JP4500411B2 - Quartz glass for ultraviolet rays and method for producing the same - Google Patents

Quartz glass for ultraviolet rays and method for producing the same Download PDF

Info

Publication number
JP4500411B2
JP4500411B2 JP2000122033A JP2000122033A JP4500411B2 JP 4500411 B2 JP4500411 B2 JP 4500411B2 JP 2000122033 A JP2000122033 A JP 2000122033A JP 2000122033 A JP2000122033 A JP 2000122033A JP 4500411 B2 JP4500411 B2 JP 4500411B2
Authority
JP
Japan
Prior art keywords
quartz glass
less
density
ultraviolet
transmittance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000122033A
Other languages
Japanese (ja)
Other versions
JP2001302274A (en
Inventor
謙輔 福島
和宏 皆川
尚 荒川
善久 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohara Inc
Original Assignee
Ohara Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohara Inc filed Critical Ohara Inc
Priority to JP2000122033A priority Critical patent/JP4500411B2/en
Publication of JP2001302274A publication Critical patent/JP2001302274A/en
Application granted granted Critical
Publication of JP4500411B2 publication Critical patent/JP4500411B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1453Thermal after-treatment of the shaped article, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/02Pure silica glass, e.g. pure fused quartz
    • C03B2201/03Impurity concentration specified
    • C03B2201/04Hydroxyl ion (OH)
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/20Doped silica-based glasses containing non-metals other than boron or halide
    • C03C2201/23Doped silica-based glasses containing non-metals other than boron or halide containing hydroxyl groups
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/10Melting processes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2203/00Production processes
    • C03C2203/50After-treatment
    • C03C2203/52Heat-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Description

【0001】
【発明が属する技術分野】
本発明はエキシマレーザ光等、紫外域の高出力レーザ光を利用する光学装置に使用される透明合成石英ガラスおよびその製造方法に関する。
【0002】
【従来の技術】
近年、半導体素子の小形化や高密度化要求に伴い、ウェーハ上の回路パターンにおける超微細化が進み、光リソグラフィに用いられる光線として、より波長の短い真空紫外域の光が用いられるようになっている。紫外域の光に対するレンズ、プリズム、ウィンドウ、エタロン板、あるいはLSI製造のリソグラフィ用マスク等の光学用材料として、従来この波長域にて光の透過性のすぐれた石英ガラスが適用されてきた。石英ガラス中に不純物が多く含まれていると特定波長の吸収があったりや蛍光を発したりするので、これには高純度の合成石英ガラスが用いられる。
【0003】
しかし使用される光がさらに短波長側に移行し、しかも高エネルギー密度のKrFやArFのエキシマレーザ光が適用されるようになると、この合成石英ガラスもダメージを受けるようになり、透過率の低下を生じて耐用時間が短くなってくる。これは、ガラスを構成している珪素と酸素の結合が切断されたり、切断されて他の位置に再結合したりして、ガラスの構造そのものが損傷を受けるためで、その結果、E’センターやNBOHC(Non-Bridge Oxygen Hole Cennter)と呼ばれる各欠陥に基づく新たな吸収帯を発生したり、局所的な密度変化による屈折率の変化などを生じるからである。
【0004】
このような、電離作用の強い短波長の光による石英ガラスの反復使用時間経過にともなう透過率低下に関して、種々の対策が報告されているが、その主要な手段は水素を含有させることおよびOH基を適量に制御することにある。
【0005】
水素は、常圧ないしは加圧下の水素雰囲気中で加熱する、いわゆるドープ処理で含有させる。水素を含有させると高エネルギ密度のエキシマレーザ光が継続して照射された場合の、透過率を低下させる有害な欠陥の発生時期を遅延させる効果がある。ただし、その含有量の増加には限界があり、石英ガラスが厚くなると、その中心部まで十分に水素濃度を高めることができない。
【0006】
水素による透過率低下の抑止効果は含有水素の消費を伴う。したがって、短波長光になりエネルギ密度が増してくると、含有している水素の消費量が増大し、その効果が短時間で失われてしまう。これに対し、合成石英ガラス中のCl(塩素)量を500ppm以下に低減し、さらに石英ガラスの密度を2.06g/cm3以上に高くすることにより、エキシマレーザ光照射時の石英ガラス内水素の消費量が減少して、長期にわたって使用可能な高出力レーザ用合成石英ガラスを得る発明が特開平5-32432号公報に開示されている。Cl量を低減することにより、H2がレーザ照射で励起されHClとなって消費されるのを抑止し、密度を上げることにより石英ガラスの網目構造が安定な6員環の結晶構造に近づき、エキシマレーザ光照射によっても欠陥が生成しにくくなるためとしている。しかしながら、これは密度を上げるために203MPa(2000atm)で、1000℃、5時間のHIP(熱間静水圧処理)を必要とし、実施は必ずしも容易ではない。
【0007】
OH基は多すぎると石英ガラスの耐熱性を悪くするが、適量の含有は、エキシマレーザ光照射によるガラス構造の損傷を修復する作用があり、透過率低下の抑止に有効であるとされている。水素含有による有害欠陥発生の抑止効果は、エキシマレーザ光照射により水素が石英ガラスの主要骨格であるSi−O−SiのOと結合して、OH基を形成することによるとも考えられる。
【0008】
OH基は直接法による合成石英ガラス中には多量に含まれるが、珪素化物から加水分解により多孔質体を作ってから透明化するいわゆるスート法では、その含有量を大きく変えることができ十分低くすることも可能である。エキシマレーザ光照射による透過率劣化を抑止するには、OH基を数百ppm以下の適量に管理すればよいとされている。しかしOH基の増加は、石英ガラスの紫外光吸収端を長波長側にシフトさせるので、とくにArFエキシマレーザ光(波長:193nm)の初期透過率を高くするにはできるだけ低くすることが望ましい。
【0009】
また、特開平9-12323号公報には、400nm以下の紫外線に対しOH基の存在は照射部分を局部的に緻密化させ、その部分の屈折率を上昇させて繰り返し使用時の光学系の解像度を著しく劣化させるとして、OH基濃度を200ppm以下とし、さらに水素を1×1017mole./cm3以上含有させた、酸素欠乏欠陥を実質的に含まない石英ガラスの発明が開示されている。しかしながら、OH基濃度はスート法により低減し、水素含有量は通常のドープ処理にて制御できるとしても、酸素欠乏欠陥を実質的に含まない状態の石英ガラスを得る手段については明示されていない。
【0010】
【発明が解決しようとする課題】
高純度の珪素化物から加水分解により多孔質体を作ってから透明化する合成石英ガラスの製造方法では、不純物を極めて少なくすることができ、紫外光域の透過率を向上せせることができる。しかしながら波長が短くなりしかも高エネルギ密度のKrF(248nm)やArF(193nm)などのエキシマレーザ光になってくると、光の透過ないしは照射による損傷が大きくなり、繰り返しまたは長期使用における透過率の低下が大きくなる。
【0011】
本発明の目的は、この高純度の合成石英ガラスにおいて、上記エキシマレーザ光照射による透過率の低下が小さく、かつ屈折率の場所による変動の小さい紫外線用石英ガラスおよびその製造方法の提供にある。
【0012】
【課題を解決するための手段】
本発明者らは、高純度の合成石英ガラスにおける短波長高エネルギ密度のKrF(248nm)やArF(193nm)などのエキシマレーザ光照射に対する透過率劣化を改善すべく種々検討をおこなった。まず水素を含ませるドープ処理は、実施すればそれなりの効果はあるが、短波長のエキシマレーザ光照射には必ずしも十分でない。またOH基の量の増加も透過率劣化の抑制には効果がある。しかし、とくにArFエキシマレーザ光のような短波長の紫外光に対しては、初期透過率が低下する。
【0013】
初期透過率はできるだけ高いことが望ましいので、OH基を十分低くした透明化後のガラス材(プリフォーム材)を用い、熱処理条件を種々変えて、エキシマレーザ光照射後の透過率劣化に及ぼす影響を調査してみた。その結果、石英ガラスの密度は高くても低くても透過率の劣化は大きく、劣化を小さくする適当な範囲があることが明らかになった。
【0014】
そこで、次にこのプリフォーム材の熱処理条件とそれによる石英ガラス密度との関係を検討した。一般に加水分解で得た多孔体を高温に上げ透明化する過程で石英ガラスの密度は大きく向上する。そしてOH基をとくに低くしたプリフォーム材では、さらに900℃以上の温度で長時間保持することにより密度を向上させることができた。その場合、所要保持温度に単に加熱するのではなく、一旦透明化処理温度ないしはそれ以上の高温に上げ、そこから所要温度まで冷却して保持することが効果的であった。
【0015】
エキシマレーザ光照射による透過率劣化の少ない、最適な密度範囲がある理由についてはよくはわからないが、密度の低い場合、SiOの安定な六員環構造のネットワークになる前の不安定な原子間結合角や環構造を多く含み、これがレーザ光により破壊されて新たな吸収帯を発生し、透過率を低下させるのではないかと推測される。一方密度が高すぎる場合、安定な六員環構造が多くなっているが安定な構造間の歪みも増しており、これがレーザ光照射により変形して局所的に屈折率を変え、透過率を低下させるのではないかと思われた。
【0016】
この透過率劣化の少ない、最適な密度範囲としたガラスを詳細に調査した結果、さらに紫外光域での局所的屈折率の変動が極めて小さいことが見いだされた。ある面積範囲内で屈折率nの局所的変動を調べてみると、最大値と最小値の差Δnが、密度を最適範囲にするための高温保持の熱処理をおこなうことにより、1/2〜1/10に低減されるのである。Δnが小さいことは、光学系の解像度が向上するので、短波長の光を用いることと相まって、たとえば微細な集積回路パターンを大きな面積にわたりより精度よく露光できる。
【0017】
以上のような知見に基づき、それぞれの限界条件をさらに明らかにして本発明を完成させた。すなわち本発明の要旨は次のとおりである。
(1) エネルギ密度が1ショット当たり200mJ/cm2以下の紫外光パルスレーザを106ショット照射した後の紫外光透過率低下が0.1%/cm以下であり、かつ紫外光域の屈折率の場所による変動が5×10-7以内である紫外線用石英ガラスであって、密度が2.201〜2.205g/cm 3 で、OH基が重量比にて50ppm以下であることを特徴とする紫外線用石英ガラス。
(2) 多孔質合成石英ガラス体を真空または不活性雰囲気中にて焼結し、さらに透明化をおこなった後、1600℃以上に加熱し冷却の過程で1000℃以上1300℃以下の温度にて5時間以上保持する熱処理をおこなった後、10℃/時間以下の速度で冷却することを特徴とする、上記(1)の紫外線用石英ガラスの製造方法。
【0018】
【発明の実施の形態】
本発明の石英ガラスは、1ショットあたりのエネルギ密度が200mJ/cm2以下である紫外光パルスレーザを、106ショット照射後の紫外光透過率低下が、0.1%/cm以下の、透過性劣化の耐性にすぐれた紫外線用石英ガラスである。通常、露光装置等で用いられる紫外光のエネルギー密度は30mJ/cm2以下であり、上記の耐性はこれらの用途に十分対応できるものである。
【0019】
屈折率の分布はフィゾー型光干渉計を用い、直径220mmの面内における最大屈折率と最小屈折率の差Δnを求める。このΔnは従来の紫外線用合成石英ガラスでは5×10-6程度であるのに比し、本発明の石英ガラスは5×10-7以下である。Δnが小さいので、この石英ガラスを紫外線の透過する光路におけば、解像度を大きく向上させることができる。
【0020】
上記の石英ガラスとするための一つの手段は、石英ガラスのOH基の濃度が50ppm以下になるようにすることである。これは、50ppmを超えると紫外域の吸収端が長波長側に移動し、たとえば、ArF(193nm)など短波長のエキシマレーザ光の初期透過率が高くならないという影響が表れる。さらに、OH基の濃度を50ppm以下とし、ガラス密度を後述の範囲に制御することにより、上記の透過性劣化に対する耐性が得られ、そして屈折率変動が小さくなる効果が得られる。
【0021】
OH基の濃度を50ppm以下にするのは、多孔質体を作ってから透明化する合成石英ガラスの製造方法において、焼結または透明化の過程を100Pa以下の減圧不活性雰囲気下、または10Pa以下の真空下にて処理すれば、容易である。
【0022】
合成石英ガラスの密度は2.201〜2.205g/cm3とする。これは次のような調査結果に基づいている。OH基の濃度が50ppm以下である透明化熱処理の終わったプリフォーム材を用い、熱処理条件を種々変えることにより密度の異なるガラスを得、これらのガラスにより、エネルギ密度が1ショット当たり200mJ/cm2のKrFエキシマレーザ、または1ショット当たり100mJ/cm2のArFエキシマレーザを、いずれも106ショット照射し、照射前後の透過率を測定した。密度に対する初期透過率とこの照射後透過率との差すなわち透過率の低下を調べてみると図1の結果が得られた。これから、レーザ照射による透過率の低下の少ないガラスにするには、密度が高すぎても低すぎても好ましくなく、密度の範囲を2.201〜2.205g/cm3とすれば、透過率の低下を0.2%/cm以下にできることが明らかである。
【0023】
密度を上記範囲に調整するには、たとえば前述のようにOH基の濃度が50ppm以下であるプリフォーム材を用い、温度および時間を適宜選定して加熱熱処理すればよい。その熱処理として好ましいのは、プリフォーム材を一旦1600℃以上軟化点(1700℃)以下に加熱し、その後所要温度にまで冷却して、その温度で5時間以上保持した後、歪みの入らないように10℃/hr以下の速度で冷却する方法である。このような条件で、保持する処理温度を種々変えて熱処理した場合の、処理温度と得られた石英ガラスの密度との関係を図2に示す。この図から明らかなように、石英ガラスの密度を2.201〜2.205g/cm3とするには、処理温度を1000〜1300℃とすればよい。
【0024】
この場合、一旦加熱する温度が1600℃未満、あるいは保持時間が5時間未満では、図2に示すような処理温度と密度とのよい相関関係は得られない。また、保持時間は、長くしてもそれ以上の密度変化が無くなるので、長くても20時間までとするのがよい。
【0025】
密度を2.201〜2.205g/cm3とする上記熱処理をおこなうと、紫外光透過の屈折率変動が大きく改善され、Δnが5×10-7以下に低下する。Δnは、上記の一旦1600℃以上に加熱後、冷却の過程で1000℃から1300℃までの一定温度に保持し、冷却する1回の処理でも5×10-7以下に低下できる。しかし、1回目の処理後、2回目の熱処理として今度は1回目の処理温度まで直接加熱し、同じ時間保持し冷却することにより、Δnを一層低減することができる。ことに1回の処理で密度は目標範囲に入るが、Δnはやや大きい場合、2回目と同じ処理をさらに3回目、4回目とくり返すことにより、安定してΔnを低下させることができる。ただし5回目を超える処理をおこなっても、それ以上の低減効果は得られない。
【0026】
【実施例】
高純度の四塩化珪素を原料とし、酸素・水素火炎中にて加水分解反応をおこなわせ、多孔質合成石英ガラス(スート体)とし、このスート体を20Paのヘリウム雰囲気中で1350℃にて10時間処理し焼結化した。次いで0.5Pa以下のヘリウム雰囲気下1550℃で6時間の透明化熱処理をおこない、直径220mmの透明な石英ガラスプリフォーム材を得た。この透明化熱処理により、OH基濃度は50ppm以下に低減することができる。比較のため、20Paのヘリウム雰囲気下で透明化してOH基濃度を高くしたプリフォーム材も作製した。
【0027】
プリフォーム材の熱処理として、10Paの窒素雰囲気中にて1650℃に加熱し1時間均熱後、種々の温度まで24℃/minの一定速度で冷却し、その温度で所定時間保持し、10℃/hr以下の冷却速度で冷却した。また、熱処理によっては、所定時間保持した温度に再加熱し、それと同じ時間保持した後冷却するという処理をくり返した。これらの処理条件を表1に示す。
【0028】
得られた石英ガラス材から、直径は素材と同じ220mmで厚さ20mmの円盤を切り出してその上下面を研磨し、屈折率のΔnが2×10−7以下の直径240mm厚さ50mmの2枚の石英ガラス板で挟み、フィゾー型光干渉計で面内における最大および最小の屈折率を測定し、Δnを求めた。
【0029】
次にこれら石英ガラス材から15mm角で高さ20mmの試験片を切り出して液中秤量法にて密度を測定し、さらに15mm角の厚さ2mmの試験片として、赤外線吸収によるOH基濃度測定、紫外線レーザ照射およびレーザ照射前後の紫外線透過率測定をおこなった。紫外線レーザは、1ショット当たり200mJ/cm2のKrFエキシマレーザ、または100mJ/cm2のArFエキシマレーザを、いずれも106ショット照射した。透過率の測定には真空紫外分光計(日本分光社製:VUV-200)を用いた。
【0030】
各特性評価結果を併せて表1に示す。これから明らかなように、密度が2.201〜2.205でOH基濃度が50ppm以下である石英ガラスは、いずれも屈折率のΔnが5×10-7以下であり、レーザ照射後の透過率低下は0.1%/cm以下である。これに比しOH基濃度が上記範囲を逸脱するもの、またはOH基が50ppmを超えるものは、いずれもレーザ照射による透過率低下が大きくなっており、Δnが小さくないものも現れる。また、このようなΔnが小さくレーザ照射による透過率低下の小さい石英ガラスは、1000℃から1300℃の熱処理よって得ることができる。
【0031】
【表1】

Figure 0004500411
【0032】
【発明の効果】
本発明の合成石英ガラスは、KrFやArFエキシマレーザ等からの高出力の真空紫外線透過における光学的特性劣化に対して、すぐれた耐久性を有し、かつ石英ガラス内での屈折率の変動が小さい。この石英ガラスは、とくに使用光の波長が短波長かつ高出力化しつつある超LSI用光リソグラフィーの光学系等に効果的に活用できる。
【図面の簡単な説明】
【図1】石英ガラスの密度と紫外線照射による透過率の低下との関係を示す図である。
【図2】石英ガラスの処理温度と密度の関係を示す図である。[0001]
[Technical field to which the invention belongs]
The present invention relates to a transparent synthetic quartz glass used for an optical device that uses high-power laser light in the ultraviolet region, such as excimer laser light, and a method for producing the same.
[0002]
[Prior art]
In recent years, along with demands for miniaturization and higher density of semiconductor elements, ultra-miniaturization of circuit patterns on wafers has progressed, and light in the vacuum ultraviolet region having a shorter wavelength has been used as a light beam used in photolithography. ing. As an optical material such as a lens, a prism, a window, an etalon plate, or a lithography mask for LSI manufacture for ultraviolet light, conventionally, quartz glass having excellent light transmittance in this wavelength region has been applied. When a large amount of impurities is contained in quartz glass, it absorbs at a specific wavelength or emits fluorescence, so high-purity synthetic quartz glass is used for this purpose.
[0003]
However, if the light used further shifts to the shorter wavelength side and high-energy density KrF or ArF excimer laser light is applied, this synthetic quartz glass will also be damaged, resulting in a decrease in transmittance. And the service life is shortened. This is because the structure of the glass itself is damaged by the bond between silicon and oxygen constituting the glass being cut or by being recombined to other positions. As a result, the E ′ center is damaged. This is because a new absorption band based on each defect called NBOHC (Non-Bridge Oxygen Hole Cennter) is generated or a refractive index change due to a local density change.
[0004]
Various countermeasures have been reported for such a decrease in transmittance with the passage of time of repeated use of quartz glass due to light having a short wavelength with strong ionization action, but the main means is to contain hydrogen and OH group. It is to control the amount to an appropriate amount.
[0005]
Hydrogen is contained by a so-called dope treatment in which heating is performed in a hydrogen atmosphere under normal pressure or pressure. Inclusion of hydrogen has the effect of delaying the occurrence of harmful defects that reduce the transmittance when continuously irradiated with high energy density excimer laser light. However, there is a limit to the increase in the content thereof, and when the quartz glass becomes thick, the hydrogen concentration cannot be sufficiently increased to the center.
[0006]
The deterrent effect of the decrease in permeability due to hydrogen is accompanied by the consumption of hydrogen. Therefore, if the energy density is increased due to the short wavelength light, the amount of hydrogen contained is increased, and the effect is lost in a short time. On the other hand, by reducing the amount of Cl (chlorine) in the synthetic quartz glass to 500 ppm or less and further increasing the density of the quartz glass to 2.06 g / cm 3 or more, the amount of hydrogen in the quartz glass at the time of excimer laser light irradiation is increased. Japanese Patent Application Laid-Open No. 5-32432 discloses an invention for obtaining a synthetic quartz glass for a high-power laser that can be used for a long period of time with reduced consumption. By reducing the amount of Cl, H 2 is suppressed from being consumed as HCl by being excited by laser irradiation, and by increasing the density, the network structure of quartz glass approaches a stable six-membered ring crystal structure, This is because defects are less likely to be generated even by excimer laser light irradiation. However, this requires 203 MPa (2000 atm), 1000 ° C. and 5 hours of HIP (hot isostatic treatment) in order to increase the density, and implementation is not always easy.
[0007]
If too many OH groups are used, the heat resistance of quartz glass will deteriorate, but the inclusion of an appropriate amount has the effect of repairing damage to the glass structure caused by excimer laser light irradiation, and is said to be effective in suppressing the decrease in transmittance. . The effect of suppressing the generation of harmful defects due to the hydrogen content is also considered to be due to the formation of OH groups by combining hydrogen with O of Si—O—Si, which is the main skeleton of quartz glass, by excimer laser light irradiation.
[0008]
Although the OH group is contained in a large amount in the synthetic quartz glass obtained by the direct method, the so-called soot method, in which a porous material is made from a siliconized product by hydrolysis and then made transparent, can greatly change its content and is sufficiently low. It is also possible to do. In order to suppress the deterioration of the transmittance due to the excimer laser light irradiation, it is said that the OH group may be controlled to an appropriate amount of several hundred ppm or less. However, the increase in OH groups shifts the ultraviolet light absorption edge of quartz glass to the longer wavelength side, so it is desirable to make it as low as possible particularly in order to increase the initial transmittance of ArF excimer laser light (wavelength: 193 nm).
[0009]
In addition, in Japanese Patent Laid-Open No. 9-12323, the presence of OH groups for ultraviolet rays of 400 nm or less locally densifies the irradiated part and raises the refractive index of the part to increase the resolution of the optical system during repeated use. In order to significantly degrade the above, there has been disclosed an invention of quartz glass containing an OH group concentration of 200 ppm or less and further containing hydrogen of 1 × 10 17 mole./cm 3 or more and substantially free of oxygen deficiency defects. However, even if the OH group concentration is reduced by the soot method and the hydrogen content can be controlled by a normal doping process, there is no description of means for obtaining quartz glass that is substantially free of oxygen deficiency defects.
[0010]
[Problems to be solved by the invention]
In the method for producing synthetic quartz glass in which a porous body is made from a high-purity siliconized product by hydrolysis and then made transparent, impurities can be extremely reduced and the transmittance in the ultraviolet region can be improved. However, excimer laser light such as KrF (248 nm) and ArF (193 nm) with a short wavelength and high energy density increases the light transmission or damage caused by irradiation, and the transmittance decreases after repeated or long-term use. Becomes larger.
[0011]
An object of the present invention is to provide an ultraviolet quartz glass for ultraviolet rays and a method for producing the same, in which the decrease in transmittance due to the excimer laser light irradiation is small and the variation in refractive index is small in the high-purity synthetic quartz glass.
[0012]
[Means for Solving the Problems]
The inventors of the present invention have made various studies to improve the transmittance deterioration with respect to excimer laser light irradiation such as KrF (248 nm) and ArF (193 nm) having a short wavelength and high energy density in high-purity synthetic quartz glass. First, the doping process including hydrogen has a certain effect, but is not necessarily sufficient for irradiation with excimer laser light with a short wavelength. An increase in the amount of OH groups is also effective in suppressing deterioration of transmittance. However, the initial transmittance is lowered particularly for short-wavelength ultraviolet light such as ArF excimer laser light.
[0013]
Since the initial transmittance is preferably as high as possible, the effect on the transmittance degradation after irradiation with excimer laser light by using a transparent glass material (preform material) with sufficiently low OH groups and various heat treatment conditions I investigated. As a result, it has been clarified that the transmittance of the quartz glass is greatly deteriorated regardless of whether the density is high or low, and there is an appropriate range for reducing the deterioration.
[0014]
Then, next, the relationship between the heat treatment conditions of the preform material and the resulting quartz glass density was examined. In general, the density of quartz glass is greatly improved in the process of raising the temperature of the porous body obtained by hydrolysis to high temperature and making it transparent. And in the preform material in which the OH group was particularly low, the density could be improved by holding it at a temperature of 900 ° C. or higher for a long time. In that case, it is effective not to simply heat to the required holding temperature, but to raise the temperature once to the clearing treatment temperature or higher and then cool to the required temperature and hold it.
[0015]
I don't know the reason why there is an optimal density range with little transmittance degradation due to excimer laser irradiation, but when the density is low, unstable interatomic bonds before becoming a network of stable six-membered ring structure of SiO It is presumed that a lot of corners and ring structures are included, which are destroyed by the laser beam to generate a new absorption band and reduce the transmittance. On the other hand, if the density is too high, the number of stable six-membered ring structures increases, but the distortion between the stable structures also increases. This is deformed by laser light irradiation and locally changes the refractive index, thereby reducing the transmittance. I thought it would be.
[0016]
As a result of a detailed investigation of the glass having an optimal density range with little transmittance deterioration, it was found that the local refractive index variation in the ultraviolet region is extremely small. When a local variation of the refractive index n is examined within a certain area range, the difference Δn between the maximum value and the minimum value is 1/2 to 1 by performing a heat treatment at a high temperature to make the density the optimum range. / 10. When Δn is small, the resolution of the optical system is improved. Therefore, coupled with the use of light having a short wavelength, for example, a fine integrated circuit pattern can be exposed more accurately over a large area.
[0017]
Based on the above knowledge, each limit condition was further clarified and the present invention was completed. That is, the gist of the present invention is as follows.
(1) Location of the refractive index in the ultraviolet light region where the decrease in ultraviolet light transmittance after irradiation of 106 6 shots of ultraviolet light pulse laser with an energy density of 200 mJ / cm 2 or less per shot is 0.1% / cm or less a der Ru ultraviolet for quartz glass variation 5 × 10 -7 within by a density of 2.201~2.205g / cm 3, the ultraviolet ray for the OH groups is equal to or is 50ppm or less in weight ratio Quartz glass.
(2) Sintering the porous synthetic quartz glass body in a vacuum or in an inert atmosphere, further clarifying it, heating it to 1600 ° C or higher, and cooling it at a temperature of 1000 ° C or higher and 1300 ° C or lower after Tsu Do to put the heat treatment for 5 hours or more, characterized by cooling at a rate 10 ° C. / time the method for ultraviolet quartz glass of the above (1).
[0018]
DETAILED DESCRIPTION OF THE INVENTION
The quartz glass of the present invention has an ultraviolet light pulse laser whose energy density per shot is 200 mJ / cm 2 or less, and the transmittance degradation is 0.1% / cm or less after 10 6 shots. Quartz glass for ultraviolet rays with excellent resistance. Usually, the energy density of ultraviolet light used in an exposure apparatus or the like is 30 mJ / cm 2 or less, and the above-mentioned resistance can sufficiently cope with these uses.
[0019]
For the refractive index distribution, a Fizeau optical interferometer is used to obtain the difference Δn between the maximum refractive index and the minimum refractive index in a plane having a diameter of 220 mm. This .DELTA.n is about 5.times.10.sup.- 6 in the conventional synthetic quartz glass for ultraviolet rays, and is 5.times.10.sup.- 7 or less in the quartz glass of the present invention. Since Δn is small, the resolution can be greatly improved by placing this quartz glass in an optical path through which ultraviolet rays pass.
[0020]
One means for obtaining the above quartz glass is to make the concentration of OH groups in the quartz glass be 50 ppm or less. This is because when the concentration exceeds 50 ppm, the absorption edge in the ultraviolet region moves to the long wavelength side, and for example, the initial transmittance of excimer laser light with a short wavelength such as ArF (193 nm) does not increase. Furthermore, by setting the concentration of OH groups to 50 ppm or less and controlling the glass density in the range described later, resistance to the above-described permeability deterioration can be obtained, and the effect of reducing the refractive index fluctuation can be obtained.
[0021]
The concentration of the OH group is 50 ppm or less in the synthetic quartz glass manufacturing method in which the porous body is made transparent before the sintering or transparency process is performed under a vacuum inert atmosphere of 100 Pa or less, or 10 Pa or less. It is easy to process under vacuum.
[0022]
The density of the synthetic quartz glass is 2.201-2.205 g / cm 3 . This is based on the following findings. Glasses with different densities were obtained by changing the heat treatment conditions using various preforms with a transparent heat treatment that had an OH group concentration of 50 ppm or less. With these glasses, the energy density was 200 mJ / cm 2 per shot. A KrF excimer laser or an ArF excimer laser of 100 mJ / cm 2 per shot was irradiated with 10 6 shots, and the transmittance before and after irradiation was measured. When the difference between the initial transmittance with respect to the density and the transmittance after irradiation, that is, the decrease in transmittance was examined, the result shown in FIG. 1 was obtained. From this, it is not preferable that the density is too high or too low to make a glass with little reduction in transmittance due to laser irradiation.If the density range is 2.201 to 2.205 g / cm 3 , the transmittance is reduced. It is clear that it can be 0.2% / cm or less.
[0023]
In order to adjust the density to the above range, for example, a preform material having an OH group concentration of 50 ppm or less as described above may be used, and heat treatment may be performed by appropriately selecting the temperature and time. As the heat treatment, it is preferable to heat the preform once to 1600 ° C. or more and to the softening point (1700 ° C.) or less, then cool it to the required temperature, hold it at that temperature for 5 hours or more, and prevent distortion. In this method, cooling is performed at a rate of 10 ° C./hr or less. FIG. 2 shows the relationship between the treatment temperature and the density of the obtained quartz glass when heat treatment is performed with various treatment temperatures held under such conditions. As is apparent from this figure, the processing temperature may be 1000-1300 ° C. in order to make the density of the quartz glass 2.201-2.205 g / cm 3 .
[0024]
In this case, if the heating temperature is less than 1600 ° C. or the holding time is less than 5 hours, a good correlation between the treatment temperature and the density as shown in FIG. 2 cannot be obtained. Further, the holding time is preferably up to 20 hours at the longest because no further change in density disappears even if the holding time is long.
[0025]
When the above heat treatment at a density of 2.201 to 2.205 g / cm 3 is performed, the refractive index fluctuation of ultraviolet light transmission is greatly improved, and Δn is reduced to 5 × 10 −7 or less. Δn can be lowered to 5 × 10 −7 or less even in a single process of cooling after holding the above temperature to 1600 ° C. or higher and holding at a constant temperature from 1000 ° C. to 1300 ° C. in the course of cooling. However, after the first treatment, as the second heat treatment, Δn can be further reduced by directly heating to the first treatment temperature and holding and cooling for the same time. In particular, the density falls within the target range in one process, but if Δn is slightly large, Δn can be stably reduced by repeating the same process as the second process again for the third and fourth times. However, even if the processing exceeding the fifth time is performed, no further reduction effect can be obtained.
[0026]
【Example】
Using high-purity silicon tetrachloride as a raw material, hydrolysis reaction is performed in an oxygen / hydrogen flame to form porous synthetic quartz glass (soot body). This soot body is 10 at 1350 ° C in a helium atmosphere of 20 Pa. Time-treated and sintered. Next, a transparent heat treatment was performed at 1550 ° C. for 6 hours under a helium atmosphere of 0.5 Pa or less to obtain a transparent quartz glass preform having a diameter of 220 mm. By this transparent heat treatment, the OH group concentration can be reduced to 50 ppm or less. For comparison, a preform material having a high OH group concentration by making it transparent under a 20 Pa helium atmosphere was also produced.
[0027]
As a heat treatment of the preform material, heated to 1650 ° C in a nitrogen atmosphere of 10 Pa, soaked for 1 hour, cooled to various temperatures at a constant rate of 24 ° C / min, held at that temperature for a predetermined time, 10 ° C Cooled at a cooling rate of / hr or less. Further, depending on the heat treatment, the process of reheating to a temperature held for a predetermined time, holding the same time and then cooling was repeated. These processing conditions are shown in Table 1.
[0028]
From the obtained quartz glass material, a disk with a diameter of 220 mm and a thickness of 20 mm is cut out and the upper and lower surfaces thereof are polished, and a refractive index Δn of 2 × 10 −7 or less, a diameter of 240 mm, a thickness of 50 mm, and two pieces The maximum and minimum refractive indexes in the plane were measured with a Fizeau optical interferometer, and Δn was obtained.
[0029]
Next, a 15 mm square test piece with a height of 20 mm was cut out from these quartz glass materials, and the density was measured by a submerged weighing method. Further, as a 15 mm square test piece with a thickness of 2 mm, OH group concentration measurement by infrared absorption, Ultraviolet transmittance was measured before and after the ultraviolet laser irradiation. The ultraviolet laser was irradiated with 10 6 shots of 200 mJ / cm 2 KrF excimer laser or 100 mJ / cm 2 ArF excimer laser per shot. A vacuum ultraviolet spectrometer (manufactured by JASCO Corporation: VUV-200) was used for the measurement of transmittance.
[0030]
Table 1 shows the result of each characteristic evaluation. As is clear from this, the quartz glass having a density of 2.201 to 2.205 and an OH group concentration of 50 ppm or less has a refractive index Δn of 5 × 10 −7 or less, and the transmittance decrease after laser irradiation is 0.1%. / cm or less. Compared with this, the OH group concentration deviates from the above range, or the OH group exceeds 50 ppm, the transmittance decrease due to laser irradiation is large and Δn is not small. Further, such quartz glass having a small Δn and a small decrease in transmittance due to laser irradiation can be obtained by heat treatment at 1000 ° C. to 1300 ° C.
[0031]
[Table 1]
Figure 0004500411
[0032]
【The invention's effect】
The synthetic quartz glass of the present invention has excellent durability against optical characteristic deterioration in high-power vacuum ultraviolet light transmission from a KrF or ArF excimer laser or the like, and the refractive index variation in the quartz glass is high. small. This quartz glass can be effectively used particularly for optical systems for optical lithography for VLSI, where the wavelength of light used is shorter and the output is becoming higher.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the density of quartz glass and the decrease in transmittance due to ultraviolet irradiation.
FIG. 2 is a graph showing the relationship between the processing temperature and density of quartz glass.

Claims (2)

エネルギ密度が1ショット当たり200mJ/cm2 以下の紫外光パルスレーザを106ショット照射した後の紫外光透過率低下が0.1%/cm以下であり、かつ紫外光域の屈折率の場所による変動が5×10-7以内である紫外線用石英ガラスであって、
密度が2.201〜2.205g/cm 3 で、OH基が重量比にて50ppm以下であることを特徴とする紫外線用石英ガラス。
The ultraviolet light transmittance drop after irradiation of 106 6 shots of an ultraviolet light pulse laser with an energy density of 200 mJ / cm 2 or less per shot is 0.1% / cm or less, and the refractive index in the ultraviolet region varies depending on the location. 5 × 10 an der Ru ultraviolet for quartz glass within -7,
A quartz glass for ultraviolet rays, having a density of 2.201 to 2.205 g / cm 3 and having an OH group content of 50 ppm or less by weight.
多孔質合成石英ガラス体を真空中または不活性雰囲気中にて焼結し、さらに透明化をおこなった後、1600℃以上に加熱し冷却の過程で1000℃以上1300℃以下の温度にて5時間以上保持する熱処理をおこなった後、10℃/時間以下の速度で冷却することを特徴とする請求項1に記載の紫外線用石英ガラスの製造方法。Sinter the porous synthetic quartz glass body in a vacuum or in an inert atmosphere, and after further clarification, heat it to 1600 ° C or higher and cool it down to 1000 ° C or higher and 1300 ° C or lower for 5 hours. after Tsu Do to put the heat treatment for holding or method of UV for quartz glass according to claim 1, characterized in that cooling at a rate 10 ° C. / hour.
JP2000122033A 2000-04-24 2000-04-24 Quartz glass for ultraviolet rays and method for producing the same Expired - Fee Related JP4500411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000122033A JP4500411B2 (en) 2000-04-24 2000-04-24 Quartz glass for ultraviolet rays and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000122033A JP4500411B2 (en) 2000-04-24 2000-04-24 Quartz glass for ultraviolet rays and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001302274A JP2001302274A (en) 2001-10-31
JP4500411B2 true JP4500411B2 (en) 2010-07-14

Family

ID=18632565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000122033A Expired - Fee Related JP4500411B2 (en) 2000-04-24 2000-04-24 Quartz glass for ultraviolet rays and method for producing the same

Country Status (1)

Country Link
JP (1) JP4500411B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4700787B2 (en) * 2000-06-27 2011-06-15 株式会社オハラ Synthetic quartz glass and manufacturing method thereof
JP3975334B2 (en) * 2002-04-01 2007-09-12 信越化学工業株式会社 Heat treatment method for synthetic quartz glass
US20040118164A1 (en) * 2002-12-19 2004-06-24 Boek Heather D. Method for heat treating a glass article
WO2005099357A1 (en) * 2004-04-13 2005-10-27 Sebit Co., Ltd Method for manufacturing high heat-resistant quartz glass
EP1740512A1 (en) * 2004-04-28 2007-01-10 Asahi Glass Company, Limited Optical member made of synthetic quartz glass, and process for its production
JP4760137B2 (en) * 2005-05-27 2011-08-31 株式会社ニコン Method of forming quartz glass
JP6011218B2 (en) * 2012-10-03 2016-10-19 住友電気工業株式会社 Manufacturing method of transparent glass base material
JP6707409B2 (en) * 2016-06-30 2020-06-10 クアーズテック株式会社 Silica sintered body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187684A (en) * 1993-12-27 1995-07-25 Nikon Corp Production of quartz glass and quartz glass made by the same
JPH111331A (en) * 1998-04-03 1999-01-06 Asahi Glass Co Ltd Production of quartz glass optical member

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3274955B2 (en) * 1995-08-18 2002-04-15 住友金属工業株式会社 Method for producing synthetic quartz glass base material for optical components for use in ultraviolet region, and method for producing synthetic quartz glass material
JPH0959034A (en) * 1995-08-22 1997-03-04 Sumitomo Metal Ind Ltd Synthetic quartz glass material and its production
JPH11116255A (en) * 1997-10-13 1999-04-27 Nikon Corp Homogenizing method of quartz glass and quartz glass obtained by the same
JP4022678B2 (en) * 1998-01-23 2007-12-19 東ソー株式会社 Method for producing high purity transparent silica glass
JP3069562B1 (en) * 1999-10-19 2000-07-24 信越石英株式会社 Silica glass optical material for excimer laser and excimer lamp and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07187684A (en) * 1993-12-27 1995-07-25 Nikon Corp Production of quartz glass and quartz glass made by the same
JPH111331A (en) * 1998-04-03 1999-01-06 Asahi Glass Co Ltd Production of quartz glass optical member

Also Published As

Publication number Publication date
JP2001302274A (en) 2001-10-31

Similar Documents

Publication Publication Date Title
EP1910237B1 (en) Synthetic silica material with low fluence-dependent-transmission and method of making the same
EP1900694B1 (en) Method for making a synthetic quartz glass substrate for excimer lasers
EP1754689B1 (en) Synthetic quartz glass substrate for excimer lasers and making method
WO2005085952A1 (en) Photomask substrate made of synthetic quartz glass and photomask
US6339033B2 (en) Silica glass having superior durability against excimer laser beams and method for manufacturing the same
JP4500411B2 (en) Quartz glass for ultraviolet rays and method for producing the same
JP2005336047A (en) Optical member made of synthetic quartz glass and process for its production
US8402786B2 (en) Synthetic silica glass optical component and process for its production
US6807823B2 (en) Fluorine-containing glass
JP2018503585A (en) Doped ultra-low expansion glass and method for producing the same
JP3654500B2 (en) Quartz glass material and optical member for F2 excimer laser optical member
JP4420306B2 (en) Optical quartz glass for ultraviolet rays and manufacturing method thereof
EP2322490A1 (en) Titania and sulfur co-doped quartz glass member and making method
WO2000039038A1 (en) Method for producing optical quartz glass for excimer lasers
JP4700787B2 (en) Synthetic quartz glass and manufacturing method thereof
JP3705501B2 (en) Method for producing synthetic quartz glass member for excimer laser optical material
JP4151109B2 (en) Synthetic quartz glass optical member and manufacturing method thereof
US20040184979A1 (en) Synthesized silica glass optical member and method for manufacturing the same
JP5050458B2 (en) Silica glass and optical member
JP2789501B2 (en) Method for producing silica glass for optical use
JPWO2004065315A1 (en) Synthetic quartz glass optical member and manufacturing method thereof
JP2000154029A (en) Synthetic quartz glass for optical member and its production
JP6927062B2 (en) Synthetic quartz glass substrate and its manufacturing method
JP3788138B2 (en) Quartz glass for optics
JPH06234545A (en) Synthetic quartz glass for light transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061120

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4500411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees