manner as in Comparative Example 1 and subjected to striae removal treatment, hydrogen molecule concentration homogenization treatment and virtual temperature setting treatment, and then a diameter of 2
An optical material was prepared by cutting into 50 mm and a thickness of 50 mm, grinding and polishing. OH group average concentration, OH group concentration fluctuation range (ΔOH / cm), OH group concentration fluctuation range (ΔOH) of the entire optical material, hydrogen molecule average concentration, hydrogen molecule concentration fluctuation range (ΔH 2 / cm), Fluctuation range of hydrogen molecule concentration (ΔH 2 ) in the entire optical material, chlorine element content,
Refractive index difference (Δn), fictive temperature (T f ) and fluctuating temperature range (ΔT f ), birefringence amount in visible light (nm / c)
m), the transmittance for ArF excimer laser irradiation, Xe 2 excimer laser irradiation, etc. were measured. The results are shown in Table 2.
【0031】比較例3、4
実施例3と同様にして合成シリカガラスインゴットを作
成し、比較例3ではOH基濃度の均一化処理、脈理除去
処理及び大気雰囲気加熱による仮想温度設定処理を行
い、比較例4では水素分子濃度均一化処理および仮想温
度設定処理を行ったのち、直径250mm、厚さ50m
mに切断し、研削、研磨処理を行って光学材料を作成
し、その光学材料についてOH基平均濃度、OH基濃度
変動幅(ΔOH/cm)、光学材料全体のOH基濃度変
動幅(ΔOH)、水素分子平均濃度、水素分子濃度変動
幅(ΔH2/cm)、光学材料全体の水素分子濃度変動
幅(ΔH2)、塩素元素含有量、屈折率差(Δn)、仮
想温度(Tf)及び仮想温度変動幅(ΔTf)、可視光線
における複屈折量(nm/cm)、ArFエキシマレー
ザ照射、Xe2エキシマレーザ照射対する透過率等を測
定した。その結果を表2に示す。Comparative Examples 3 and 4 A synthetic silica glass ingot was prepared in the same manner as in Example 3, and in Comparative Example 3, OH group concentration homogenization treatment, striae removal treatment, and virtual temperature setting treatment by heating in the atmosphere were performed. In Comparative Example 4, after the hydrogen molecule concentration homogenization treatment and the virtual temperature setting treatment were performed, the diameter was 250 mm and the thickness was 50 m.
An optical material is prepared by cutting into m, grinding and polishing, and the optical material has an OH group average concentration, an OH group concentration fluctuation range (ΔOH / cm), and an OH group concentration fluctuation range (ΔOH) for the entire optical material. , Hydrogen molecule average concentration, hydrogen molecule concentration fluctuation range (ΔH 2 / cm), hydrogen molecule concentration fluctuation range of the entire optical material (ΔH 2 ), chlorine element content, refractive index difference (Δn), fictive temperature (T f ). The fluctuating temperature range (ΔT f ), the amount of birefringence in visible light (nm / cm), the transmittance of ArF excimer laser irradiation, and the transmittance of Xe 2 excimer laser irradiation were measured. The results are shown in Table 2.
【0032】比較例5、6
実施例5と同様にダイレクト法にて合成シリカガラスイ
ンゴットを作成し、比較例5では水素分子濃度均一化処
理および仮想温度設定処理を行い、比較例6では、OH
基濃度均一化処理、脈理除去処理、水素分子濃度均一化
処理および仮想温度設定処理を行ったのち、切断、研
削、研磨処理を行って直径250mm、厚さ50mmの
光学材料を作成した。その光学材料についてOH基平均
濃度、OH基濃度変動幅(ΔOH/cm)、光学材料全
体のOH基濃度変動幅(ΔOH)、水素分子平均濃度、
水素分子濃度変動幅(ΔH2/cm)、光学材料全体の
水素分子濃度変動幅(ΔH2)、塩素元素含有量、屈折
率差(Δn)、仮想温度(Tf)及び仮想温度変動幅
(ΔTf)、可視光線における複屈折量(nm/c
m)、ArFエキシマレーザ照射、Xe2エキシマレー
ザ照射対する透過率等を測定した。その結果を表2に示
す。Comparative Examples 5 and 6 Synthetic silica glass ingots were prepared by the direct method in the same manner as in Example 5. In Comparative Example 5, hydrogen molecule concentration homogenizing treatment and virtual temperature setting treatment were performed, and in Comparative Example 6, OH.
After performing the group concentration uniforming treatment, the striae removing treatment, the hydrogen molecule concentration uniformizing treatment and the virtual temperature setting treatment, cutting, grinding and polishing treatments were performed to prepare an optical material having a diameter of 250 mm and a thickness of 50 mm. OH group average concentration, OH group concentration fluctuation range (ΔOH / cm), OH group concentration fluctuation range (ΔOH) of the entire optical material, hydrogen molecule average concentration,
Fluctuation range of hydrogen molecule concentration (ΔH 2 / cm), Fluctuation range of hydrogen molecule concentration of entire optical material (ΔH 2 ), chlorine element content, refractive index difference (Δn), fictive temperature (T f ) and fluctuating range of temperature ( ΔT f ), the amount of birefringence in visible light (nm / c
m), the transmittance for ArF excimer laser irradiation, Xe 2 excimer laser irradiation, etc. were measured. The results are shown in Table 2.
【0033】[0033]
【表2】
注):再溶融法 はスート再溶融法を示す。DQ法はダイ
レクト法を示す。[Table 2]
Note): Remelting method Indicates the soot remelting method. DQ method is die
The Rect method is shown.
【0034】上記実施例及び比較例の各物性値の測定法
は下記の方法による。The physical properties of each of the above Examples and Comparative Examples are measured by the following methods.
【0035】(i)OH基濃度の測定法
D.M. DODD and D.B. FRASE
R,Optical determination o
f OH in fused silica,Jour
nal of Applied Physics,Vo
l.37(1966)p.3911文献記載の測定法。(I) Method for measuring OH group concentration D. M. DODD and D.D. B. FRASE
R, Optical determination o
f OH in fused silica, Jour
nal of Applied Physics, Vo
l. 37 (1966) p. 3911 The measurement method described in the literature.
【0036】(ii)OH基濃度変動幅の測定法
直径250mm、厚さ50mmの円柱状シリカガラス光
学材料において、回転対称軸方向からみて直径方向に1
0mm間隔にて25点のOH基濃度測定を行う。隣同志
の2点のOH基濃度値より1cm当たりのOH基濃度変
動幅(ΔOH/cm)を、25点のOH基濃度の最大と
最小値から光学材料全体におけるOH基濃度変動幅(Δ
OH)を、25点のOH基濃度の算術平均値からOH基
平均濃度を計算する測定法。(Ii) Method of measuring fluctuation range of OH group concentration In a cylindrical silica glass optical material having a diameter of 250 mm and a thickness of 50 mm, 1 in the diameter direction as viewed from the rotational symmetry axis direction.
The OH group concentration is measured at 25 points at 0 mm intervals. From the two adjacent OH group concentration values, the fluctuation range (ΔOH / cm) of OH group per 1 cm is calculated from the maximum and minimum OH group concentration values at 25 points (ΔOH / cm).
OH) is a measurement method for calculating the OH group average concentration from the arithmetic average value of the OH group concentrations at 25 points.
【0037】(iii)水素分子濃度の測定法。
V.K.KHOTIMCHENKO、et al.,
Determin‐ing the content
of hydrogendissolved in q
uartz glass using themeth
ods ofRaman scattering an
d massspectrometry, Journ
al of AppliedSpectroscop
y, Vol.46, No.6,(1987) pp
632〜635文献記載の測定法。(Iii) Method for measuring hydrogen molecule concentration. V. K. KHOTIMCHENKO, et al. ,
Determin-ing the content
of hydrogendissolved in q
uartz glass using themes
ods of Raman scattering an
d massspectrometry, Journ
al of Applied Spectroscop
y, Vol. 46, No. 6, (1987) pp
632-635, the measurement method described in the literature.
【0038】(iv)水素分子濃度変動幅の測定法。
直径250mm、厚さ50mmの円柱状シリカガラス光
学材料において、回転対称軸方向からみて直径方向に1
0mm間隔にて25点のH2濃度測定を行う。隣同志の
2点のH2濃度値より1cm当たりのH2濃度変動幅(Δ
H2/cm)を、25点のH2濃度の最大と最小値から光
学材料全体におけるH2濃度変動幅(ΔH2)を、25点
のH2濃度の算術平均値からH2平均濃度を計算する測定
法。(Iv) Method for measuring the fluctuation range of hydrogen molecule concentration. In a cylindrical silica glass optical material having a diameter of 250 mm and a thickness of 50 mm, 1 in the diameter direction when viewed from the rotational symmetry axis direction.
The H 2 concentration is measured at 25 points at 0 mm intervals. From the H 2 concentration values of two neighbors, the fluctuation range of H 2 concentration per 1 cm (Δ
Of H 2 / cm), concentration of H 2 fluctuation range in the entire optical material is obtained from the maximum and minimum values of the concentration of H 2 at 25 points to (ΔH 2), and H 2 average density from the arithmetic mean value of the concentration of H 2 at 25 points Measuring method to calculate.
【0039】(v)塩素濃度の測定法。
HF水溶液により分解後、AgNO3添加による比濁法
による測定法。(V) Method for measuring chlorine concentration. After decomposition with HF aqueous solution, measurement method by nephelometry with addition of AgNO 3 .
【0040】(vi)シリカガラス中の不純物測定
Na、K、Mg、Ca、Ti、Feは原子吸光光度法に
よる測定法、Li、Sr、Cr、Mn、Co、Ni、C
uはプラズマ質量分析法により測定(ICP−MS
法)。(Vi) Impurity measurement in silica glass Na, K, Mg, Ca, Ti and Fe are measured by atomic absorption spectrophotometry, Li, Sr, Cr, Mn, Co, Ni and C.
u is measured by plasma mass spectrometry (ICP-MS
Law).
【0041】(vii)屈折率変動幅(Δn)の測定法
He−Neレーザ(633nm)を光源とする光干渉法
による測定法。(Vii) Measuring method of refractive index fluctuation width (Δn) Measuring method by optical interferometry using a He-Ne laser (633 nm) as a light source.
【0042】(viii)複屈折量の測定法 偏光板歪計を用いたレターデーション測定法。(Viii) Method for measuring birefringence amount Retardation measurement method using a polarizing plate strain gauge.
【0043】(ix)仮想温度の測定法
A.E.Geissberger and F.L.G
aleener、 Raman studies of
vitreous SiO2 versusfict
ive temperature, Physical
Review B, Vol. 28, No. 6
(1983) pp. 3266^3271文献記載の
測定法。(Ix) Method of measuring fictive temperature A. E. Geissberger and F.G. L. G
arener, Raman studies of
vitreous SiO 2 Versusfitt
Ive temperature, Physical
Review B, Vol. 28, No. 6
(1983) pp. 3266 ^ 3271 Reference method.
【0044】(x)仮想温度変動幅および仮想温度の測
定法
直径250mm、厚さ50mmのシリカガラス光学材料
において、中心部と外周部の2点で測定を行いこの差で
仮想温度を計算する測定法。また、2点の算術平均値か
ら仮想温度平均値を得る測定方法。(X) Method of measuring fluctuating temperature range and fictive temperature In a silica glass optical material having a diameter of 250 mm and a thickness of 50 mm, measurement is carried out at two points of the central part and the outer peripheral part, and the virtual temperature is calculated by the difference. Law. Also, a measurement method of obtaining a virtual temperature average value from the arithmetic average value of two points.
【0045】(xi)ArFエキシマレーザ照射前後の
193nmの透過率の測定法。
サイズ30×20×厚さ10mm、両面鏡面研磨仕上し
たサンプルに波長193nm、波長半値幅3nm、パル
ス寿命半値幅17nsec、エネルギー密度50mJ/
cm2/shot、周波数100Hzで照射ショット数
1×106shotsのレーザ照射した時の193nm
での透過率を測定する測定法。(Xi) Method for measuring transmittance at 193 nm before and after irradiation with ArF excimer laser. Size 30 × 20 × thickness 10 mm, double-sided mirror-polished sample, wavelength 193 nm, wavelength half width 3 nm, pulse life half width 17 nsec, energy density 50 mJ /
cm 2 / shot, 193 nm when irradiated with a laser having a frequency of 100 Hz and an irradiation shot number of 1 × 10 6 shots
A measuring method to measure the transmittance in the.
【0046】(xi)Xe2エキシマランプ照射前後の
波長172nmの透過率の測定法。
サイズ30×20×厚さ10mm、両面鏡面研磨仕上し
たサンプルに波長172nm、波長半値幅14nm、ラ
ンプエネルギー密度10mW/cm2で14日間照射し
た時の172nmでの透過率を測定する測定法。(Xi) A method for measuring the transmittance at a wavelength of 172 nm before and after irradiation with the Xe 2 excimer lamp. A measurement method of measuring the transmittance at 172 nm when a sample having a size of 30 × 20 × thickness of 10 mm and a double-sided mirror-polished finish is irradiated with a wavelength of 172 nm, a wavelength half-value width of 14 nm and a lamp energy density of 10 mW / cm 2 for 14 days.
【0047】〈評価〉上記表1、2から明らかなように
本発明の光学材料は大型であっても耐エキシマ光性に優
れ、特に実施例3、4の光学材料は耐ArFエキシマレ
ーザ性に、また実施例2、3の光学材料は耐Xe2エキ
シマランプ性に優れていることが窺える。さらに前記実
施例3、4の光学材料はArFエキシマレーザ照射後の
屈折率の変動もなく、Δnが2×10-6と安定した分布
を示す。<Evaluation> As is clear from the above Tables 1 and 2, the optical materials of the present invention are excellent in excimer light resistance even if they are large in size. Especially, the optical materials of Examples 3 and 4 have ArF excimer laser resistance. It can be seen that the optical materials of Examples 2 and 3 are excellent in Xe 2 excimer lamp resistance. Furthermore, the optical materials of Examples 3 and 4 have a stable distribution of Δn of 2 × 10 −6 without any change in the refractive index after irradiation with ArF excimer laser.
【0049】一方、比較例1〜6の合成シリカガラス光
学材料は、耐ArFエキシマレーザおよび耐Xe2エキ
シマランプ性に劣る上に、ArFエキシマレーザ照射後
の屈折率分布は不均一となっている。On the other hand, the synthetic silica glass optical materials of Comparative Examples 1 to 6 are inferior in ArF excimer laser resistance and Xe 2 excimer lamp resistance, and the refractive index distribution after ArF excimer laser irradiation is not uniform. .
【0050】[0050]
【発明の効果】本発明の合成シリカガラス光学材料は、
波長165〜195nmの高出力真空紫外線に対して優
れた初期透過率を示すとともに耐久性にも優れ、高出力
真空紫外線用光学材料として有用である。しかも前記光
学材料は超高純度の珪素化合物を原料として従来から知
られている火炎加水分解法等を利用することで容易に製
造でき、その工業的価値が高いものがある。The synthetic silica glass optical material of the present invention is
It exhibits excellent initial transmittance with respect to high-output vacuum ultraviolet rays having a wavelength of 165 to 195 nm and has excellent durability, and is useful as an optical material for high-output vacuum ultraviolet rays. Moreover, the optical material can be easily manufactured by using a conventionally known flame hydrolysis method or the like using an ultrahigh-purity silicon compound as a raw material, and there is a material having a high industrial value.
フロントページの続き (72)発明者 栗山 満葉 福島県郡山市田村町金屋字川久保88番地 信越石英株式会社 石英技術研究所内 (56)参考文献 特開 平9−12323(JP,A) 特開 平5−58667(JP,A) 特開 平9−124337(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03B 8/04,20/00 C03C 3/06 Front page continued (72) Inventor Mitsuha Kuriyama 88, Kawakubo, Kanaya, Tamura-cho, Koriyama-shi, Fukushima Shin-Etsu Quartz Co., Ltd. Quartz Technology Laboratory (56) Reference JP-A-9-12323 (JP, A) JP-A 5-58667 (JP, A) JP-A-9-124337 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C03B 8 / 04,20 / 00 C03C 3/06
Claims (5)
165〜195nmの高出力真空紫外線用合成シリカガ
ラス光学材料において、OH基濃度が5〜300wtp
pm、OH基濃度変動幅(ΔOH/cm)が10wtp
pm以下、光学材料全体のOH基濃度変動幅(ΔOH)
が30wtppm以下、水素分子濃度が1×1017〜1
×1019分子/cm3、水素分子濃度変動幅(ΔH2/c
m)が1×1017分子/cm3以下、光学材料全体の水
素分子濃度変動幅(ΔH 2 )が3×10 17 分子/cm 3 以
下、塩素元素含有量が50wtppm以下でであること
を特徴とする大型の高出力真空紫外線用合成シリカガラ
ス光学材料。1. A synthetic silica glass optical material for high-power vacuum ultraviolet rays having a wavelength of 165 to 195 nm, which is made of ultra-high purity synthetic silica glass and has an OH group concentration of 5 to 300 wtp.
pm, OH group concentration fluctuation range (ΔOH / cm) is 10 wtp
pm or less, OH group concentration fluctuation range of the entire optical material (ΔOH)
Is 30 wtppm or less, and the hydrogen molecule concentration is 1 × 10 17 to 1
× 10 19 molecule / cm 3 , fluctuation range of hydrogen molecule concentration (ΔH 2 / c
m) is 1 × 10 17 molecules / cm 3 or less, water of the entire optical material
Elemental molecule concentration fluctuation range (ΔH 2 ) is 3 × 10 17 molecule / cm 3 or less
Below, a large-scale synthetic silica glass optical material for high-power vacuum ultraviolet rays, which has a chlorine element content of 50 wtppm or less.
ことを特徴とする請求項1記載の大型の高出力真空紫外
線用合成シリカガラス光学材料。 2. The OH group concentration is 5 to 100 wtppm.
The large-sized high-output vacuum ultraviolet according to claim 1, wherein
Synthetic silica glass optical material for wire.
濃度が5wtppb以下、各アルカリ土類金属元素濃度
が1wtppb以下、各遷移金属元素濃度が0.1wt
ppb以下であることを特徴とする請求項1又は2に記
載の大型の高出力真空紫外線用合成シリカガラス光学材
料。3. The concentration of each alkali metal element in the synthetic silica glass is 5 wtppb or less, the concentration of each alkaline earth metal element is 1 wtppb or less, and each transition metal element concentration is 0.1 wt.
It is below ppb, The large-sized synthetic silica glass optical material for high power vacuum ultraviolet rays of Claim 1 or 2 characterized by the above-mentioned.
000℃、光学全体の仮想温度変動幅(ΔTf)が50
℃以下であることを特徴とする請求項1乃至3のいずれ
かに記載の大型の高出力真空紫外線用合成シリカガラス
光学材料。4. The fictive temperature (Tf) of the optical material is 700 to 1.
000 ℃, fictitious temperature fluctuation range (ΔTf) of the entire optics is 50
The large-scale synthetic silica glass optical material for high-power vacuum ultraviolet rays according to any one of claims 1 to 3, wherein the temperature is not higher than ° C.
×10-6以下、複屈折量が1nm/cm以下であること
を特徴とする請求項1乃至4のいずれかに記載の大型の
高出力真空紫外線用合成シリカガラス光学材料。5. The fluctuation range (Δn) of the refractive index of the entire optical material is 2
The large-scale synthetic silica glass optical material for high-power high-vacuum ultraviolet light according to any one of claims 1 to 4, which has a refractive index of x10 -6 or less and a birefringence of 1 nm / cm or less.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14593897A JP3403317B2 (en) | 1997-05-20 | 1997-05-20 | High power synthetic silica glass optical material for vacuum ultraviolet light and method for producing the same |
US09/214,894 US6143676A (en) | 1997-05-20 | 1998-05-20 | Synthetic silica glass used with uv-rays and method producing the same |
EP98928299A EP0917523B1 (en) | 1997-05-20 | 1998-05-20 | Synthetic silica glass used with uv-rays and method producing the same |
PCT/EP1998/002965 WO1998052879A1 (en) | 1997-05-20 | 1998-05-20 | Synthetic silica glass used with uv-rays and method producing the same |
DE69816758T DE69816758T2 (en) | 1997-05-20 | 1998-05-20 | SYNTHETIC QUARTZ GLASS FOR USE IN UV RADIATION AND METHOD FOR THE PRODUCTION THEREOF |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14593897A JP3403317B2 (en) | 1997-05-20 | 1997-05-20 | High power synthetic silica glass optical material for vacuum ultraviolet light and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10324538A JPH10324538A (en) | 1998-12-08 |
JP3403317B2 true JP3403317B2 (en) | 2003-05-06 |
Family
ID=15396539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14593897A Expired - Lifetime JP3403317B2 (en) | 1997-05-20 | 1997-05-20 | High power synthetic silica glass optical material for vacuum ultraviolet light and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3403317B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2158170A2 (en) * | 2007-05-09 | 2010-03-03 | Corning Incorporated | Glasses having low oh, od levels |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002160936A (en) * | 2000-11-20 | 2002-06-04 | Sumitomo Metal Ind Ltd | Synthetic quartz glass for light transmission |
JP2011168485A (en) * | 2003-04-03 | 2011-09-01 | Asahi Glass Co Ltd | SILICA GLASS CONTAINING TiO2 AND METHOD OF PRODUCING THE SAME |
DE102004009577B3 (en) * | 2004-02-25 | 2005-03-03 | Heraeus Quarzglas Gmbh & Co. Kg | Optical component production for transmitting ultraviolet light, comprises forming cylindrical quartz glass blank with specific average hydroxy content |
JP2005255423A (en) * | 2004-03-09 | 2005-09-22 | Asahi Glass Co Ltd | Synthetic quartz glass-made photomask substrate and photomask |
US7506522B2 (en) * | 2004-12-29 | 2009-03-24 | Corning Incorporated | High refractive index homogeneity fused silica glass and method of making same |
US7506521B2 (en) * | 2004-12-29 | 2009-03-24 | Corning Incorporated | High transmission synthetic silica glass and method of making same |
TWI312768B (en) * | 2004-12-30 | 2009-08-01 | Corning Incorporate | Synthetic silica having low polarization-induced birefringence, method of making same and lithographic device comprising same |
JP2006251781A (en) * | 2005-02-09 | 2006-09-21 | Asahi Glass Co Ltd | Mask blank |
JP2006335577A (en) * | 2005-05-31 | 2006-12-14 | Shinetsu Quartz Prod Co Ltd | Synthetic quartz glass tube for high transmission excimer uv lamp and its producing method |
DE102006043368B4 (en) * | 2005-09-16 | 2019-01-10 | Corning Inc. | Synthetic silicic acid glass and process for producing the same |
DE102006018711B4 (en) * | 2006-04-20 | 2008-09-25 | Heraeus Quarzglas Gmbh & Co. Kg | Material, in particular for an optical component for use in microlithography and method for producing a molded article from the material |
JP5208677B2 (en) * | 2008-11-04 | 2013-06-12 | 信越石英株式会社 | Method for producing synthetic quartz glass member for ArF excimer laser lithography |
JP5199862B2 (en) * | 2008-12-26 | 2013-05-15 | 信越石英株式会社 | Method for producing optical synthetic quartz glass member and optical synthetic quartz glass member |
US8263511B2 (en) * | 2008-12-31 | 2012-09-11 | Corning Incorporated | High purity fused silica with low absolute refractive index |
JP5609050B2 (en) * | 2009-09-18 | 2014-10-22 | 住友電気工業株式会社 | Method for producing synthetic quartz glass base material and synthetic quartz glass base material |
US8596094B2 (en) * | 2009-10-21 | 2013-12-03 | Corning Incorporated | Synthetic silica glass with uniform fictive temperature |
CN113443820A (en) * | 2021-07-03 | 2021-09-28 | 四川神光石英科技有限公司 | Material rack, reaction kettle and device for quartz glass hydrogen permeation process |
-
1997
- 1997-05-20 JP JP14593897A patent/JP3403317B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2158170A2 (en) * | 2007-05-09 | 2010-03-03 | Corning Incorporated | Glasses having low oh, od levels |
Also Published As
Publication number | Publication date |
---|---|
JPH10324538A (en) | 1998-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0917523B1 (en) | Synthetic silica glass used with uv-rays and method producing the same | |
JP3403317B2 (en) | High power synthetic silica glass optical material for vacuum ultraviolet light and method for producing the same | |
JP3069562B1 (en) | Silica glass optical material for excimer laser and excimer lamp and method for producing the same | |
JP3228732B2 (en) | Method for producing silica glass optical material for projection lens used in vacuum ultraviolet lithography | |
WO1993000307A1 (en) | Synthetic quartz glass optical member for excimer laser and production thereof | |
JP3188624B2 (en) | High purity synthetic silica glass for far ultraviolet rays and method for producing the same | |
US7312170B2 (en) | Optical synthetic quartz glass and method for producing the same | |
JP4066632B2 (en) | Synthetic quartz glass optical body and manufacturing method thereof | |
JP2001342034A (en) | Optical material of synthetic quartz glass for f2 excimer laser and optical part | |
JP3228676B2 (en) | High purity silica glass for far ultraviolet rays and method for producing the same | |
JPH0653593B2 (en) | Synthetic silica glass optical body and method for producing the same | |
JPH0627014B2 (en) | Synthetic silica glass optical body for ultraviolet laser and manufacturing method thereof | |
JP2004123420A (en) | Synthetic silica glass member for optical use and its manufacturing process | |
JP3472234B2 (en) | Silica glass optical material for excimer laser and excimer lamp | |
JP3510224B2 (en) | Silica glass optical material for projection lens used in vacuum ultraviolet lithography and projection lens | |
JPH0627013B2 (en) | Synthetic silica glass optical body for ultraviolet laser and manufacturing method thereof | |
JP4111940B2 (en) | Method for producing synthetic silica glass large plate for high output vacuum ultraviolet light | |
JP2879500B2 (en) | Synthetic quartz glass optical member for excimer laser and method of manufacturing the same | |
JP4114039B2 (en) | Synthetic quartz glass | |
JP3630533B2 (en) | Synthetic silica glass large plate for high output vacuum ultraviolet ray and method for producing the same | |
JP4177078B2 (en) | Synthetic quartz glass material for optical components | |
JP4159852B2 (en) | Synthetic quartz glass material for optical components | |
JP3126188B2 (en) | Quartz glass substrate for photomask |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |