JP3510224B2 - Silica glass optical material for projection lens used in vacuum ultraviolet lithography and projection lens - Google Patents

Silica glass optical material for projection lens used in vacuum ultraviolet lithography and projection lens

Info

Publication number
JP3510224B2
JP3510224B2 JP2001209470A JP2001209470A JP3510224B2 JP 3510224 B2 JP3510224 B2 JP 3510224B2 JP 2001209470 A JP2001209470 A JP 2001209470A JP 2001209470 A JP2001209470 A JP 2001209470A JP 3510224 B2 JP3510224 B2 JP 3510224B2
Authority
JP
Japan
Prior art keywords
silica glass
optical material
concentration
glass optical
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001209470A
Other languages
Japanese (ja)
Other versions
JP2002087840A (en
Inventor
茂 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2001209470A priority Critical patent/JP3510224B2/en
Publication of JP2002087840A publication Critical patent/JP2002087840A/en
Application granted granted Critical
Publication of JP3510224B2 publication Critical patent/JP3510224B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • C03B19/1461Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering for doping the shaped article with flourine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1469Means for changing or stabilising the shape or form of the shaped article or deposit
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリカガラス光学材料
および投影レンズに関し、更に詳細には、波長155〜195
nmの真空紫外線リソグラフィー(主としてエキシマレー
ザ、エキシマランプを光源とする超高密度集積回路作成
用露光装置)に用いられる投影レンズ用シリカガラス光
学材料および投影レンズに関するものである。
FIELD OF THE INVENTION This invention relates to silica glass optical materials and projection lenses, and more particularly to wavelengths 155-195.
TECHNICAL FIELD The present invention relates to a silica glass optical material for a projection lens and a projection lens used for vacuum ultraviolet lithography of nm (mainly an excimer laser, an exposure apparatus for making an ultrahigh-density integrated circuit using an excimer lamp as a light source).

【0002】[0002]

【従来の技術】従来、シリコンウエハ上に集積電子回路
パターンを描画する光リソグラフィー装置の光源として
g線やi線などの水銀ランプによる紫外線が用いられて
きたが、半導体素子の 微細化が高まるに従い前記g線
やi線では解像度に限界があり、より波長の短いエキシ
マレーザが注目され、KrFエキシマレーザ(248nm)を利
用した光リソグラフィー装置が開発され実施段階に入っ
ている。しかしながら、半導体素子の集積度は近い将来
さらに高まることが予測され、それには線幅0.1μm以
下の微細パターンを描画できる光源が必要とされる。前
記光源としてはArFエキシマレーザ(193nm)を主に、Ar
Clエキシマレーザ(175nm)、F2エキシマレーザ(157n
m)等の波長155〜195nmの高出力の真空紫外線が考えら
れ、その開発が始まっている。ところが、前記高出力真
空紫外線は従来の光リソグラフィー装置で使用する紫外
線よりさらに高出力であるところから、その照射を受け
た光学材料は透過率の低下、屈折率の上昇、歪みの発
生、蛍光の発生、マイクロクラックの発生等のダメージ
が急激に起り投影レンズとして機能しなくなる。こうし
た事情から、高出力真空紫外線であるエキシマレーザ、
エキシマランプに対してダメージが少なくかつ高均質な
光学材料の開発が熱望されていた。
2. Description of the Related Art Conventionally, ultraviolet rays from a mercury lamp such as g-line and i-line have been used as a light source of an optical lithography apparatus for drawing an integrated electronic circuit pattern on a silicon wafer. The g-line and i-line have a limited resolution, and an excimer laser having a shorter wavelength is drawing attention, and an optical lithography apparatus using a KrF excimer laser (248 nm) has been developed and is in the stage of implementation. However, it is expected that the degree of integration of semiconductor devices will further increase in the near future, which requires a light source capable of drawing a fine pattern with a line width of 0.1 μm or less. As the light source, ArF excimer laser (193 nm) is mainly used.
Cl excimer laser (175nm), F 2 excimer laser (157n
m) and other high-output vacuum ultraviolet rays with wavelengths of 155 to 195 nm have been considered, and their development has begun. However, since the high-output vacuum ultraviolet ray has a higher output than the ultraviolet ray used in the conventional photolithography apparatus, the optical material irradiated with the ultraviolet ray has a decreased transmittance, an increased refractive index, distortion, and fluorescence. Damage such as generation and generation of microcracks suddenly occurs and the projection lens cannot function. For these reasons, excimer lasers, which are high-power vacuum ultraviolet rays,
There has been a strong demand for the development of highly homogeneous optical materials with little damage to excimer lamps.

【0003】[0003]

【発明が解決しようとする課題】上記のような要望を満
足する光学材料としては、特開平6−227827号公
報に開示されたものが知られている。すなわち、上記公
報に開示された光学材料は、ガラス形成原料を火炎加水
分解させて得られる石英ガラス微粒子を基材に堆積・成
長させて形成された多孔質石英ガラス体を加熱して得ら
れる透明石英ガラスにおいて、該透明石英ガラス中のOH
基含有量が10ppm以下であって、ハロゲンを400ppm以上
含有し、かつ水素を含有することを特徴とするものであ
る。
As an optical material satisfying the above-mentioned demands, the one disclosed in JP-A-6-227827 is known. That is, the optical material disclosed in the above publication is a transparent material obtained by heating a porous quartz glass body formed by depositing and growing fine quartz glass particles obtained by flame hydrolysis of a glass forming raw material on a substrate. In quartz glass, OH in the transparent quartz glass
It is characterized in that the group content is 10 ppm or less, the halogen content is 400 ppm or more, and the hydrogen content is also contained.

【0004】また、上記要望に応える光学材料として本
発明者等は、特公平6-48734号公報で水素ガス濃度が少
なくとも5×1016(molecules/cm3)以上、OH基濃度が1
00wtppm以上のレーザ光用光学部材を、また特公平6-270
13号公報で水素ガス濃度が少なくとも5×1016(molecul
es/cm3)以上、OH基濃度が50 wtppm以上で、OH基の濃
度分布に基づく屈折率変動分布で仮想温度に基づく屈折
率変動分布を打ち消し、実質的に屈折率変動分布のない
合成シリカガラス光学体を提案した。
Further, as an optical material which meets the above demand, the present inventors have disclosed in Japanese Patent Publication No. 6-48734 that the hydrogen gas concentration is at least 5 × 10 16 (molecules / cm 3 ) or more and the OH group concentration is 1 or more.
Optical components for laser light of 00wtppm or more
No. 13 discloses that the hydrogen gas concentration is at least 5 × 10 16 (molecul
es / cm 3 ) or more, the OH group concentration is 50 wtppm or more, and the refractive index fluctuation distribution based on the OH group concentration distribution cancels the refractive index fluctuation distribution based on the fictive temperature, and there is substantially no refractive index fluctuation distribution. A glass optical body was proposed.

【0005】以上のような従来のシリカガラス光学材料
は、195〜250 nmのエキシマレーザ、エキシマランプ用
として、また195 nm以下のエキシマ光の場合において
は、フォトマスク等の薄い部材に用いられた場合に満足
のゆくものであった。
The above-mentioned conventional silica glass optical materials have been used for excimer lasers and excimer lamps of 195 to 250 nm, and in the case of excimer light of 195 nm or less, for thin members such as photomasks. It was satisfying in some cases.

【0006】ところが、上記エキシマ光を用いての回路
パターンの描画には、シリカガラス製の投影レンズが用
いられるが、このような投影レンズは直径200 mm×厚さ
30 mmを超える大型光学素子となるため、上記従来のシ
リカガラス光学材料を用いて投影レンズとすると、含有
する水素分子やOH基濃度に不均一分布が起こりやすく、
エキシマレーザ、エキシマランプ照射下において、透過
率、屈折率が変化し光学特性の低下が起こりやすい。ま
た、OH基濃度が100 wtppm超と高濃度でシリカガラス光
学材料に含まれると、真空紫外域で初期透過率が低くな
り、耐久性の低下が起りやすい。つまり、前記公報で提
案された光学材料は155〜195 nm域の初期透過率が低
く、耐久性も不足していたという問題があった。
However, a projection lens made of silica glass is used for drawing a circuit pattern using the excimer light, and such a projection lens has a diameter of 200 mm × thickness.
Since it becomes a large optical element exceeding 30 mm, when using the above conventional silica glass optical material as a projection lens, a non-uniform distribution is likely to occur in the contained hydrogen molecules and OH group concentration,
Under the irradiation of an excimer laser or an excimer lamp, the transmittance and the refractive index change, and the optical characteristics are likely to deteriorate. Further, if the silica glass optical material is contained in the silica glass optical material at a high concentration of more than 100 wtppm in the OH group concentration, the initial transmittance in the vacuum ultraviolet region becomes low, and the durability is likely to deteriorate. That is, the optical material proposed in the above publication has a problem that the initial transmittance in the 155 to 195 nm region is low and the durability is insufficient.

【0007】また、特開平6−227827号公報に開
示された光学材料では、ハロゲン全般を用いているが、
ハロゲンの中でもCl等にあっては、紫外線照射により常
磁性欠陥を生成しやすく、目的とするスペクトル領域で
透過率等、光学材料の性能を劣化させるという大きな問
題点を抱えていた。そこで、本発明者等は鋭意研究を続
けた結果、光学材料に含まれる不純物濃度を上記公報記
載の光学材料よりさらに高純度とするとともに、OH基濃
度や水素分子濃度を特定の範囲とし、かつハロゲンの中
から特にフッ素を選択し、しかも該フッ素元素を一定濃
度以上で軸対称濃度分布で含有することにより、透過率
が高く、高均質で、耐久性にも優れた合成シリカガラス
光学材料が得られることを見出し、本発明を完成したも
のである。
In the optical material disclosed in Japanese Patent Laid-Open No. 6-227827, all halogens are used.
Among halogens, Cl or the like has a serious problem that paramagnetic defects are easily generated by irradiation with ultraviolet rays and the performance of the optical material is deteriorated such as transmittance in a target spectral region. Therefore, as a result of the inventors of the present invention continued diligent research, while making the impurity concentration contained in the optical material more highly pure than the optical material described in the above publication, the OH group concentration and the hydrogen molecule concentration in a specific range, and A synthetic silica glass optical material having high transmittance, high homogeneity, and excellent durability is obtained by selecting especially fluorine from halogens and further containing the elemental fluorine in a certain concentration or more in an axisymmetric concentration distribution. The inventors have found that they can be obtained and completed the present invention.

【0008】すなわち、本発明は、波長155〜195 nmの
真空紫外線に対して初期透過率が高く、高精度、高耐久
性、均質性にも優れたシリカガラス光学材料およびその
製造方法ならびに投影レンズを提供することを目的とす
る。
That is, the present invention provides a silica glass optical material having a high initial transmittance with respect to vacuum ultraviolet rays having a wavelength of 155 to 195 nm, high precision, high durability, and excellent homogeneity, a method for producing the same, and a projection lens. The purpose is to provide.

【0009】[0009]

【課題を解決するための手段】上記課題は、本発明の下
記(1)〜(9)のいずれかに記載の構成により達成さ
れる。 (1) 波長155〜195nmの真空紫外線リソグラフィーに
用いられ、直径が200mmを超える大型の投影レンズ用シ
リカガラス光学材料において、Li、NaおよびKが各1 wtp
pb以下、CaおよびMgが各0.5 wtppb以下、Cr、Fe、Ni、
耐熱性金属元素として使用されているMoおよびWが各0.1
wtppb以下の超高純度であり、OH基を1〜10 wtppm、F
を100〜10,000 wtppm、そしてH2 を1×1017〜1×1019
子/cm3含有し、F/OHの値が50〜1000であり、溶存水分
子濃度が1×1017分子/cm3以下であり、F濃度分布
が、円柱状シリカガラス光学材料の中心軸について軸対
称であり、該光学材料の中心部から外周部に向かって徐
々に増大または減少し、間隔1cmで隣り合った測定点
間でのフッ素濃度の差Δfが10wtppm以下であること
を特徴とするシリカガラス光学材料。 (2) 前記F/OHの値が50〜100である上記(1)のシ
リカガラス光学材料。 (3) F濃度軸対称分布の曲線が放物線又は楕円の2
次曲線に近似している上記(1)または(2)のシリカ
ガラス光学材料。 (4) F濃度変動幅 ΔFが 50 wtppm以内である上記
(1)〜(3)のいずれかのシリカガラス光学材料。 (5) 含有するCl量が10 wtppm以下である上記(1)
〜(4)のいずれかのシリカガラス光学材料。 (6) H2 濃度変動幅ΔH2 が1×1017分子/cm3以内で
ある上記(1)〜(5)のいずれかのシリカガラス光学
材料。 (7) 屈折率変動幅Δnが 2×10-6以下である上記
(1)〜(6)のいずれかのシリカガラス光学材料。 (8) 歪量が1 nm/cm以下である上記(1)〜(7)
のいずれかのシリカガラス光学材料。 (9) 上記(1)〜(8)のいずれかに記載のシリカ
ガラス光学材料を用いた真空紫外線リソグラフィーに用
いられる投影レンズ。
The above-mentioned object can be achieved by the constitution described in any one of the following (1) to (9) of the present invention. (1) Li, Na, and K are 1 wtp each in a silica glass optical material for large-scale projection lenses with a diameter of more than 200 mm, which is used for vacuum ultraviolet lithography with a wavelength of 155 to 195 nm.
pb or less, Ca and Mg are each 0.5 wtppb or less, Cr, Fe, Ni,
Mo and W used as heat-resistant metal elements are each 0.1
Ultra high purity of less than wtppb, 1-10 wtppm of OH group, F
Of 100 to 10,000 wtppm, and H 2 of 1 × 10 17 to 1 × 10 19 molecule / cm 3 , F / OH value of 50 to 1000, and dissolved water molecule concentration of 1 × 10 17 molecule / cm 3 or less, the F concentration distribution is axially symmetric with respect to the central axis of the cylindrical silica glass optical material, gradually increases or decreases from the central portion of the optical material toward the outer peripheral portion, and is adjacent to each other at an interval of 1 cm. A silica glass optical material characterized in that the difference Δf in fluorine concentration between measurement points is 10 wtppm or less. (2) The silica glass optical material according to (1), wherein the F / OH value is 50 to 100. (3) The F concentration axisymmetric distribution curve is a parabola or an ellipse 2.
The silica glass optical material according to the above (1) or (2), which approximates the following curve. (4) The silica glass optical material according to any one of (1) to (3) above, wherein the F concentration fluctuation width ΔF is within 50 wtppm. (5) The amount of Cl contained is 10 wtppm or less (1)
~ The silica glass optical material according to any one of (4). (6) The silica glass optical material according to any one of (1) to (5) above, wherein the H 2 concentration fluctuation width ΔH 2 is within 1 × 10 17 molecules / cm 3 . (7) The silica glass optical material according to any one of (1) to (6) above, which has a refractive index fluctuation width Δn of 2 × 10 −6 or less. (8) The strain amount is 1 nm / cm or less (1) to (7)
One of silica glass optical material. (9) A projection lens used in vacuum ultraviolet lithography, which uses the silica glass optical material according to any one of (1) to (8).

【0010】[0010]

【発明の実施の形態】本発明のシリカガラス光学材料に
おいて、超高純度、OH基含有、フッ素軸対称濃度分布含
有、溶存水素ガスの物性組合せにより、さらなる耐エキ
シマレーザ性、耐エキシマランプ性の向上とともに均質
性の向上も達成し、直径が200mmを超える大型の投
影レンズの材料として特に適合するものである。
BEST MODE FOR CARRYING OUT THE INVENTION In the silica glass optical material of the present invention, due to the combination of physical properties of ultra-high purity, OH group-containing, fluorine axisymmetric concentration distribution-containing and dissolved hydrogen gas, further excimer laser resistance and excimer lamp resistance can be obtained. With the improvement, homogeneity is achieved, and it is particularly suitable as a material for a large projection lens having a diameter of more than 200 mm.

【0011】上述の物性組合せが必要である理由は以下
の通りである。超高純度について、シリカガラス中の不
純物金属濃度を少なくすることにより真空紫外域での透
過率の向上と紫外線照射時のエネルギー吸収を少なくで
きる。Li、Na、Kは各々 1 wtppb以下、Ca、Mgは各々 0.
5 wtppb以下、Cr、Fe、Ni、Mo、Wは各々0.1 wtppb以下
であることが好ましい。Li、Na、K、Ca、Mgはアルミナ
等各種耐熱性セラミックスの不純物として含有されてお
り、シリカガラス製造時に汚染元素となりやすく、Cr、
Fe、Ni、Mo、Wはプラントの金属構造材の組成物、特にM
oとWは耐熱性金属元素として使用されており、やはり汚
染元素となりやすい。
The reason why the above-mentioned physical property combination is necessary is as follows. For ultra-high purity, by reducing the impurity metal concentration in silica glass, the transmittance in the vacuum ultraviolet region can be improved and the energy absorption during ultraviolet irradiation can be reduced. Li, Na, and K are each less than 1 wtppb, and Ca and Mg are each 0.
5 wtppb or less, and Cr, Fe, Ni, Mo and W are preferably 0.1 wtppb or less. Li, Na, K, Ca, and Mg are contained as impurities in various heat-resistant ceramics such as alumina, and are easily polluted elements during silica glass production.
Fe, Ni, Mo and W are compositions of plant metal structural materials, especially M
o and W are used as heat-resistant metallic elements and are also likely to become polluting elements.

【0012】超高純度とするには、例えば次のような手
段を用いればよい。即ち、液状のケイ素化合物原料を2
〜3回蒸留処理を繰り返すことにより不純物濃度を低減
させる。蒸留処理された高純度ケイ素化合物原料は、不
純物汚染を防ぐためにテフロン樹脂ライニングの容器に
貯蔵される。また、原料を使用するときも、テフロン樹
脂ライニングパイプを通して合成装置に導入する。合成
装置の耐熱材としては、高純度アルミナを使用する。更
に、加熱成形に使用するグラファイト型枠も高純度グラ
ファイトとする。アニール処理する電気炉の耐熱材とし
ても高純度アルミナを使用する。このように、全ての装
置及び治具を高純度とすることによって、目的が達成さ
れる。
To achieve ultra-high purity, for example, the following means may be used. That is, 2 liquid silicon compound raw materials
The impurity concentration is reduced by repeating the distillation treatment three to three times. The high-purity silicon compound raw material subjected to the distillation treatment is stored in a Teflon resin-lined container to prevent contamination of impurities. Also, when the raw material is used, it is introduced into the synthesizer through a Teflon resin lining pipe. High-purity alumina is used as the heat-resistant material of the synthesizer. Furthermore, the graphite mold used for heat molding is also high-purity graphite. High-purity alumina is also used as the heat-resistant material of the electric furnace to be annealed. Thus, the objective is achieved by making all the devices and jigs highly pure.

【0013】OH基は、ガラス網目構造の終端部であり適
量含有することにより構造をリラックスさせ、Si‐O‐S
iの結合角度を安定値に近づけエキシマレーザ照射によ
る電離作用を低減させる。しかしながらOH基が高濃度に
含有されると真空紫外域での透過率低下の原因となる。
したがって、OH基含有量は1〜10 wtppmが良い。
The OH group is the terminal end of the glass network structure, and by containing an appropriate amount, the structure is relaxed, and Si-OS
The bond angle of i is brought close to a stable value to reduce the ionization effect by the excimer laser irradiation. However, when the OH group is contained in a high concentration, it causes a decrease in transmittance in the vacuum ultraviolet region.
Therefore, the OH group content is preferably 1 to 10 wtppm.

【0014】Fは、OH基と同様にガラス網目構造終端部
となる、またFは、他のハロゲンと異なり高濃度で含有
させても真空紫外域での透過率低下の原因とならない。
しかしOH基を全く含ませずFのみ高濃度で含有するガラ
スは加熱処理により分解し、F2ガス発生や酸素欠損型生
成による7.6 eV(約163 nm)吸収帯を生ずる。従って、
OH基とFを同時に含有させ、ガラスの熱分解と酸素欠損
型欠陥の生成を抑制することが重要となる。
Similar to the OH group, F becomes the terminal end of the glass network structure, and unlike other halogens, even if F is contained in a high concentration, it does not cause a decrease in the transmittance in the vacuum ultraviolet region.
However, glass that does not contain any OH groups and contains only high concentration of F decomposes by heat treatment, and produces a 7.6 eV (about 163 nm) absorption band due to F 2 gas generation and oxygen deficiency type generation. Therefore,
It is important to contain OH groups and F at the same time to suppress thermal decomposition of glass and generation of oxygen-deficient defects.

【0015】この観点からは、OH基量とF量の合計量が1
01 wtppm以上であり、かつF/OHが50〜1000、特に50〜1
00を満足することが好ましい。この場合、OH基を1〜10
wtppm、Fを100〜10,000 wtppm、特に200〜2,000 wtppm
含有していることが好ましい。
From this point of view, the total amount of OH group and F amount is 1
01 wtppm or more and F / OH 50 to 1000, especially 50 to 1
It is preferable to satisfy 00. In this case, 1-10 OH groups
wtppm, F 100 to 10,000 wtppm, especially 200 to 2,000 wtppm
It is preferably contained.

【0016】なお、本発明の光学材料においては、F以
外のハロゲンを実質的に含有せず、特に、Clにあって
は、エキシマレーザやエキシマランプの照射によってガ
ラスの真空紫外域、すなわちエキシマ光波長域での透過
率の低下を生じさせるので、その含有量が10 wtppm以下
であることが好ましい。
The optical material of the present invention does not substantially contain halogens other than F. Particularly, in the case of Cl, the vacuum ultraviolet region of the glass, that is, the excimer light, is irradiated by irradiation with an excimer laser or excimer lamp. The content is preferably 10 wtppm or less because it causes a decrease in the transmittance in the wavelength range.

【0017】またFについて、シリカガラス光学体にお
いて中心軸について軸対称濃度分布とし、F濃度変動が
緩やかであることが好ましい。すなわち、F濃度変動曲
線に変曲点がないことが好ましい。このF濃度変動幅ΔF
は50 wtppm以内、特に30 wtppm以内であることが好ま
しい。例えば円柱形状のレンズ用シリカガラス体いわゆ
るレンズブランクスの場合、軸方向から見たFの濃度分
布が軸対称であり、該レンズブランクスの中心部から外
周部にかけて徐々に増大あるいは減少することが好まし
い。Fはシリカガラスの屈折率を低下させる作用がある
ため、本発明では、F濃度変動を軸対称分布とすること
により、高精度のレンズブランクスを得ることができる
ようにした。これと同時に上記のようにF濃度変動幅Δ
Fを一定値以内に制御することにより、より均質なレン
ズブランクスが得られる。上記ΔFの下限値は特にない
が、現在のところ、10 wtppm程度である。
Regarding F, it is preferable that the silica glass optical body has an axisymmetric concentration distribution with respect to the central axis and the F concentration fluctuation is gentle. That is, it is preferable that the F concentration variation curve has no inflection point. This F concentration fluctuation width ΔF
Is preferably within 50 wtppm, and particularly preferably within 30 wtppm. For example, in the case of a cylindrical silica glass body for lenses, so-called lens blanks, it is preferable that the concentration distribution of F viewed from the axial direction is axially symmetric and gradually increases or decreases from the central portion to the outer peripheral portion of the lens blanks. Since F has a function of lowering the refractive index of silica glass, in the present invention, a highly accurate lens blank can be obtained by making the F concentration fluctuation have an axially symmetric distribution. At the same time, as described above, the F concentration fluctuation range Δ
By controlling F within a fixed value, a more uniform lens blank can be obtained. There is no particular lower limit to ΔF, but it is currently about 10 wtppm.

【0018】なお、フッ素濃度変動幅ΔFは、例えば、
直径250mm、厚さ50mmの円柱状シリカガラス光学材料に
おいて、回転対称軸方向からみて直径方向に10mm間隔に
て25点のF濃度測定を行い、25点のF濃度の最大値と最小
値の差を計算して光学材料全体におけるフッ素濃度変動
幅(ΔF)を求めるが、このとき上記の測定点の1cm
で隣り合った測定点間でのフッ素濃度の差Δfが10 wtp
pm/cm以下であることが好ましい。
The fluorine concentration fluctuation range ΔF is, for example,
In a cylindrical silica glass optical material with a diameter of 250 mm and a thickness of 50 mm, 25 points of F concentration were measured at 10 mm intervals in the diameter direction when viewed from the axis of rotational symmetry, and the difference between the maximum and minimum values of 25 points of F concentration. Is calculated to obtain the fluctuation range (ΔF) of fluorine concentration in the entire optical material. At this time, 1 cm of the above measurement point
The difference Δf in fluorine concentration between adjacent measurement points is 10 wtp
It is preferably pm / cm or less.

【0019】さらに、上記F濃度の軸対称分布曲線は、
次式で示される放物線(図1参照)または楕円(図2参
照)の2次曲線であることが好ましい。 y=lx2 +a x: 対称軸からの距離 (mm) y: F濃度 (wtppm) l: 定数 a: 対称軸位置でのF濃度 (wtppm) (y−b)2 /n+x2 /m= 1 x: 対称軸からの距離 (mm) y: F濃度 (wtppm) m: 楕円の長軸長さの1/2 n: 楕円の短軸長さの1/2 b: 対称軸位置でのF濃度 (wtppm)
Further, the axisymmetric distribution curve of the above F concentration is
It is preferably a parabolic (see FIG. 1) or elliptic (see FIG. 2) quadratic curve represented by the following equation. y = lx 2 + ax: Distance from symmetry axis (mm) y: F concentration (wtppm) l: Constant a: F concentration at symmetry axis position (wtppm) (yb) 2 / n + x 2 / m = 1 x: Distance from the axis of symmetry (mm) y: F concentration (wtppm) m: 1/2 of the major axis length of the ellipse n: 1/2 of the minor axis length of the ellipse b: F at the axis of symmetry Concentration (wtppm)

【0020】溶存水素ガスすなわち光学材料中の水素分
子は紫外線照射によるE’センター(イープライムセン
ターと呼び約215 nm吸収帯を示す)やNBOHセンター(ノ
ンブリッジング、オキシジェン、ホールセンターと呼び
約260 nm及び約630nm吸収帯を示すとされている)の生
成を抑制する作用があり、その含有量は、1×1017〜1×
1019分子/cm3、特に5×1017〜5×1018 分子/cm3
あることが好ましい。
Dissolved hydrogen gas, that is, hydrogen molecules in the optical material, is called E'center (referred to as e-prime center and exhibits an absorption band of about 215 nm) and NBOH center (referred to as non-bridging, oxygen, and hole center) by UV irradiation. nm and an absorption band of about 630 nm), and its content is 1 × 10 17 to 1 ×.
It is preferably 10 19 molecule / cm 3 , particularly 5 × 10 17 to 5 × 10 18 molecule / cm 3 .

【0021】溶存水分子すなわちシリカガラス中に溶存
する水分子はエキシマレーザ、エキシマランプの真空紫
外線照射により光化学反応を起こし、水素と酸素に分解
される。生成した酸素は真空紫外線を吸収するためシリ
カガラスの155〜195 nm透過率を低下させる。さらに酸
素は真空紫外線吸収によりオゾンに変化しオゾンバンド
と呼ばれる約260 nm吸収帯を生成しシリカガラスの光学
的ダメージを進行させる。溶存水分子濃度は1×1017
子/cm3以下が好ましい。下限は特にないが現在のとこ
ろ、1×1016分子/cm3程度である。
Dissolved water molecules, that is, water molecules dissolved in silica glass, undergo a photochemical reaction by irradiation with vacuum ultraviolet rays from an excimer laser or excimer lamp, and are decomposed into hydrogen and oxygen. The generated oxygen absorbs vacuum ultraviolet rays and thus reduces the transmittance of silica glass at 155 to 195 nm. Furthermore, oxygen is converted to ozone by absorption of vacuum ultraviolet rays, and an approximately 260 nm absorption band called the ozone band is generated, which promotes optical damage to the silica glass. The dissolved water molecule concentration is preferably 1 × 10 17 molecule / cm 3 or less. There is no particular lower limit, but it is about 1 × 10 16 molecule / cm 3 at present.

【0022】本発明のシリカガラス光学材料において
は、その屈折率変動幅Δnが2×10-6以下であることが好
ましい。上記の範囲とすることで光リソグラフィー装置
に組み込まれる光学的に高均質なレンズ、プリズム等に
使用可能となる。Δnが2×10- 6以下ということは前提
として少なくとも1方向脈理フリーであることが必要と
なる。またΔnを2×10-6以下とすることで水素ガスを
均一濃度にてドーピングすることが可能となる。この理
由は、Δn値の大きなガラスはF濃度変動幅の値が大き
く、水素ガス濃度はF濃度に影響を受けているものと推
定している。さらにΔnを2×10-6以下とするために
は、フッ素濃度分布を軸対称分布とし、かつ濃度変動幅
を50 wtppm以内とし、かつシリカガラス体中の温度分布
を精密に保ってアニール処理することが必要となる。な
お、Δnに特に下限はないが、現在のところ、3×10
-7 程度が達成できている。
In the silica glass optical material of the present invention, the refractive index fluctuation width Δn is preferably 2 × 10 −6 or less. Within the above range, it can be used for an optically highly homogeneous lens, prism, etc. incorporated in an optical lithography apparatus. Δn is 2 × 10 - it is necessary is that the 6 following at least one direction striae-free assumption. Further, by setting Δn to be 2 × 10 −6 or less, it becomes possible to dope the hydrogen gas at a uniform concentration. It is presumed that the reason for this is that the glass having a large Δn value has a large F concentration fluctuation range and the hydrogen gas concentration is affected by the F concentration. Further, in order to set Δn to 2 × 10 −6 or less, the fluorine concentration distribution should be an axisymmetric distribution, the fluctuation range of the concentration should be within 50 wtppm, and the temperature distribution in the silica glass body should be precisely maintained before annealing. Will be required. There is no particular lower limit to Δn, but currently it is 3 × 10
-7 has been achieved.

【0023】本発明のシリカガラス光学材料において
は、歪量が、1 nm/cm以下であることが好ましい。歪量
を1 nm/cm以下とすることで、光リソグラフィー装置に
組み込まれる光学的高均質レンズに使用可能となる。こ
の値を達成するためには特にフッ素濃度分布を軸対称分
布とし、かつその濃度変動幅ΔFを50 wtppm以内とする
こと、また、シリカガラスを精密な温度分布を保ってア
ニール処理することが必要となる。なお、歪量に特に下
限はないが、現在のところ、0.3 nm/cm程度が達成でき
ている。
In the silica glass optical material of the present invention, the strain amount is preferably 1 nm / cm or less. By setting the strain amount to 1 nm / cm or less, it can be used for an optical highly homogeneous lens incorporated in an optical lithography apparatus. In order to achieve this value, it is necessary to make the fluorine concentration distribution an axisymmetric distribution and to set the concentration fluctuation width ΔF within 50 wtppm, and to anneal the silica glass while maintaining a precise temperature distribution. Becomes Although there is no particular lower limit to the amount of strain, at present, about 0.3 nm / cm has been achieved.

【0024】次に、本発明のシリカガラス光学材料の製
造方法について説明する。シリカガラス光学材料を製造
するにあたっては、まず、珪素化合物を原料として火炎
加水分解法により、略円柱体形状のOH基含有白色スート
体を合成する。
Next, a method for producing the silica glass optical material of the present invention will be described. In producing the silica glass optical material, first, a silicon compound as a raw material is used to synthesize an OH group-containing white soot body having a substantially cylindrical shape by a flame hydrolysis method.

【0025】上記珪素化合物としては、SiCl4、SiHC
l3、SiH2Cl2、SiCH3Cl3、Si(CH3)2Cl2、Si(CH3) 3(OC
H)、Si(CH3)2(OCH) 2、Si(CH3)(OCH)3、SiF4、SiHF3、S
iH2F2 等が好ましい。上記火炎としては、酸水素火炎、
プロパン酸素火炎等が好ましい。
The above silicon compounds include SiCl 4 , SiHC
l 3 , SiH 2 Cl 2 , SiCH 3 Cl 3 , Si (CH 3 ) 2 Cl 2 , Si (CH 3 ) 3 (OC
H), Si (CH 3 ) 2 (OCH) 2 , Si (CH 3 ) (OCH) 3 , SiF 4 , SiHF 3 , S
iH 2 F 2 and the like are preferable. As the flame, an oxyhydrogen flame,
Propane oxygen flame and the like are preferred.

【0026】ついで、得られたOH基含有白色スート体を
フッ素含有ガス雰囲気中で熱処理して、フッ素ドープ処
理して、OH基とフッ素を含有するスート体とする。フ
ッ素含有ガスとしては、SiF4、CHF3、SF6等0.1〜100 vo
l.%含有するガスを用いることが好ましい。処理温度
は、400〜1200℃で、処理圧力は、0.1〜10 kgf/cm2
度が好ましい。
Next, the obtained OH group-containing white soot body is heat-treated in a fluorine-containing gas atmosphere and fluorine-doped to obtain a soot body containing OH groups and fluorine. As fluorine-containing gas, SiF 4 , CHF 3 , SF 6, etc. 0.1 to 100 vo
It is preferable to use a gas containing l.%. The processing temperature is preferably 400 to 1200 ° C., and the processing pressure is preferably about 0.1 to 10 kgf / cm 2 .

【0027】ついで、上記白色スート体の透明ガラス化
処理を行う。この処理は、温度 1400〜1600℃程度、圧
力1 kgf/cm2以下、特に0.1〜0.01 kgf/cm2の減圧雰囲
気で行うことが好ましい。特に、高真空雰囲気を用いな
いことにより、材料の外側部のフッ素放出を防止し、材
料の内側部、外側部におけるフッ素濃度勾配を緩和させ
る。上記雰囲気は、Heを含有しても良い。
Then, the white soot body is subjected to a transparent vitrification treatment. This treatment is preferably carried out in a reduced pressure atmosphere having a temperature of about 1400 to 1600 ° C. and a pressure of 1 kgf / cm 2 or less, particularly 0.1 to 0.01 kgf / cm 2 . In particular, by not using a high vacuum atmosphere, the release of fluorine from the outer portion of the material is prevented, and the fluorine concentration gradient in the inner and outer portions of the material is relaxed. The atmosphere may contain He.

【0028】続いて、火炎加熱成形により丸棒状透明シ
リカガラス体への成形及びこの丸棒状透明シリカガラス
体の一端部から他端部へ順次火炎加熱して帯溶融回転攪
拌処理を行う。この帯溶融回転攪拌処理は、往復して行
うのが好ましく、とくに2〜4往復することが好まし
い。これらの処理は、USP2904713、USP3128166、USP312
8169、USP3483613に示される方法を用いて行うことがで
きる。これにより、材料中のフッ素濃度分布を回転軸対
称分布とする。上記丸棒状透明シリカガラス体は、直径
が30〜90 mm程度、長さが1〜3 m程度とすることが好ま
しい。
Subsequently, flame heating molding is performed to form a round rod-shaped transparent silica glass body, and flame heating is sequentially performed from one end to the other end of the round rod-shaped transparent silica glass body to perform band-melting rotary stirring treatment. It is preferable that this zone-melting rotary stirring treatment is carried out reciprocally, and particularly preferably 2 to 4 reciprocally. These processes are USP2904713, USP3128166, USP312
8169, USP3483613. As a result, the fluorine concentration distribution in the material has a rotational axis symmetrical distribution. The round rod-shaped transparent silica glass body preferably has a diameter of about 30 to 90 mm and a length of about 1 to 3 m.

【0029】次いで、図3に示したような円柱状の成形
キャビティ12を有する成形型枠14を備えた真空成形
炉10を準備する。成形キャビティ12の直径は200〜4
00mm、高さは400〜2000 mm程度であることが好まし
い。このキャビティ12を形成する型枠壁は、高純度グ
ラファイト等で形成することが好ましい。上記の成形キ
ャビティ12内に上記丸棒状透明シリカガラス体Sを、
その回転軸が上記円柱状の成形キャビティの中心軸に一
致するようにして配置し(すなわち鉛直状態)、この状
態で加熱する。加熱温度は、1700〜2000 ℃程度とす
る。このとき、上記丸棒状透明シリカガラス体Sの上方
からの圧縮すなわち押圧は実質的に行わず、ほぼ重力の
みにより溶融沈降させ、成形キャビティ内に納まるのを
待つ。このとき、押圧して無理に押しつけると、丸棒状
透明シリカガラス体Sの軸が折れ曲がってしまったり、
鉛直でなくなったりするので、材料中のフッ素濃度分布
が回転軸対称でなくなってしまう。なお、このとき、丸
棒状透明シリカガラス体Sの上に、図3に示したように
グラファイト等の薄い蓋16を配置してもよい。
Next, a vacuum forming furnace 10 provided with a forming frame 14 having a cylindrical forming cavity 12 as shown in FIG. 3 is prepared. The diameter of the molding cavity 12 is 200-4
It is preferable that the height is 00 mm and the height is about 400 to 2000 mm. The mold wall forming this cavity 12 is preferably made of high-purity graphite or the like. The round rod-shaped transparent silica glass body S is placed in the molding cavity 12.
The rotation axis is arranged so as to coincide with the central axis of the cylindrical molding cavity (that is, vertical state), and heating is performed in this state. The heating temperature is about 1700 to 2000 ° C. At this time, the above-mentioned round rod-shaped transparent silica glass body S is not substantially compressed or pressed from above, and is melted and settled only by gravity and waits until it is housed in the molding cavity. At this time, if pressed and forcedly pressed, the shaft of the round rod-shaped transparent silica glass body S may be bent,
Since it is no longer vertical, the fluorine concentration distribution in the material is not symmetrical about the rotation axis. At this time, a thin lid 16 made of graphite or the like may be arranged on the round rod-shaped transparent silica glass body S as shown in FIG.

【0030】この後、アニール処理を行う。この処理の
雰囲気としては、一般的には大気が用いられており、そ
の他不活性ガス雰囲気も用いることができる。処理温度
は、1000〜1200 ℃で、1〜100時間程度保持し、その後
800℃以下まで1℃/hr〜5℃/hrにて徐冷却し、さらに
室温まで5℃/hr〜20℃/hrにて徐冷却する。この十分
な長さのアニール処理により、十分な歪み除去と、水分
含有量の十分な低減を行うことができる。
After this, an annealing process is performed. Atmosphere is generally used as the atmosphere for this treatment, and other inert gas atmospheres can also be used. The treatment temperature is 1000 to 1200 ℃, hold for 1 to 100 hours, then gradually cool down to 880 ℃ or less at 1 ℃ / hr to 5 ℃ / hr, and further to room temperature 5 ℃ / hr to 20 ℃ / hr Slowly cool. By this annealing treatment of a sufficient length, it is possible to sufficiently remove the strain and sufficiently reduce the water content.

【0031】最後に、水素分子含有雰囲気熱処理による
水素ガスドープ処理を行う。水素分子含有雰囲として
は、水素ガス100% 又はAr等の希ガスと水素ガスとの混
合ガス雰囲気を用いることが好ましい。処理温度は100
〜1000 ℃、特に200〜600 ℃であることが好ましい。上
記温度範囲より高温であると還元作用が強くなり、酸素
欠損型欠陥を生成させ、低温であると水素ガスの透明ガ
ラス体への拡散溶存への時間がかかりすぎる。
Finally, hydrogen gas doping treatment is performed by hydrogen molecule-containing atmosphere heat treatment. As the hydrogen molecule-containing atmosphere, it is preferable to use 100% hydrogen gas or a mixed gas atmosphere of a rare gas such as Ar and hydrogen gas. Processing temperature is 100
It is preferably from 1000 to 1000 ° C, particularly from 200 to 600 ° C. When the temperature is higher than the above temperature range, the reducing action becomes strong and oxygen deficiency type defects are generated, and when the temperature is low, it takes too much time to diffuse and dissolve hydrogen gas in the transparent glass body.

【0032】処理圧力は、大気圧の約1 kgf/cm2から10
0 kgf/cm2が好ましい。水素ガス100%で1 kgf/cm2
の透明ガラス体の水素ガス飽和溶存濃度は約1×1017
4×1017分子/cm3、10 kgf/cm2、100 kgf/cm2では各
々 1×1018 〜 4×1018、1×1019 〜 4×1019分子/cm3
である。
The processing pressure is about 1 kgf / cm 2 to 10 atmospheric pressure.
0 kgf / cm 2 is preferred. Saturated dissolved concentration of hydrogen gas in transparent glass body at 1 kgf / cm 2 at 100% hydrogen gas is about 1 × 10 17
4 × 10 17 molecule / cm 3 , 10 kgf / cm 2 , 100 kgf / cm 2 1 × 10 18 to 4 × 10 18 and 1 × 10 19 to 4 × 10 19 molecule / cm 3 respectively
Is.

【0033】なお、上記アニール処理を水素分子含有ガ
ス雰囲気にて行うことにより、アニール処理と水素ガス
ドープ処理を同時に行うことができる。得られた材料
は、外表面を研削し所望の形状のレンズブランクスとさ
れる。さらに外表面を研磨することにより所望のレンズ
とされる。
By performing the annealing treatment in a hydrogen molecule-containing gas atmosphere, the annealing treatment and the hydrogen gas doping treatment can be simultaneously performed. The obtained material has its outer surface ground to form a lens blank having a desired shape. A desired lens is obtained by further polishing the outer surface.

【0034】[0034]

【実施例】まず、超高純度の四塩化珪素SiCl4を原料と
する酸水素炎加水分解法により、略円柱体形状のOH基含
有白色スート体を合成した。ついで、得られたOH基含有
白色スート体を、SiF4 1%含有ガス雰囲気中、1 kg/c
m2(ほぼ大気圧と同じ)、600〜800 ℃の範囲の条件下
で、加熱処理して、上記白色スート体をフッ素ドープ処
理した。このとき、熱処理温度と処理時間とを種々変え
て表に示したように各実施例および各比較例のOH基およ
びF量を変化させた。
Example First, a substantially columnar OH group-containing white soot body was synthesized by an oxyhydrogen flame hydrolysis method using ultra-high-purity silicon tetrachloride SiCl 4 as a raw material. Then, the obtained white soot body containing OH groups was subjected to 1 kg / c in a gas atmosphere containing 1% of SiF 4.
The white soot body was fluorine-doped by heat treatment under conditions of m 2 (approximately the same as atmospheric pressure) and 600 to 800 ° C. At this time, the heat treatment temperature and the treatment time were variously changed to change the OH group and the F amount in each of the examples and the comparative examples as shown in the table.

【0035】次に、上記白色スート体を、0.1 kgf/cm2
のHe含有減圧雰囲気中で、温度1500〜1600 ℃で加熱し
て、上記白色スート体を透明ガラス化した。続いて、プ
ロパンガス火炎加熱により直径60mm、長さ1.5mの丸棒状
透明シリカガラス体とした後、該ガラス体の両端を把持
し、一端部よりプロパンガス火炎により加熱しながら捻
って行う帯溶融回転攪拌処理を2往復行うことにより1
方向脈理フリーの透明ガラス体とした。加熱は、材料が
2000 ℃程度になるようにして行った。
Next, the above white soot body is treated with 0.1 kgf / cm 2
Was heated at a temperature of 1500 to 1600 ° C. in a He-containing reduced-pressure atmosphere, and the above white soot body was vitrified into a transparent glass. Subsequently, a round rod-shaped transparent silica glass body having a diameter of 60 mm and a length of 1.5 m is heated by propane gas flame heating, and then both ends of the glass body are grasped, and band melting is performed by twisting while heating with propane gas flame from one end. 1 by performing 2 rounds of rotation stirring processing
It was a transparent glass body free of direction striae. Heating the material
It was performed at about 2000 ° C.

【0036】上記丸棒状透明シリカガラス体を、図3に
示したように、その回転軸が、真空成形炉内の高純度グ
ラファイト成形型枠の成形キャビティの中心軸に重なる
ようして、該成形キャビティ内に配置して溶融し、寸
法、直径270mm、厚さ70mmのガラス成形体を得た。
As shown in FIG. 3, the above-mentioned round rod-shaped transparent silica glass body was molded by making its rotation axis overlap with the center axis of the molding cavity of the high-purity graphite molding frame in the vacuum molding furnace. It was placed in a cavity and melted to obtain a glass molded body having a size, a diameter of 270 mm, and a thickness of 70 mm.

【0037】ついで、この成形体をフッ酸溶液で表面エ
ッチングした後、高純度アルミナ耐火材、二珪化モリブ
デンヒーターの電気炉内に設置し、大気中雰囲気下、11
50℃で、20時間保持後、2℃/hrにて800℃まで徐冷し、
その後、電気炉電源を切り10℃/hr〜20℃/hrで自然冷
却してアニール処理を行った。
Then, the molded body was surface-etched with a hydrofluoric acid solution, and then placed in an electric furnace of a high-purity alumina refractory material and a molybdenum disilicide heater, and was placed in an air atmosphere at 11
After holding at 50 ℃ for 20 hours, slowly cool to 800 ℃ at 2 ℃ / hr,
After that, the electric furnace power was turned off and naturally cooled at 10 ° C / hr to 20 ° C / hr for annealing treatment.

【0038】この後、上記ガラス成形体をステンレスス
チールジャケット、タングステン、メッシュヒータの電
気炉内に設置し、水素100%雰囲気下、400 ℃、1kgf/
cm又は10kgf/cm加圧下にて水素ガスドープを行
った。最後に、ガラス成形体の外表面を研削し、直径25
0mm、厚さ50mmの扁平円柱体の実施例のシリカガラスレ
ンズブランクスとした。
After that, the above-mentioned glass molded body was placed in an electric furnace of a stainless steel jacket, tungsten, and a mesh heater, and under a 100% hydrogen atmosphere, 400 ° C., 1 kgf /
Hydrogen gas doping was performed under a pressure of cm 2 or 10 kgf / cm 2 . Finally, the outer surface of the glass molding was ground to a diameter of 25
The silica glass lens blanks of the example of a flat cylinder having a thickness of 0 mm and a thickness of 50 mm were used.

【0039】一方、比較例のシリカガラスレンズブラン
クスは下記のようにして作製した。比較例1では、実施
例と同一の条件にてOH基含有略円柱体形状の白色スート
体を合成した後、SiF4 100%ガス雰囲気、1 kgf/cm2
900 ℃の条件にて加熱処理を行いOH基フリー、Fドープ
を行った。その後、実施例と同様に透明ガラス化、帯溶
融回転攪拌処理、アニール処理、水素ガスドープ処理を
行った。
On the other hand, a silica glass lens blank of Comparative Example was prepared as follows. In Comparative Example 1, after a white columnar soot body containing an OH group was synthesized under the same conditions as in Example, SiF 4 100% gas atmosphere, 1 kgf / cm 2 ,
Heat treatment was performed at 900 ° C. to perform OH group-free and F dope. Then, as in the example, transparent vitrification, band-melting rotary stirring treatment, annealing treatment, and hydrogen gas doping treatment were performed.

【0040】比較例2では、実施例に比較して水素ガス
ドープ処理を行わず、水素ガスを溶存していないガラス
を得た。
In Comparative Example 2, a glass in which hydrogen gas was not dissolved was obtained without performing the hydrogen gas doping treatment as compared with the Examples.

【0041】比較例3では、実施例に比較して帯溶融回
転攪拌処理を行わないガラスである。
Comparative Example 3 is a glass which is not subjected to the band-melting rotary stirring treatment as compared with the Examples.

【0042】比較例4では、実施例に比較してFドープ
処理を行わず、その代りにCl2 100%ガス雰囲気1 kgf/
cm2、900℃にてClドープを行った。
In Comparative Example 4, F-doping treatment was not performed as compared with the Examples, but instead, Cl 2 100% gas atmosphere 1 kgf /
Cl doping was performed at 900 cm 2 at cm 2 .

【0043】比較例5では、実施例に比較してFドープ
処理を行わなかった。
In Comparative Example 5, the F doping treatment was not performed as compared with the Examples.

【0044】上記実施例および比較例のサンプルにつ
き、上記のOH基濃度の他、OH基濃度変動幅ΔOH、F濃度
及びF濃度変動幅ΔF、F濃度分布および測定点の隣り
合った測定点での1cm当たりのフッ素濃度の差Δf、Cl
濃度、溶存水素濃度及び溶存水素濃度変動幅ΔH2、
折率変動幅Δn、歪量、HO濃度、ならびにレーザおよ
びランプからの光線照射前後の透過率を測定した。その
結果を各表に示した。また、実施例1および5、ならび
に比較例1および3のフッ素濃度分布を、図4〜7に示
した。更に、実施例1〜5のサンプルのガラスの不純物
含有量を表3に示した。
With respect to the samples of the above-mentioned Examples and Comparative Examples, in addition to the above-mentioned OH group concentration, at OH group concentration fluctuation width ΔOH, F concentration and F concentration fluctuation width ΔF, F concentration distribution and at measurement points adjacent to each other, Difference in fluorine concentration per cm of Δf, Cl
The concentration, the dissolved hydrogen concentration and the dissolved hydrogen concentration fluctuation width ΔH 2, the refractive index fluctuation width Δn, the strain amount, the H 2 O concentration, and the transmittance before and after the light irradiation from the laser and the lamp were measured. The results are shown in each table. The fluorine concentration distributions of Examples 1 and 5 and Comparative Examples 1 and 3 are shown in FIGS. Further, Table 3 shows the content of impurities in the glass of the samples of Examples 1 to 5.

【0045】上記実施例及び比較例の各物性値の測定法
は下記の方法による。 (i)OH基濃度の測定法 D.M. DODD and D.B. FRASER, Optical determination o
f OH in fused silica, Journal of Applied Physics,
Vol. 37 (1966) p. 3911文献記載の測定法。 (ii)OH基濃度変動幅ΔOHの測定法 直径250mm、厚さ50mmの円柱状シリカガラス光学材料に
おいて、回転対称軸方向からみて直径方向に10mm間隔に
て25点のOH基濃度測定を行う。25点のOH基濃度の最大値
と最小値から光学材料全体におけるOH基濃度変動幅(Δ
OH)を、25点のOH基濃度の算術平均値からOH基平均濃度
を計算する測定法。 (iii)水素分子濃度の測定法 V.K. KHOTIMCHENKO,et al., Determining the content
of hydrogen dissolved in quartz glass using the m
ethods of Raman scattering and mass spectrometry,
Journal of Applied Spectroscopy, Vo.46, No.6 (198
7) pp.632〜635の文献記載の測定法。 (iv)水素分子濃度変動幅ΔH2の測定法 直径250mm、厚さ50mmの円柱状シリカガラス光学材料に
おいて、回転対称軸方向からみて直径方向に10mm間隔に
て25点のH2濃度測定を行う。25点のH2濃度の最大値と最
小値から光学材料全体におけるH2濃度変動幅(ΔH2
を、25点のH2濃度の算術平均値からH2平均濃度を計算す
る測定法。 (v)塩素濃度の測定法 HF水溶液により分解後、AgNO3添加による比濁法による
測定法。 (vi)フッ素濃度の測定法 NaOH水溶液にて分解後、イオン電極法による測定法。 (vii)フッ素濃度変動幅ΔFの測定法 直径250mm、厚さ50mmの円柱状シリカガラス光学材料に
おいて、回転対称軸方向からみて直径方向に10mm間隔に
て25点のF濃度測定を行う。25点のF濃度の最大値と最小
値から光学材料全体におけるフッ素濃度変動幅(ΔF)
を、25点のF濃度の算術平均値から濃度平均値を計算す
る方法。 (viii)測定点の隣り合った測定点でのフッ素濃度の差
Δf 上記(vii)のフッ素濃度変動幅ΔFの測定法での25
点の測定点の1cm隣り合った測定点における1cm当た
りのフッ素濃度の差Δf(wtppm/cm)のうち最大の
もの。 (ix)シリカガラス中の不純物測定 Na、K、Mg、Ca、Feは原子吸光光度法による測定法、L
i、Cr、Ni、Mo、Wはプラズマ質量分析法により測定(IC
P-MS法)。 (x)屈折率変動幅(Δn)の測定法 He-Neレーザ(633nm)を光源とする光干渉法による測定
法。ただし、直径230mmエリアにおける値を示す。 (xi)複屈折量(歪量)の測定法 偏光板歪計を用いたレターデーション測定法。ただし、
直径230mmエリアにおける値を示す。 (xii)ArFエキシマレーザ照射前後の193 nmの透過率
の測定法 サイズ30×20×厚さ10 mm、両面鏡面研磨仕上したサン
プルに波長193nm、波長半長値幅3nm、パルス寿命半値幅
17 nsec、エネルギー密度30 mJ/cm2/shot、周波数100
Hzで照射ショット数1×106 shotのレーザ照射した直後
1分後の193nmでの透過率を測定する測定法。 (xiii)Xe2エキシマランプ照射後の波長172nmの透過
率の測定法 サイズ30×20×厚さ10 mm、両面鏡面研磨仕上したサン
プルに波長172nm、波長半値幅14nm、ランプエネルギー
密度10 mW/cm2で14日間照射した直後1分後の172nmでの
透過率を測定する測定法。 (xiv)分子濃度の測定法 Y. Morimoto, et.al., Analysis of gas release from
vitreous silica, Journal of Non-crystalline solid
s, Vol. 1, No. 139 (1992) pp. 35〜46の文献記載の1
000℃真空下における水蒸気放出量の測定法。
The methods for measuring the physical properties of the above Examples and Comparative Examples are as follows. (I) Method for measuring OH group concentration DM DODD and DB FRASER, Optical determination o
f OH in fused silica, Journal of Applied Physics,
Vol. 37 (1966) p. 3911 Measuring methods described in the literature. (Ii) Method for measuring OH group concentration fluctuation width ΔOH In a cylindrical silica glass optical material having a diameter of 250 mm and a thickness of 50 mm, 25 points of OH group concentration are measured at 10 mm intervals in the diameter direction as viewed from the axis of rotational symmetry. From the maximum and minimum OH group concentration at 25 points, the OH group concentration fluctuation range (Δ
OH) is a measurement method for calculating the OH group average concentration from the arithmetic average value of the OH group concentrations at 25 points. (Iii) Measuring method of hydrogen molecule concentration VK KHOTIMCHENKO, et al., Determining the content
of hydrogen dissolved in quartz glass using the m
ethods of Raman scattering and mass spectrometry,
Journal of Applied Spectroscopy, Vo.46, No.6 (198
7) The measuring method described in the literature of pp.632-635. (Iv) Measuring method of hydrogen molecule concentration fluctuation width ΔH 2 In a cylindrical silica glass optical material with a diameter of 250 mm and a thickness of 50 mm, measure H 2 concentration at 25 points at 10 mm intervals in the diameter direction when viewed from the axis of rotational symmetry. . From the maximum and minimum values of H 2 concentration at 25 points, the fluctuation range of H 2 concentration in the entire optical material (ΔH 2 )
Is a measurement method for calculating the H 2 average concentration from the arithmetic mean value of the H 2 concentration at 25 points. (V) Method of measuring chlorine concentration A method of measurement by turbidimetric method in which AgNO 3 is added after decomposition with HF aqueous solution. (Vi) Method of measuring fluorine concentration A method of measuring by the ion electrode method after decomposing with an aqueous NaOH solution. (Vii) Method of measuring fluorine concentration fluctuation width ΔF In a cylindrical silica glass optical material having a diameter of 250 mm and a thickness of 50 mm, F concentration is measured at 25 points at 10 mm intervals in the diameter direction as viewed from the axis of rotational symmetry. Fluctuation range of fluorine concentration (ΔF) in the entire optical material from the maximum and minimum F concentration at 25 points
, The method of calculating the average concentration value from the arithmetic average value of the F concentration of 25 points. (Viii) Difference in fluorine concentration Δf between adjacent measuring points Δf 25 in the measuring method of fluorine concentration fluctuation width ΔF in (vii) above.
1cm from the measurement point of the point The maximum of the difference Δf (wtppm / cm) of the fluorine concentration per 1cm at the adjacent measurement points. (Ix) Impurity measurement in silica glass Na, K, Mg, Ca, Fe are atomic absorption spectrophotometric methods, L
i, Cr, Ni, Mo, W are measured by plasma mass spectrometry (IC
P-MS method). (X) Measuring method of refractive index fluctuation width (Δn) Measuring method by optical interferometry using He-Ne laser (633 nm) as a light source. However, the value in the 230 mm diameter area is shown. (Xi) Method of measuring birefringence amount (strain amount) A retardation measuring method using a polarizing plate strain meter. However,
The value in the area of 230 mm in diameter is shown. (Xii) Measuring method of transmittance at 193 nm before and after IrF excimer laser irradiation Size 30 × 20 × thickness 10 mm, double-sided mirror-polished sample, wavelength 193 nm, wavelength half-length width 3 nm, pulse life half-width
17 nsec, energy density 30 mJ / cm 2 / shot, frequency 100
Immediately after laser irradiation with 1 × 10 6 shots in Hz
A measurement method that measures the transmittance at 193 nm after 1 minute. (Xiii) Method for measuring the transmittance at a wavelength of 172 nm after irradiation with a Xe 2 excimer lamp Size 30 × 20 × thickness 10 mm, wavelength 172 nm, half wavelength width at half maximum 14 nm, lamp energy density 10 mW / cm for a sample finished by double-sided mirror polishing A measurement method that measures the transmittance at 172 nm 1 minute immediately after irradiation with 2 for 14 days. (Xiv) Measurement of molecular concentration Y. Morimoto, et.al., Analysis of gas release from
vitreous silica, Journal of Non-crystalline solid
s, Vol. 1, No. 139 (1992) pp. 35-46 1
Measuring method of water vapor emission under vacuum at 000 ℃.

【0046】[表1] [Table 1]

【0047】[表2] [Table 2]

【0048】[表3] [Table 3]

【0049】表により、本発明の効果があきらかであ
る。すなわち、実施例1〜5のガラスはエキシマ光照射後
も高透過率を示し、Δn値も1×10-6以下と高均質性を
示した。
From the table, the effect of the present invention is clear. That is, the glasses of Examples 1 to 5 showed high transmittance even after the irradiation with excimer light, and the Δn value was 1 × 10 −6 or less and showed high homogeneity.

【0050】一方、比較例1のガラスでは、OH基を含有
せず、Fを5000 wtppm含有するガラスであるため、各種
加熱処理によりFが分解してF2ガスを放出し、7.6 eV吸
収帯を生成し、耐エキシマ光性が不良であった。
On the other hand, the glass of Comparative Example 1 does not contain an OH group and contains 5000 wtppm of F, so that F is decomposed by various heat treatments to release F 2 gas, and the 7.6 eV absorption band. And the excimer light resistance was poor.

【0051】比較例2では、水素ガスドープ処理を行わ
ず、水素ガスを溶存していないガラスであるため、耐エ
キシマ光性が悪く、透過率低下が大きかった。
In Comparative Example 2, since the glass was not subjected to hydrogen gas doping treatment and hydrogen gas was not dissolved, the excimer light resistance was poor and the transmittance was largely reduced.

【0052】比較例3では、帯溶融回転攪拌処理を行わ
ないガラスであるため、ΔF、ΔH2の値が他と比較して
大きくなっており、Δnの値も大きい数値である。また
耐エキシマ光性もガラスの部位によって変化が大きく、
透過率低下に差が生じた。
In Comparative Example 3, since the glass was not subjected to the band-melting rotary stirring treatment, the values of ΔF and ΔH 2 were larger than the others, and the value of Δn was also a large value. Also, the excimer light resistance changes greatly depending on the glass part,
There was a difference in the decrease in transmittance.

【0053】比較例4では、Fドープ処理を行わず、そ
の代りにCl2 100%ガス雰囲気にてClドープを行って得
られたガラスで、Clを1000 wtppm含みFフリーであるた
め、7.6 eV吸収体を生成し、エキシマランプ光では当初
から透過率が悪く、一方、エキシマレーザー光照射によ
りE’センターが生成し透過率が激減してしまった。
In Comparative Example 4, a glass obtained by not performing F-doping and instead performing Cl-doping in a 100% Cl 2 gas atmosphere, containing 1000 wtppm of Cl and being F-free, has a 7.6 eV. When an excimer lamp was used, an absorber was formed, and the transmittance of the excimer lamp light was poor from the beginning. On the other hand, when the excimer laser light was irradiated, an E ′ center was generated and the transmittance was drastically reduced.

【0054】比較例5では、Fドープ処理を行わず、OH
基を200 wtppm含むガラスであるため、耐エキシマラン
プ性が悪かった。
In Comparative Example 5, OH was not subjected to the F doping treatment.
Since it is a glass containing 200 wtppm of base, the excimer lamp resistance was poor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のシリカガラス光学材料において好まし
いフッ素濃度変動曲線(放物線)を示すグラフ図であ
る。
FIG. 1 is a graph showing a preferable fluorine concentration fluctuation curve (parabola) in the silica glass optical material of the present invention.

【図2】本発明のシリカガラス光学材料において好まし
いフッ素濃度変動曲線(楕円曲線)を示すグラフ図であ
る。
FIG. 2 is a graph showing a preferable fluorine concentration fluctuation curve (elliptic curve) in the silica glass optical material of the present invention.

【図3】本発明のシリカガラス光学材料の製造方法にお
けるシリカガラス光学材料の円柱状成形工程を説明する
ための図である。
FIG. 3 is a diagram for explaining a columnar forming step of the silica glass optical material in the method for producing a silica glass optical material of the present invention.

【図4】実施例1のシリカガラスレンズブランクスのフ
ッ素濃度変動曲線を示すグラフ図である。
FIG. 4 is a graph showing a fluorine concentration fluctuation curve of the silica glass lens blanks of Example 1.

【図5】実施例5のシリカガラスレンズブランクスのフ
ッ素濃度変動曲線を示すグラフ図である。
FIG. 5 is a graph showing a fluorine concentration fluctuation curve of a silica glass lens blank of Example 5.

【図6】比較例1のシリカガラスレンズブランクスのフ
ッ素濃度変動曲線を示すグラフ図である。
FIG. 6 is a graph showing a fluorine concentration fluctuation curve of a silica glass lens blank of Comparative Example 1.

【図7】比較例3のシリカガラスレンズブランクスのフ
ッ素濃度変動曲線を示すグラフ図である。
FIG. 7 is a graph showing a fluorine concentration fluctuation curve of a silica glass lens blank of Comparative Example 3.

【符号の説明】[Explanation of symbols]

10: 真空成形炉 11: 高純度グラファイトヒータ 12: 成形キャビティ 14: 高純度グラファイト成形型枠 16: 高純度グラファイト蓋 S: 丸棒状透明シリカガラス体 10: Vacuum forming furnace 11: High-purity graphite heater 12: Molding cavity 14: High-purity graphite molding form 16: High-purity graphite lid S: Round rod-shaped transparent silica glass body

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 21/027 H01L 21/30 515D ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI H01L 21/027 H01L 21/30 515D

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 波長155〜195nmの真空紫外線リソグラフ
ィーに用いられ、直径が200mmを超える大型の投影レン
ズ用シリカガラス光学材料において、Li、NaおよびKが
各1 wtppb以下、CaおよびMgが各0.5 wtppb以下、Cr、F
e、Ni、耐熱性金属元素として使用されているMoおよびW
が各0.1 wtppb以下の超高純度であり、OH基を1〜10 wt
ppm、F を100〜10,000 wtppm、そしてH2 を1×1017〜1
×1019分子/cm3含有し、F/OHの値が50〜1000であり、
溶存水分子濃度が1×1017分子/cm3以下であり、F
濃度分布が、円柱状シリカガラス光学材料の中心軸につ
いて軸対称であり、該光学材料の中心部から外周部に向
かって徐々に増大または減少し、間隔1cmで隣り合っ
た測定点間でのフッ素濃度の差Δfが10wtppm以下で
あることを特徴とするシリカガラス光学材料。
1. A silica glass optical material for use in vacuum ultraviolet lithography having a wavelength of 155 to 195 nm and having a diameter of more than 200 mm, for a projection lens, wherein Li, Na and K are each 1 wtppb or less, and Ca and Mg are each 0.5. wtppb or less, Cr, F
e, Ni, Mo and W used as refractory metal elements
Is ultra high purity of 0.1 wtppb or less for each and 1-10 wt% of OH group
ppm, F 100-10,000 wtppm, and H 2 1 × 10 17 -1
X10 19 molecules / cm 3 contained, F / OH value is 50-1000,
The dissolved water molecule concentration is 1 × 10 17 molecules / cm 3 or less, and F
The concentration distribution is axially symmetric with respect to the central axis of the cylindrical silica glass optical material, gradually increases or decreases from the central portion of the optical material toward the outer peripheral portion, and the fluorine between adjacent measurement points at an interval of 1 cm. A silica glass optical material, characterized in that the concentration difference Δf is 10 wtppm or less.
【請求項2】 前記F/OHの値が50〜100である請求項1
のシリカガラス光学材料。
2. The F / OH value is 50 to 100.
Silica glass optical material.
【請求項3】 F濃度軸対称分布の曲線が放物線又は楕
円の2次曲線に近似している請求項1または2のシリカ
ガラス光学材料。
3. The silica glass optical material according to claim 1, wherein the curve of the F concentration axis symmetric distribution is approximate to a parabolic or elliptic quadratic curve.
【請求項4】 F濃度変動幅 ΔFが 50 wtppm以内である
請求項1〜3のいずれかのシリカガラス光学材料。
4. The silica glass optical material according to claim 1, wherein the F concentration fluctuation width ΔF is within 50 wtppm.
【請求項5】 含有するCl量が10 wtppm以下である請求
項1〜4のいずれかのシリカガラス光学材料。
5. The silica glass optical material according to claim 1, wherein the content of Cl is 10 wtppm or less.
【請求項6】 H2 濃度変動幅ΔH2 が1×1017分子/cm3
以内である請求項1〜5のいずれかのシリカガラス光学
材料。
6. A fluctuation range of H 2 concentration ΔH 2 of 1 × 10 17 molecule / cm 3
The silica glass optical material according to any one of claims 1 to 5, which is within the range.
【請求項7】 屈折率変動幅Δnが 2×10-6以下である
請求項1〜6のいずれかのシリカガラス光学材料。
7. The silica glass optical material according to claim 1, wherein the refractive index fluctuation width Δn is 2 × 10 −6 or less.
【請求項8】 歪量が1 nm/cm以下である請求項1〜7
のいずれかのシリカガラス光学材料。
8. A strain amount of 1 nm / cm or less.
One of silica glass optical material.
【請求項9】 請求項1〜8のいずれかに記載のシリカ
ガラス光学材料を用いた真空紫外線リソグラフィーに用
いられる投影レンズ。
9. A projection lens used in vacuum ultraviolet lithography using the silica glass optical material according to claim 1.
JP2001209470A 2001-07-10 2001-07-10 Silica glass optical material for projection lens used in vacuum ultraviolet lithography and projection lens Expired - Lifetime JP3510224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001209470A JP3510224B2 (en) 2001-07-10 2001-07-10 Silica glass optical material for projection lens used in vacuum ultraviolet lithography and projection lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001209470A JP3510224B2 (en) 2001-07-10 2001-07-10 Silica glass optical material for projection lens used in vacuum ultraviolet lithography and projection lens

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP33285399A Division JP3228732B2 (en) 1999-11-24 1999-11-24 Method for producing silica glass optical material for projection lens used in vacuum ultraviolet lithography

Publications (2)

Publication Number Publication Date
JP2002087840A JP2002087840A (en) 2002-03-27
JP3510224B2 true JP3510224B2 (en) 2004-03-22

Family

ID=19045118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001209470A Expired - Lifetime JP3510224B2 (en) 2001-07-10 2001-07-10 Silica glass optical material for projection lens used in vacuum ultraviolet lithography and projection lens

Country Status (1)

Country Link
JP (1) JP3510224B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4763877B2 (en) * 2000-05-29 2011-08-31 信越石英株式会社 Synthetic quartz glass optical material and optical member for F2 excimer laser
JP2004035272A (en) * 2002-06-28 2004-02-05 Asahi Glass Co Ltd Method of manufacturing synthetic quartz glass optical component, and method of manufacturing gas-enclosing tube
WO2004092082A1 (en) * 2003-04-11 2004-10-28 Nikon Corporation METHOD FOR PRODUCING SiO2-TiO2 BASED GLASS, SiO2-TiO2 BASED GLASS AND EXPOSURE SYSTEM
JP2005298322A (en) * 2004-03-18 2005-10-27 Shinetsu Quartz Prod Co Ltd Large size synthetic quartz glass plate for excimer uv lamp device
JP2006335577A (en) * 2005-05-31 2006-12-14 Shinetsu Quartz Prod Co Ltd Synthetic quartz glass tube for high transmission excimer uv lamp and its producing method
JP2007031217A (en) * 2005-07-28 2007-02-08 Shinetsu Quartz Prod Co Ltd Large size synthetic quartz glass plate for excimer uv lamp device
US7964522B2 (en) 2006-08-31 2011-06-21 Corning Incorporated F-doped silica glass and process of making same
JP6532269B2 (en) * 2015-04-15 2019-06-19 信越石英株式会社 Method of manufacturing synthetic quartz glass

Also Published As

Publication number Publication date
JP2002087840A (en) 2002-03-27

Similar Documents

Publication Publication Date Title
JP3228732B2 (en) Method for producing silica glass optical material for projection lens used in vacuum ultraviolet lithography
KR100359947B1 (en) Excimer laser and silica glass optical material for the same and its manufacturing method
US7022633B2 (en) Synthetic quartz glass and process for producing it
EP0917523B1 (en) Synthetic silica glass used with uv-rays and method producing the same
WO1993000307A1 (en) Synthetic quartz glass optical member for excimer laser and production thereof
JP3893816B2 (en) Synthetic quartz glass and manufacturing method thereof
JP3403317B2 (en) High power synthetic silica glass optical material for vacuum ultraviolet light and method for producing the same
JP4066632B2 (en) Synthetic quartz glass optical body and manufacturing method thereof
JP2001342034A (en) Optical material of synthetic quartz glass for f2 excimer laser and optical part
JP3510224B2 (en) Silica glass optical material for projection lens used in vacuum ultraviolet lithography and projection lens
JP4493060B2 (en) Manufacturing method of optical quartz glass for excimer laser
JP2005298330A (en) Synthetic quartz glass and its manufacturing method
JP3472234B2 (en) Silica glass optical material for excimer laser and excimer lamp
JPH0627014B2 (en) Synthetic silica glass optical body for ultraviolet laser and manufacturing method thereof
JP2879500B2 (en) Synthetic quartz glass optical member for excimer laser and method of manufacturing the same
JP2008189547A (en) Synthetic quartz glass and its production method
EP1067097A1 (en) Synthetic quartz glass and method for preparation thereof
US20020046580A1 (en) Synthetic quartz glass article and process of production
JP2835540B2 (en) Method of manufacturing quartz glass member for excimer laser
JP2003201124A (en) Synthetic quartz glass for optical member and its manufacturing method
JP2003201125A (en) Synthetic quartz glass and its manufacturing method
JP2003201126A (en) Synthetic quartz glass for optical member and method of manufacturing the same
JP2003183034A (en) Synthetic quartz glass for optical member and its manufacturing method
JP5050969B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP2000143259A (en) Synthetic quartz glass optical member and its production

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031224

R150 Certificate of patent or registration of utility model

Ref document number: 3510224

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20200109

Year of fee payment: 16

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20200109

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20200109

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20200109

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20200109

Year of fee payment: 16

EXPY Cancellation because of completion of term