JP6707409B2 - Silica sintered body - Google Patents
Silica sintered body Download PDFInfo
- Publication number
- JP6707409B2 JP6707409B2 JP2016129870A JP2016129870A JP6707409B2 JP 6707409 B2 JP6707409 B2 JP 6707409B2 JP 2016129870 A JP2016129870 A JP 2016129870A JP 2016129870 A JP2016129870 A JP 2016129870A JP 6707409 B2 JP6707409 B2 JP 6707409B2
- Authority
- JP
- Japan
- Prior art keywords
- silica
- sintered body
- ppm
- manufactured
- silica sintered
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims description 183
- 239000000377 silicon dioxide Substances 0.000 title claims description 87
- 239000011230 binding agent Substances 0.000 claims description 23
- 239000002994 raw material Substances 0.000 claims description 22
- 238000002834 transmittance Methods 0.000 claims description 21
- 229910052742 iron Inorganic materials 0.000 claims description 19
- 229910052759 nickel Inorganic materials 0.000 claims description 19
- 229910052802 copper Inorganic materials 0.000 claims description 18
- 238000010304 firing Methods 0.000 claims description 10
- 238000000465 moulding Methods 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 239000002002 slurry Substances 0.000 claims description 7
- 230000003746 surface roughness Effects 0.000 claims description 4
- 239000000843 powder Substances 0.000 description 25
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 16
- 238000004458 analytical method Methods 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 239000000126 substance Substances 0.000 description 10
- 230000003287 optical effect Effects 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000007088 Archimedes method Methods 0.000 description 7
- 229920002873 Polyethylenimine Polymers 0.000 description 7
- 239000000654 additive Substances 0.000 description 7
- 230000000996 additive effect Effects 0.000 description 7
- 239000003822 epoxy resin Substances 0.000 description 7
- 229920000647 polyepoxide Polymers 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 6
- 239000013065 commercial product Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 239000002245 particle Substances 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 238000004611 spectroscopical analysis Methods 0.000 description 3
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000005049 silicon tetrachloride Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 206010040925 Skin striae Diseases 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000004031 devitrification Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 230000004313 glare Effects 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000005304 optical glass Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000003826 uniaxial pressing Methods 0.000 description 1
- 238000009849 vacuum degassing Methods 0.000 description 1
Landscapes
- Glass Melting And Manufacturing (AREA)
- Glass Compositions (AREA)
Description
本発明は紫外・可視域の光透過性に優れた光学部材用のシリカ焼結体に関する。 The present invention relates to a silica sintered body for an optical member, which has excellent light transmittance in the ultraviolet/visible region.
シリカガラスは、化学薬品容器、化学機器、分析・計測器具、各種半導体製造用治具など幅広く用いられている。特に光透過性を利用する分野において近赤外から深紫外までの広範囲の波長域に渡って透明であることからシリカガラス製品が用いられている。それらは、熱膨張係数が極めて小さく寸法安定性に優れていること、高純度であることなどの理由から、合成シリカガラスが主に用いられている。 Silica glass is widely used in chemical containers, chemical equipment, analytical and measuring instruments, and various semiconductor manufacturing jigs. Particularly in the field of utilizing light transmittance, silica glass products are used because they are transparent over a wide wavelength range from near infrared to deep ultraviolet. For these reasons, synthetic silica glass is mainly used because of its extremely small thermal expansion coefficient, excellent dimensional stability, and high purity.
このような紫外・可視透過シリカ材料は、四塩化ケイ素等のケイ素化合物を、酸水素バーナーを通して酸水素炎中に気相搬送し、水素の燃焼により発生した水で加水分解反応によりシリカ微粒子を生成、堆積させることで製造されていた(非特許文献1)。本方法によるシリカガラス材料は250〜600nmの紫外・可視域の波長において高い透過率材料として知られている。 Such ultraviolet/visible transparent silica materials carry a silicon compound such as silicon tetrachloride in a gas phase through an oxyhydrogen burner into an oxyhydrogen flame, and generate silica fine particles by a hydrolysis reaction with water generated by the combustion of hydrogen. , Was manufactured by depositing (Non-Patent Document 1). The silica glass material according to the present method is known as a material having a high transmittance at a wavelength in the ultraviolet/visible region of 250 to 600 nm.
また、波長250nm以下の深紫外線用光学部材として、四塩化ケイ素を酸水素火炎中で加水分解させた後、基材上に堆積させて多孔質合成シリカガラス体を作製し、焼成することで製造される光学部材も報告されている(特許文献1)。 Further, as an optical member for deep ultraviolet rays having a wavelength of 250 nm or less, silicon tetrachloride is hydrolyzed in an oxyhydrogen flame, and then deposited on a substrate to produce a porous synthetic silica glass body, and manufactured by firing. Also disclosed is an optical member (Patent Document 1).
しかしながら、酸水素ガスを用いた火炎加水分解反応は、製造にあたって、水素の使用、高い反応温度、又は排気装置等の特殊な大型装置が必要であり、かつ、供給ガス等の制御も必要であることから、製造コストが高いという問題があった。また、前記した方法により製造されるものは、インゴットと呼ばれるシリカの塊であり、所定の形状に加工するためには、さらに加工する必要がある。このため、形状の複雑な光学部材や、サイズが小さい特殊な分析用のチップやレンズの加工において、充分な加工精度が得られないという問題があった。また、サイズの小さなものを製造するに際しては、エネルギーの消費量が大きいことも問題と思われる。 However, the flame hydrolysis reaction using oxyhydrogen gas requires the use of hydrogen, a high reaction temperature, or a special large-scale device such as an exhaust device in the production, and it is also necessary to control the supply gas and the like. Therefore, there is a problem that the manufacturing cost is high. The product produced by the above-mentioned method is a lump of silica called an ingot, which needs to be further processed in order to be processed into a predetermined shape. Therefore, there is a problem that sufficient processing accuracy cannot be obtained in processing of an optical member having a complicated shape and a small size of a special analysis chip or lens. In addition, when manufacturing a small size product, a large amount of energy consumption may be a problem.
本発明は、紫外・可視域の光透過性に優れたシリカ焼結体であって、従来のシリカ焼結体に比べて、安価に製造することができ、かつ、種々の形状に形成可能なシリカ焼結体を提供することを課題とする。 INDUSTRIAL APPLICABILITY The present invention is a silica sintered body having excellent ultraviolet/visible light transmittance, which can be manufactured at a lower cost and can be formed into various shapes as compared with a conventional silica sintered body. An object is to provide a silica sintered body.
本発明のシリカ焼結体は、Na、Mg、Al、K、Ca、Cr、Fe、Ni及びCuの元素の含有量の合計が0.25ppm以上2.5ppm以下であり、直径20μm以上の泡を含まず、少なくとも一部が非加工であり、かつ前記非加工面の表面粗さRaが0.1μm以下であり、300nmの光の透過率が87%以上であることを特徴とする。 Silica sintered body of the present invention, Na, Mg, Al, K , Ca, Cr, Fe, the total content of the elements Ni and Cu Ri der than 2.5ppm or less 0.25 ppm, the above diameter 20μm It is characterized in that it does not contain bubbles, is at least partially unprocessed, has a surface roughness Ra of the unprocessed surface of 0.1 μm or less, and has a light transmittance of 300 nm of 87% or more .
前記シリカ焼結体の製造方法は、Na、Mg、Al、K、Ca、Cr、Fe、Ni及びCuの元素の含有量の合計が0.25ppm以上2.5ppm以下であり真球度90%以上のシリカ原料100wt%に対して、2.5〜5wt%のバインダーを加えて粒子状またはスラリー状とし、鋳込み成形で成形後、1300℃以上で焼成することを特徴とする。 In the method for producing the silica sintered body, the total content of elements of Na, Mg, Al, K, Ca, Cr, Fe, Ni and Cu is 0.25 ppm or more and 2.5 ppm or less and the sphericity is 90%. more the silica raw material 100 wt%, and particulate or slurry by adding 2.5~5Wt% of a binder, after molding in narrowing cast, and firing at 1300 ° C. or higher.
本発明のシリカ焼結体は、Na、Mg、Al、K、Ca、Cr、Fe、Ni及びCuの元素を合計して0.25ppm以上2.5ppm以下の量で含むことで、波長300nmのとき80%以上の光透過性を有し、かつ、薄肉かつ複雑な形状を形成するのに充分な強度を有する。 The silica sintered body of the present invention contains elements of Na, Mg, Al, K, Ca, Cr, Fe, Ni and Cu in a total amount of 0.25 ppm or more and 2.5 ppm or less, and thus has a wavelength of 300 nm. At this time, it has a light transmittance of 80% or more and has sufficient strength to form a thin and complicated shape.
本発明のシリカ焼結体は、紫外・可視域の光透過性に優れ、かつ、板状、球状、半球状、楕円形状及び半楕円形状等のいずれにも形成可能であるため、紫外・可視分光分析用チップ、紫外・可視分光光度計に組み込まれるプリズム、レンズ、導光板、散乱板、及び紫外線LED用レンズ、その他のサイズの小さい特殊な分析用のチップやレンズ等に好適に用いることができる。 The silica sintered body of the present invention has excellent light transmittance in the ultraviolet/visible region, and can be formed into any of plate-like, spherical, hemispherical, elliptical and semi-elliptical shapes. Suitable for use in spectroscopic analysis chips, prisms, lenses, light guide plates, scatter plates, and UV LED lenses incorporated in UV/visible spectrophotometers, and other special small size analysis chips and lenses. it can.
本発明のシリカ焼結体は、その製造にあたり、不必要に大きなインゴットを製造したり、水素の使用や排気装置等の大型装置が不要になるため、従来のシリカガラスに比べて少ないエネルギー消費で製造することができる。 In the production of the silica sintered body of the present invention, it is possible to produce an unnecessarily large ingot, and it becomes unnecessary to use hydrogen or a large-scale device such as an exhaust device, so that the energy consumption is less than that of the conventional silica glass. It can be manufactured.
本発明のシリカ焼結体は、Na、Mg、Al、K、Ca、Cr、Fe、Ni及びCuの元素の含有量の合計が0.25ppm以上2.5ppm以下である。 In the silica sintered body of the present invention, the total content of elements of Na, Mg, Al, K, Ca, Cr, Fe, Ni and Cu is 0.25 ppm or more and 2.5 ppm or less.
本発明のシリカ焼結体には、Na、Mg、Al、K、Ca、Cr、Fe、Ni及びCuの元素が合計して0.25ppm以上2.5ppm以下、好ましくは0.25ppm以上0.5ppm以下の量で含まれる。さらに上記元素のうち、Na、Cr、Fe、Ni、Cuの元素含有量が合計で0.025ppm以上0.1ppmであることがさらに好ましい。上記元素の合計含有量が0.25ppm以上2.5ppm以下であるとき、シリカ焼結体は、波長300nmのとき85%以上の光透過性を有し、かつ、薄肉かつ複雑な形状に形成可能な充分な強度を有する。上記元素の合計含有量が2.5ppmを超える場合、シリカ焼結体は、焼結時にクリストバライト化して、クラックが多数発生し、強度が著しく低下する。また、透過率も著しく減少するため、光学部材として適さない。一方、上記元素の合計含有量が0.25ppm未満である場合、シリカ焼結体は、充分な強度を得ることができず、所望の形状を得ることが困難である。 In the silica sintered body of the present invention, the total elements of Na, Mg, Al, K, Ca, Cr, Fe, Ni and Cu are 0.25 ppm or more and 2.5 ppm or less, preferably 0.25 ppm or more and 0.1. It is contained in an amount of 5 ppm or less. Further, among the above elements, the total content of elements of Na, Cr, Fe, Ni and Cu is more preferably 0.025 ppm or more and 0.1 ppm. When the total content of the above elements is 0.25 ppm or more and 2.5 ppm or less, the silica sintered body has a light transmittance of 85% or more at a wavelength of 300 nm, and can be formed into a thin and complicated shape. It has sufficient strength. When the total content of the above elements exceeds 2.5 ppm, the silica sintered body is converted into cristobalite during sintering, many cracks are generated, and the strength is significantly reduced. Further, the transmittance is remarkably reduced, which is not suitable as an optical member. On the other hand, when the total content of the above elements is less than 0.25 ppm, the silica sintered body cannot obtain sufficient strength, and it is difficult to obtain a desired shape.
上記シリカ焼結体の少なくとも一部は非加工であり、かつ前記非加工面の表面粗さRaは0.1μm以下であることが好ましい。前記シリカ焼結体の少なくとも一部が非加工であり、かつ前記非加工面の表面粗さRaが0.1μm以下であることにより、光学用途において、シリカ焼結体の表面で光が反射又は拡散を抑制でき、優れた透明度を得ることができる。 It is preferable that at least a part of the silica sintered body is unprocessed, and the surface roughness Ra of the unprocessed surface is 0.1 μm or less. At least a part of the silica sintered body is unprocessed, and the surface roughness Ra of the non-processed surface is 0.1 μm or less, so that in optical applications, light is reflected or reflected on the surface of the silica sintered body. Diffusion can be suppressed and excellent transparency can be obtained.
また、上記シリカ焼結体は、脈理がない、実質的には、その屈折率分布が1×10-6以下であることが好ましい。前記屈折率分布が1×10-6以下であることにより、光学用ガラスとして利用することができる。なお、屈折率分布とは、最大屈折率と最小屈折率の差を表す。 Further, it is preferable that the silica sintered body has no striae and substantially has a refractive index distribution of 1×10 −6 or less. When the refractive index distribution is 1×10 −6 or less, it can be used as optical glass. The refractive index distribution represents the difference between the maximum refractive index and the minimum refractive index.
以上のとおり、本発明のシリカ焼成体は、紫外・可視域の光透過性に優れ、また、板状、球状、半球状、楕円状及び半楕円状等、いずれの形状にも形成可能であるため、紫外・可視分光分析用チップ、紫外・可視分光光度計に組み込まれるレンズ、プリズム、導光板、散乱板、及び紫外線LED用レンズ、その他のサイズの小さい特殊な分析用のチップやレンズ等の光学用途に好適である。特に、半球状又は半楕円状に形成することが要求される、紫外・可視分光光度計に組み込まれるレンズ等や、紫外線LED用レンズ等の用途に好適である。 As described above, the silica calcined product of the present invention is excellent in light transmittance in the ultraviolet/visible range and can be formed into any shape such as a plate shape, a spherical shape, a hemispherical shape, an elliptical shape and a semielliptic shape. Therefore, the UV/visible spectroscopic analysis chip, the lens, prism, light guide plate, scattering plate, and UV LED lens incorporated in the UV/visible spectrophotometer, and other small-sized special analysis chips and lenses, etc. Suitable for optical applications. In particular, it is suitable for applications such as a lens incorporated in an ultraviolet/visible spectrophotometer and a lens for an ultraviolet LED, which are required to be formed in a hemispherical shape or a semielliptic shape.
上記シリカ焼結体の原料粉(以下「シリカ原料粉」という。)には、最終的に得られるシリカ焼結体がNa、Mg、Al、K、Ca、Cr、Fe、Ni及びCuの中から合計で一定量の元素を含むものとなる限り、制限なく、種々のものが用いられる。前記シリカ原料粉には、例えば、気相反応で製造される高純度合成溶融球状シリカ並びに、コロイダルシリカ等が挙げられる。また、これらのシリカ原料粉は市販品であってもよい。前記市販品には、例えば、株式会社トクヤマ製エクセリカ等が挙げられる。前記シリカ原料粉又はその市販品は、安価であり、これらを用いて得られるシリカ焼結体は、紫外・可視域の光透過性に優れる。 In the raw material powder of the silica sintered body (hereinafter referred to as “silica raw material powder”), the finally obtained silica sintered body is one of Na, Mg, Al, K, Ca, Cr, Fe, Ni and Cu. Therefore, as long as it contains a certain amount of elements in total, various materials can be used without limitation. Examples of the silica raw material powder include high-purity synthetic fused spherical silica produced by a gas phase reaction, and colloidal silica. Further, these silica raw material powders may be commercial products. Examples of the commercially available product include Excelica manufactured by Tokuyama Corporation. The silica raw material powder or a commercial product thereof is inexpensive, and the silica sintered body obtained by using these is excellent in light transmittance in the ultraviolet/visible region.
前記シリカ原料粉は、特定の粒形態を有することが好ましい。具体的には、前記シリカ原料粉の粒径は0.5〜10μmであることが好ましく、1〜3μmであることがより好ましい。また、前記シリカ原料粉の真球度は90%以上であることが好ましく、95%以上であることがより好ましい。シリカ原料粉の真球度が90%以上であると、成形体又はシリカ焼結体のパッキング性が良く、シリカ焼結体中に残存する泡の直径を20μm以下とすることができる。 The silica raw material powder preferably has a specific grain form. Specifically, the particle size of the silica raw material powder is preferably 0.5 to 10 μm, and more preferably 1 to 3 μm. Further, the sphericity of the silica raw material powder is preferably 90% or more, and more preferably 95% or more. When the sphericity of the silica raw material powder is 90% or more, the compacting property of the molded body or the silica sintered body is good, and the diameter of the bubbles remaining in the silica sintered body can be 20 μm or less.
本発明のシリカ焼結体は、前記シリカ原料粉に、バインダーを添加して混合し、脱気し、焼結することで製造することができる。 The silica sintered body of the present invention can be manufactured by adding a binder to the silica raw material powder, mixing them, deaerating and sintering.
バインダーには、最終的に得られるシリカ焼結体がNa、Mg、Al、K、Ca、Cr、Fe、Ni及びCuの元素を含むものとなる限り、制限なく、種々のものが用いられる。前記バインダーには、例えば、ポリエチレンイミン、ポリビニルアルコール、ポリアクリル酸、メタクリルアミド及びエポキシ樹脂等が挙げられる。これらのバインダーは市販品であってもよい。前記市販品には、例えば、株式会社日本触媒製エポミン等が挙げられる。 As the binder, various silica binders can be used without limitation as long as the finally obtained silica sintered body contains the elements of Na, Mg, Al, K, Ca, Cr, Fe, Ni and Cu. Examples of the binder include polyethyleneimine, polyvinyl alcohol, polyacrylic acid, methacrylamide, and epoxy resin. These binders may be commercial products. Examples of the commercially available product include Epomin manufactured by Nippon Shokubai Co., Ltd.
前記バインダーは、シリカ原料粉に対して、通常は2.5〜10wt%、好ましくは2.5〜5wt%添加する。これらのバインダーの添加量が2.5〜10wt%の範囲内であるとき、得られるシリカ焼結体に含まれるSi以外の成分、すなわち、Na、Mg、Al、K、Ca、Cr、Fe、Ni及びCuの元素の含有量が合計して0.25ppm以上2.5ppm以下となり、充分な強度を維持することができる。 The binder is usually added in an amount of 2.5 to 10 wt%, preferably 2.5 to 5 wt% with respect to the silica raw material powder. When the added amount of these binders is in the range of 2.5 to 10 wt %, components other than Si contained in the obtained silica sintered body, that is, Na, Mg, Al, K, Ca, Cr, Fe, The total content of elements of Ni and Cu is 0.25 ppm or more and 2.5 ppm or less, and sufficient strength can be maintained.
一方、バインダーの添加量が2.5wt%未満だと、成形体強度が十分でないことがあり、10wt%超だと、結晶化により、焼結体の強度が十分でないことがある。 On the other hand, if the addition amount of the binder is less than 2.5 wt%, the strength of the compact may be insufficient, and if it exceeds 10 wt%, the strength of the sintered body may be insufficient due to crystallization.
本発明のシリカ焼結体は、上記成分を所定量で含むことで、強度が向上し、肉厚を0.2mmまで薄く、さらに、半球形状、ドームのようなキャップ形状、又はエンボス形状といった凹凸のある複雑形状に形成することができる。 Since the silica sintered body of the present invention contains the above-mentioned components in a predetermined amount, the strength is improved, the wall thickness is reduced to 0.2 mm, and further, the hemispherical shape, the dome-like cap shape, or the embossed shape unevenness. It can be formed into a complicated shape with a certain shape.
上記シリカ焼結体は、シリカ粉及びバインダーを混合攪拌した後、所望の形状の成形型を用いて成形体を作製し、焼成することで、精度良く製造することができる。 The silica sintered body can be manufactured with high accuracy by mixing and stirring the silica powder and the binder, and then forming a molded body using a molding die having a desired shape and firing the molded body.
混合攪拌は、シリカ粉及びバインダーが均一に混合される程度に行う。具体的には、シリカ粉及びバインダーの量や種類等によって異なるが、一般に40〜100rpmで600〜1440分間程度行う。また、このときの温度は、通常は室温である。 The mixing and stirring are performed until the silica powder and the binder are uniformly mixed. Specifically, it is generally carried out at 40 to 100 rpm for about 600 to 1440 minutes, though it depends on the amounts and kinds of the silica powder and the binder. The temperature at this time is usually room temperature.
なお、上記シリカ焼結体は、シリカ粉及びバインダー以外に、本発明の効果を損なわない範囲内で、例えば、アンモニア等の添加剤を添加してもよい。 In addition to the silica powder and the binder, an additive such as ammonia may be added to the above-mentioned silica sintered body as long as the effect of the present invention is not impaired.
成形には、一般的なセラミックスで用いられる方法、例えば、プレス成型、CIP成形、鋳込み成形、ゲルキャスト成形、及びスリップキャスト成形等が用いられる。 For molding, a method used for general ceramics, for example, press molding, CIP molding, cast molding, gel cast molding, slip cast molding, or the like is used.
焼成には、セラミックの焼成に一般的に用いられる電気炉を使用できるが、真空雰囲気下に焼成することが好ましい。電気炉を用いた成形だと、シリカ焼成体の内部に気泡が残存することが多いが、真空焼成により泡が抜けやすくなるためである。また、上記のとおり、真球度が90%以上のシリカ原料粉を使用することで、成形体又はシリカ焼結体のパッキング性が向上し、得られるシリカ焼結体中に残存する気泡の直径を20μm以下にすることができる。気泡の直径が20μmを超えると、光学用途には、映り込み等の発生のため、適用困難なことがある。 For firing, an electric furnace generally used for firing ceramics can be used, but firing in a vacuum atmosphere is preferable. This is because when molding is performed using an electric furnace, air bubbles often remain inside the fired silica body, but the bubbles are easily removed by vacuum firing. Further, as described above, by using the silica raw material powder having the sphericity of 90% or more, the packing property of the molded body or the silica sintered body is improved, and the diameter of the bubbles remaining in the obtained silica sintered body. Can be 20 μm or less. If the diameter of the bubbles exceeds 20 μm, it may be difficult to apply to optical applications due to the occurrence of glare and the like.
以下、本発明を実施例に基づき具体的に説明するが、本発明は下記に示す実施例により制限されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to the examples shown below.
[参考例1]
真球度90%以上の球状シリカ粉(市販品;株式会社トクヤマ製エクセリカSE−1)を原料として、球状シリカ粉100wt%に対して、バインダー(結合剤)(ポリビニルアルコール(日本合成化学株式会社製)を4wt%添加し、イオン交換水を加えてスラリー化して、ボールミルにて50rpmで24時間攪拌した。攪拌後はスプレードライヤー(ディスク回転数;10000rpm)で平均粒子径を10μmに造粒後、一軸プレス装置を用いて10MPaで金型に10分間加圧することでφ10×0.2mmの成形体を得た。その後、金型から取り出し、N2雰囲気中1300℃で焼成させることでシリカ焼結体を得た。
[ Reference Example 1]
Using spherical silica powder having a sphericity of 90% or more (commercial product; Excelica SE-1 manufactured by Tokuyama Corporation) as a raw material, a binder (binder) (polyvinyl alcohol (Nippon Synthetic Chemical Co., Ltd.) with respect to 100 wt% of spherical silica powder. 4% by weight, ion-exchanged water was added to form a slurry, and the mixture was stirred with a ball mill at 50 rpm for 24 hours, after which the particles were granulated to an average particle diameter of 10 μm with a spray dryer (disk rotation speed: 10000 rpm). Then, using a uniaxial press, the mold was pressed at 10 MPa for 10 minutes to obtain a molded body of φ10×0.2 mm, then taken out from the mold and fired at 1300° C. in a N 2 atmosphere for silica firing. I got a union.
アルキメデス法(JIS R 1634)で測定した焼結体の密度は2.2g/cm3であった。
前記シリカ焼結体の透過率を紫外・可視分光光度計(株式会社島津製作所製)を用いて評価したところ、300nmで87%であった。
前記シリカ焼結体をフッ酸で溶解し、化学分析を実施した結果、Na、Mg、Al、K、Ca、Cr、Fe、Ni及びCuの元素の含有量の合計は2.5ppmであった。
The density of the sintered body measured by Archimedes method (JIS R 1634) was 2.2 g/cm 3 .
When the transmittance of the silica sintered body was evaluated using an ultraviolet/visible spectrophotometer (manufactured by Shimadzu Corporation), it was 87% at 300 nm.
The silica sintered body was dissolved in hydrofluoric acid and subjected to chemical analysis. As a result, the total content of elements of Na, Mg, Al, K, Ca, Cr, Fe, Ni and Cu was 2.5 ppm. ..
[実施例2]
真球度90%以上の球状シリカ粉(市販品;株式会社トクヤマ製エクセリカSE−1))を原料として、バインダー(ポリエチレンイミン(BASFジャパン株式会社製)を3.5wt%添加し、イオン交換水を加えてスラリー化してボールミルにて50rpmで24時間攪拌した。攪拌後は、さらに添加剤としてエポキシ樹脂(ナガセケムテックス株式会社製)を1.3wt%添加し、混合し、真空脱泡して、型に鋳込んだ。乾燥後、種々の成形体を得た。形状は板状、及びキャップ形状、で、いずれも厚み0.2mmとした。さらに、得られた成形体を真空雰囲気中1400℃で焼成させることでシリカ焼結体を得た。
[Example 2]
3.5 wt% of a binder (polyethyleneimine (manufactured by BASF Japan Co., Ltd.) was added to a raw material of spherical silica powder having a sphericity of 90% or more (commercial product; Excelica SE-1 manufactured by Tokuyama Corporation), and ion-exchanged water was added. Was slurried and stirred in a ball mill at 50 rpm for 24 hours, after which 1.3 wt% of an epoxy resin (manufactured by Nagase Chemtex Co., Ltd.) was further added as an additive, mixed, and vacuum degassed. After being dried, various molded products were obtained, each having a plate-like shape and a cap-like shape and having a thickness of 0.2 mm. A silica sintered body was obtained by firing at ℃.
アルキメデス法(JIS R 1634)で測定した焼結体の密度は2.2g/cm3であった。
前記シリカ焼結体の透過率を紫外・可視分光光度計(株式会社島津製作所製)を用いて評価したところ、300nmで90%であった。
前記シリカ焼結体をフッ酸で溶解し、化学分析を実施した結果、Na、Mg、Al、K、Ca、Cr、Fe、Ni及びCuの元素の含有量の合計が0.6ppmであった。
The density of the sintered body measured by Archimedes method (JIS R 1634) was 2.2 g/cm 3 .
When the transmittance of the silica sintered body was evaluated using an ultraviolet/visible spectrophotometer (manufactured by Shimadzu Corporation), it was 90% at 300 nm.
The silica sintered body was dissolved in hydrofluoric acid, and as a result of chemical analysis, the total content of elements of Na, Mg, Al, K, Ca, Cr, Fe, Ni and Cu was 0.6 ppm. ..
[実施例3]
真球度90%以上の球状シリカ粉を原料として、バインダー(ポリエチレンイミン(BASFジャパン株式会社製)を1.3wt%添加し、イオン交換水を加えてスラリー化してボールミルにて50rpmで24時間撹拌した。撹拌後は、さらに添加剤としてエポキシ樹脂(ナガセケムテックス株式会社製)を1.3wt%添加し、混合し、真空脱泡して、型に鋳込んだ。乾燥後、種々の成形体を得た。形状は板状、及びキャップ形状、で、いずれも厚み0.2mmとした。さらに、得られた成形体を真空雰囲気中1400℃で焼成させることでシリカ焼結体を得た。
[Example 3]
1.3 wt% of a binder (polyethyleneimine (manufactured by BASF Japan Ltd.) was added using spherical silica powder having a sphericity of 90% or more as a raw material, ion-exchanged water was added to form a slurry, and the mixture was stirred with a ball mill at 50 rpm for 24 hours. After stirring, 1.3 wt% of an epoxy resin (manufactured by Nagase Chemtex Co., Ltd.) was further added as an additive, mixed, degassed in vacuum, and cast into a mold. The shape was plate-like and cap-like, each having a thickness of 0.2 mm, and the obtained molded body was fired at 1400° C. in a vacuum atmosphere to obtain a silica sintered body.
アルキメデス法(JIS R 1634)で測定した焼結体の密度は2.2g/cm3であった。
前記シリカ焼結体の透過率を紫外・可視分光光度計(株式会社島津製作所製)を用いて評価したところ、300nmで91%であった。
前記シリカ焼結体をフッ酸で溶解し、化学分析を実施した結果、Na、Mg、Al、K、Ca、Cr、Fe、Ni及びCuの元素の含有量の合計が0.25ppmであった。
The density of the sintered body measured by Archimedes method (JIS R 1634) was 2.2 g/cm 3 .
When the transmittance of the silica sintered body was evaluated using an ultraviolet/visible spectrophotometer (manufactured by Shimadzu Corporation), it was 91% at 300 nm.
The silica sintered body was dissolved in hydrofluoric acid, and as a result of chemical analysis, the total content of elements of Na, Mg, Al, K, Ca, Cr, Fe, Ni and Cu was 0.25 ppm. ..
[比較例1]
真球度90%以上の球状シリカ粉を原料として、バインダー(ポリビニルアルコール(日本合成化学株式会社)を10.5wt%添加し、イオン交換水を加えてスラリー化してボールミルにて50rpmで24時間攪拌した。攪拌後はスプレードライヤー(ディスク回転数;10000rpm)で平均粒子径を10μmに造粒後、一軸プレス装置を用いて10MPaで金型に10分間加圧することでφ10×0.2mmの成形体を得た。その後、金型から成形体を取り出し、N2雰囲気中1300℃で焼成させた。
[Comparative Example 1]
Using spherical silica powder having a sphericity of 90% or more as a raw material, 10.5 wt% of a binder (polyvinyl alcohol (Nippon Gosei Kagaku Co., Ltd.) was added, ion-exchanged water was added to form a slurry, and the mixture was stirred at 50 rpm at a ball mill for 24 hours. After stirring, after granulating to an average particle size of 10 μm with a spray dryer (disk rotation speed: 10000 rpm), a uniaxial pressing device was used to press the mold at 10 MPa for 10 minutes to obtain a molded product of φ10×0.2 mm. After that, the molded body was taken out from the mold and fired at 1300° C. in an N 2 atmosphere.
しかし、得られた焼結体には亀裂が多数存在し、内部は白濁箇所があり、XRDからはクリストバライトが検出され、失透していた。
アルキメデス法(JIS R 1634)で測定した焼結体の密度は2.2g/cm3であった。
また、前記焼結体の透過率を紫外・可視分光光度計(株式会社島津製作所製)を用いて評価したところ、300nmで63%であった。
前記シリカ焼結体をフッ酸で溶解し、化学分析を実施した結果、Na、Mg、Al、K、Ca、Cr、Fe、Ni及びCuの元素の含有量の合計が5.2ppmであった。
However, many cracks were present in the obtained sintered body, there were white turbid parts inside, and cristobalite was detected from XRD, resulting in devitrification.
The density of the sintered body measured by Archimedes method (JIS R 1634) was 2.2 g/cm 3 .
Further, the transmittance of the sintered body was evaluated by using an ultraviolet/visible spectrophotometer (manufactured by Shimadzu Corporation), and it was 63% at 300 nm.
The silica sintered body was dissolved in hydrofluoric acid, and as a result of chemical analysis, the total content of elements of Na, Mg, Al, K, Ca, Cr, Fe, Ni and Cu was 5.2 ppm. ..
[比較例2]
真球度90%以上の球状シリカ粉(市販品)を原料として、バインダー(ポリエチレンイミン(BASFジャパン株式会社製)を1.3wt%添加し、イオン交換水を加えてスラリー化してボールミルにて50rpmで24時間攪拌した。攪拌後は、さらに添加剤としてエポキシ樹脂(ナガセケムテックス株式会社製)を0.3wt%添加し、真空脱泡と混合し、型に鋳込んだ。乾燥後、成形体はひびが入り形状化は困難であった。そこで、ひびが入った成形体をそのまま真空雰囲気中1400℃で焼成させた。
[Comparative example 2]
1.3 wt% of a binder (polyethyleneimine (manufactured by BASF Japan Ltd.) was added using spherical silica powder (commercial product) having a sphericity of 90% or more as a raw material, ion-exchanged water was added to form a slurry, and a ball mill was operated at 50 rpm. After stirring for 24 hours, 0.3 wt% of an epoxy resin (manufactured by Nagase Chemtex Co., Ltd.) was further added as an additive, mixed with vacuum degassing, and cast into a mold. Since it was difficult to form a cracked shape, the cracked molded body was directly fired at 1400° C. in a vacuum atmosphere.
アルキメデス法(JIS R 1634)で測定した焼結体の密度は2.2g/cm3であった。
透過率は測定できなかった。
焼成体をフッ酸で溶解し、化学分析を実施した結果、Na、Mg、Al、K、Ca、Cr、Fe、Ni及びCuの元素の含有量の合計は0.18ppmであった。
The density of the sintered body measured by Archimedes method (JIS R 1634) was 2.2 g/cm 3 .
The transmittance could not be measured.
As a result of dissolving the fired body with hydrofluoric acid and performing a chemical analysis, the total content of elements of Na, Mg, Al, K, Ca, Cr, Fe, Ni and Cu was 0.18 ppm.
[参考例4]
乳鉢で粉砕し平均粒径を1μmに調整したシリカ粉を原料として、バインダー(ポリエチレンイミン(BASFジャパン株式会社製)を3.5wt%添加し、イオン交換水を加えてスラリー化してボールミルにて50rpmで24時間攪拌した。攪拌後は、さらに添加剤としてエポキシ樹脂(ナガセケムテックス株式会社製)を1.3wt%添加し、混合し、真空脱泡して、型に鋳込んだ。乾燥後、種々の成形体を得た。形状は板状、及びキャップ形状、で、いずれも厚み0.2mmとした。さらに、得られた成形体を真空雰囲気中1400℃で焼成させることでシリカ焼結体を得た。ただし、外観は白濁し、光学顕微鏡で観察したところ20μm以上の泡が存在していた。
アルキメデス法(JISR 1634)で測定した焼結体の密度は2.2g/cm3であった。
前記シリカ焼結体の透過率を紫外・可視分光光度計(株式会社島津製作所製)を用いて評価したところ、300nmで72%であった。
前記シリカ焼結体をフッ酸で溶解し、化学分析を実施した結果、Na、Mg、Al、K、Ca、Cr、Fe、Ni及びCuの元素の含有量の合計が0.6ppmであった。
[ Reference Example 4]
3.5 wt% of a binder (polyethyleneimine (manufactured by BASF Japan Co., Ltd.) was added to silica powder which was crushed in a mortar and adjusted to have an average particle size of 1 μm as a raw material, ion-exchanged water was added to form a slurry, and a ball mill was operated at 50 rpm After stirring for 24 hours, 1.3 wt% of epoxy resin (manufactured by Nagase Chemtex Co., Ltd.) was further added as an additive, mixed, degassed under vacuum, and cast into a mold. Various compacts were obtained, each having a plate-like shape and a cap-like shape and having a thickness of 0.2 mm Further, the obtained compact was fired at 1400° C. in a vacuum atmosphere to obtain a silica sintered body However, the appearance was turbid, and when observed by an optical microscope, bubbles of 20 μm or more were present.
The density of the sintered body measured by Archimedes method (JISR 1634) was 2.2 g/cm 3 .
When the transmittance of the silica sintered body was evaluated using an ultraviolet/visible spectrophotometer (manufactured by Shimadzu Corporation), it was 72% at 300 nm.
The silica sintered body was dissolved in hydrofluoric acid, and as a result of chemical analysis, the total content of elements of Na, Mg, Al, K, Ca, Cr, Fe, Ni and Cu was 0.6 ppm. ..
[参考例5]
真球度90%以上の球状シリカ粉(市販品;株式会社トクヤマ製エクセリカSE−1))を原料として、バインダー(ポリエチレンイミン(BASFジャパン株式会社製)を3.5wt%添加し、イオン交換水を加えてスラリー化してボールミルにて50rpmで24時間攪拌した。攪拌後は、さらに添加剤としてエポキシ樹脂(ナガセケムテックス株式会社製)を1.3wt%添加し、混合し、真空脱泡して、表面がRa=0.2μmに粗面化した型に鋳込んだ。乾燥後、種々の成形体を得た。形状は板状、及びキャップ形状で、いずれも厚み0.2mmとした。さらに、得られた成形体を真空雰囲気中1400℃で焼成させることでシリカ焼結体を得た。ただし、粗面化させた型に成形体が密着し、一部分破損した。また、実施例2で作製した焼成体よりも白濁していた。
アルキメデス法(JIS R 1634)で測定した焼結体の密度は2.2g/cm3であった。
前記シリカ焼結体の透過率を紫外・可視分光光度計(株式会社島津製作所製)を用いて評価したところ、300nmで79%であった。
前記シリカ焼結体をフッ酸で溶解し、化学分析を実施した結果、Na、Mg、Al、K、Ca、Cr、Fe、Ni及びCuの元素の含有量の合計が0.6ppmであった。
[ Reference Example 5]
3.5 wt% of a binder (polyethyleneimine (manufactured by BASF Japan Co., Ltd.) was added to a raw material of spherical silica powder having a sphericity of 90% or more (commercial product; Excelica SE-1 manufactured by Tokuyama Corporation), and ion-exchanged water was added. Was slurried and stirred in a ball mill at 50 rpm for 24 hours, after which 1.3 wt% of an epoxy resin (manufactured by Nagase Chemtex Co., Ltd.) was further added as an additive, mixed, and vacuum degassed. Then, it was cast into a mold whose surface was roughened to Ra=0.2 μm.After drying, various molded bodies were obtained, which were plate-shaped and cap-shaped, and each had a thickness of 0.2 mm. Then, the obtained molded body was fired at 1400° C. in a vacuum atmosphere to obtain a silica sintered body, provided that the molded body adhered to the roughened mold and was partially damaged. It was more cloudy than the prepared fired body.
The density of the sintered body measured by Archimedes method (JIS R 1634) was 2.2 g/cm 3 .
When the transmittance of the silica sintered body was evaluated using an ultraviolet/visible spectrophotometer (manufactured by Shimadzu Corporation), it was 79% at 300 nm.
The silica sintered body was dissolved in hydrofluoric acid, and as a result of chemical analysis, the total content of elements of Na, Mg, Al, K, Ca, Cr, Fe, Ni and Cu was 0.6 ppm. ..
[参考例6]
真球度90%以上の球状シリカ粉(市販品;株式会社トクヤマ製エクセリカSE−1))を原料として、バインダー(ポリエチレンイミン(BASFジャパン株式会社製)を3.5wt%添加し、イオン交換水を加えてスラリー化してボールミルにて50rpmで24時間攪拌した。攪拌後は、さらに添加剤としてエポキシ樹脂(ナガセケムテックス株式会社製)を1.3wt%添加し、混合し、真空脱泡して、型に鋳込んだ。乾燥後、φ10×5mmの成形体を得た。さらに、得られた成形体を真空雰囲気中1400℃で焼成させることでシリカ焼結体を得た。肉厚0.2mmのキャップ形状を得るため、マシニング加工を行ったが、加工中に破損し、加工品は得られなかった。
前記破損したシリカ焼結体の一片の透過率を紫外・可視分光光度計(株式会社島津製作所製)を用いて評価したところ、300nmで70%であった。
前記破損したシリカ焼結体の一片をフッ酸で溶解し、化学分析を実施した結果、Na、Mg、Al、K、Ca、Cr、Fe、Ni及びCuの元素の含有量の合計が0.6ppmであった。
[ Reference Example 6]
3.5 wt% of a binder (polyethyleneimine (manufactured by BASF Japan Co., Ltd.) was added to a raw material of spherical silica powder having a sphericity of 90% or more (commercial product; Excelica SE-1 manufactured by Tokuyama Corporation), and ion-exchanged water was added. Was slurried and stirred in a ball mill at 50 rpm for 24 hours, after which 1.3 wt% of an epoxy resin (manufactured by Nagase Chemtex Co., Ltd.) was further added as an additive, mixed, and vacuum degassed. After being dried, a compact having a diameter of 10×5 mm was obtained, and the obtained compact was fired at 1400° C. in a vacuum atmosphere to obtain a silica sintered body. Machining was performed to obtain a cap shape of 2 mm, but it was damaged during the processing, and a processed product could not be obtained.
The transmittance of one piece of the broken silica sintered body was evaluated by using an ultraviolet/visible spectrophotometer (manufactured by Shimadzu Corporation), and it was 70% at 300 nm.
As a result of dissolving one piece of the broken silica sintered body with hydrofluoric acid and performing a chemical analysis, the total content of the elements of Na, Mg, Al, K, Ca, Cr, Fe, Ni and Cu was 0. It was 6 ppm.
本発明の小型のシリカ焼結体は、紫外〜可視域での光透過性に優れ、紫外・可視分光分析用チップ、紫外・可視分光光度計に組み込まれるプリズム、レンズ、導光板及び散乱板、並びに、紫外線LED用レンズに好適に用いられる。 The small silica sintered body of the present invention has excellent light transmittance in the ultraviolet to visible range, a chip for ultraviolet/visible spectroscopic analysis, a prism incorporated in an ultraviolet/visible spectrophotometer, a lens, a light guide plate and a scattering plate, Further, it is preferably used for a lens for an ultraviolet LED.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016129870A JP6707409B2 (en) | 2016-06-30 | 2016-06-30 | Silica sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016129870A JP6707409B2 (en) | 2016-06-30 | 2016-06-30 | Silica sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018002526A JP2018002526A (en) | 2018-01-11 |
JP6707409B2 true JP6707409B2 (en) | 2020-06-10 |
Family
ID=60947644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016129870A Active JP6707409B2 (en) | 2016-06-30 | 2016-06-30 | Silica sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6707409B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6942688B2 (en) * | 2018-11-19 | 2021-09-29 | 信越化学工業株式会社 | Composition for transparent silica glass and its manufacturing method |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3751326B2 (en) * | 1994-10-14 | 2006-03-01 | 三菱レイヨン株式会社 | Manufacturing method of high purity transparent quartz glass |
JPH0912322A (en) * | 1995-06-29 | 1997-01-14 | Tosoh Corp | High-purity transparent quartz glass and its production |
JPH0948623A (en) * | 1995-08-02 | 1997-02-18 | Nitto Chem Ind Co Ltd | Production of quartz glass |
JP4500411B2 (en) * | 2000-04-24 | 2010-07-14 | 株式会社オハラ | Quartz glass for ultraviolet rays and method for producing the same |
JP2004161607A (en) * | 2002-10-21 | 2004-06-10 | Tokuyama Corp | Method of manufacturing transparent quartz glass body |
JP2004203639A (en) * | 2002-12-24 | 2004-07-22 | Tosoh Corp | Formed blank product of silica glass, its polished product, and method of manufacturing them |
JP4268489B2 (en) * | 2003-09-22 | 2009-05-27 | 株式会社トクヤマ | Method for producing transparent quartz glass body |
EP1700831B1 (en) * | 2005-03-09 | 2007-11-07 | Degussa Novara Technology S.p.A. | Process for the production of monoliths by means of the sol-gel process |
JP5171098B2 (en) * | 2007-04-24 | 2013-03-27 | 岩崎電気株式会社 | Method for producing quartz glass product, silica granule used therefor and production method thereof |
JP5487259B2 (en) * | 2012-08-07 | 2014-05-07 | 信越石英株式会社 | Silica container |
-
2016
- 2016-06-30 JP JP2016129870A patent/JP6707409B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018002526A (en) | 2018-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5608976B2 (en) | Translucent zirconia sintered body, manufacturing method and use thereof | |
JP6698585B2 (en) | Method for producing opaque quartz glass containing pores | |
WO2012053312A1 (en) | Cordierite sintered body | |
CN109790075B (en) | Transparent spinel sintered body, optical member, and method for producing transparent spinel sintered body | |
JP5707667B2 (en) | Translucent zirconia sintered body, method for producing the same, and use thereof | |
CN100472236C (en) | Hybrid lens using translucent ceramic | |
JP2014088286A (en) | Opaque quartz glass and production method thereof | |
JP6707409B2 (en) | Silica sintered body | |
JP2009215088A (en) | Spherical silica glass fine particle and method for producing the same | |
CN110467464B (en) | Method for producing ceramic molded body for sintering and method for producing ceramic sintered body | |
JP4446448B2 (en) | Method for producing transparent silica glass product | |
JP5748012B2 (en) | Translucent zirconia sintered body, method for producing the same, and use thereof | |
JP4966527B2 (en) | Transparent silica sintered body and method for producing the same | |
JP2018090440A (en) | Method for manufacturing optical component having acute part | |
JP4452059B2 (en) | Method for producing opaque silica glass molded body | |
JP2004203639A (en) | Formed blank product of silica glass, its polished product, and method of manufacturing them | |
JP2018104247A (en) | Silica sintered body and manufacturing method therefor | |
JP5493419B2 (en) | ZnS sintered body, ZnS sintered body group and optical member, and manufacturing method thereof | |
JP2018177584A (en) | Optical member | |
JP2021127268A (en) | Sintered quartz and manufacturing method thereof | |
JP4452062B2 (en) | Method for producing black silica glass molded body | |
JP2007331962A (en) | Member for microplate made of glass, method for manufacturing microplate made of glass, and microplate | |
JP2020140173A (en) | Silica sinter with anti-reflection film and manufacturing method therefor | |
Song et al. | Incorporating boron carbide into fused silica imparts multiple mechanisms to facilitate vat photopolymerization | |
JP7130529B2 (en) | Method for producing porous silica |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180608 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190305 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190426 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190730 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190925 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200512 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200520 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6707409 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |