JP2003201124A - Synthetic quartz glass for optical member and its manufacturing method - Google Patents

Synthetic quartz glass for optical member and its manufacturing method

Info

Publication number
JP2003201124A
JP2003201124A JP2001399665A JP2001399665A JP2003201124A JP 2003201124 A JP2003201124 A JP 2003201124A JP 2001399665 A JP2001399665 A JP 2001399665A JP 2001399665 A JP2001399665 A JP 2001399665A JP 2003201124 A JP2003201124 A JP 2003201124A
Authority
JP
Japan
Prior art keywords
quartz glass
fluorine
synthetic quartz
porous
porous quartz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001399665A
Other languages
Japanese (ja)
Other versions
JP4085633B2 (en
JP2003201124A5 (en
Inventor
Yorisuke Ikuta
順亮 生田
Koshin Iwahashi
康臣 岩橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2001399665A priority Critical patent/JP4085633B2/en
Publication of JP2003201124A publication Critical patent/JP2003201124A/en
Publication of JP2003201124A5 publication Critical patent/JP2003201124A5/ja
Application granted granted Critical
Publication of JP4085633B2 publication Critical patent/JP4085633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • C03B19/1461Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering for doping the shaped article with flourine
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/07Impurity concentration specified
    • C03B2201/075Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/12Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with fluorine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for stably manufacturing synthetic quartz glass which is excellent in light resistance and light transmissivity and which contains high concentration of fluorine. <P>SOLUTION: The method incorporates a process for controlling OH group content in the porous quartz glass by holding the porous quartz glass in a steam-containing atmosphere, a process for doping the porous quartz glass with fluorine and simultaneously reducing the OH group content by holding the porous quartz glass in a fluorine compound-containing atmosphere and a process for obtaining a transparent quartz glass body by heating the porous quartz glass at ≥1,300°C and converting the porous quartz glass to transparent glass. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、波長155〜25
0nmの光を光源とする光学装置の光学部材用合成石英
ガラスおよびその製造方法に関する。より詳細には、A
rFエキシマレーザ(波長193nm)、Xeエキシ
マランプ(波長172nm)や重水素ランプ(波長17
0〜400nm)、Fレーザ(波長157nm)等を
光源とした光学装置の、レンズ、プリズム、エタロン、
回折格子、フォトマスク、ペリクル(ペリクル材および
ペリクルフレーム)、窓材などの光学部品材料として用
いられる光学部材用合成石英ガラスとその製造方法に関
する。
TECHNICAL FIELD The present invention relates to wavelengths of 155 to 25.
The present invention relates to a synthetic quartz glass for an optical member of an optical device using 0 nm light as a light source and a method for manufacturing the same. More specifically, A
rF excimer laser (wavelength 193 nm), Xe 2 excimer lamp (wavelength 172 nm) and deuterium lamp (wavelength 17
0-400 nm), F 2 laser (wavelength 157 nm), etc.
The present invention relates to a synthetic quartz glass for an optical member used as an optical component material such as a diffraction grating, a photomask, a pellicle (a pellicle material and a pellicle frame), a window material, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来から光リソグラフィ技術において、
ウエハ上に微細な回路パターンを転写して集積回路を製
造するための露光装置が広く利用されている。集積回路
の高集積化および高機能化に伴い、集積回路の微細化が
進み、高解像度の回路パターンを深い焦点深度でウエハ
面上に結像させることが露光装置に求められ、露光光源
の短波長化が進められている。露光光源は、従来のg線
(波長436nm)やi線(波長365nm)から進ん
で、KrFエキシマレーザ(波長248nm)やArF
エキシマレーザ(波長193nm)が用いられようとし
ている。またさらに回路パターンが100nm以下とな
る次世代の集積回路に対応するため、露光光源としてF
レーザ(波長157.6nm)を用いることが検討さ
れ始めている。
2. Description of the Related Art Conventionally, in optical lithography technology,
An exposure apparatus for transferring a fine circuit pattern onto a wafer to manufacture an integrated circuit is widely used. As integrated circuits have become highly integrated and highly functionalized, miniaturization of integrated circuits has progressed, and it is required for an exposure apparatus to form a high-resolution circuit pattern on a wafer surface with a deep depth of focus. Wavelength conversion is in progress. The exposure light source is advanced from the conventional g-line (wavelength 436 nm) or i-line (wavelength 365 nm) to KrF excimer laser (wavelength 248 nm) or ArF.
An excimer laser (wavelength 193 nm) is about to be used. In addition, in order to support next-generation integrated circuits with circuit patterns of 100 nm or less, the exposure light source F
The use of two lasers (wavelength 157.6 nm) is being investigated.

【0003】波長155〜400nmの光を光源とする
光源とする露光装置の光学系には、近赤外域から紫外域
までの広範囲にわたって透過性に優れ、熱膨張係数が極
めて小さく加工が比較的容易などの理由から、合成石英
ガラスが主に用いられてきた。従来用いられてきた合成
石英ガラスは、例えば特開平3−88742号公報に開
示されたものが知られている。すなわち合成石英ガラス
体中のOH基含有量が10ppm以上であり、かつ水素
を5×1016分子/cm以上含有することを特徴と
するものである。
In an optical system of an exposure apparatus having a light source having a wavelength of 155 to 400 nm as a light source, the optical system has excellent transparency over a wide range from the near infrared region to the ultraviolet region, has a very small coefficient of thermal expansion, and is relatively easy to process. For these reasons, synthetic quartz glass has been mainly used. As the synthetic quartz glass that has been conventionally used, for example, the one disclosed in Japanese Patent Laid-Open No. 3-88742 is known. That is, it is characterized in that the synthetic quartz glass body has an OH group content of 10 ppm or more and contains hydrogen of 5 × 10 16 molecules / cm 3 or more.

【0004】合成石英ガラス中の水素分子は、紫外線照
射により生じるE’センター(≡Si・)やNBOHC
(≡SiO・)などの常磁性欠陥を、以下の式に従っ
て、紫外域に吸収帯を有する欠陥をそれぞれ≡SiHや
≡SiOHなど紫外域に吸収帯を有しない構造に変換す
るはたらきを有しており、同報発明は紫外線照射による
透過率低下が少ない合成石英ガラスを供するものであ
る。
Hydrogen molecules in the synthetic quartz glass are E'centers (≡Si.) And NBOHC generated by ultraviolet irradiation.
According to the following formula, a paramagnetic defect such as (≡SiO.) Is converted into a structure having an absorption band in the ultraviolet region into a structure having no absorption band in the ultraviolet region such as ≡SiH or ≡SiOH. Therefore, the same invention provides a synthetic quartz glass that is less likely to be reduced in transmittance due to ultraviolet irradiation.

【0005】[0005]

【数1】 [Equation 1]

【0006】しかしながら、合成石英ガラス中の水素分
子は紫外線照射により生じた欠陥を修復するはたらきを
有するのみであり、同報発明は耐光性を根本的に改善す
るものではなく、また同報発明の合成石英ガラスであっ
ても、紫外線を照射した場合に屈折率の上昇などのダメ
ージが生じ問題であった。これら問題は、KrFエキシ
マレーザ、ArFエキシマレーザさらにはFレーザと
光の波長が短くなるにつれ光子の持つエネルギーが増す
ため、波長200nm以下の深紫外光〜真空紫外光用光
学部材として用いられる場合には特に深刻であった。
However, the hydrogen molecules in the synthetic quartz glass only have a function of repairing defects caused by irradiation with ultraviolet rays, and the invention of the same publication does not fundamentally improve the light resistance. Even with synthetic quartz glass, there is a problem that damage such as increase in refractive index occurs when it is irradiated with ultraviolet rays. These problems are caused by increasing the energy of photons as the wavelength of light becomes shorter with KrF excimer laser, ArF excimer laser, and further with F 2 laser. Therefore, when used as an optical member for deep ultraviolet light to vacuum ultraviolet light having a wavelength of 200 nm or less. Was especially serious.

【0007】紫外線を照射した場合の屈折率上昇や透過
率低下の原因は明確ではないが、合成石英ガラス中の歪
んだ構造、例えば三員環構造や四員環構造などの欠陥前
駆体が紫外線照射により切断され、E’センターやNB
OHCなどの構造欠陥が生成するためと推定される。根
本的な耐光性の改善のためには合成石英ガラス中の歪ん
だ構造の低減が不可欠と考えられる。
Although the cause of the increase in the refractive index and the decrease in the transmittance when irradiated with ultraviolet rays is not clear, the defect precursors such as the distorted structure in the synthetic quartz glass, for example, the three-membered ring structure and the four-membered ring structure are ultraviolet rays. Cut by irradiation, E'center and NB
It is presumed that structural defects such as OHC are generated. It is considered that the reduction of the distorted structure in the synthetic quartz glass is indispensable for the fundamental improvement of the light resistance.

【0008】また合成石英ガラス中のOH基は、紫外線
照射時の赤色蛍光発光に影響を与えるだけでなく、波長
180nm以下の真空紫外域における光透過性を低下さ
せる。従って合成石英ガラス中のOH基含有量は少ない
ほうが好ましい。
Further, the OH group in the synthetic quartz glass not only affects the red fluorescence emission upon irradiation with ultraviolet rays, but also reduces the light transmittance in the vacuum ultraviolet region having a wavelength of 180 nm or less. Therefore, it is preferable that the OH group content in the synthetic quartz glass is small.

【0009】そこで耐光性、さらには真空紫外域におけ
る光透過性を改善する方法として、本発明者らは、特開
2001−19450公報にて、フッ素を含有しかつO
H基含有量が100ppm未満であることを特徴とする
光学部材用合成石英ガラスを提案した。このように合成
石英ガラス内にフッ素を含有させることにより、合成石
英ガラス中の歪んだ構造が低減され、紫外線照射した場
合のダメージは低減される。
Therefore, as a method for improving the light resistance and the light transmittance in the vacuum ultraviolet region, the inventors of the present invention described in JP-A-2001-19450 disclose that they contain fluorine and O.
We have proposed a synthetic quartz glass for optical members, which has an H group content of less than 100 ppm. By containing fluorine in the synthetic quartz glass in this manner, the distorted structure in the synthetic quartz glass is reduced, and damage caused by irradiation with ultraviolet rays is reduced.

【0010】本発明者らは特開2001−19450公
報で、フッ素を含有しOH基含有量の少ない合成石英ガ
ラスの製造方法として、以下のような方法を提案した。
すなわち、ガラス形成原料を火炎加水分解して得られる
石英ガラス微粒子を基材に堆積、成長させて多孔質石英
ガラスを形成し、得られた多孔質石英ガラスをフッ素化
合物含有雰囲気下、600℃以下の温度にて処理するこ
とにより多孔質石英ガラス中のOH基含有量を低減する
とともにフッ素をドープした後、透明ガラス化するもの
である。しかしながらこの方法では、大量のフッ素ドー
プを必要とする場合には、充分でないことがあった。
The inventors of the present invention have proposed the following method in Japanese Patent Laid-Open No. 2001-19450 as a method for producing synthetic quartz glass containing fluorine and having a small OH group content.
That is, silica glass fine particles obtained by flame hydrolysis of a glass forming raw material are deposited and grown on a base material to form a porous silica glass, and the obtained porous silica glass is heated to 600 ° C. or less in a fluorine compound-containing atmosphere. The OH group content in the porous quartz glass is reduced by the treatment at the temperature of 1, and the glass is transparentized after being doped with fluorine. However, this method may not be sufficient when a large amount of fluorine dope is required.

【0011】またフッ素含有量の高い合成石英ガラスを
作製する方法として、例えば特開2001−89170
公報などにおいて、多孔質石英ガラスをフッ素化合物雰
囲気下、温度600〜1450℃で処理することによ
り、1000ppm以上の高濃度のフッ素を含有する合
成石英ガラスの作製方法が提案されている。しかしなが
ら、多孔質石英ガラスをフッ素化合物雰囲気下にて処理
する際に酸素欠乏型欠陥(≡Si−Si≡)が生成する
場合があった。酸素欠乏型欠陥は163nmを中心とし
た吸収帯を有し波長155〜180nmの真空紫外域に
おける光透過率を損なうだけでなく、耐光性にも悪影響
を及ぼすため酸素欠乏型欠陥は実質的に含有しないこと
が好ましい。
Further, as a method for producing a synthetic quartz glass having a high fluorine content, for example, Japanese Patent Laid-Open No. 2001-89170.
In gazettes and the like, a method for producing a synthetic quartz glass containing a high concentration of 1000 ppm or more of fluorine is proposed by treating porous quartz glass in a fluorine compound atmosphere at a temperature of 600 to 1450 ° C. However, oxygen-deficient defects (≡Si—Si≡) may be generated when the porous quartz glass is treated in a fluorine compound atmosphere. Oxygen-deficient defects have an absorption band centered at 163 nm and not only impair the light transmittance in the vacuum ultraviolet region of wavelength 155 to 180 nm, but also adversely affect the light resistance, so oxygen-deficient defects are substantially contained. Not preferably.

【0012】また特開2001−19450公報におい
て、多孔質石英ガラスのOH基含有量を低減、フッ素ド
ープ処理した後、あるいは同処理を実施する際に、酸素
ガスを含んだ雰囲気中で多孔質石英ガラスを処理するこ
とにより、酸素欠乏型欠陥を修復する方法が提案されて
いる。しかしこの場合は、新たに異なる欠陥、すなわち
酸素過剰型欠陥が生成するおそれがないわけではない。
Further, in Japanese Patent Laid-Open No. 2001-19450, the porous quartz glass is reduced in the OH group content, and after the fluorine doping treatment or when the treatment is carried out, the porous quartz is contained in an atmosphere containing oxygen gas. A method of repairing oxygen-deficient defects by treating glass has been proposed. However, in this case, there is a possibility that another different defect, that is, an oxygen-excessive defect is newly generated.

【0013】また透明ガラス化工程以前の工程にて生成
した酸素欠乏型欠陥を修復するために、透明合成石英ガ
ラスブロックを酸素ガス含有雰囲気中にて加熱処理する
方法が特開平8−75901号公報にて提案されている
が、その処理には非常に時間を要すること、酸素過剰型
欠陥が生成する、合成石英ガラス中に酸素分子が含まれ
てしまう可能性があるなどの問題があった。合成石英ガ
ラス中の酸素過剰型欠陥および酸素分子は波長155〜
180nmの広い範囲において光吸収帯を有し同波長域
における光透過性を損ない、さらに紫外線照射時の赤色
蛍光を発する、NBOHCを生成させ真空紫外〜紫外域
における光透過性を低減するため、実質的に含有しない
ことが好ましい。
Further, in order to repair the oxygen-deficient type defects generated in the steps before the transparent vitrification step, a method of heat-treating a transparent synthetic quartz glass block in an atmosphere containing oxygen gas is disclosed in Japanese Patent Laid-Open No. 8-75901. However, there are problems that the treatment requires a very long time, oxygen-excessive defects are generated, and oxygen molecules may be contained in the synthetic quartz glass. Oxygen-rich defects and oxygen molecules in synthetic quartz glass have wavelengths of 155 to 155.
Since it has a light absorption band in a wide range of 180 nm, impairs the light transmittance in the same wavelength range, and further emits red fluorescence upon irradiation with ultraviolet rays, NBOHC is generated to reduce the light transmittance in the vacuum ultraviolet to ultraviolet range. It is preferable not to contain it.

【0014】[0014]

【発明が解決しようとする課題】本発明は、耐光性およ
び光透過性に優れた高濃度にフッ素を含有する合成石英
ガラスを安定して作製する方法ならびに、耐光性および
光透過性に優れたフッ素含有合成石英ガラスの提供を目
的とする。
DISCLOSURE OF THE INVENTION The present invention provides a method for stably producing a synthetic quartz glass containing a high concentration of fluorine, which is excellent in light resistance and light transmittance, and excellent in light resistance and light transmittance. It is intended to provide a fluorine-containing synthetic quartz glass.

【0015】[0015]

【課題を解決するための手段】本発明者らは、合成石英
ガラス中の酸素欠乏型欠陥と酸素過剰型欠陥の含有量、
および合成石英ガラス中のフッ素含有量に対する、多孔
質石英ガラスをフッ素化合物含有雰囲気下にて処理する
際の条件の影響に関して詳細に検討を行った。その結
果、酸素欠乏型欠陥の生成を抑制するためには、多孔質
石英ガラスをフッ素化合物含有雰囲気下にて処理する際
の温度が重要であり、800℃以下の低温で処理すれ
ば、多孔質石英ガラス中のOH基とフッ素との置換反応
のみ進行させることができ、酸素欠乏型欠陥の生成を防
ぐことができることを見出した。
The present inventors have found that the content of oxygen-deficient defects and oxygen-excessive defects in synthetic quartz glass,
Further, the influence of the conditions when treating the porous quartz glass in the fluorine compound-containing atmosphere on the fluorine content in the synthetic quartz glass was investigated in detail. As a result, in order to suppress the generation of oxygen-deficient defects, the temperature at which the porous quartz glass is treated in a fluorine compound-containing atmosphere is important. It was found that only the substitution reaction between the OH group and the fluorine in the quartz glass can proceed, and the generation of oxygen-deficient defects can be prevented.

【0016】この場合、酸素欠乏型欠陥の修復を目的と
した多孔質石英ガラスあるいは合成石英ガラス体の酸素
含有雰囲気下における処理を実施する必要がないため、
酸素過剰型欠陥あるいは酸素分子を含有しない合成石英
ガラスが得られる。さらに、この場合、最終的に得られ
る合成石英ガラス中のフッ素含有量は、多孔質石英ガラ
ス中のOH基含有量によって決まり、多孔質石英ガラス
中のOH基含有量が多ければ多いほどフッ素含有量の高
い合成石英ガラスが得られる。
In this case, since it is not necessary to treat the porous quartz glass or the synthetic quartz glass body in an oxygen-containing atmosphere for the purpose of repairing oxygen-deficient defects,
A synthetic quartz glass containing no oxygen-rich defects or oxygen molecules can be obtained. Furthermore, in this case, the fluorine content in the finally obtained synthetic quartz glass depends on the OH group content in the porous quartz glass, and the higher the OH group content in the porous quartz glass, the more the fluorine content. A high amount of synthetic quartz glass can be obtained.

【0017】すなわち本発明は波長155〜250nm
の光を光源とする光学装置の光学部材として用いられる
光学部材用合成石英ガラスの製法において、(a)ガラ
ス形成原料を火炎加水分解して得られる石英ガラス微粒
子を基材に堆積・成長させて多孔質石英ガラスを形成す
る工程と、(b)該多孔質石英ガラスを水蒸気含有雰囲
気下に保持することにより、該多孔質石英ガラス中のO
H基含有量を制御する工程と、(c)該多孔質石英ガラ
スをフッ素化合物含有雰囲気下に保持し、該多孔質石英
ガラスにフッ素をドープすると同時にOH含有量を低減
する工程と、(d)該多孔質石英ガラスを1300℃以
上の温度に昇温して透明ガラス化し、フッ素を含有した
透明石英ガラス体を得る工程と、を含むことを特徴とす
る光学部材用合成石英ガラスの製法を提供するものであ
る。
That is, the present invention has a wavelength of 155 to 250 nm.
In the method for producing a synthetic quartz glass for an optical member used as an optical member of an optical device which uses the light of (1) as a light source, (a) silica glass fine particles obtained by flame hydrolysis of a glass forming raw material are deposited and grown on a substrate. O in the porous quartz glass by the step of forming the porous quartz glass, and (b) maintaining the porous quartz glass in an atmosphere containing water vapor.
Controlling the H group content, (c) maintaining the porous quartz glass in a fluorine compound-containing atmosphere, doping the porous quartz glass with fluorine, and simultaneously reducing the OH content; ) A step of raising the temperature of the porous quartz glass to a temperature of 1300 ° C. or higher to obtain a transparent quartz glass body containing fluorine to obtain a transparent quartz glass body containing fluorine. It is provided.

【0018】[0018]

【発明の実施の形態】本発明の工程(a)は、多孔質石
英ガラスの製造工程である。合成石英ガラスの形成原料
としては、ガス化可能な原料であれば特に制限されない
が、SiCl、SiHCl、SiHCl、Si
CHClなどの塩化物、SiF、SiHF、S
iHなどのフッ化物、SiBr、SiHBr
などの臭化物、SiIなどの沃化物といったハロゲン
化珪素化合物、またはRnSi(OR)4−n(ここに
Rは炭素数1〜4のアルキル基、nは0〜3の整数)で
示されるアルコキシシランや(CHSi−O−S
i(CHなどのハロゲンを含まない珪素化合物が
挙げられる。
BEST MODE FOR CARRYING OUT THE INVENTION Step (a) of the present invention is a step for producing porous quartz glass. The raw material for forming the synthetic quartz glass is not particularly limited as long as it is a gasifiable raw material, but SiCl 4 , SiHCl 3 , SiH 2 Cl 2 , Si
Chlorides such as CH 3 Cl 3 , SiF 4 , SiHF 3 , S
Fluoride such as iH 2 F 2 , SiBr 4 , SiHBr 3
Bromides such as, alkoxy represented by halogenated silicon compounds such as iodide such as SiI 4, or RnSi (OR) 4-n (wherein R is an alkyl group having 1 to 4 carbon atoms, n represents an integer of 0 to 3) silane and (CH 3) 3 Si-O -S
A halogen-free silicon compound such as i (CH 3 ) 3 may be mentioned.

【0019】ガラス形成原料にハロゲン化珪素化合物を
用いる場合には、合成石英ガラス中にガラス形成原料中
のハロゲンが残留する場合があり、ハロゲンの残留含有
量にバラツキが生じ屈折率均質性を損なう可能性があ
る。したがって、ガラス形成原料としてはハロゲンを含
まない有機珪素化合物が好ましい。ただしハロゲンを含
まない有機珪素化合物は比較的高価であり、これをガラ
ス形成原料に用いた場合には製造コストの上昇が避けら
れない。そこで製造コストを抑制するためにハロゲン化
珪素化合物をガラス形成原料として用いる場合には、屈
折率への影響が最も少ない塩化珪素化合物を使用するこ
とが好ましい。
When a silicon halide compound is used as the glass forming raw material, the halogen in the glass forming raw material may remain in the synthetic quartz glass, and the residual content of the halogen varies to impair the homogeneity of the refractive index. there is a possibility. Therefore, a halogen-free organosilicon compound is preferable as the glass forming raw material. However, an organosilicon compound containing no halogen is relatively expensive, and when this is used as a glass forming raw material, an increase in manufacturing cost cannot be avoided. Therefore, when a silicon halide compound is used as a glass forming raw material in order to suppress the manufacturing cost, it is preferable to use a silicon chloride compound which has the least influence on the refractive index.

【0020】また石英ガラス微粒子を堆積・成長させる
基材は、得られる多孔質石英ガラスのかさ密度分布形状
を整える、回転対称にするという観点から、回転させる
ことが好ましい。回転速度は石英ガラス微粒子の堆積・
成長速度によるが、毎分10回転〜0.1回転の範囲が
好ましい。
The substrate on which the silica glass particles are deposited and grown is preferably rotated from the viewpoint of adjusting the bulk density distribution shape of the obtained porous silica glass and making it rotationally symmetric. The rotation speed is the deposition of quartz glass particles.
Although it depends on the growth rate, a range of 10 to 0.1 rotations per minute is preferable.

【0021】本発明の工程(b)は、多孔質石英ガラス
中のOH基含有量を制御する工程である。多孔質石英ガ
ラスの制御工程では、多孔質石英ガラスを800〜13
50℃の温度にて水蒸気含有雰囲気下にて保持する。水
蒸気含有雰囲気としては、水蒸気を0.1〜100体積
%含有する不活性ガス雰囲気が好ましい。また、雰囲気
圧力は100Pa〜101kPa(すなわち大気圧)が
好ましい。さらに、保持時間は、数時間〜数十時間が好
ましい。この場合、多孔質石英ガラスへ均一に短時間で
OH基をドープするためには、減圧下(13.3kPa
以下、特に1.3kPa以下が好ましい。)で保持した
状態で水蒸気含有ガスを常圧になるまで導入し、水蒸気
含有雰囲気とすることが好ましい。
The step (b) of the present invention is a step of controlling the OH group content in the porous quartz glass. In the step of controlling the porous quartz glass, the porous quartz glass was
Hold at a temperature of 50 ° C. in an atmosphere containing water vapor. The water vapor-containing atmosphere is preferably an inert gas atmosphere containing 0.1 to 100% by volume of water vapor. The atmospheric pressure is preferably 100 Pa to 101 kPa (that is, atmospheric pressure). Furthermore, the holding time is preferably several hours to several tens of hours. In this case, in order to uniformly dope OH groups into the porous quartz glass in a short time, a reduced pressure (13.3 kPa) is used.
It is particularly preferably 1.3 kPa or less. It is preferable to introduce a water vapor-containing gas to a normal pressure in the state of being held in (1) to make a water vapor-containing atmosphere.

【0022】また本発明において、OH基含有量制御工
程を実施する際の多孔質石英ガラスの平均かさ密度は
1.6g/cm以下、かさ密度分布(すなわち、多孔
質石英ガラスの成長軸方向に垂直な断面において、外周
から20mmを除いた領域内でのかさ密度の最大と最小
との差)は0.6g/cm以下であることが好まし
い。これは、多孔質石英ガラスの形成条件を調整した
り、あるいは多孔質石英ガラスの製造工程とOH基含有
量を低減する工程との間で多孔質石英ガラスを1000
℃〜1500℃の範囲内にて加熱したりして、行える。
In the present invention, the average bulk density of the porous quartz glass at the time of carrying out the OH group content control step is 1.6 g / cm 3 or less, and the bulk density distribution (that is, the growth axis direction of the porous quartz glass is In a cross section perpendicular to, the difference between the maximum and minimum bulk densities within a region excluding 20 mm from the outer circumference) is preferably 0.6 g / cm 3 or less. This is because the conditions for forming the porous quartz glass are adjusted, or the amount of the porous quartz glass is reduced to 1000 between the step of manufacturing the porous quartz glass and the step of reducing the OH group content.
It can be performed by heating in the range of ℃ to 1500 ℃.

【0023】OH基含有量制御工程における、多孔質石
英ガラスの平均かさ密度を前記範囲内とすることによ
り、多孔質石英ガラス中のOH基含有量を充分に制御す
ることができ、また、この後のフッ素ドープ工程におけ
るフッ素ドープを充分に行うことができる。またかさ密
度分布を前記範囲内とすることにより、最終的に得られ
た合成石英ガラス体中のOH基含有量やフッ素含有量に
分布が生じにくく、屈折率や光透過率の均一性が向上す
る。
By setting the average bulk density of the porous quartz glass in the OH group content controlling step within the above range, the OH group content in the porous quartz glass can be sufficiently controlled, and this Fluorine doping in the subsequent fluorine doping step can be sufficiently performed. Further, by setting the bulk density distribution within the above range, distribution is unlikely to occur in the OH group content and the fluorine content in the finally obtained synthetic quartz glass body, and the uniformity of the refractive index and the light transmittance is improved. To do.

【0024】本発明の工程(c)は、フッ素ドープ工程
である。フッ素をドープするためには、多孔質石英ガラ
スをフッ素含有雰囲気中に保持する。フッ素含有雰囲気
としては、含フッ素ガス(例えばSiF、SF、C
HF、CF、Fなど)を0.1〜50体積%含有
する不活性ガス雰囲気が好ましい。雰囲気温度は室温〜
800℃が好ましい。また、雰囲気圧力100Pa〜1
01kPa(101kPa=大気圧)が好ましい。さら
に、保持時間は、数時間〜数十時間が好ましい。この場
合、多孔質石英ガラスへ均一に短時間でフッ素をドープ
できることから、減圧下(13.3kPa以下、特に
1.3kPa以下が好ましい。)で保持した状態で含フ
ッ素ガスを常圧になるまで導入し、フッ素含有雰囲気と
することが好ましい。800℃を超える高温でフッ素ド
ープする場合には、酸素欠乏欠陥などの還元型欠陥が生
成しやすくなる。
The step (c) of the present invention is a fluorine doping step. To dope with fluorine, the porous quartz glass is kept in a fluorine-containing atmosphere. The fluorine-containing atmosphere may be a fluorine-containing gas (for example, SiF 4 , SF 6 , C
An inert gas atmosphere containing 0.1 to 50% by volume of HF 3 , CF 4 , F 2 and the like) is preferable. Ambient temperature is room temperature ~
800 ° C is preferred. Also, the atmospheric pressure is 100 Pa to 1
01 kPa (101 kPa = atmospheric pressure) is preferable. Furthermore, the holding time is preferably several hours to several tens of hours. In this case, since the porous quartz glass can be uniformly doped with fluorine in a short time, the fluorine-containing gas is kept under a reduced pressure (13.3 kPa or less, particularly preferably 1.3 kPa or less) until the atmospheric pressure is reached. It is preferable to introduce it and make it a fluorine-containing atmosphere. When fluorine doping is performed at a high temperature exceeding 800 ° C., reduction type defects such as oxygen deficiency defects are likely to be generated.

【0025】本発明の工程(d)は、透明ガラス化工程
である。透明ガラス化は、多孔質石英ガラスを所定の透
明ガラス化温度で所定時間保持することにより行われ
る。透明ガラス化温度は、通常は1300〜1600℃
であり、特に1350〜1500℃であることが好まし
い。またこの際の雰囲気としては、ヘリウムや窒素など
の不活性ガス100体積%の雰囲気、またはヘリウムや
窒素などの不活性ガスを主成分とする雰囲気を用いるこ
とができる。圧力については、減圧または常圧であれば
よい。特に常圧の場合にはヘリウムガスを用いることが
できる。また、減圧の場合には100Torr(13.
3kPa)以下とすることが好ましい。
The step (d) of the present invention is a transparent vitrification step. The transparent vitrification is performed by maintaining the porous quartz glass at a predetermined transparent vitrification temperature for a predetermined time. The transparent vitrification temperature is usually 1300 to 1600 ° C.
And particularly preferably 1350 to 1500 ° C. As the atmosphere at this time, an atmosphere containing 100% by volume of an inert gas such as helium or nitrogen, or an atmosphere containing an inert gas such as helium or nitrogen as a main component can be used. The pressure may be reduced pressure or normal pressure. Helium gas can be used especially under normal pressure. In the case of decompression, 100 Torr (13.
It is preferably 3 kPa) or less.

【0026】本発明の方法により得られた合成石英ガラ
スは、露光装置用のレンズ、その他の光学部材として用
いるために、光学部材として必要な屈折率均質性や低複
屈折性などの光学特性を与えるための均質化、成形、ア
ニールなどの各熱処理(以下、光学的熱処理という)を
適宜行う必要がある。窒素ガスやアルゴンガスなどの不
活性ガス雰囲気下、温度500〜1200℃、圧力10
1kPa(大気圧)〜1Paにて数十〜数百時間保持し
て、アニールを実施することにより合成石英ガラス中の
三員環構造や四員環構造などの歪んだ構造を低減するこ
とができるが、合成石英ガラス中のフッ素含有量が多い
ほどよりより短時間のアニール処理により合成石英ガラ
ス中の歪んだ構造を低減できる。光学的熱処理は透明ガ
ラス化の後に行うことができる。
The synthetic quartz glass obtained by the method of the present invention has optical properties such as a homogeneity of refractive index and a low birefringence necessary for an optical member in order to be used as a lens for an exposure apparatus and other optical members. It is necessary to appropriately perform each heat treatment such as homogenization, forming, and annealing (hereinafter referred to as an optical heat treatment) for giving. Under an inert gas atmosphere such as nitrogen gas or argon gas, the temperature is 500 to 1200 ° C and the pressure is 10
By holding at 1 kPa (atmospheric pressure) to 1 Pa for several tens to several hundreds of hours and performing annealing, a distorted structure such as a three-membered ring structure or a four-membered ring structure in the synthetic quartz glass can be reduced. However, the higher the fluorine content in the synthetic quartz glass, the shorter the annealing treatment can reduce the distorted structure in the synthetic quartz glass. The optical heat treatment can be performed after the transparent vitrification.

【0027】次に本発明の光学部材用合成石英ガラスの
組成について、説明する。本発明において、合成石英ガ
ラス中のOH基は、紫外線照射時の赤色蛍光発光を増加
させるだけでなく真空紫外域における光透過性を損なう
ため、その含有量は少ない方が好ましい。具体的には合
成石英ガラス中のOH基含有量は10ppm以下、特に
は5ppm以下、さらには1ppm以下が好ましい。
Next, the composition of the synthetic quartz glass for optical members of the present invention will be described. In the present invention, the OH group in the synthetic quartz glass not only increases the red fluorescence emission upon irradiation with ultraviolet rays but also impairs the light transmittance in the vacuum ultraviolet region, so that the content thereof is preferably small. Specifically, the OH group content in the synthetic quartz glass is 10 ppm or less, particularly 5 ppm or less, and further preferably 1 ppm or less.

【0028】本発明において、合成石英ガラス中の塩素
は、真空紫外域における光透過性および耐光性を悪化さ
せるため、その含有量が少ない方が好ましい。具体的に
は合成石英ガラス中の塩素含有量は10ppm以下、特
には5ppm以下、さらには実質的に含有しないことが
好ましい。
In the present invention, the chlorine content in the synthetic quartz glass deteriorates the light transmittance and light resistance in the vacuum ultraviolet region, so that it is preferable that the content of chlorine is small. Specifically, the chlorine content in the synthetic quartz glass is 10 ppm or less, particularly 5 ppm or less, and further preferably substantially no chlorine.

【0029】本発明において、合成石英ガラス中のフッ
素は、OH基と置換しOH基含有量を低減する効果を有
するうえ、三員環構造、四員環構造などの歪んだ構造を
低減する効果がある。具体的には本発明の合成石英ガラ
スはフッ素を500ppm以上、特に1000ppm以
上含有することが好ましい。
In the present invention, fluorine in the synthetic quartz glass has the effect of substituting with OH groups to reduce the content of OH groups, and also has the effect of reducing distorted structures such as a three-membered ring structure and a four-membered ring structure. There is. Specifically, the synthetic quartz glass of the present invention preferably contains fluorine in an amount of 500 ppm or more, particularly 1000 ppm or more.

【0030】また、フッ素含有量分布は、光学部材とし
ての使用領域において、フッ素含有量の最大と最小との
差で400ppm以下であることが好ましく、特には5
0ppm以下、さらには10ppm以下であることが好
ましい。
Further, the fluorine content distribution is preferably 400 ppm or less, particularly 5 in terms of the difference between the maximum and the minimum fluorine content in the usage region as an optical member.
It is preferably 0 ppm or less, more preferably 10 ppm or less.

【0031】本発明において、合成石英ガラス中の酸素
欠乏型欠陥(≡Si−Si≡,(≡はSi−O結合を示
す。以下同様))、酸素過剰型欠陥(≡Si−O−O−
Si≡)、≡SiH結合、溶存酸素分子などは真空紫外
光透過性および耐光性に悪影響を及ぼすため、実質的に
含有しない方が好ましい。
In the present invention, oxygen-deficient type defects (≡Si—Si≡, (≡ represents Si—O bond; hereinafter the same)) and excess oxygen type defects (≡Si—O—O—) in synthetic quartz glass.
Si≡), ≡SiH bonds, dissolved oxygen molecules and the like adversely affect the vacuum ultraviolet light transmittance and the light resistance, and thus it is preferable that they are not substantially contained.

【0032】本発明において、合成石英ガラス中のアル
カリ金属(Na,K,Liなど)、アルカリ土類金属
(Mg,Caなど)、遷移金属(Fe,Ni,Cr,C
u,Mo,W,Al,Ti,Ceなど)などの金属不純
物は、紫外域から真空紫外域における透過率を低下させ
るだけでなく、耐紫外線性を低下させる原因ともなるた
め、その含有量は極力少ない方が好ましい。具体的には
金属不純物の合計含有量が100ppb以下、特に50
ppb以下が好ましい。
In the present invention, alkali metals (Na, K, Li, etc.), alkaline earth metals (Mg, Ca, etc.), transition metals (Fe, Ni, Cr, C) in synthetic quartz glass are used.
Since metal impurities such as u, Mo, W, Al, Ti, and Ce) not only lower the transmittance in the ultraviolet region to the vacuum ultraviolet region but also reduce the ultraviolet resistance, their content is It is preferable that the number is as small as possible. Specifically, the total content of metal impurities is 100 ppb or less, especially 50
It is preferably ppb or less.

【0033】さらに本発明の方法により得られた合成石
英ガラスは、耐紫外線性を向上させるために、水素分子
を含有させると効果的な場合がある。具体的には合成石
英ガラスを水素含有雰囲気下、600℃以下の温度で加
熱処理することにより、合成石英ガラス中へ水素分子を
拡散、含有させる。
Further, the synthetic quartz glass obtained by the method of the present invention may be effective in containing hydrogen molecules in order to improve the ultraviolet resistance. Specifically, synthetic quartz glass is heat-treated in a hydrogen-containing atmosphere at a temperature of 600 ° C. or lower to diffuse and contain hydrogen molecules in the synthetic quartz glass.

【0034】水素分子は紫外線照射により生じるE’セ
ンターやNBOHCなどの常磁性欠陥を修復し波長18
0〜300nmにおける吸収帯の生成を抑制するはたら
きを有する。波長180〜250nmの光を光源とする
光学装置の光学部材として用いる場合には、水素分子を
1×1017分子/cm以上含有させることが好まし
い。
Hydrogen molecules repair the paramagnetic defects such as the E'center and NBOHC, which are generated by ultraviolet irradiation, and have a wavelength of 18
It has a function of suppressing the generation of an absorption band at 0 to 300 nm. When used as an optical member of an optical device that uses light having a wavelength of 180 to 250 nm as a light source, it is preferable that hydrogen molecules are contained in an amount of 1 × 10 17 molecules / cm 3 or more.

【0035】しかしながら、合成石英ガラス体中の水素
分子は紫外線照射中の酸素欠乏型欠陥(≡Si−Si
≡)生成を促進する作用があり、同欠陥は波長163n
mを中心とする吸収体を有するため、波長155〜18
0nmの光を光源とする光学装置の光学部材として用い
る場合には、用途、使用条件にもよるが、合成石英ガラ
ス中の水素分子含有量を1×1017分子/cm以下
とすることが好ましい場合がある。
However, the hydrogen molecules in the synthetic quartz glass body are oxygen-deficient type defects (≡Si-Si) during ultraviolet irradiation.
≡) has the effect of promoting the generation, and the defect has a wavelength of 163n.
Since it has an absorber centering on m, it has a wavelength of 155 to 18
When used as an optical member of an optical device using 0 nm light as a light source, the hydrogen molecule content in the synthetic quartz glass should be 1 × 10 17 molecules / cm 3 or less, depending on the application and use conditions. It may be preferable.

【0036】[0036]

【実施例】表1に示す条件にて、四塩化珪素またはヘキ
サメチルジシロキサン(HMDS)のガラス形成原料を
酸水素火炎中で加水分解させ、形成されたSiO微粒
子を回転する基材上に堆積させて直径350mm、長さ
600mmの多孔質石英ガラス(平均かさ密度0.7g
/cm、かさ密度分布0.1g/cm)を作製した
(工程(a))。
EXAMPLES Under the conditions shown in Table 1, a glass forming raw material of silicon tetrachloride or hexamethyldisiloxane (HMDS) was hydrolyzed in an oxyhydrogen flame, and the formed SiO 2 fine particles were formed on a rotating substrate. Porous quartz glass with a diameter of 350 mm and a length of 600 mm (average bulk density 0.7 g)
/ Cm 3 and bulk density distribution 0.1 g / cm 3 ) were prepared.
(Step (a)).

【0037】次いで、多孔質石英ガラスを雰囲気制御可
能な炉にセットし、圧力150Pa以下の減圧に保持し
た状態で、表1に示す温度まで昇温して、この温度にて
所定のガスを導入しOH基含有量の制御を実施した(工
程(b))。続いて、多孔質石英ガラスを雰囲気制御可
能な炉にセットし、圧力150Pa以下の減圧に保持し
た状態で、表1に示す温度まで昇温して、この温度にて
所定のガスを導入し、多孔質石英ガラス中のOH基含有
量を低減を行うと同時にフッ素ドープを実施した(工程
(c))。
Then, the porous quartz glass was set in a furnace capable of controlling the atmosphere, the temperature was maintained at a reduced pressure of 150 Pa or less, the temperature was raised to the temperature shown in Table 1, and a predetermined gas was introduced at this temperature. Then, the OH group content was controlled (step (b)). Subsequently, the porous quartz glass was set in a furnace capable of controlling the atmosphere, and the temperature was raised to the temperature shown in Table 1 while maintaining a reduced pressure of 150 Pa or less, and a predetermined gas was introduced at this temperature, The content of OH groups in the porous quartz glass was reduced and, at the same time, fluorine doping was performed (step (c)).

【0038】その後、多孔質石英ガラスを圧力150P
a以下の減圧に保持した状態で1450℃まで昇温し
て、この温度にて10時間保持し透明石英ガラス体(直
径φ230mm、長さ450mm)を作製した(工程
(d))。
Then, the porous quartz glass is pressed at a pressure of 150 P.
While maintaining a reduced pressure of a or less, the temperature was raised to 1450 ° C. and maintained at this temperature for 10 hours to prepare a transparent quartz glass body (diameter φ230 mm, length 450 mm) (step (d)).

【0039】各例で得られた透明石英ガラス体を内径2
50mmのカーボン製るつぼの中にセットし、同るつぼ
を電気炉内でアルゴンガス、100vol%、1atm
にて1750℃まで昇温して、この温度にて10時間保
持することにより、透明石英ガラス体の成形を行った。
The inner diameter of the transparent quartz glass body obtained in each example was 2
Set in a 50 mm carbon crucible, and place the crucible in an electric furnace with argon gas, 100 vol%, 1 atm.
The transparent quartz glass body was molded by raising the temperature to 1750 ° C. and holding at this temperature for 10 hours.

【0040】得られた透明石英ガラス体の長手方向ほぼ
中央からサイズφ150mm×20mm厚の評価用試料
を切出し、以下の評価を行った。
An evaluation sample of size 150 mm × 20 mm in thickness was cut out from the center of the obtained transparent quartz glass body in the longitudinal direction, and the following evaluations were performed.

【0041】(OH基含有量評価)評価用試料の中央付
近について赤外分光光度計による測定を行い、波長2.
7μmにおける吸収ピークからOH基含有量を求めた
(J.P.Wiliamset.al.,Cerami
c Bulletin, 55(5), 524,19
76)。本法による検出限界は1ppmである。
(Evaluation of OH group content) Measurement was carried out by an infrared spectrophotometer in the vicinity of the center of the sample for evaluation to obtain a wavelength of 2.
The OH group content was determined from the absorption peak at 7 μm (JP Williams et al., Cerami.
c Bulletin, 55 (5), 524, 19
76). The detection limit of this method is 1 ppm.

【0042】(フッ素含有量評価)評価用試料中央付近
のフッ素含有量をフッ素イオン電極法により分析した。
フッ素含有量の分析方法は下記の通りである。日本化学
会誌、1972(2), 350に記載された方法に従って、合成石
英ガラスを無水炭酸ナトリウムにより加熱融解し、得ら
れた融液に蒸留水および塩酸(体積比で1:1)を加え
て試料液を調整した。試料液の起電力をフッ素イオン選
択性電極および比較電極としてラジオメータトレーディ
ング社製No.945−220およびNo.945−4
68をそれぞれ用いてラジオメータにより測定し、フッ
素イオン標準溶液を用いてあらかじめ作成した検量線に
基づいて、フッ素含有量を求めた。本法による検出限界
は10ppmである。
(Evaluation of Fluorine Content) The fluorine content near the center of the sample for evaluation was analyzed by the fluorine ion electrode method.
The method for analyzing the fluorine content is as follows. According to the method described in The Chemical Society of Japan, 1972 (2), 350, synthetic quartz glass was heated and melted with anhydrous sodium carbonate, and distilled water and hydrochloric acid (volume ratio 1: 1) were added to the obtained melt. A sample solution was prepared. The electromotive force of the sample liquid was changed to No. 945-220 and No. 945-4
68 was used to measure with a radiometer, and the fluorine content was determined based on a calibration curve prepared in advance using a fluorine ion standard solution. The detection limit of this method is 10 ppm.

【0043】(波長157.6nmでの内部光透過率評
価)評価用試料の中央より20mm×20mm×5mm
の試料、および20mm×20mm×30mmの試料を
切り出し、それぞれ20mm角の2面を鏡面研磨し、試
料の温度を25℃に保持した状態で真空紫外分光光度計
(分光計器社製UV201M)により波長157.6n
mでの光透過率を窒素雰囲気下にて測定した。厚み5m
mおよび厚み30mmの2種類の試料の波長157.6
nm光透過率T、Tより、波長157.6nmにお
ける内部光透過率T157.6を下記の式(1)に従っ
て求めた。
(Evaluation of Internal Light Transmittance at Wavelength 157.6 nm) 20 mm × 20 mm × 5 mm from the center of the sample for evaluation
And a sample of 20 mm × 20 mm × 30 mm are cut out, two 20 mm square surfaces are mirror-polished, and the wavelength is measured by a vacuum ultraviolet spectrophotometer (UV201M manufactured by Spectrometer Co., Ltd.) with the sample temperature kept at 25 ° C. 157.6n
The light transmittance at m was measured under a nitrogen atmosphere. 5m thickness
m and thickness of 30 mm for two types of samples having a wavelength of 157.6
The internal light transmittance T 157.6 at a wavelength of 157.6 nm was calculated from the nm light transmittances T 1 and T 2 according to the following formula (1).

【0044】[0044]

【数2】 [Equation 2]

【0045】(三員環構造、四員環構造の含有量評価)ラ
マン分光測定(JobinYbon製 Ramonor
T64000 励起光源:アルゴンイオンレーザ(波長
514.5nm))を行い、レーザラマンスペクトルに
おける495cm−1の散乱ピーク強度Iおよび60
5cm−1の散乱ピーク強度Iと、440cm−1
散乱ピーク強度Iとの強度比I/IおよびI
を求めた。強度比I/I、強度比I/I
値が小さいほど良好である。
(Evaluation of content of three-membered ring structure and four-membered ring structure) Raman spectroscopic measurement (Ramonor manufactured by Jobin Ybon)
T64000 excitation light source: Argon ion laser (wavelength 514.5 nm)) was performed, and the scattering peak intensities I 1 and 60 at 495 cm −1 in the laser Raman spectrum.
The scattering peak intensity I 2 of 5 cm -1, the intensity of the scattering peak intensity I 0 of 440 cm -1 ratio I 1 / I 0 and I 2 /
I 0 was determined. The smaller the intensity ratio I 1 / I 0 and the intensity ratio I 2 / I 0 , the better.

【0046】なお、各散乱ピーク強度I、I、I
の求め方は以下のとおりである。495cm−1の散乱
ピークおよび605cm−1の散乱ピークに対してそれ
ぞれ1本のローレンツ関数によりカーブフィッティング
を行い、実スペクトルとの最小二乗誤差が最小となるよ
うに近似を行って各関数の係数を決定した。440cm
−1の散乱ピークに対しては3本のガウス関数の合成に
より、また495cm −1の散乱ピークと605cm
−1の散乱ピークと440cm−1の散乱ピークとを除
いた残余(ベースライン)に対しては2次関数により、
それぞれカーブフィッティングを行い、実スペクトルと
の最小二乗誤差が最小となるよう近似を行って各関数の
係数を決定した。以上により求められた関数を用いて各
散乱ピークの強度を求めた。
The intensity of each scattering peak I1, ITwo, I0
The method of obtaining is as follows. 495 cm-1Scattering of
Peak and 605 cm-1For the scattering peak of
Curve fitting by one Lorenz function
To minimize the least squares error from the real spectrum.
Then, the coefficient of each function was determined. 440 cm
-1For the scattering peak of
From 495 cm -1Scattering peak and 605 cm
-1Scattering peak and 440 cm-1And the scattering peak of
For the residual (baseline) that has been
Perform curve fitting for each and
Approximate the least-squares error of
The coefficient was determined. Using the function obtained above,
The intensity of the scattering peak was determined.

【0047】(酸素欠乏型欠陥の有無評価)評価用試料の
中央付近より20mm×20mm×5mmの試料、およ
び20mm×20mm×30mmの試料を切り出し、そ
れぞれ20mm角の2面を鏡面研磨し、試料の温度を2
5℃に保持した状態で真空紫外分光光度計(分光計器社
製「UV201M」、以下同じ)により波長163nm
での光透過率を窒素雰囲気下にて測定し、式(2)より
163nmにおける内部透過率T163を算出し、石英
ガラス中のOH基濃度COH(ppm)から式(3)に
より計算される値T idと比較することにより酸素欠乏
型欠陥の有無を評価した。
(Evaluation of Presence or Absence of Oxygen-Deficient Defects) Evaluation Samples
20mm x 20mm x 5mm sample from near the center, and
And cut a sample of 20 mm × 20 mm × 30 mm and
Mirror-polish two surfaces of 20 mm square each and increase the sample temperature to 2
Vacuum ultraviolet spectrophotometer (Spectrometer Co., Ltd.)
Made by "UV201M", same below) wavelength 163nm
Measure the light transmittance under a nitrogen atmosphere and calculate from equation (2)
Internal transmittance T at 163 nm163Calculate the quartz
OH group concentration C in glassOH(Ppm) to formula (3)
Value calculated by T idOxygen deficiency by comparing with
The presence or absence of mold defects was evaluated.

【0048】[0048]

【数3】 [Equation 3]

【0049】[0049]

【数4】 [Equation 4]

【0050】酸素欠乏型欠陥があると、163nmを中
心とした吸収帯があるため、上式(3)より計算される
値より低くなる。
When there is an oxygen deficiency type defect, there is an absorption band centered at 163 nm, which is lower than the value calculated by the above equation (3).

【0051】(酸素過剰型欠陥の有無評価)評価用試料
の中央付近より20mm角×10mm厚の合成石英ガラ
ス試料を準備し試料中のOH基含有量を赤外分光光度計
にて測定する。次いで同試料を水素ガス100%、10
1kPa,1000℃にて30時間保持し、室温まで冷
却した後に、再度試料中のOH基含有量を同様の方法で
測定する。熱処理前後での試料中のOH基含有量の変化
量を算出し、同変化量が1ppm以下であれば、同試料
中には酸素過剰型欠陥が含まれていないと判断した。
(Evaluation of Presence or Absence of Oxygen Excess Defects) A synthetic quartz glass sample of 20 mm square × 10 mm thickness is prepared from the vicinity of the center of the evaluation sample, and the OH group content in the sample is measured by an infrared spectrophotometer. Next, the same sample was used for hydrogen gas 100%, 10
After holding at 1 kPa and 1000 ° C. for 30 hours and cooling to room temperature, the OH group content in the sample is measured again by the same method. The amount of change in the OH group content in the sample before and after the heat treatment was calculated, and if the amount of change was 1 ppm or less, it was determined that the sample did not contain oxygen-excessive defects.

【0052】(耐光性評価)Fレーザ(中心波長15
7.6nm、ラムダフィジーク社製LPX240)を1
mJ/cm/pulseの条件で、評価3にて作製、
使用した厚み5mmおよび厚み30mmの試料に計2×
10パルス照射した。2つの試料について照射前、2
×10パルス照射後の157.6nm透過率を真空紫
外分光光度計により測定し式(2)に従って157.6
nm内部透過率を求め、式(4)により照射前後におけ
る157.6nm内部透過率の変化ΔT157を算出し
た。ΔT157は小さいほど、真空紫外線透過性が安定
しており、優れている。NDは透過率変化が測定精度以
下(±0.1%以下)であったことを示す。
(Evaluation of light resistance) F 2 laser (center wavelength: 15
7.6 nm, LPX240 made by Lambda Physik Ltd. 1
Produced in Evaluation 3 under the condition of mJ / cm 2 / pulse,
2 × in total for the 5 mm thick and 30 mm thick samples used
Irradiation was performed for 10 7 pulses. Before irradiation for two samples, 2
The transmittance at 157.6 nm after irradiation with × 10 7 pulses was measured by a vacuum ultraviolet spectrophotometer and was determined to be 157.6 according to the formula (2).
nm internal transmittance was calculated, and the change ΔT 157 in the 157.6 nm internal transmittance before and after irradiation was calculated by the formula (4). The smaller ΔT 157 is, the more stable the vacuum ultraviolet ray transmittance is and the more excellent it is. ND indicates that the change in transmittance was less than the measurement accuracy (± 0.1% or less).

【0053】[0053]

【数5】 [Equation 5]

【0054】各評価の結果を表2に示す。なお例1、例
2、例14、例15は比較例、その他は実施例である。
The results of each evaluation are shown in Table 2. Examples 1, 2, 14, and 15 are comparative examples, and the others are examples.

【0055】[0055]

【表1】 [Table 1]

【0056】[0056]

【表2】 [Table 2]

【0057】[0057]

【発明の効果】本発明は、フッ素を高濃度に含有する合
成石英ガラスを安定して作製する方法ならびに、耐光性
および光透過性に安定して優れたフッ素含有合成石英ガ
ラスを提供するものである。
INDUSTRIAL APPLICABILITY The present invention provides a method for stably producing a synthetic quartz glass containing a high concentration of fluorine, and a fluorine-containing synthetic quartz glass which is excellent in light resistance and light transmission. is there.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】波長155〜250nmの光を光源とする
光学装置の光学部材として用いられる光学部材用合成石
英ガラスの製法において、(a)ガラス形成原料を火炎
加水分解して得られる石英ガラス微粒子を基材に堆積・
成長させて多孔質石英ガラスを形成する工程と、(b)
該多孔質石英ガラスを水蒸気含有雰囲気下に保持するこ
とにより、該多孔質石英ガラス中のOH基含有量を制御
する工程と、(c)該多孔質石英ガラスをフッ素化合物
含有雰囲気下に保持し、該多孔質石英ガラスにフッ素を
ドープすると同時にOH含有量を低減する工程と、
(d)該多孔質石英ガラスを1300℃以上の温度に昇
温して透明ガラス化し、フッ素を含有した透明石英ガラ
ス体を得る工程と、を含むことを特徴とする光学部材用
合成石英ガラスの製法。
1. A method of producing synthetic quartz glass for an optical member used as an optical member of an optical device having a light source having a wavelength of 155 to 250 nm as a light source, wherein (a) silica glass fine particles obtained by flame hydrolysis of a glass forming raw material. Deposited on the base material
Growing to form a porous quartz glass, (b)
A step of controlling the OH group content in the porous quartz glass by maintaining the porous quartz glass in an atmosphere containing water vapor; and (c) maintaining the porous quartz glass in an atmosphere containing a fluorine compound. , A step of doping the porous quartz glass with fluorine and simultaneously reducing the OH content,
(D) a step of raising the temperature of the porous quartz glass to a temperature of 1300 ° C. or higher to obtain a transparent quartz glass body containing fluorine to obtain a transparent quartz glass body containing fluorine. Manufacturing method.
【請求項2】工程(c)を、フッ素化合物と不活性ガス
を含有する雰囲気下、800℃以下の温度に該多孔質石
英ガラスを保持することにより実施する請求項1記載の
光学部材用合成石英ガラスの製法。
2. The synthesis for optical members according to claim 1, wherein the step (c) is carried out by holding the porous quartz glass at a temperature of 800 ° C. or lower in an atmosphere containing a fluorine compound and an inert gas. Quartz glass manufacturing method.
【請求項3】波長155〜250nmの光を光源とする
光学装置の光学部材として用いられる光学部材用合成石
英ガラスにおいて、OH基含有量10ppm未満、フッ
素含有量500ppm以上であり、実質的に酸素過剰型
欠陥、酸素欠乏型欠陥、酸素分子を含有しないことを特
徴とする光学部材用合成石英ガラス。
3. A synthetic quartz glass for an optical member used as an optical member of an optical device having a light source having a wavelength of 155 to 250 nm as a light source, which has an OH group content of less than 10 ppm and a fluorine content of 500 ppm or more and is substantially oxygen. Synthetic quartz glass for optical members, which is characterized by not containing excessive defects, oxygen-deficient defects, and oxygen molecules.
JP2001399665A 2001-12-28 2001-12-28 Synthetic quartz glass for optical components Expired - Fee Related JP4085633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001399665A JP4085633B2 (en) 2001-12-28 2001-12-28 Synthetic quartz glass for optical components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001399665A JP4085633B2 (en) 2001-12-28 2001-12-28 Synthetic quartz glass for optical components

Publications (3)

Publication Number Publication Date
JP2003201124A true JP2003201124A (en) 2003-07-15
JP2003201124A5 JP2003201124A5 (en) 2005-07-14
JP4085633B2 JP4085633B2 (en) 2008-05-14

Family

ID=27639739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001399665A Expired - Fee Related JP4085633B2 (en) 2001-12-28 2001-12-28 Synthetic quartz glass for optical components

Country Status (1)

Country Link
JP (1) JP4085633B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179088A (en) * 2003-12-17 2005-07-07 Asahi Glass Co Ltd Synthetic quartz glass for optical member and method of manufacturing the same
JP2006176377A (en) * 2004-12-24 2006-07-06 Shinetsu Quartz Prod Co Ltd Method for manufacturing synthetic silica glass having controlled oh group concentration and silica glass body
WO2006082983A2 (en) 2005-02-04 2006-08-10 Asahi Glass Co., Ltd. Process for producing synthetic quartz glass and synthetic quartz glass for optical member
WO2008032698A1 (en) * 2006-09-11 2008-03-20 Tosoh Corporation Fused quartz glass and process for producing the same
WO2010041609A1 (en) * 2008-10-06 2010-04-15 旭硝子株式会社 Process for production of synthetic quartz glass
EP2371773A1 (en) * 2010-04-01 2011-10-05 Asahi Glass Company, Limited Method for production of synthetic quartz glass

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179088A (en) * 2003-12-17 2005-07-07 Asahi Glass Co Ltd Synthetic quartz glass for optical member and method of manufacturing the same
JP2006176377A (en) * 2004-12-24 2006-07-06 Shinetsu Quartz Prod Co Ltd Method for manufacturing synthetic silica glass having controlled oh group concentration and silica glass body
JP4535497B2 (en) * 2004-12-24 2010-09-01 信越石英株式会社 Method for producing synthetic silica glass with controlled OH group concentration
WO2006082983A2 (en) 2005-02-04 2006-08-10 Asahi Glass Co., Ltd. Process for producing synthetic quartz glass and synthetic quartz glass for optical member
US7975507B2 (en) 2005-02-04 2011-07-12 Asahi Glass Company, Limited Process for producing synthetic quartz glass and synthetic quartz glass for optical member
WO2008032698A1 (en) * 2006-09-11 2008-03-20 Tosoh Corporation Fused quartz glass and process for producing the same
JP2008208017A (en) * 2006-09-11 2008-09-11 Tosoh Corp Fused quartz glass and process for producing the same
US8211817B2 (en) 2006-09-11 2012-07-03 Tosoh Corporation Fused silica glass and process for producing the same
JP2014005204A (en) * 2006-09-11 2014-01-16 Tosoh Corp Melted quartz glass and method for manufacturing the same
WO2010041609A1 (en) * 2008-10-06 2010-04-15 旭硝子株式会社 Process for production of synthetic quartz glass
US8240172B2 (en) 2008-10-06 2012-08-14 Asahi Glass Company, Limited Process for production of synthetic quartz glass
EP2371773A1 (en) * 2010-04-01 2011-10-05 Asahi Glass Company, Limited Method for production of synthetic quartz glass

Also Published As

Publication number Publication date
JP4085633B2 (en) 2008-05-14

Similar Documents

Publication Publication Date Title
JP4470479B2 (en) Synthetic quartz glass for optical members and method for producing the same
EP1608596B1 (en) Silica glass containing tio2 and process for its production
US7491475B2 (en) Photomask substrate made of synthetic quartz glass and photomask
JP4492123B2 (en) Silica glass
US7022633B2 (en) Synthetic quartz glass and process for producing it
JP3893816B2 (en) Synthetic quartz glass and manufacturing method thereof
EP2495220B1 (en) Optical member for deep ultraviolet and process for producing same
KR20010039472A (en) Excimer laser and silica glass optical material for the same and its manufacturing method
JP4066632B2 (en) Synthetic quartz glass optical body and manufacturing method thereof
JP2005336047A (en) Optical member made of synthetic quartz glass and process for its production
JP4946960B2 (en) Synthetic quartz glass and manufacturing method thereof
JP2005298330A (en) Synthetic quartz glass and its manufacturing method
EP1740512A1 (en) Optical member made of synthetic quartz glass, and process for its production
JP4085633B2 (en) Synthetic quartz glass for optical components
JP3472234B2 (en) Silica glass optical material for excimer laser and excimer lamp
JPH0616449A (en) Synthetic quartz glass optical member for excimer laser and its production
JP2003201126A (en) Synthetic quartz glass for optical member and method of manufacturing the same
JP2003201125A (en) Synthetic quartz glass and its manufacturing method
JP4228493B2 (en) Synthetic quartz glass
JP2003183034A (en) Synthetic quartz glass for optical member and its manufacturing method
JP4240709B2 (en) Synthetic quartz glass and manufacturing method thereof
JP4677072B2 (en) Synthetic quartz glass for vacuum ultraviolet optical member and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041119

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080211

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120229

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees