JP3274954B2 - Synthetic quartz glass material for optics and method for producing the same - Google Patents

Synthetic quartz glass material for optics and method for producing the same

Info

Publication number
JP3274954B2
JP3274954B2 JP21084495A JP21084495A JP3274954B2 JP 3274954 B2 JP3274954 B2 JP 3274954B2 JP 21084495 A JP21084495 A JP 21084495A JP 21084495 A JP21084495 A JP 21084495A JP 3274954 B2 JP3274954 B2 JP 3274954B2
Authority
JP
Japan
Prior art keywords
quartz glass
refractive index
synthetic quartz
distribution
glass material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21084495A
Other languages
Japanese (ja)
Other versions
JPH0952723A (en
Inventor
茂利 林
忠久 荒堀
哲之 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16596056&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3274954(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP21084495A priority Critical patent/JP3274954B2/en
Publication of JPH0952723A publication Critical patent/JPH0952723A/en
Application granted granted Critical
Publication of JP3274954B2 publication Critical patent/JP3274954B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0071Compositions for glass with special properties for laserable glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0085Compositions for glass with special properties for UV-transmitting glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/21Doped silica-based glasses doped with non-metals other than boron or fluorine doped with molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/23Doped silica-based glasses doped with non-metals other than boron or fluorine doped with hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/21Doped silica-based glasses containing non-metals other than boron or halide containing molecular hydrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment
    • C03C2203/54Heat-treatment in a dopant containing atmosphere

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Surface Treatment Of Glass (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は光学用合成石英ガラ
ス材及びその製造方法に関し、より詳細にはエキシマレ
ーザー(XeCl:308nm、KrF:248nm、
ArF:193nm)、低圧水銀ランプ(185n
m)、エキシマランプ(Xe−Xe:172nm)など
の真空紫外光〜紫外光用のレンズやプリズム、窓材等の
光学部品として用いられる光学用合成石英ガラス材及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synthetic quartz glass material for optical use and a method for producing the same, and more particularly, to an excimer laser (XeCl: 308 nm, KrF: 248 nm,
ArF: 193 nm), low-pressure mercury lamp (185 n)
m), an optical synthetic quartz glass material used as an optical component such as a lens for vacuum ultraviolet light to ultraviolet light such as an excimer lamp (Xe-Xe: 172 nm), a prism, and a window material, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】合成石英ガラスは約150nm〜約5μ
mという広い波長範囲で光を透過するため応用範囲が広
いこと、熱膨張係数が小さいために光軸のずれが小さく
高精度の光学系を構成できること、耐熱性が高いために
広い温度範囲で使用できること、高純度な二酸化ケイ素
であるために高エネルギーの光を照射しても損傷を受け
にくいこと等、数々の非常に優れた特性を有している。
2. Description of the Related Art Synthetic quartz glass has a thickness of about 150 nm to about 5 μm.
It has a wide range of applications because it transmits light over a wide wavelength range of m. It has a small thermal expansion coefficient, so it can be used to construct a high-precision optical system with a small deviation of the optical axis. It has a number of very good properties, such as being able to be used, and being resistant to damage even when irradiated with high energy light because of high purity silicon dioxide.

【0003】このような優れた特性を生かし、前記合成
石英ガラスはLSI等の集積回路パターンを露光描画す
るリソグラフィ装置の光学材料用等に用いられている。
従来、このリソグラフィ装置の露光光源としては、Hg
輝線スペクトルのg線(435.8nm)やi線(36
5nm)が用いられ、その光学ガラス材料として多成分
からなる光学ガラスが用いられていた。しかし、最近回
路の集積度をさらに向上させるために露光に用いる光の
波長を短くする傾向にあり、この場合には真空紫外域〜
紫外域での光吸収の少ない合成石英ガラスを照明光学系
及び露光光学系に用いる必要が生じる。また、低圧水銀
ランプ(185nm)やエキシマランプ(Xe−Xe:
172nm)は光CVDやシリコンウエハーのアッシン
グ、エッチング、オゾン発生装置に用いられたり、ある
いは今後前記用途に適用すべく開発が進められている
が、これらランプのガス封入管及びこれらの波長の光学
素子にも前記合成石英ガラスを用いる必要が生じる。
Taking advantage of such excellent characteristics, the synthetic quartz glass is used as an optical material of a lithography apparatus for exposing and drawing an integrated circuit pattern such as an LSI.
Conventionally, as an exposure light source of this lithography apparatus, Hg
G-line (435.8 nm) and i-line (36
5 nm), and optical glass composed of multiple components was used as the optical glass material. However, recently, there has been a tendency to shorten the wavelength of light used for exposure in order to further improve the degree of integration of a circuit.
It becomes necessary to use synthetic quartz glass having low light absorption in the ultraviolet region for the illumination optical system and the exposure optical system. Further, a low-pressure mercury lamp (185 nm) and an excimer lamp (Xe-Xe:
172 nm) is used for photo-CVD, ashing, etching of silicon wafers, and ozone generators, or is being developed to be applied to the above-mentioned applications in the future. This also requires the use of the synthetic quartz glass.

【0004】これらの光学部品の形成に用いられる石英
ガラス材料は、使用波長での耐光性が高いこと(光照射
後に透過率が低下しにくいこと)が要求されるととも
に、レンズやプリズムとして使用されるものにおいて
は、前記特性に加えてさらに屈折率の均質性も要求され
る。前記耐光性に関しては、使用する光の波長領域で光
吸収が事実上検出されず蛍光も検出されず、長時間の光
照射を行った後にも光吸収帯が誘起されないことが要求
され、KrFエキシマレーザー(248nm)を使用す
る場合は、最も厳しい条件としてエネルギー密度400
mJ/cm2 、照射周波数100Hzの条件で106
ョットの照射を行った後の248nmにおける透過率の
低下が0.5%以下であることが要求される。さらに、
より短波長の光に対し、より高密度な照射条件でもさら
に長時間の照射に耐える材料の開発が望まれている。
[0004] The quartz glass material used for forming these optical parts is required to have high light resistance at the used wavelength (the transmittance is hardly reduced after light irradiation) and is used as a lens or a prism. In addition, in addition to the above-mentioned properties, homogeneity of the refractive index is also required. Regarding the light fastness, it is required that light absorption is practically not detected and fluorescence is not detected in a wavelength region of light to be used, and that a light absorption band is not induced even after long-time light irradiation, and KrF excimer is required. When a laser (248 nm) is used, the most severe condition is an energy density of 400.
mJ / cm 2, reduction of the transmittance at 248nm after 106 shots of was carried out in the conditions of radiation frequency 100Hz is required to be 0.5% or less. further,
It is desired to develop a material that can withstand shorter-wavelength light even under longer-density irradiation conditions for a longer time.

【0005】通常、このような厳しい条件に適合可能な
石英ガラスとして、合成石英ガラスが挙げられる。一般
的に合成石英ガラスという呼び名は、出発原料として天
然のシリカ原料を用いていない全ての石英ガラスに適用
されるが、この合成石英ガラスを製造する方法として
は、種々の方法が存在する。従って、原料の純度や製造
方法に起因して、製造された合成石英ガラス中に存在す
る不純物元素濃度(金属元素濃度、非金属元素濃度)や
欠陥濃度なども様々なグレードのものが存在し、すべて
の合成石英ガラスが理想的な透過光学系用のガラス材料
となり得るわけではない。
[0005] Synthetic quartz glass is usually mentioned as a quartz glass which can meet such severe conditions. In general, the term synthetic quartz glass is applied to all quartz glass that does not use a natural silica material as a starting material, but there are various methods for producing this synthetic quartz glass. Therefore, due to the purity of the raw material and the manufacturing method, there are various grades of impurity element concentration (metal element concentration, nonmetal element concentration) and defect concentration present in the manufactured synthetic quartz glass, Not all synthetic quartz glass can be the ideal glass material for transmission optics.

【0006】合成石英ガラスの製造法には大別して気相
法と液相法があり、光学系に用いられる材料の製造方法
としては気相法が主流であるが、この気相法にも直接合
成法、プラズマCVD法、スート法等があり、原料や製
造方法に起因して合成石英ガラス中における金属等の不
純物、OH基、Cl、H2 、O2 、酸素過剰欠陥、酸素
欠乏欠陥、環構造欠陥等の濃度が異なる。これらの不純
物や欠陥等の濃度は、合成石英ガラスの光吸収、蛍光、
屈折率等の光学特性に大きな影響を及ぼし、従って上記
した高エネルギー光での照射に対する耐光性(照射後の
透過率低下の程度)にも大きな影響を及ぼすことが知ら
れている。
[0006] Synthetic quartz glass production methods are roughly classified into a gas phase method and a liquid phase method, and a gas phase method is mainly used as a method for producing a material used in an optical system. There are a synthesis method, a plasma CVD method, a soot method, etc., and impurities such as metals, OH groups, Cl, H 2 , O 2 , oxygen excess defects, oxygen deficiency defects, The concentrations of ring structure defects and the like are different. The concentration of these impurities and defects is determined by the light absorption, fluorescence,
It is known that it has a great effect on optical characteristics such as a refractive index, and thus also has a great effect on light resistance against the irradiation with the above-mentioned high-energy light (a degree of decrease in transmittance after irradiation).

【0007】[0007]

【発明が解決しようとする課題】例えば前記VAD法
は、バーナーからケイ素化合物、水素、酸素などの原料
ガスを鉛直に懸下した種棒に向けて供給し、前記ケイ素
化合物を酸素−水素火炎中で加水分解させて生成させた
石英ガラスの微粒子を石英製等の種棒の下端部に付着、
堆積させて多孔質石英ガラスを形成した後、加熱するこ
とにより透明ガラス化する合成石英ガラスの製造法であ
るが、そのためにケイ素化合物として四塩化ケイ素を使
用した場合には、塩素やOH基等が合成石英ガラス内に
残留し、その濃度が不均一になり易く、これらの不純物
に起因して屈折率等に分布が生じるという問題があっ
た。
For example, in the VAD method, a raw material gas such as a silicon compound, hydrogen, or oxygen is supplied from a burner to a vertically suspended seed rod, and the silicon compound is supplied to an oxygen-hydrogen flame. Attach the fine particles of quartz glass produced by hydrolysis in the lower end of a seed rod made of quartz, etc.
This is a method for producing synthetic quartz glass, which is formed by depositing to form porous quartz glass and then heating it to make it viscous.When silicon tetrachloride is used as the silicon compound, chlorine and OH groups are used. Remains in the synthetic quartz glass, the concentration of which tends to be non-uniform, and there is a problem in that distribution of the refractive index and the like is caused by these impurities.

【0008】また、通常、透明ガラス化は1420〜1
600℃の温度範囲で行うが、その後の徐冷時の合成石
英ガラス体の内部と外部とにおける冷却速度の差に起因
して、屈折率に分布が生じる。そして、通常は、主とし
てOH基の分布によって生じる屈折率の分布と、透明ガ
ラス化後の徐冷によって生じる屈折率分布とが加算し合
うため、より大きな屈折率分布を生じ易いという問題が
あった。
[0008] In general, the vitrification of the transparent glass is 1420 to 1
This is performed in a temperature range of 600 ° C., but a distribution occurs in the refractive index due to a difference in cooling rate between the inside and the outside of the synthetic quartz glass body during the subsequent slow cooling. Usually, since the distribution of the refractive index mainly generated by the distribution of the OH group and the refractive index distribution generated by the slow cooling after the vitrification are added together, there is a problem that a larger refractive index distribution is easily generated. .

【0009】このような不純物の残留濃度分布に起因す
る屈折率分布と、製造過程の冷却条件等の熱履歴に起因
する屈折率分布とを相反する分布として消去し合うよう
に不純物濃度や加熱後の冷却速度を調整し、実際の屈折
率分布が小さく、良好な品質の光学用石英ガラスを得る
方法が提案されている(特開平2−102139号公
報、特開平2−239127号公報等)。
[0009] The refractive index distribution caused by the residual impurity concentration distribution and the refractive index distribution caused by the thermal history such as the cooling conditions in the manufacturing process are erased as contradictory distributions. A method has been proposed in which the cooling rate is adjusted to obtain an optical quartz glass having a small actual refractive index distribution and good quality (Japanese Patent Application Laid-Open Nos. 2-102139 and 2-239127).

【0010】前記特開平2−102139号公報に記載
された発明においては、ガラスの中央部分にOH基の極
小濃度域を存在させるとともに、周辺部に近づくにつれ
て徐々に高濃度となるOH基濃度分布を形成する。この
とき、前記OH基濃度分布に起因する屈折率分布は中央
部分で極大値を有し、周辺部に近づくにつれて低下する
分布(以下、凸型分布と記す)をなしている。一方、前
記OH基濃度分布に起因する屈折率分布を打ち消すよう
に、熱処理条件を選択することによる屈折率分布を形成
する。すなわち、800〜1300℃の範囲に所定時間
加熱した後、所定の速度で徐冷する方法により仮想温度
分布をコントロールし、この仮想温度分布に起因する中
央部分に極小値を有し、周辺部に近づくにつれて大きく
なる屈折率分布(以下、凹型分布と記す)を形成する。
このような相反する不純物濃度に起因する屈折率分布と
仮想温度分布に起因する屈折率分布を形成することによ
り、総合的に屈折率分布が小さく、良好な品質を有する
光学用合成石英ガラスを得ることができることが前記公
報に記載されている。
In the invention described in Japanese Patent Application Laid-Open No. 2-102139, an OH group concentration distribution in which a minimum concentration area of OH groups exists in the central portion of the glass and the concentration gradually increases as approaching the peripheral portion. To form At this time, the refractive index distribution caused by the OH group concentration distribution has a local maximum value at the center portion, and has a distribution (hereinafter, referred to as a convex distribution) that decreases as approaching the peripheral portion. On the other hand, a refractive index distribution is formed by selecting a heat treatment condition so as to cancel the refractive index distribution caused by the OH group concentration distribution. In other words, after heating to a temperature in the range of 800 to 1300 ° C. for a predetermined time, the virtual temperature distribution is controlled by a method of gradually cooling at a predetermined speed, and has a local minimum value caused by the virtual temperature distribution, A refractive index distribution (hereinafter, referred to as a concave distribution) that increases as approaching is formed.
By forming the refractive index distribution caused by such contradictory impurity concentrations and the refractive index distribution caused by the virtual temperature distribution, a synthetic quartz glass for optics having a small overall refractive index distribution and good quality is obtained. It is described in the publication that this is possible.

【0011】また、特開平2−239127号公報に記
載された発明においては、OH基濃度と塩素濃度とに起
因した屈折率分布を凸型分布とし、前記凸型の屈折率分
布を打ち消すように仮想温度分布をコントロールするこ
とにより凹型の屈折率分布を形成し、総合的に屈折率分
布を小さく、良好な品質の光学用合成石英ガラスを得る
ことができることが記載されている。
In the invention described in Japanese Patent Application Laid-Open No. 2-239127, the refractive index distribution caused by the OH group concentration and the chlorine concentration is set as a convex distribution, and the convex refractive index distribution is canceled. It is described that by controlling a virtual temperature distribution, a concave refractive index distribution is formed, the refractive index distribution is reduced overall, and a synthetic quartz glass for optics of good quality can be obtained.

【0012】しかしながら、前記したように通常の方法
で製造した合成石英ガラス中のOH基濃度と塩素濃度
は、ガラス塊の内部ほど残留し易いため、いずれも中央
部分に極大濃度域があり、その周辺部に近づくにつれて
徐々に低濃度となり、前記OH基濃度分布及び塩素濃度
分布に起因する屈折率分布はいずれも凹型となる。従っ
て、ガラス塊の中央部分に極小値を有するようなOH基
濃度分布及び塩素濃度分布を形成することは難しく、ま
たその濃度分布をコントロールすることは一層難しいた
め、このような合成石英ガラスの製造方法は現実的な方
法ではなく、また仮に製造できたとしても、設備費がか
かるため非常に高価なものとなるという課題があった。
However, as described above, the OH group concentration and the chlorine concentration in the synthetic quartz glass manufactured by the ordinary method are more likely to remain in the interior of the glass lump. The concentration gradually decreases as approaching the peripheral portion, and the refractive index distribution caused by the OH group concentration distribution and the chlorine concentration distribution becomes concave. Therefore, it is difficult to form an OH group concentration distribution and a chlorine concentration distribution having a minimum value in the central portion of the glass lump, and it is more difficult to control the concentration distribution. The method is not a practical method, and even if it can be manufactured, there is a problem that the equipment cost is very high because of the equipment cost.

【0013】一方、前記レーザー光の照射の際に生じる
透過率の低下は、前記光学用合成石英ガラス材に含まれ
る酸素過剰欠陥や酸素欠乏欠陥、塩素等が原因の一つと
考えられ、これらは前記光学用合成石英ガラス材の製造
条件にも依存するが、製造された前記光学用合成石英ガ
ラス材は、通常、そのまま用いられるため、透過率の低
下が生じるという課題もあった。
[0013] On the other hand, the decrease in transmittance caused by the laser light irradiation is considered to be one of the causes of oxygen excess defects, oxygen deficiency defects, chlorine and the like contained in the synthetic quartz glass material for optics. Although depending on the manufacturing conditions of the synthetic quartz glass material for optical use, the manufactured synthetic quartz glass material for optical use is usually used as it is, and thus has a problem that the transmittance is reduced.

【0014】本発明はこのような課題に鑑みなされたも
のであり、屈折率が均一で屈折率分布がなく、しかもレ
ーザー光等の照射等によっても透過率の低下が殆どない
光学用合成石英ガラス材及びその製造方法を提供するこ
とを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has a uniform refractive index, has no refractive index distribution, and has almost no decrease in transmittance even when irradiated with laser light or the like. It is intended to provide a material and a method for producing the same.

【0015】[0015]

【課題を解決するための手段】本発明に係る光学用合成
石英ガラス材は、中央部分にOH基濃度が極大となる領
域が存在し、該領域を中心に周辺部分にいくに従ってO
H基濃度が次第に低下し、前記OH基濃度の分布に基づ
く屈折率分布と内部の仮想温度が周囲の仮想温度よりも
低い仮想温度分布に起因して内部の屈折率が周囲の屈折
率よりも大きい屈折率分布が形成され、水素を5×1
15〜1×1019mol/cm3 含有していることを特
徴としている。
In the synthetic quartz glass material for optics according to the present invention, there is a region where the OH group concentration is maximized in the center portion, and O is gradually increased from the region toward the peripheral portion.
The H group concentration gradually decreases, and the refractive index distribution based on the distribution of the OH group concentration and the internal virtual temperature are higher than the surrounding virtual temperature.
Internal refractive index due to low virtual temperature distribution
Large refractive index distribution and is formed than the rate, 5 × 1 hydrogen
0 15 It is characterized in containing ~1 × 10 19 mol / cm 3 .

【0016】また、本発明に係る光学用合成石英ガラス
材の製造方法は、前記光学用合成石英ガラス材の製造方
法であって、中央部分にOH基濃度が極大となる領域が
存在し、該領域を中心に周辺部分にいくに従ってOH基
濃度が次第に低下し、前記OH基濃度の分布に基づく屈
折率分布と内部の仮想温度が周囲の仮想温度よりも低い
仮想温度分布に起因して内部の屈折率が周囲の屈折率よ
りも大きい屈折率分布が形成されている光学用合成石
英ガラス素材に1×103 〜1×106 Paの水素ガス
雰囲気下、610〜790℃の加熱処理を施すことによ
り水素をドープすることを特徴としている。
The method for producing a synthetic quartz glass material for optics according to the present invention is the method for producing a synthetic quartz glass material for optics, wherein a region where the OH group concentration is maximum exists in a central portion. The OH group concentration gradually decreases toward the peripheral portion around the region, and the refractive index distribution based on the distribution of the OH group concentration and the virtual temperature inside are lower than the virtual temperature around. And the internal refractive index is
The synthetic quartz glass material for optics having a large refractive index distribution is doped with hydrogen by performing a heat treatment at 610 to 790 ° C. in a hydrogen gas atmosphere of 1 × 10 3 to 1 × 10 6 Pa. It is characterized by:

【0017】[0017]

【発明の実施の形態】上記したように本発明に係る光学
用合成石英ガラス材は、まず、中央部分にOH基濃度が
極大となる領域が存在し、該領域を中心に周辺部分にい
くに従ってOH基濃度が次第に低下し、前記OH基濃度
分布に基づく屈折率分布を打ち消すように、内部の仮想
温度が周囲の仮想温度よりも低い仮想温度分布に起因
て内部の屈折率が周囲の屈折率よりも大きい屈折率分布
が形成されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As described above, in the synthetic quartz glass material for optics according to the present invention, first, there is a region where the OH group concentration is maximum in the center portion, and the region is centered on the peripheral portion. The imaginary OH group concentration gradually decreases, and the internal virtual
Due to the virtual temperature distribution where the temperature is lower than the surrounding virtual temperature
Thus, a refractive index distribution in which the internal refractive index is larger than the surrounding refractive index is formed.

【0018】前記光学用合成石英ガラス材は、通常、V
AD法又は直接合成法等により製造される。前記したい
ずれの方法においても、通常、四塩化ケイ素の酸素−水
素火炎を用いた加水分解により製造されるため、一部に
Si−OH基が形成され、塩素も残留するが、製造法に
よりその程度が大きく異なる。
The synthetic quartz glass material for optics is usually V
It is produced by an AD method or a direct synthesis method. In any of the above-mentioned methods, usually, silicon tetrachloride is produced by hydrolysis using an oxygen-hydrogen flame, so that a Si-OH group is formed partially and chlorine remains, but the production method The degree varies greatly.

【0019】そこでまず、VAD法により製造された光
学用合成石英ガラス材について説明する。VAD法で
は、最初に多孔質合成石英ガラス、いわゆるスート体を
形成するので、その後、種々の熱処理を行って緻密化す
る際にOH基濃度やその分布のコントロールが可能であ
る。前記製造方法についての詳しい説明は後で述べる
が、この製造方法により円柱形状の光学用合成石英ガラ
ス材の中心部分にOH基濃度の極大値となる領域が形成
され、前記領域を中心に周辺部分にいくに従って次第に
低下する前記OH基濃度の分布が形成される。
First, an optical synthetic quartz glass material manufactured by the VAD method will be described. In the VAD method, first, a porous synthetic quartz glass, a so-called soot body, is formed. Therefore, when densification is performed by performing various heat treatments, the OH group concentration and its distribution can be controlled. Although a detailed description of the manufacturing method will be described later, a region where the OH group concentration has a maximum value is formed in the central portion of the cylindrical optical synthetic quartz glass material by this manufacturing method, and the peripheral portion is centered on the region. , The distribution of the OH group concentration is gradually reduced.

【0020】この場合、OH基濃度の最大値と最小値と
の差は45ppm以下であることが好ましく、30pp
m以下がより好ましい。このようなOH基濃度の差を得
るためには、OH基濃度の最大値が約60ppm以下で
あることが望ましいが、OH基濃度が60ppm以上で
ある場合でも前記の差が45ppmの範囲内であればよ
く、その値は特に限定されない。
In this case, the difference between the maximum value and the minimum value of the OH group concentration is preferably 45 ppm or less, and 30 pp.
m or less is more preferable. In order to obtain such a difference in the OH group concentration, it is desirable that the maximum value of the OH group concentration is about 60 ppm or less. However, even when the OH group concentration is 60 ppm or more, the difference is preferably in the range of 45 ppm. The value is not particularly limited.

【0021】OH基の濃度の最大値と最小値との差が約
45ppmのとき、屈折率の変動幅(Δn)は約4.5
×10-6となり、これより大きい場合には、前記OH基
濃度の分布に基づく屈折率分布を、仮想温度分布を調節
することにより打ち消すのが困難になる。
When the difference between the maximum value and the minimum value of the OH group concentration is about 45 ppm, the fluctuation range (Δn) of the refractive index is about 4.5.
If it is larger than × 10 −6 , it becomes difficult to cancel the refractive index distribution based on the distribution of the OH group concentration by adjusting the virtual temperature distribution.

【0022】本発明に係る光学用合成石英ガラス材は、
前記OH基濃度分布に基づく屈折率分布を打ち消すよう
に、内部の仮想温度が周囲の仮想温度よりも低い仮想温
度分布に起因して内部の屈折率が周囲の屈折率よりも大
きい屈折率分布が形成されているが、透明ガラス化後引
き続き、あるいは一度冷却した後に1500℃以上の温
度に昇温させ、加熱のみ、あるいは加熱成形等を行った
後、冷却する際の速度を調節することにより、この仮想
温度分布を調節することができる。この仮想温度分布の
調節方法については後述する。
The optical synthetic quartz glass material according to the present invention comprises:
The internal refractive index is larger than the surrounding refractive index due to the virtual temperature distribution where the internal virtual temperature is lower than the surrounding virtual temperature so as to cancel the refractive index distribution based on the OH group concentration distribution.
A sharp refractive index distribution is formed, but after the vitrification, or after once cooling, the temperature is raised to a temperature of 1500 ° C. or higher, and only after heating, or after heat molding, etc., the cooling rate is reduced. By adjusting, the virtual temperature distribution can be adjusted. The method of adjusting the virtual temperature distribution will be described later.

【0023】このようにして得られた光学用合成石英ガ
ラス材は、均質性に優れ、屈折率の変動幅(Δn)が極
めて小さい。前記屈折率の変動幅(Δn)は、そのサイ
ズにより異なるが、例えば直径が約200〜300mm
で、長さが約60〜150mmとサイズの大きいものに
おいても、その屈折率の変動幅(Δn)が約1×10-6
未満と小さい。前記サイズよりも小さなものにおいて
は、当然、屈折率の変動幅は約1×10-6未満と小さ
く、その複屈折率も約3nm/cm以下となる。
The optical synthetic quartz glass material thus obtained is excellent in homogeneity and has a very small refractive index variation width (Δn). The variation width (Δn) of the refractive index varies depending on the size, for example, the diameter is about 200 to 300 mm.
The fluctuation width (Δn) of the refractive index is about 1 × 10 −6 even in a large size having a length of about 60 to 150 mm.
Less than and small. If the size is smaller than the above size, the fluctuation range of the refractive index is naturally smaller than about 1 × 10 −6 and the birefringence is also about 3 nm / cm or less.

【0024】また、前記光学用合成石英ガラス材はこの
ような均質性を有することから、少なくとも一方向脈理
フリーであり、製造条件によっては三方向脈理フリーと
極めて均質性に優れたものとなる。
Further, since the synthetic quartz glass material for optics has such homogeneity, it is at least one-way stria-free and, depending on the manufacturing conditions, a three-way stria-free and extremely excellent in homogeneity. Become.

【0025】本発明に係る光学用合成石英ガラス材は、
得られたスート体を、事前仮焼、仮焼、昇温、透明化の
工程又はそれに類似する工程を経て透明化しており、こ
のような連続的な処理により前記OH基濃度分布は変曲
点を有さない。
The optical synthetic quartz glass material according to the present invention comprises:
The soot body obtained is clarified through pre-calcination, calcination, temperature rise, and a process similar to the process of transparency, and the OH group concentration distribution becomes inflection point by such a continuous treatment. Do not have.

【0026】塩素の濃度についても、スート体形成後の
加熱処理によってかなりの程度除去することが可能であ
り、最終的な合成石英ガラス材の濃度は10ppm以下
であることが好ましく、1ppm以下であることがより
好ましい。また、塩素濃度の最大値と最小値との差は1
ppm以下であることが好ましい。塩素濃度が10pp
mを超えると、塩素濃度の最大値と最小値との差を1p
pm以下に保つのが難しくなる場合がある。また、塩素
濃度の最大値と最小値との差が1ppmを超えると、前
記塩素濃度の不均一性が屈折率に影響し、屈折率を小さ
く保つことが難しくなる。
The concentration of chlorine can be removed to a considerable extent by heat treatment after the formation of the soot body. The final concentration of the synthetic quartz glass material is preferably 10 ppm or less, and more preferably 1 ppm or less. Is more preferable. The difference between the maximum value and the minimum value of the chlorine concentration is 1
It is preferably at most ppm. Chlorine concentration is 10pp
m, the difference between the maximum and minimum values of chlorine concentration is 1p
pm or less in some cases. If the difference between the maximum value and the minimum value of the chlorine concentration exceeds 1 ppm, the non-uniformity of the chlorine concentration affects the refractive index, and it is difficult to keep the refractive index small.

【0027】金属不純物については、原料中の金属不純
物の含有量に大きく左右され、製造方法自体には余り左
右されない。従って、いずれの製造方法においても、光
学用合成石英ガラス材中の金属不純物の総含有量が0.
15ppm以下であり、Alの含有量が0.01ppm
以下、Na、K、及びLiの各含有量が0.02ppm
以下、Ca、Fe、Ti、Cr、Ni、P、B、Mg、
Cu、Zr、及びZnの各含有量が0.008ppm以
下であることが好ましい。
The metal impurities are greatly affected by the content of the metal impurities in the raw material, and are not significantly affected by the production method itself. Therefore, in any of the manufacturing methods, the total content of metal impurities in the synthetic quartz glass material for optics is 0.1%.
15 ppm or less, the content of Al is 0.01 ppm
Hereinafter, each content of Na, K, and Li is 0.02 ppm.
Hereinafter, Ca, Fe, Ti, Cr, Ni, P, B, Mg,
It is preferable that each content of Cu, Zr, and Zn is 0.008 ppm or less.

【0028】次に、直接法により製造された光学用合成
石英ガラス材について説明する。
Next, an optical synthetic quartz glass material manufactured by a direct method will be described.

【0029】直接法においても、四塩化ケイ素の酸素−
水素火炎を用いた加水分解により製造するが、その際に
生成したシリカの粒子を基板上に堆積させて、透明化さ
れた合成石英ガラスのインゴットを直接製造する。従っ
て、VAD法の場合のように透明化までの工程でOH基
等を除去することができないため、VAD法と比較して
OH基の濃度が極めて高い。従って、OH基濃度分布の
調整は、加水分解を行う際の酸素や水素等の流量の調節
により行う。
[0029] In the direct method, the oxygen-
It is produced by hydrolysis using a hydrogen flame, and the silica particles generated at that time are deposited on a substrate to directly produce a transparent synthetic quartz glass ingot. Therefore, unlike the case of the VAD method, the OH group and the like cannot be removed in the process up to the transparency, so that the concentration of the OH group is extremely higher than that of the VAD method. Therefore, the OH group concentration distribution is adjusted by adjusting the flow rates of oxygen, hydrogen, and the like during the hydrolysis.

【0030】このようにして製造される光学用合成石英
ガラス材中のOH基の濃度は、通常、600〜1000
ppm程度であり、前記OH基濃度の好ましい最大値は
800ppm程度である。また、前記OH基濃度の最大
値と最小値との差はVAD法の場合と同様である。
The concentration of the OH group in the optical synthetic quartz glass material thus manufactured is usually from 600 to 1000.
ppm, and a preferable maximum value of the OH group concentration is about 800 ppm. The difference between the maximum value and the minimum value of the OH group concentration is the same as in the case of the VAD method.

【0031】OH基濃度が800ppm程度を超える
と、石英ガラス中のOH基濃度のばらつきが増大し、O
H基濃度の最大値と最小値との差を45ppm以下に制
御することが難しくなる傾向が表われる。
When the OH group concentration exceeds about 800 ppm, the dispersion of the OH group concentration in the quartz glass increases, and O
It tends to be difficult to control the difference between the maximum value and the minimum value of the H group concentration to 45 ppm or less.

【0032】また塩素の濃度は、通常、20〜100p
pm程度であり、前記塩素濃度はできるだけ小さいこと
が好ましいが、20ppm程度が最小値となる。このよ
うにOH基や塩素の不純物濃度は、VAD法と異なる
が、その他の特性はVAD法の場合の合成石英ガラスと
同様である。屈折率を均一にするため、前記塩素の濃度
の最大値と最小値との差は1ppm未満が好ましい。し
かし、製造された光学用合成石英ガラス材中の塩素濃度
が高い場合には、レーザー光の透過等により欠陥を生成
し易いので、可能な限りその濃度が低いことが好まし
く、従って、VAD法により得られた光学用合成石英ガ
ラス材の方が好ましい。
The chlorine concentration is usually 20 to 100 p
pm and the chlorine concentration is preferably as low as possible, but the minimum value is about 20 ppm. As described above, the impurity concentrations of OH groups and chlorine are different from those of the VAD method, but other characteristics are the same as those of the synthetic quartz glass in the case of the VAD method. In order to make the refractive index uniform, the difference between the maximum value and the minimum value of the chlorine concentration is preferably less than 1 ppm. However, when the chlorine concentration in the manufactured optical synthetic quartz glass material is high, defects are easily generated due to transmission of laser light and the like, so that the concentration is preferably as low as possible. The obtained synthetic quartz glass material for optics is more preferable.

【0033】また、前記光学用合成石英ガラス材中に
は、後述するようにレーザー光照射時にガラス構造の欠
陥を生じることによる、光吸収、蛍光発光等の問題発生
を防止するために、水素が5×1015〜1×1019mo
l/cm3 含まれている。本願発明者が先に出願した特
願平6−216233号に記載しているように、高エネ
ルギー密度のレーザー光の照射により合成石英ガラス中
に、≡Si−O°(非結合酸素)欠陥や≡Si・(E’
中心)欠陥等の欠陥が生成され易くなるが、合成石英ガ
ラス中に水素(H2 分子あるいはH原子)、特に分子状
水素(H2 分子)が適量溶存すると、レーザー光照射時
に上記欠陥のうち、特に非酸素結合欠陥を抑制すること
ができる。その好ましいH2 分子含有量1015〜1018
個/cm3程度を得るためには、水素の含有量は5×1
15〜1×1019mol/cm3 程度が必要となる。前
記非結合酸素欠陥は、上記のような条件で合成石英ガラ
ス材を製造することにより、最小限の濃度に止めること
ができる。
In addition, hydrogen is contained in the synthetic quartz glass material for optics in order to prevent problems such as light absorption and fluorescence emission due to the occurrence of defects in the glass structure during laser irradiation as described later. 5 × 10 15 to 1 × 10 19 mo
l / cm 3 . As described in Japanese Patent Application No. 6-216233 previously filed by the inventor of the present application, 合成 Si—O ° (non-bonded oxygen) defects and ≡Si ・ (E '
Although a defect such as a center) defect is likely to be generated, if hydrogen (H 2 molecule or H atom), particularly molecular hydrogen (H 2 molecule), is dissolved in an appropriate amount in the synthetic quartz glass, among the above defects during laser beam irradiation, In particular, non-oxygen bond defects can be suppressed. Its preferred H 2 molecular content of 10 15 to 10 18
In order to obtain about 1 / cm 3 , the hydrogen content is 5 × 1
About 0 15 to 1 × 10 19 mol / cm 3 is required. The non-bonded oxygen vacancies can be reduced to a minimum concentration by producing a synthetic quartz glass material under the above conditions.

【0034】前記水素の含有量が5×1015mol/c
3 未満であると、レーザー光等を照射した際に欠陥等
が生成し易く、透過率の低下が大きくなる傾向が表わ
れ、他方前記水素の含有量が1×1019mol/cm3
を超えると、原子状水素(H原子)の含有量が増加し、
レーザー光照射時に下記の化1式の反応が進行してE’
中心欠陥が生成し易くなる。
The hydrogen content is 5 × 10 15 mol / c
If it is less than m 3 , a defect or the like is likely to be generated upon irradiation with a laser beam or the like, and the transmittance tends to decrease significantly, while the hydrogen content is 1 × 10 19 mol / cm 3.
Exceeds, the content of atomic hydrogen (H atom) increases,
Upon irradiation with laser light, the reaction of the following chemical formula 1 proceeds and E '
Central defects are easily generated.

【0035】[0035]

【化1】≡Si−H → ≡Si・(E’中心)+H・ 次に、このような特性を有する光学用合成石英ガラス材
の製造方法について説明するが、まず最初に、VAD法
による光学用合成石英ガラス材の製造方法について説明
する。
## STR1 ## Next, a method of manufacturing a synthetic quartz glass material for optics having such characteristics will be described. First, the optics by the VAD method is described. A method for producing a synthetic quartz glass material for use will be described.

【0036】上記したように、原料となる高純度ケイ素
化合物としては、例えば四塩化ケイ素が挙げられるが、
前記原料中の金属不純物の総含有量が0.05ppm以
下、Alの含有量が0.005ppm以下、Na、K、
及びLiの各含有量が0.008ppm以下、Ca、F
e、Ti、Cr、Ni、P、B、Mg、Cu、Zr、及
びZnの各含有量が0.003ppm以下であるのが好
ましい。
As described above, examples of the high-purity silicon compound as a raw material include silicon tetrachloride.
The total content of metal impurities in the raw material is 0.05 ppm or less, the content of Al is 0.005 ppm or less, Na, K,
And Li content is 0.008 ppm or less, Ca, F
It is preferable that each content of e, Ti, Cr, Ni, P, B, Mg, Cu, Zr, and Zn is 0.003 ppm or less.

【0037】前記原料中の不純物濃度は、原料をCVD
炉中で約1000℃に加熱して基体上に蒸着させ、その
蒸着した金属シリコン中の金属不純物量を放射化分析法
により分析することにより測定することができる。
The concentration of impurities in the raw material is determined by
It can be measured by heating to about 1000 ° C. in a furnace to deposit on a substrate, and analyzing the amount of metal impurities in the deposited metallic silicon by activation analysis.

【0038】多孔質合成石英ガラスの合成では、特別な
条件は必要でなく、通常の酸水素火炎による加水分解を
行えばよい。
In the synthesis of the porous synthetic quartz glass, no special conditions are required, and the hydrolysis may be performed by a usual oxyhydrogen flame.

【0039】次に、前記工程により得られた多孔質合成
石英ガラス(スート体)を真空下で熱処理等を行って光
学用合成石英ガラス材を製造するが、この光学用合成石
英ガラス材の製造工程は、事前仮焼、仮焼、昇温、及び
透明化の工程による合成石英ガラス母材の製造工程、及
び前記母材を使用して加工等を行った後、加熱成形、冷
却、均温化、冷却により合成石英ガラス製品の製造を行
う工程とに分けられる。
Next, the porous synthetic quartz glass (soot body) obtained in the above process is subjected to a heat treatment or the like under vacuum to produce an optical synthetic quartz glass material. The process includes the steps of manufacturing a synthetic quartz glass base material by pre-calcining, calcining, heating, and clearing, and processing and the like using the base material, followed by heat molding, cooling, and soaking. And production of synthetic quartz glass products by cooling and cooling.

【0040】ケイ素化合物の加水分解により得られたス
ート体の空隙は、その分布が不均一で周辺部分に空隙が
多く、中央にいくに従って順次空隙が少なくなってお
り、その密度も周辺部分が小さく、中央に近づくに従っ
て大きくなっている。
The voids of the soot body obtained by hydrolysis of the silicon compound have a non-uniform distribution, many voids in the peripheral portion, and the number of voids gradually decreases toward the center. , Getting bigger toward the center.

【0041】そこで前記事前仮焼により、主としてスー
ト体周辺の最も密度の小さい部分に他の部分を集中させ
てその密度を高める操作、すなわち焼きしめを行って、
スート体の密度を均一化させる。この事前仮焼により、
次工程である仮焼工程でのゆっくりとした焼結による脱
水効果をスート体全体にわたってほぼ均一に進行させる
ことができ、透明ガラス化後の合成石英ガラス中のOH
基濃度を所望の分布を有するように設定することができ
る。
Therefore, by the above-mentioned preliminary calcination, an operation of concentrating other parts mainly on the part having the lowest density around the soot body to increase the density, that is, performing baking, is performed.
Uniform density of soot body. By this pre-calcination,
The dehydration effect due to the slow sintering in the subsequent step of calcination can be made to proceed almost uniformly throughout the soot body, and the OH in the synthetic quartz glass after vitrification becomes transparent.
The base concentration can be set to have a desired distribution.

【0042】この際の加熱は、約1.5〜50パスカル
の圧力下、約1300〜1400℃で1〜5時間と、後
で行う仮焼よりも若干高い温度で短時間行うのが好まし
い。前記事前仮焼の温度が約1300℃未満であると、
前記事前仮焼による焼きしめ効果が少なく、他方約13
00℃と低温でも加熱時間が5時間を超えるとスート体
の密度の低い周辺部分のみならず、スート体全体がゆっ
くりと焼きしまり、目的とするスート体密度の均一化が
進みにくい傾向が表われる。前記事前仮焼の温度が約1
400℃を超えると、急激に空隙の収縮が進行し、なか
でもスート体周辺部分の焼きしめが急激に進行するた
め、その表層部分が透明ガラス化し、その後の仮焼、透
明化工程により所望の合成石英ガラスを得ることができ
ず、他方1400℃と高い温度でも、加熱時間を1時間
未満とすると、焼きしめ効果が得られず、スート体の密
度を均一化することができない。
The heating at this time is preferably carried out under a pressure of about 1.5 to 50 Pascal at about 1300 to 1400 ° C. for 1 to 5 hours, and at a temperature slightly higher than the calcination performed later, for a short time. When the temperature of the pre-calcination is less than about 1300 ° C,
The baking effect of the pre-calcination is small, while about 13
If the heating time exceeds 5 hours even at a low temperature of 00 ° C., not only the peripheral portion where the density of the soot body is low, but also the entire soot body is slowly baked, so that the target soot body density tends to be hardly uniform. . The pre-calcination temperature is about 1
When the temperature exceeds 400 ° C., the shrinkage of the voids rapidly progresses, and especially the baking of the soot body peripheral portion progresses rapidly. Synthetic quartz glass cannot be obtained. On the other hand, even at a high temperature of 1400 ° C., if the heating time is less than 1 hour, the baking effect cannot be obtained, and the density of the soot body cannot be made uniform.

【0043】前記事前仮焼の際の圧力が約1.5パスカ
ルよりも小さいと、加熱の際に酸素が石英ガラスより抜
け易くなり、これにより酸素欠乏欠陥が生じて紫外及び
真空紫外光の透過率低下の原因となり易く、他方前記事
前仮焼の際の圧力が約50パスカルを超えると、スート
体の焼きしめ効果が少なく、スート体の密度を均一化す
ることが難しい。
If the pressure during the preliminary calcination is less than about 1.5 Pascal, oxygen is more likely to escape from the quartz glass during heating, thereby causing oxygen deficiency defects and causing ultraviolet and vacuum ultraviolet light. If the pressure during the preliminary calcination exceeds about 50 Pascal, the effect of baking the soot body is small, and it is difficult to make the density of the soot body uniform.

【0044】この後、仮焼処理を同じ真空条件下、約1
200〜1300℃で約10〜40時間行い、スート体
中の石英ガラス微粒子中に一部含まれるSi−OHをS
i−O−Siに変化させたり付着水を気化脱気せしめ、
その際に生じる水分を除去脱水する。また、この仮焼処
理によりスート体中のOH基濃度の分布を調整する。前
記仮焼の温度が約1200℃未満であると、水分の除去
がゆっくりとしか進行せず、OH基濃度が十分に低下せ
ず、またその濃度分布の調整もうまく行かない。他方、
前記仮焼の温度が1300℃を超えると、内部から十分
に水分が除去されないうちに緻密化してしまい、やはり
高濃度のOH基が残留することになる。
Thereafter, the calcination is performed for about 1 hour under the same vacuum conditions.
The reaction is carried out at 200 to 1300 ° C. for about 10 to 40 hours, and the Si—OH partially contained in the fine silica glass particles in the soot body is converted to
Change to i-O-Si or vaporize and degas attached water,
The water generated at that time is removed and dehydrated. Further, the distribution of the OH group concentration in the soot body is adjusted by this calcining treatment. If the calcination temperature is less than about 1200 ° C., the removal of water proceeds only slowly, the OH group concentration does not sufficiently decrease, and the concentration distribution cannot be adjusted well. On the other hand,
When the temperature of the calcination exceeds 1300 ° C., densification occurs before moisture is sufficiently removed from the inside, so that a high concentration of OH groups also remains.

【0045】この仮焼により、中央部分に近づくに従っ
てOH基濃度が高く、中央部分にOH濃度の極大値とな
る部分が存在し、逆に周辺部分にいくに従ってその濃度
が低下するOH基濃度分布が形成される。
By this calcination, the OH group concentration distribution is such that the OH group concentration is higher as approaching the central portion, there is a portion where the OH concentration reaches a maximum value in the central portion, and conversely, the concentration decreases toward the peripheral portion. Is formed.

【0046】事前仮焼を行わず、仮焼のみを行うことも
可能であり、この場合には、前記の場合と同じ真空条件
下、約1200〜1400℃の温度で、10〜40時間
熱処理を行う。
It is also possible to carry out only calcination without pre-calcination. In this case, heat treatment is carried out at a temperature of about 1200 to 1400 ° C. for 10 to 40 hours under the same vacuum conditions as described above. Do.

【0047】前記条件での仮焼により密度の均一化と水
分の除去が同時に行われるが、前記した事前仮焼及び仮
焼の2段階の加熱と比較して密度の均一化が完全に進行
しにくく、透明化処理の時間が長くなる場合がある。
The calcination under the above-mentioned conditions makes the density uniform and the removal of moisture simultaneously. However, compared to the two-stage heating of the preliminary calcination and the calcination, the density uniformity is completely advanced. It is difficult, and the time of the transparency processing may be long.

【0048】引き続いて同じ真空条件下、仮焼後の石英
ガラスを加熱して0.5〜5℃/分の条件で昇温させ、
約1420〜1600℃の温度範囲で、3〜8時間透明
化処理を行う。前記透明化の温度が約1420℃未満で
は、緻密化が進行しにくく生産性が悪くなり、他方前記
透明化の温度が約1600℃を超えると電力の消費によ
りコスト増加となる。
Subsequently, the calcined quartz glass was heated under the same vacuum conditions to raise the temperature at 0.5 to 5 ° C./min.
The clearing process is performed in a temperature range of about 1240 to 1600 ° C. for 3 to 8 hours. If the temperature for the transparentization is less than about 1420 ° C., the densification hardly proceeds and the productivity is deteriorated. On the other hand, if the temperature for the transparentization exceeds about 1600 ° C., the cost increases due to power consumption.

【0049】前記工程の後、約0.5〜5℃/分の条件
下で徐冷することにより、透明化された光学用合成石英
ガラス材の母材が製造される。なお、前記透明化の温度
が1500℃以上で、かつ該工程の後、約0.5〜5℃
/分の条件下で徐冷された母材は、後述する仮想温度条
件を満足することから、そのまま熱処理することなく、
切削加工等の冷間加工を行って所定の大きさにして光学
用合成石英の製品とすることもできる。
After the above step, the optically cooled synthetic quartz glass base material is manufactured by slow cooling at about 0.5 to 5 ° C./min. In addition, the temperature of the said transparentization is 1500 degreeC or more, and about 0.5-5 degreeC after this process.
Since the base material gradually cooled under the conditions of / min satisfies the fictive temperature condition described later,
It is also possible to obtain a product of synthetic quartz for optics by performing cold working such as cutting to make it a predetermined size.

【0050】この後、前記光学用合成石英ガラス材の母
材を下記の条件で加熱成形し、徐冷した後、切削加工等
を行って所定の大きさにし、製品を製造する。勿論、得
られた光学用合成石英ガラス材の母材を冷却せず、高温
下で引き続き下記の条件で処理を行うことも可能であ
る。
Then, the base material of the synthetic quartz glass material for optics is heated and formed under the following conditions, cooled slowly, and then cut to a predetermined size to produce a product. Of course, it is also possible to continue the treatment under the following conditions at a high temperature without cooling the obtained base material of the synthetic quartz glass material for optics.

【0051】この際には、前記母材を約1600〜20
00℃の温度まで加熱し、例えば高純度カーボン等から
なる型を用いてプレスすることにより大型のレンズ、ミ
ラー、窓部材等の光学部材の形状を有するものに成形す
る。この成形された光学用合成石英ガラスを一旦、5〜
30℃/分の条件で約1500〜1600℃まで冷却
し、この温度範囲で0〜10時間保持する均温化処理を
行う。ここで、0時間の場合は、厳密には均温化処理を
行っておらず、この温度で冷却速度を切り替えるのみで
あるが、ここでは0時間の場合も含めて均温化処理とい
うことにする。
At this time, the above-mentioned base material is added to about 1600 to 20
It is heated to a temperature of 00 ° C. and pressed using a mold made of, for example, high-purity carbon to form a large-sized lens, mirror, window member or other optical member. The molded optical synthetic quartz glass is temporarily
Cooling is performed to about 1500 to 1600 ° C. at a rate of 30 ° C./min, and a soaking process is performed in which the temperature is kept at 0 to 10 hours. Here, in the case of 0 hour, the temperature equalization process is not strictly performed, and only the cooling rate is switched at this temperature. I do.

【0052】この均温化処理の温度が約1500℃未満
であると、徐冷する前の温度が低過ぎるため、下記する
仮想温度分布を形成するのが難しくなる。
If the temperature of the soaking treatment is less than about 1500 ° C., the temperature before the slow cooling is too low, so that it is difficult to form the following virtual temperature distribution.

【0053】前記均温化処理の後、5℃/分未満、好ま
しくは0.1〜4℃/分未満の温度で冷却することによ
り光学用合成石英ガラス材の仮想温度分布を調整する。
After the temperature equalization treatment, the fictive temperature distribution of the synthetic quartz glass material for optics is adjusted by cooling at a temperature of less than 5 ° C./min, preferably 0.1 to 4 ° C./min.

【0054】室温における石英ガラスの密度、屈折率等
の特性は、そのガラスが過去の製造過程における高温度
域及び前記高温度域から室温までの冷却過程での熱履歴
を反映したものであり、仮想温度(Fictive Temperatu
re)とは、そのガラスが過去の熱履歴のなかで、なじま
されたときの温度、すなわち上記特性値が決定されたと
きの温度をいう(R.Bruckner,J.Non-Crystaline Solids,
5,1970, pp.133-134)。この仮想温度の概念は、石英ガ
ラスのみならず、ガラス全般に当てはまる概念であり、
もう少し簡略にいうならば、室温のガラス密度、屈折率
等の特性値がその仮想温度(室温よりも高温度)のガラ
スの平衡状態の特性値になっていることを意味する。
The characteristics such as the density and refractive index of quartz glass at room temperature reflect the heat history of the glass in the high temperature range in the past manufacturing process and the cooling process from the high temperature range to room temperature. Virtual temperature (Fictive Temperatu
re) means the temperature at which the glass has been adapted in the past thermal history, that is, the temperature at which the above characteristic values have been determined (R. Bruckner, J. Non-Crystaline Solids,
5,1970, pp.133-134). This concept of virtual temperature is a concept that applies not only to quartz glass but also to glass in general.
To put it more simply, it means that the characteristic values such as the glass density and the refractive index at room temperature are the characteristic values in the equilibrium state of the glass at the virtual temperature (higher than room temperature).

【0055】図1は前記公報に記載されている石英ガラ
スの温度と密度との関係、及び冷却の際の密度の変化の
様子を示したグラフであり、gs 、gt で示した温度t
は、それぞれゆっくりとした冷却の場合のガラス転移温
度及び早い冷却の場合のガラス転移温度を示している。
FIG. 1 is a graph showing the relationship between the temperature and the density of the quartz glass described in the above-mentioned publication and how the density changes during cooling. The temperature t shown by g s and g t is shown in FIG.
Indicates the glass transition temperature for slow cooling and the glass transition temperature for fast cooling, respectively.

【0056】前述のR.Brucknerによると、第1図に示す
ように、石英ガラスは約1500℃において密度が最小
になり、1500℃より高い温度から冷却する場合と、
1500℃より低い温度から冷却する場合とで、石英ガ
ラス中の密度の分布状態が異なることが知られている。
すなわち、1500℃より低い温度から冷却する場合に
は、周囲が早く冷却されるために内部に比べて周囲がよ
り密度が大きくなり、他方1500℃よりも高い温度か
ら冷却する場合には、周囲が内部に比べて早く冷却され
ることは上記の場合と同様であるが、密度は内部に比べ
て周囲の方が小さくなる。密度と相関関係を有する屈折
も、前記密度と同様の分布を生じ、密度を測定するこ
とにより前記仮想温度に起因する屈折率分布を特定する
ことが可能になるが、本発明の場合のように、約150
0℃より高い温度から冷却すると、内部の仮想温度分布
の方が周囲の仮想温度分布より低い状態となり、内部の
密度の方が周囲の密度より大きい状態、すなわち内部の
方が周囲より屈折率の高い分布が生じ、OH基濃度分布
により生じる屈折率分布と逆になるため、お互いの屈折
率の変動を打ち消し合い、極めて均一な屈折率分布を形
成することができる。
According to R. Bruckner described above, as shown in FIG. 1, quartz glass has a minimum density at about 1500 ° C. and cools from a temperature higher than 1500 ° C.
It is known that the state of distribution of density in quartz glass differs between when cooling from a temperature lower than 1500 ° C.
That is, when cooling from a temperature lower than 1500 ° C., the surroundings are cooled faster because the surroundings are cooled faster, and when cooling from a temperature higher than 1500 ° C., the surroundings are cooled. Cooling faster than inside is the same as in the above case, but the density is lower around the periphery than inside. Refraction correlated with density
The index also produces a distribution similar to the density, and measuring the density makes it possible to identify the refractive index distribution due to the fictive temperature, but, as in the case of the present invention, about 150 μm.
When cooled from a temperature higher than 0 ° C., the inside virtual temperature distribution is lower than the surrounding virtual temperature distribution, and the inside density is larger than the surrounding density, that is, the inside has a higher refractive index than the surroundings. Since a high distribution is generated and the refractive index distribution is opposite to the refractive index distribution generated by the OH group concentration distribution, fluctuations in the refractive index of each other are canceled out, and a very uniform refractive index distribution can be formed.

【0057】直接法の場合は、前記したように四塩化ケ
イ素の加水分解により基台上に直接シリカ粒子を堆積さ
せ、透明化されたインゴットを製造する。従って、VA
D法の場合のように透明化されたガラスを得るまでに仮
焼等の処理を行う必要はないが、その代わりに前記工程
によりOH基濃度や塩素濃度の分布を調整することはで
きない。そこで、OH基濃度や塩素濃度等の分布は、加
水分解を行う際に、酸素−水素火炎の温度や酸素と水素
の流量比を所定の値に設定することによりコントロール
する。
In the case of the direct method, as described above, silica particles are directly deposited on a base by hydrolysis of silicon tetrachloride to produce a transparent ingot. Therefore, VA
Although it is not necessary to perform a treatment such as calcination until the transparent glass is obtained as in the case of the method D, the distribution of the OH group concentration and the chlorine concentration cannot be adjusted by the above process instead. Therefore, the distribution of the OH group concentration, the chlorine concentration, and the like are controlled by setting the temperature of the oxygen-hydrogen flame and the flow ratio of oxygen to hydrogen to predetermined values when performing the hydrolysis.

【0058】直接法の場合において製造されたインゴッ
トの冷却は、通常、加熱炉が大気開放型であることか
ら、大気放冷に近い炉内冷却の条件で行われ、冷却速度
の制御は困難である。従って、直接法で製造した合成石
英ガラス材の母材は、そのままの熱履歴の状態では、後
述する仮想温度分布は形成されない。そこで直接法の場
合、もう一度加熱を行い、後述する冷却、又は形成、冷
却を行って仮想温度分布を形成させる必要がある。この
場合の加熱、成形、冷却等の条件は、上記したVAD法
の場合と同様である。
The cooling of the ingot produced in the case of the direct method is usually performed under the condition of cooling in the furnace which is close to the air-cooled state, since the heating furnace is open-to-atmosphere, and it is difficult to control the cooling rate. is there. Therefore, in the base material of the synthetic quartz glass material manufactured by the direct method, the virtual temperature distribution described later is not formed in the state of the heat history as it is. Therefore, in the case of the direct method, it is necessary to perform heating again and perform cooling or formation and cooling described later to form a virtual temperature distribution. The conditions such as heating, molding, and cooling in this case are the same as in the case of the above-described VAD method.

【0059】このように前記した光学用合成石英ガラス
材又は光学用合成石英ガラス製品(以下、両者を含めて
光学用合成石英ガラス材とも記す)の製造工程により、
OH基濃度の分布に基づく屈折率分布を打ち消すよう
に、内部の仮想温度が周囲の仮想温度よりも低い仮想温
度分布に起因して内部の屈折率が周囲の屈折率よりも大
きい屈折率分布を形成することができ、屈折率の変動幅
が極めて小さい光学用合成石英ガラス材を製造すること
が可能となる。
As described above, the manufacturing process of the synthetic quartz glass material for optics or the synthetic quartz glass material for optics (hereinafter, also referred to as the synthetic quartz glass material for optics including both) is performed by
The internal refractive index is larger than the surrounding refractive index due to the virtual temperature distribution where the internal virtual temperature is lower than the surrounding virtual temperature so as to cancel the refractive index distribution based on the distribution of the OH group concentration.
A sharp refractive index distribution can be formed, and it becomes possible to manufacture a synthetic quartz glass material for optics having a very small fluctuation range of the refractive index.

【0060】次に、このようにして製造された光学用合
成石英ガラス材を1×103 〜1×106 Paの水素ガ
ス雰囲気下、610〜790℃で加熱することにより水
素をドープする。
Next, the thus-produced synthetic quartz glass material for optics is doped with hydrogen by heating at 610 to 790 ° C. in a hydrogen gas atmosphere of 1 × 10 3 to 1 × 10 6 Pa.

【0061】水素ガス雰囲気が1×106 Paを超える
と水素ドープの速度が早過ぎてドープ量の制御が難しく
なり、他方水素ガス雰囲気が1×103 Pa未満では溶
存させる水素ガスの揮発が促進され、ドープが困難とな
る。
When the hydrogen gas atmosphere exceeds 1 × 10 6 Pa, the rate of hydrogen doping is too fast to control the doping amount. On the other hand, when the hydrogen gas atmosphere is less than 1 × 10 3 Pa, volatilization of the dissolved hydrogen gas is difficult. Accelerated and difficult to dope.

【0062】また、加熱温度が790℃を超えるとドー
プした水素のうち、(原子状水素/分子状水素)の比が
大きくなり、レーザー耐光性の向上に効果的な分子状水
素のドープ量が不足し、他方加熱温度が610℃未満で
あるとドープ速度が遅過ぎ、ドープ時間が長くかかりす
ぎる。なお、610〜790℃の温度範囲での加熱は比
較的低温であるため、前工程で生じた石英ガラス中の仮
想温度分布を変えるものではない。
When the heating temperature exceeds 790 ° C., the ratio of (atomic hydrogen / molecular hydrogen) in the doped hydrogen increases, and the doping amount of molecular hydrogen effective for improving the laser light resistance is reduced. If the heating temperature is lower than 610 ° C., the doping speed is too slow and the doping time is too long. Since heating in a temperature range of 610 to 790 ° C. is relatively low, it does not change the virtual temperature distribution in the quartz glass generated in the previous step.

【0063】本発明に係る光学用合成石英ガラス材によ
れば、中央部分にOH基濃度が極大となる領域が存在
し、該領域を中心に周辺部分にいくに従ってOH基濃度
が次第に低下し、前記OH基濃度の分布に基づく屈折率
分布を打ち消すように、内部の仮想温度が周囲の仮想温
度よりも低い仮想温度分布に起因して内部の屈折率が周
囲の屈折率よりも大きい屈折率分布が形成され、水素を
5×1015〜1×1019mol/cm3 含有しているの
で、前記光学用合成石英ガラス材の内部全体の屈折率が
極めて均一になるとともに、レーザー光等の連続的な照
射によっても欠陥等が生じにくく、透過率が低下しない
耐光性に優れたものとなる。
According to the synthetic quartz glass material for optics according to the present invention, there is a region where the OH group concentration is maximum at the center portion, and the OH group concentration gradually decreases around the region toward the peripheral portion, The internal virtual temperature is changed to the surrounding virtual temperature so as to cancel the refractive index distribution based on the OH group concentration distribution.
Internal refractive index due to virtual temperature distribution lower than
Since a refractive index distribution larger than the surrounding refractive index is formed and hydrogen is contained at 5 × 10 15 to 1 × 10 19 mol / cm 3 , the refractive index of the whole inside of the synthetic quartz glass material for optics is extremely low. In addition to being uniform, defects and the like hardly occur even by continuous irradiation with a laser beam or the like, and light transmittance is excellent without a decrease in transmittance.

【0064】また、本発明に係る光学用合成石英ガラス
材の製造方法は、中央部分にOH基濃度が極大となる領
域が存在し、該領域を中心に周辺部分にいくに従ってO
H基濃度が次第に低下し、前記OH基濃度分布に基づく
屈折率分布を打ち消すように、内部の仮想温度が周囲の
仮想温度よりも低い仮想温度分布に起因して内部の屈折
率が周囲の屈折率よりも大きい屈折率分布が形成されて
いる光学用合成石英ガラス素材に1×103 〜1×10
6 Paの水素ガス雰囲気下、610〜790℃の加熱処
理を施すことにより水素をドープするので、内部全体の
屈折率が極めて均一で、かつレーザー光等の連続的な照
射によっても欠陥等が生じにくく、透過率が低下しない
耐光性に優れた光学用合成石英ガラス材が製造される。
In the method of manufacturing an optical synthetic quartz glass material according to the present invention, there is a region where the OH group concentration is maximized in the center portion, and O is gradually increased from the region toward the peripheral portion.
As the H group concentration gradually decreases and the refractive index distribution based on the OH group concentration distribution is cancelled, the internal virtual temperature increases
Internal refraction due to virtual temperature distribution lower than virtual temperature
1 × 10 3 to 1 × 10 3 for an optical synthetic quartz glass material having a refractive index distribution whose refractive index is larger than the surrounding refractive index.
Since hydrogen is doped by performing heat treatment at 610 to 790 ° C. in a hydrogen gas atmosphere of 6 Pa, the refractive index of the entire inside is extremely uniform, and defects are generated even by continuous irradiation with laser light or the like. It is possible to produce a synthetic quartz glass material for optical use which is difficult to reduce the transmittance and has excellent light resistance.

【0065】[0065]

【実施例及び比較例】以下、本発明の実施例に係る光学
用合成石英ガラス材及びその製造方法を説明する。
EXAMPLES AND COMPARATIVE EXAMPLES Hereinafter, a synthetic quartz glass material for optics and a method for producing the same according to examples of the present invention will be described.

【0066】[実施例1〜13及び比較例1〜14]V
AD法により多孔質合成石英ガラス母材(スート体)を
合成した。
[Examples 1 to 13 and Comparative Examples 1 to 14]
A porous synthetic quartz glass base material (soot body) was synthesized by the AD method.

【0067】高純度ケイ素化合物である四塩化ケイ素
(SiCl4 )を原料とし、酸素−水素火炎中で気相化
学反応により石英ガラス微粒子を合成するとともにこれ
を種棒の周囲に付着、堆積させ、多孔質合成石英ガラス
(スート体)を合成した。
Using silicon tetrachloride (SiCl 4 ), which is a high-purity silicon compound, as a raw material, quartz glass fine particles are synthesized by a gas phase chemical reaction in an oxygen-hydrogen flame, and the quartz glass fine particles are adhered and deposited around a seed rod. Porous synthetic quartz glass (soot body) was synthesized.

【0068】次に、この合成された多孔質合成石英ガラ
スを表1に示した条件で事前仮焼、仮焼、昇温、透明
化、及び冷却を行い、光学用合成石英ガラス母材を製造
した。
Next, the synthesized porous synthetic quartz glass was preliminarily calcined, calcined, heated, transparentized, and cooled under the conditions shown in Table 1 to produce an optical synthetic quartz glass base material. did.

【0069】次に、前記工程で製造された光学用合成石
英ガラス母材の切削、加工等を行い、得られた部材を用
いて、表1に示した加熱成形条件で、加熱、成形、均温
化処理を行った後、表1に示した速度で冷却することに
より仮想温度分布を形成した。次に、前記仮想温度分布
が形成された光学用合成石英ガラス材を用い、表1に示
した条件で水素ガス処理を行い、前記光学用合成石英ガ
ラス材に水素をドープさせた。得られた光学用合成石英
ガラス製品の特性を下記の表3に示している。
Next, the synthetic quartz glass base material for optics manufactured in the above process is cut, processed, etc., and the obtained members are heated, formed, and uniformly heated under the forming conditions shown in Table 1. After performing the warming process, cooling was performed at the rate shown in Table 1 to form a virtual temperature distribution. Next, using the synthetic quartz glass material for optics in which the virtual temperature distribution was formed, hydrogen gas treatment was performed under the conditions shown in Table 1 to dope the synthetic quartz glass material for optics with hydrogen. The properties of the obtained optical synthetic quartz glass product are shown in Table 3 below.

【0070】また、屈折率変動幅(Δn)が実施例に係
る光学用合成石英ガラス材に比べて大きい、比較例に係
る光学用合成石英ガラス材についても、光学用合成石英
ガラス材の製造条件、加熱成形条件、水素ドープ条件及
び製品特性を下記の表2及び表4に示している。
The optical synthetic quartz glass material according to the comparative example, in which the refractive index fluctuation width (Δn) is larger than that of the optical synthetic quartz glass material according to the example, is also manufactured under the conditions for manufacturing the optical synthetic quartz glass material. Tables 2 and 4 show the heat molding conditions, hydrogen doping conditions and product characteristics.

【0071】なお、仮想温度については、K.M.Davis ら
が提案した赤外線分光光度計を用いた方法(K.M.Davis
and M.Tomozawa ニューガラスフォーラム 平成5年度
第4回シリカガラス研究会 215〜255頁 199
4年1月17日)により測定し、屈折率変動幅(Δn)
については、Zygo社製のフィゾー型干渉計(Mar
k−IV)により測定し、複屈折率については、オーク
製作所社製の高感度複屈折率測定装置(ADR−30
0)により測定した。また、水素ガス放出量について
は、森本らが提案した放出ガス量を質量分析する方法
(森本幸裕他 照明学会 東京支部大会誌 16〜25
頁 1989年)及びレーザーラマン散乱測定法により
測定した。
The virtual temperature was determined by a method using an infrared spectrophotometer proposed by KDavis et al.
and M. Tomozawa New Glass Forum 1993 4th Silica Glass Workshop pp. 215-255 199
The refractive index fluctuation width (Δn)
About the Fizeau type interferometer manufactured by Zygo (Mar
k-IV), and the birefringence is measured by a high-sensitivity birefringence measuring device (ADR-30) manufactured by Oak Manufacturing Co., Ltd.
0). Regarding the amount of hydrogen gas released, mass spectrometry of the amount of released gas proposed by Morimoto et al. (Yukihiro Morimoto et al. Journal of the Illuminating Engineering Institute of Japan Tokyo Section 16-25)
1989) and laser Raman scattering measurement.

【0072】[実施例14〜17及び比較例15〜1
8]次に、直接法により直接透明の光学用合成石英ガラ
ス母材を製造した。
[Examples 14 to 17 and Comparative Examples 15 to 1]
8] Next, a transparent synthetic quartz glass base material for optics was produced directly by a direct method.

【0073】まず、高純度ケイ素化合物である四塩化ケ
イ素(SiCl4 )を原料とし、酸素−水素火炎中で気
相化学反応により石英ガラス微粒子を合成するとともに
これを基台上に堆積させ、光学用合成石英ガラス母材を
製造した。
First, silica glass fine particles were synthesized by a gas phase chemical reaction in an oxygen-hydrogen flame using silicon tetrachloride (SiCl 4 ), which is a high-purity silicon compound, and deposited on a base. A synthetic quartz glass base material was manufactured.

【0074】このときの四塩化ケイ素の不純物濃度は約
0.01ppm以下であり、水素ガス中の不純物濃度は
約50ng/Nm3 以下、酸素ガス中の不純物濃度は約
50ng/Nm3 以下であった。なお、水素ガス又は酸
素ガス中の不純物の分析は、硝酸溶液中にガスをバブリ
ングさせて通し、その溶液を高周波誘導結合プラズマ
(ICP)質量分析計に注入し、各元素ごとに測定し
た。測定下限は、おおよそ0.02〜0.005ng/
Nm3 程度である。
At this time, the impurity concentration of silicon tetrachloride is about 0.01 ppm or less, the impurity concentration in hydrogen gas is about 50 ng / Nm 3 or less, and the impurity concentration in oxygen gas is about 50 ng / Nm 3 or less. Was. The analysis of impurities in the hydrogen gas or oxygen gas was performed by bubbling a gas through a nitric acid solution, injecting the solution into a high frequency inductively coupled plasma (ICP) mass spectrometer, and measuring each element. The lower limit of measurement is approximately 0.02 to 0.005 ng /
It is about Nm 3 .

【0075】次に、前記工程で製造された光学用合成石
英ガラス母材の切削、加工等を行い、得られた部材を用
いて表5に示した加熱成形条件で、加熱、成形、均温化
処理を行った後、5℃/分未満の速度で冷却することに
より仮想温度分布を形成した。次に、前記仮想温度分布
が形成された光学用合成石英ガラス材を用い、表5に示
した条件で水素ガス処理を行い、前記光学用合成石英ガ
ラス材に水素をドープさせた。得られた光学用合成石英
ガラス製品の特性を下記の表6に示している。
Next, the synthetic quartz glass base material for optics manufactured in the above process is cut, processed, etc., and the obtained members are heated, formed, and soaked under the heat forming conditions shown in Table 5. After the heat treatment, a fictive temperature distribution was formed by cooling at a rate of less than 5 ° C./min. Next, using the synthetic quartz glass material for optics in which the virtual temperature distribution was formed, hydrogen gas treatment was performed under the conditions shown in Table 5 to dope the synthetic quartz glass material for optics with hydrogen. The properties of the obtained synthetic quartz glass product for optical use are shown in Table 6 below.

【0076】また、屈折率変動分布(Δn)が実施例に
係る光学用合成石英ガラス材に比べて大きい、比較例に
係る光学用合成石英ガラス材についても、加熱成形条
件、水素ドープ条件及び製品特性を下記の表5及び表6
に示している。
The optical synthetic quartz glass material according to the comparative example, in which the refractive index variation distribution (Δn) is larger than that of the optical synthetic quartz glass material according to the example, is also subjected to heat molding conditions, hydrogen doping conditions and products. The characteristics are shown in Tables 5 and 6 below.
Is shown in

【0077】[0077]

【表1】 [Table 1]

【0078】[0078]

【表2】 [Table 2]

【0079】[0079]

【表3】 [Table 3]

【0080】[0080]

【表4】 [Table 4]

【0081】[0081]

【表5】 [Table 5]

【0082】[0082]

【表6】 [Table 6]

【0083】上記の表3に示した結果より明らかなよう
に、実施例に係る光学用合成石英ガラス製品の中央部分
にOH基濃度の極大値となる領域が存在し、該領域を中
心に周辺部分にいくに従ってOH基濃度が次第に低下
し、壁面部分で濃度の最小値となる濃度分布が存在し、
このOH基濃度分布に基づく屈折率変動分布(屈折率変
動幅Δn:1.0×10-6〜5.0×10-6)を打ち消
すように、内部の仮想温度が周囲の仮想温度よりも低い
仮想温度分布に起因して内部の屈折率が周囲の屈折率よ
りも大きい屈折率分布(屈折率変動幅Δn:−1.5×
10-6〜−4.5×10-6)が形成されているので、前
記光学用合成石英ガラス材内部全体の屈折率が極めて均
一(屈折率変動幅Δn≦0.9×10-6)になる。ま
た、複屈折率も3nm/cm以下と極めて小さく、脈理
が三方向フリーと均質性に優れた材料となる。さらに、
実施例に係る光学用合成石英ガラス製品の金属不純物含
有量はトータル量として、0.15ppm未満であり、
各金属不純物含有量は、Alの含有量が0.01ppm
以下、Na、K、及びLiの各含有量が0.02ppm
以下、Ca、Fe、Ti、Cr、Ni、P、B、Mg、
Cu、Zr、及びZnの各含有量が0.008ppm以
下であった。また、塩素の濃度はVAD法により製造し
たもので1ppm未満であり、直接法により製造したも
のが20〜40ppmで、最大値と最小値との濃度差は
1ppm未満であった。この光学用合成石英ガラス製品
中の不純物濃度はプラズマ発光(ICP)分析法及び放
射化分析法により測定した。
As is clear from the results shown in Table 3 above, there is a region where the OH group concentration has a maximum value in the central portion of the synthetic quartz glass product for optics according to the example. The OH group concentration gradually decreases as going to the part, and there is a concentration distribution with the minimum concentration at the wall part,
The internal virtual temperature is lower than the surrounding virtual temperature so as to cancel the refractive index fluctuation distribution based on the OH group concentration distribution (refractive index fluctuation width Δn: 1.0 × 10 −6 to 5.0 × 10 −6 ). Due to the low virtual temperature distribution, the internal refractive index is higher than the surrounding refractive index.
Also large refractive index distribution Ri (refractive index fluctuation width [Delta] n: -1.5 ×
10 −6 to −4.5 × 10 −6 ), the refractive index of the entire inside of the synthetic quartz glass material for optics is extremely uniform (refractive index variation Δn ≦ 0.9 × 10 −6 ). become. Further, the birefringence is extremely small at 3 nm / cm or less, and the material is free from striae in three directions and excellent in homogeneity. further,
The metal impurity content of the synthetic quartz glass product for optics according to the example is less than 0.15 ppm as a total amount,
The content of each metal impurity is such that the content of Al is 0.01 ppm.
Hereinafter, each content of Na, K, and Li is 0.02 ppm.
Hereinafter, Ca, Fe, Ti, Cr, Ni, P, B, Mg,
Each content of Cu, Zr, and Zn was 0.008 ppm or less. In addition, the concentration of chlorine was less than 1 ppm for those manufactured by the VAD method, and 20 to 40 ppm for those manufactured by the direct method, and the difference in concentration between the maximum value and the minimum value was less than 1 ppm. The impurity concentration in this synthetic quartz glass product for optics was measured by a plasma emission (ICP) analysis method and an activation analysis method.

【0084】また、実施例に係る光学用合成石英ガラス
材は、水素を5×1015〜1×1019mol/cm3
有しているため、対レーザー耐性に優れ、少なくともK
rF光レーザー(波長:248nm)を約400mJ/
cm2 の照射光エネルギー密度で1×106 ショット以
上照射しても248nmも内部透過率が0.5%未満で
あった。
Further, the synthetic quartz glass material for optics according to the examples contains 5 × 10 15 to 1 × 10 19 mol / cm 3 of hydrogen, so that it has excellent resistance to laser and at least K
rF light laser (wavelength: 248 nm) is about 400 mJ /
Even when irradiation was performed at 1 × 10 6 shots or more at an irradiation light energy density of cm 2, the internal transmittance at 248 nm was less than 0.5%.

【0085】他方、比較例に係る光学用合成石英ガラス
製品においては、OH基の最大値と最小値との濃度差が
大きすぎるか、又はOH基濃度分布により形成される屈
折率の変動分布と、形成された仮想温度分布による屈折
率変動分布が加算されたかたちになっているため、全体
の屈折率変動幅が実施例に係る光学用合成石英ガラス製
品の3倍を超えた値となっている。また、均温化の後の
冷却で、その速度が早すぎる場合には、複屈折率が10
nm/cm以下と異方性が大きくなっている。さらに、
対レーザー耐性についても、KrFレーザーを約400
mJ/cm2 の照射光エネルギー密度で1×106 ショ
ット照射することにより、内部透過率が0.5%以上低
下してものが存在し、対レーザー耐性に劣る。
On the other hand, in the synthetic quartz glass product for optics according to the comparative example, the difference in concentration between the maximum value and the minimum value of the OH group is too large, or the fluctuation distribution of the refractive index formed by the OH group concentration distribution. Since the refractive index fluctuation distribution due to the formed virtual temperature distribution is in the form of being added, the entire refractive index fluctuation width is a value exceeding three times the optical synthetic quartz glass product according to the embodiment. I have. If the cooling rate after the temperature equalization is too fast, the birefringence is 10%.
The anisotropy is large at nm / cm or less. further,
About KrF laser is about 400
By irradiating 1 × 10 6 shots at an irradiation light energy density of mJ / cm 2 , there is a case where the internal transmittance is reduced by 0.5% or more, and the laser resistance is poor.

【0086】[0086]

【発明の効果】以上詳述したように本発明に係る光学用
合成石英ガラス材にあっては、中央部分にOH基濃度が
極大となる領域が存在し、該領域を中心に周辺部分にい
くに従ってOH基濃度が次第に低下し、前記OH基濃度
分布に基づく屈折率分布を打ち消すように、内部の仮想
温度が周囲の仮想温度よりも低い仮想温度分布に起因
て内部の屈折率が周囲の屈折率よりも大きい屈折率分布
が形成され、水素を5×1015〜1×1019mol/c
3 含有しているので、前記光学用合成石英ガラス材内
部全体の屈折率を極めて均一にすることができるととも
に、レーザー光等の連続的な照射によっても透過率が低
下しない耐光性に優れたものとすることができる。
As described in detail above, in the synthetic quartz glass material for optics according to the present invention, there is a region where the OH group concentration is maximum at the center portion, and the region goes to the peripheral portion around this region. OH group concentration decreases gradually in accordance with the so as to cancel the refractive index distribution based on the OH group concentration distribution, the interior of the virtual
Due to the virtual temperature distribution where the temperature is lower than the surrounding virtual temperature
A refractive index distribution in which the internal refractive index is larger than the surrounding refractive index is formed, and hydrogen is supplied in an amount of 5 × 10 15 to 1 × 10 19 mol / c.
Since m 3 contains, it is possible to very the refractive index of the entire inner optical synthetic silica glass material uniform, continuous even transmittance by irradiation of a laser beam or the like is excellent in light resistance does not decrease Things.

【0087】また、本発明に係る光学用合成石英ガラス
材の製造方法は、中央部分にOH基濃度が極大となる領
域が存在し、該領域を中心に周辺部分にいくに従ってO
H基濃度が次第に低下し、前記OH基濃度分布に基づく
屈折率分布を打ち消すように、内部の仮想温度が周囲の
仮想温度よりも低い仮想温度分布に起因して内部の屈折
率が周囲の屈折率よりも大きい屈折率分布が形成されて
いる光学用合成石英ガラス素材に1×103 〜1×10
6 Paの水素ガス雰囲気下、610〜790℃の加熱処
理を施すことにより水素をドープするので、内部全体の
屈折率が極めて均一で、かつレーザー光等の連続的な照
射によっても透過率が低下しない耐光性に優れた光学用
合成石英ガラス材が製造される。
In the method for producing a synthetic quartz glass material for optics according to the present invention, there is a region where the OH group concentration is maximum in the center portion, and the O.sub.
As the H group concentration gradually decreases and the internal refractive index distribution based on the OH group concentration distribution cancels out ,
Internal refraction due to virtual temperature distribution lower than virtual temperature
1 × 10 3 to 1 × 10 3 for an optical synthetic quartz glass material having a refractive index distribution whose refractive index is larger than the surrounding refractive index.
Since hydrogen is doped by performing heat treatment at 610 to 790 ° C. in a hydrogen gas atmosphere of 6 Pa, the refractive index of the entire inside is extremely uniform, and the transmittance is reduced even by continuous irradiation with laser light or the like. An optical synthetic quartz glass material having excellent light resistance is manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】石英ガラスの温度と密度との関係、及び冷却の
際の密度の変化の様子を示したグラフである。
FIG. 1 is a graph showing the relationship between the temperature and the density of quartz glass and how the density changes during cooling.

フロントページの続き (72)発明者 中村 哲之 兵庫県尼崎市東向島東之町1番地 住金 石英株式会社内 (56)参考文献 特開 平5−24856(JP,A) 特開 平3−88743(JP,A) 特開 平3−109233(JP,A) 特開 平3−23236(JP,A) 特開 平3−52722(JP,A) (58)調査した分野(Int.Cl.7,DB名) C03C 1/00 - 14/00 C03B 8/04 C03B 20/00 Continuation of the front page (72) Inventor Tetsuyuki Nakamura 1 Higashi-Mukojima Higashinoshima-cho, Amagasaki-shi, Hyogo Sumikin Quartz Co., Ltd. (56) References JP-A-5-24856 (JP, A) JP-A-3-88743 (JP JP-A-3-109233 (JP, A) JP-A-3-23236 (JP, A) JP-A-3-52722 (JP, A) (58) Fields studied (Int. Cl. 7 , DB Name) C03C 1/00-14/00 C03B 8/04 C03B 20/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 中央部分にOH基濃度が極大となる領域
が存在し、該領域を中心に周辺部分にいくに従ってOH
基濃度が次第に低下し、前記OH基濃度の分布に基づく
屈折率分布と内部の仮想温度が周囲の仮想温度よりも低
仮想温度分布に起因して内部の屈折率が周囲の屈折率
よりも大きい屈折率分布が形成され、水素を5×10
15〜1×1019mol/cm3 含有していることを特徴
とする光学用合成石英ガラス材。
1. A region where the OH group concentration is maximum exists in a central portion, and the OH group concentration increases from the region toward the peripheral portion.
The base concentration gradually decreases, and the refractive index distribution based on the distribution of the OH group concentration and the internal virtual temperature are lower than the surrounding virtual temperature.
The internal refractive index is the surrounding refractive index
The refractive index distribution is greater than the formation, 5 × 10 hydrogen
An optical synthetic quartz glass material characterized by containing 15 to 1 × 10 19 mol / cm 3 .
【請求項2】 中央部分にOH基濃度が極大となる領域
が存在し、該領域を中心に周辺部分にいくに従ってOH
基濃度が次第に低下し、前記OH基濃度の分布に基づく
屈折率分布と内部の仮想温度が周囲の仮想温度よりも低
仮想温度分布に起因して内部の屈折率が周囲の屈折率
よりも大きい屈折率分布が形成されている光学用合成
石英ガラス素材に1×103 〜1×106 Paの水素ガ
ス雰囲気下、610〜790℃の加熱処理を施すことに
より水素をドープすることを特徴とする光学用合成石英
ガラス材の製造方法。
2. A region where the OH group concentration is maximum is present in the center portion, and the OH group concentration is increased from the region toward the peripheral portion.
The base concentration gradually decreases, and the refractive index distribution based on the distribution of the OH group concentration and the internal virtual temperature are lower than the surrounding virtual temperature.
The internal refractive index is the surrounding refractive index
The synthetic quartz glass material for optics having a larger refractive index distribution is doped with hydrogen by performing a heat treatment at 610 to 790 ° C. in a hydrogen gas atmosphere of 1 × 10 3 to 1 × 10 6 Pa. A method for producing a synthetic quartz glass material for optics, comprising:
JP21084495A 1995-08-18 1995-08-18 Synthetic quartz glass material for optics and method for producing the same Expired - Lifetime JP3274954B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21084495A JP3274954B2 (en) 1995-08-18 1995-08-18 Synthetic quartz glass material for optics and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21084495A JP3274954B2 (en) 1995-08-18 1995-08-18 Synthetic quartz glass material for optics and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0952723A JPH0952723A (en) 1997-02-25
JP3274954B2 true JP3274954B2 (en) 2002-04-15

Family

ID=16596056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21084495A Expired - Lifetime JP3274954B2 (en) 1995-08-18 1995-08-18 Synthetic quartz glass material for optics and method for producing the same

Country Status (1)

Country Link
JP (1) JP3274954B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6143676A (en) * 1997-05-20 2000-11-07 Heraeus Quarzglas Gmbh Synthetic silica glass used with uv-rays and method producing the same
JP2002160936A (en) * 2000-11-20 2002-06-04 Sumitomo Metal Ind Ltd Synthetic quartz glass for light transmission
DE60329671D1 (en) * 2002-04-23 2009-11-26 Asahi Glass Co Ltd JECTION EXPOSURE DEVICE AND PROJECTION EXPOSURE METHOD
JP2016024998A (en) * 2014-07-22 2016-02-08 江東電気株式会社 Mercury lamp

Also Published As

Publication number Publication date
JPH0952723A (en) 1997-02-25

Similar Documents

Publication Publication Date Title
US6143676A (en) Synthetic silica glass used with uv-rays and method producing the same
JP5202959B2 (en) High refractive index uniform fused silica glass and method for producing the same
US5364433A (en) Optical member of synthetic quartz glass for excimer lasers and method for producing same
US5086352A (en) Optical members and blanks or synthetic silica glass and method for their production
US5325230A (en) Optical members and blanks of synthetic silica glass and method for their production
JP4453939B2 (en) Optical silica glass member for F2 excimer laser transmission and manufacturing method thereof
JP2001151531A (en) Silica glass optical material for projection lens used to vacuum uv ray lighography, its manufacturing method and projection lens
JP3403317B2 (en) High power synthetic silica glass optical material for vacuum ultraviolet light and method for producing the same
JP2001342034A (en) Optical material of synthetic quartz glass for f2 excimer laser and optical part
JPH1192153A (en) Quartz glass and its production
US9611169B2 (en) Doped ultra-low expansion glass and methods for making the same
JPH0959034A (en) Synthetic quartz glass material and its production
JP3274954B2 (en) Synthetic quartz glass material for optics and method for producing the same
JP5486774B2 (en) Synthetic quartz glass
JP2879500B2 (en) Synthetic quartz glass optical member for excimer laser and method of manufacturing the same
JP3274953B2 (en) Synthetic quartz glass material for optics, method for producing the same, and synthetic quartz glass product using the synthetic quartz glass material for optics
JP4011217B2 (en) Manufacturing method of optical quartz glass for excimer laser
JP3274955B2 (en) Method for producing synthetic quartz glass base material for optical components for use in ultraviolet region, and method for producing synthetic quartz glass material
JP3510224B2 (en) Silica glass optical material for projection lens used in vacuum ultraviolet lithography and projection lens
JP2000239040A (en) Quartz glass material for optical member for f2 excimer laser, and optical member
JPH092828A (en) Quartz glass, optical member containing the same and production of the same
JPH0742133B2 (en) Synthetic quartz glass optical member for ultraviolet laser
JP2835540B2 (en) Method of manufacturing quartz glass member for excimer laser
JP2003238195A (en) Synthetic quartz glass member
JP2004026586A (en) Synthetic quartz glass for vacuum ultraviolet light, method of manufacturing the same and mask substrates for vacuum ultraviolet light using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090201

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100201

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110201

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120201

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130201

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term