JP2000058452A - 半導体作製方法 - Google Patents
半導体作製方法Info
- Publication number
- JP2000058452A JP2000058452A JP20692999A JP20692999A JP2000058452A JP 2000058452 A JP2000058452 A JP 2000058452A JP 20692999 A JP20692999 A JP 20692999A JP 20692999 A JP20692999 A JP 20692999A JP 2000058452 A JP2000058452 A JP 2000058452A
- Authority
- JP
- Japan
- Prior art keywords
- island
- semiconductor
- semiconductor device
- field effect
- shaped semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
Abstract
とする。 【解決手段】絶縁ゲート型電界効果半導体装置であっ
て、基板上に島状半導体層が前記基板と前記島状半導体
層の間にバッファ層を伴って形成され、前記島状半導体
は、前記半導体装置の活性領域を有し、ゲート電極がゲ
ート絶縁膜を介して前記島状半導体に隣接して設けら
れ、ソース、ドレイン及びチャネル形成領域を有し、結
晶粒の平均直径がラマンスペクトルの半値幅から平均直
径が5Å〜400Åと計算される構造を有し、電子移動
度が5cm2/V sec 〜300cm2/V sec であり、酸素濃度
が7×1019atmoscm3 以下である珪素を、前記島状半
導体は有し、前記島状半導体の前記チャネル形成領域の
ラマンスペクトルは、ピークが520cm-1より低周波数
側にシフトし、前記ゲート絶縁膜は、前記島状半導体の
側端を越えて延長している。
Description
イクロクリスタル構造の半導体の作製方法に関するもの
である。
を主成分気体( 残りはアルゴン等の不活性気体) 雰囲気
中における不純物濃度5×1018cm-3以下の半導体タ−ゲ
ットをスパッタさせることによって、7×1019cm-3以下
好ましくは1×1019cm-3以下の酸素濃度のアモルファス
半導体を熱結晶化させることにより、7 ×1019cm-3以下
の酸素濃度の格子歪を有するマイクロクリスタル構造の
半導体を形成する方法に関するものである。
たはプラズマCVD法によって形成された半導体膜を550
〜650℃の温度で数時間〜数十時間熱処理し熱結晶化さ
せることにより多結晶半導体膜を得て、この多結晶半導
体膜を用いて作製されていた。
単結晶半導体膜を得る場合、大面積基板に均一に成膜す
るのは困難であるという問題がある。
体膜を得る場合、その成膜工程に時間がかかるという問
題があった。
得られたa-Si(アモルファスシリコン)膜を用いて薄膜
トランジスタを作製する例が知られているが、その電気
的特性は低い( 電子移動度は0.1cm2/Vsec 以下) ことが
知られている。
ゴンガスを用い、スパッタ法によってa-Si膜を得てい
る。
体を用いたスパッタ法での成膜は不可能であるとされて
いた。
手段としてはスパッタ法を用いる方法がある。特にマグ
ネトロン型スパッタ法は イ)電子が磁場でターゲット付近に閉じ込められ高エネ
ルギー電子による基板表面への損傷が抑えられる。 ロ)低温で大面積にわたり高速成膜できる。 ハ)危険なガスを使用しないので、安全性と工業性が高
い。 などの利点がある。しかし、スパッタ法によって得た非
単結晶半導体膜には、珪素原子の存在に偏りがあり、ア
ルゴン原子および酸素の不純物の混在によりまたは同時
に水素を混在していないため700 ℃以下の温度での熱結
晶化は不可能であることが知られている。
のよいスパッタ法により得られた非単結晶半導体を熱結
晶化させることによって格子歪を有する微結晶半導体を
得ることを発明の目的とする。
たは水素と不活性気体とを水素を主成分として有する雰
囲気中における基板上へのスパッタ法による非晶質性(
アモルファスまたはそれにきわめて近い) 半導体膜( 以
下a−Siという) の成膜工程と、前記スパッタ法によっ
て得た非晶質性の半導体膜を450 〜700 ℃代表的には60
0 ℃の温度で結晶化させる工程を有することを特徴とす
る半導体作製方法である。
囲気気体として20%以上添加する(雰囲気中の酸素濃度
は0.01% 以下とし、水素も5N(99.999%以上) の高純度水
素を用いている) ことで、成膜されるa-Si膜中に予め水
素を均一に分散させて混入せしめて、このa-Si膜を450
〜700 ℃、代表的には600℃以下の温度でのアニ−ルに
よって熱結晶化できることを発見した。本発明は、この
上記実験事実に基づくものである。
400 Åと小さく、かつその中の水素含有量は5原子%以
下である。特に不純物としての酸素は7×1019cm-3また
はそれ以下好ましくは1×1019cm-3以下とすることに特
長を有する。そしてそれぞれの微結晶に格子歪をもたせ
ることにより、ミクロにそれの結晶界面が互いに強く密
接し、結晶粒界でのキャリアにとってのバリアを消滅さ
せんとしている。 このため、単に格子歪のない多結晶
の結晶粒界では、酸素等がそこに偏析し障壁( バリア)
がキャリアの移動を阻害するが、本発明においては、か
かる格子歪により、バリアがないまたは無視できる程度
であるため、電子の移動度も5〜300cm2/Vsec と桁違い
に優れた特長を有せしめた。
(高周波)スパッタ装置によって作製したa-Si膜を熱結
晶化させて、格子歪を有せしめるとともに、その平均結
晶粒径を5〜400 Åと小さく、また含有水素の量は5原
子%以下であり、かつ不純物としての酸素は7×1019cm
-3以下、好ましくは1×1019cm-3以下の凖結晶( セミア
モルファス Quasi-crystal またはSemi-amrphasともい
う) の多結晶珪素半導体層を形成した。そしてその電気
特性であるキャリア移動度、スレッシュホ−ルド電圧、
界面準位密度等の電気特性を知るのに最も有効な手段で
あるこの微結晶珪素半導体層を用い、薄膜ランジスタを
作製した。
ンジスタの作製工程を示す。まず、ガラス基板(11)上に
酸化珪素膜(12)を以下の条件においてマグネトロン型RF
スパッタ法により200nmの厚さに形成した。 O2 100 %雰囲気 成膜温度 150℃ RF(13.56MHz)出力 400W 圧力 0.5 Pa 単結晶シリコンをターゲットに使用 さらにその上に高純度のマグネトロン型RFスパッタ装置
によってチャネル形成領域となるa-Si膜(13)を100nmの
厚さに成膜する。
下とし、排気はタ−ボ分子ポンプとクライオポンプとを
用いた。供給する気体の量は5N(99.999%) 以上の純度
を有し、添加気体としては必要に応じて用いるアルゴン
4N以上を有せしめた。タ−ゲットの単結晶シリコンも
5×1018cm-3以下の酸素濃度、例えば1×1018cm-3の酸
素濃度とし、形成される被膜中の不純物としての酸素を
きわめて少なくした。
ン含有比80〜0%、例えば水素含有100 %とした。かかる
雰囲気下において、 H2/(H2+Ar)=100%(分圧比) 成膜温度 150 ℃ RF(13.56MHz) 出力 400W 全圧力 0.5Pa とし、ターゲットは高純度Siターゲットを用いた。 こ
の後、450 〜700 ℃、例えば600℃の温度で10時間の時
間をかけ、水素または不活性気体中、本実施例において
は水素100%雰囲気中においてa-Si膜(13)の熱結晶化を
行った。いわゆる微結晶( またはセミアモルファス) と
いわれるものであった。
リコン膜および熱処理により結晶化後の被膜中の不純物
純度をSIMS( 二次イオン等量分析) 法により調べた。す
ると成膜中の不純物濃度のうち、酸素8×1018cm-3、炭
素3×1016cm-3であった。また水素は4×1020cm-3を有
し、珪素の密度を4×1022cm-3とすると、1原子%に相
当する量であった。これらをタ−ゲットの単結晶シリコ
ンの酸素濃度1×1018cm-3を基準として調べた。またこ
のSIMS分析は成膜後被膜の深さ方向の分布( デプスプロ
フィル) を調べ、その最小値を基準とした。なぜなら表
面は大気との自然酸化した酸化珪素があるからである。
これらの値は結晶化処理後であっても特に大きな変化は
なく、酸素の不純物濃度は8×1018cm-3であった。この
実施例において、酸素を念のために増やし、例えばN2O
を0.1cc/sec 、10cc/secと添加してみた。すると結晶化
後の酸素濃度は1×1020cm-3、4×1020cm-3と多くなっ
た。しかしかかる被膜を用いた時、同時に、結晶化に必
要な温度を700 ℃以上にするか、または結晶化時間を少
なくとも5倍以上にすることによって、初めて結晶化が
できた。即ち工業的に基板のガラスの軟化温度を考慮す
ると、700 ℃以下好ましくは600 ℃以下での処理は重要
であり、またより結晶化に必要な時間を少なくすること
も重要である。しかし酸素濃度等の不純物をどのように
少なくしても、450 ℃以下では熱アニ−ルによるa-Si半
導体の結晶化は実験的には不可能であった。
のスパッタ装置を用いた結果として、装置からのリ−ク
等により成膜中の酸素濃度が1×1020cm-3またはそれ以
上となった場合は、かかる本発明の特性を期待すること
ができない。
濃度であること、および熱処理温度が450 〜700 ℃であ
ることが決められた。
はシリコンとゲルマニウムとの化合物半導体である場合
にはアニ−ル温度を約100 ℃下げることができた。
4に示されたレ−ザラマン分析デ−タで明らかなよう
に、低波数側に単結晶シリコンに比べてシフトしてい
た。電気特性を調べるため、以下に絶縁ゲイト型電解効
果トランジスタの作製方法を記す。即ち、本発明方法に
よって得られた熱結晶化させた微結晶珪素半導体に対し
てデバイス分離パターニングを行い、図1(a) の形状を
得た。
マグネトロン型RFスパッタ法により50nmの厚さに成膜
した。
実施例では80%) 、アルゴン分圧比80〜0%(本実施例
では19%)、PH3分圧比0.1 %〜10%(実施例では1%)の
雰囲気中において、 成膜温度 150 ℃ RF(13.56MHz) 出力 400W 全圧力 0.5Pa であり、ターゲットとして単結晶( 酸素濃度1×1018cm
-3)Si をターゲットとして用いた。
製のためには、はPCVD法を用いてもよい。さらに、活性
層を形成した後、ソ−スおよびドレインを形成するた
め、不純物(例えばB( ホウ素) 、P( リン) 、As( 砒
素))をイオン注入法により添加してもよい。
(b )の形状を得た。
さにマグネトロン型RFスパッタ法により以下の条件で
成膜し、図1(c) の形状を得た。 酸素雰囲気 100% 圧力0.5pa, 成膜温度100℃ RF(13.56MHz)出力400W 単結晶シリコンのターゲットまたは合成石英のターゲッ
ト使用した。
を行い、図1(d)の形状をえた。
6)を300nmの厚さに形成し、パターニングすることにに
より図1(e)の形状を得、その後水素熱アニ−ルを水素10
0%雰囲気中において375℃の温度で30min 行い、薄膜ト
ランジスタを完成させた。この水素熱アニールは多結晶
珪素半導体と酸化珪素絶縁膜との界面凖位を低減させ、
デバイス特性を向上させるためである。
いて、Sはソ−ス電極、Gはゲイト電極、Dはドレイン
電極である。
ジスタ図1(e) のチャンネル部(17)の大きさは100×100
μmの大きさである。
素半導体層を用いた薄膜トランジスタの作製方法である
が、本発明の効果を示すためにチャネル形成領域である
図1(a) のa-Si層(13)をマグネトロン型RFスパッタ法
により成膜する際の条件である水素の濃度および不本意
に混入する酸素濃度を変化させた実施例を5例作製した
ので以下にその作製方法を示す。
においてチャネル形成領域となる図1(a) の(13)を作製
する際のスパッタ時における雰囲気の分圧比をH2/(H2+A
r)=0%(分圧比)とし、他は実施例1と同様な方法によ
って作製したものである。酸素濃度は2×1020cm-3を有
していた。
においてチャネル形成領域となる図1(a) の(13)を作製
する際のスパッタ時における雰囲気の分圧比を H2/(H2+Ar)=20% (分圧比) とし、他は実施例1と同様な方法によって作製したもの
である。成膜中の酸素濃度は7×1019cm-3を有してい
た。
においてチャネル形成領域となる図1(a) の(13)を作製
する際のスパッタ時における雰囲気の分圧比を H2/(H2+Ar)=50% (分圧比) とし、他は実施例1と同様な方法によって作製したもの
である。成膜中の酸素濃度は3×1019cm-3を有してい
た。
においてチャネル形成領域となる図1(a) の(13)を作製
する際のスパッタ時における雰囲気の分圧比を H2/(H2+Ar)= 80% (分圧比) とし、他は実施例1と同様な方法によって作製したもの
である。成膜中の酸素濃度は1×1019cm-3を有してい
た。
結果を示す。
部(図1(E)の(17))におけるキャリアの移動度μ(FIELD
MOBILITY)とスパッタ時における水素分圧比比(PH/PTOTA
=H 2/(H2+Ar))の関係をグラフ化したものである。図2
におけるプロット点と実施例との対応関係を以下に表1
として示す。
が2×1020cm-3もあるため、3×10 -1cm2V/secときわめ
て小さく、また他方、本発明の如く20%以上また酸素濃
度7×1019cm-3以下において顕著に高い移動度2cm2/Vs
ec以上μ(FIELD MOBILITY)が得られていることがわか
る。
ャンバ中での酸素を水とし、それをクライオポンプで積
極的に除去できたためと推定される。
水素分圧比(PH/PTOTAL=H2/(H2+Ar))の関係をグラフ化
したものである。
施例番号の対応関係は表1の場合と同じである。
を動作させる動作電圧、すなわちゲイト電圧が低くてよ
いことになり、デバイスとしての良好な特性が得られる
ことを考えると、図3の結果は、水素の分圧比の高い20
%以上条件のスパッタ法によって、スレッシュホ−ルド
電圧8V以下のノ−マリオフの状態を得ることができ
る。即ち、チャネル形成領域となる図1(a) の(13)に示
されるa-Si膜を得て、このa-Si膜を再結晶化させること
によって得られる微結晶珪素半導体層を用いたデバイス
(本実施例では薄膜トランジスタ)は良好な電気的特性
を示すことがわかる。
層のレ−ザラマンスペクトルを示したものである。図4
に表された表示記号と実施例番号およびスパッタ時の水
素分圧比との関係を第2表に示す。
3)、すなわちチャネル形成領域(図1(e) の(17))となる
a-Si半導体層を作製する際のスパッタ時における水素の
分圧比が0%の場合と100 %の場合を比較すると、熱ア
ニ−ルにより結晶化させた場合は、スパッタ時における
水素の分圧比が100%の場合のラマンスペクトルは顕著に
その結晶性を有し、かつその平均の結晶粒径は半値幅よ
り5〜400 Å代表的には100 〜200 Åである。そして単
結晶シリコンのピ−ク値の520cm -1よりも低波数側にず
れ、明らかに格子歪を有する。このことは本発明の特徴
を顕著に示している。すなわち水素を添加したスパッタ
法によるa-Si膜の作製の効果は、そのa-Si膜を熱結晶化
させて初めて現れるものであるということである。
互いが無理に縮んでいるため、互いの結晶粒界での密接
が強くなり、結晶粒界でのキャリアにとってのエネルギ
バリアもそこでの酸素等の不純物の偏析も発生しにく
い。結果として高いキャリア移動度を期待することがで
きる。
ランジスタにおいてドレイン電圧VDが低い場合、ドレイ
ン電流IDとドレイン電圧VDとの関係は以下の式によって
表される。 ID=(W/L)μC(VG-VT)VD (Solid.State electronics.Vol.24.No.11.pp.1059.198
1.Printed in Britain)
ャネル長、μはキャリアの移動度、Cはゲイト酸化膜の
静電容量、VGはゲート電圧、VTはしきい値電圧として定
着している。
はArを用いたが、その他Heなどの他の不活性気体、また
はSiH4、Si2H6などの反応性気体をプラズマ化させたも
のを雰囲気気体の一部に添加して用いても良い。本実施
例のマグネトロン型RFスパッタ法によるa-Si膜の成膜に
おいて、水素濃度は5〜100 %、成膜温度は室温〜500℃
の範囲、RF出力は500 Hz〜100GHzの範囲において、出力
100W〜10MWの範囲で任意に選ぶことができ、またパルス
エネルギー発信源と組み合わせてもよい。さらに強力な
光照射( 波長100 〜500nm 以下) エネルギーを加えて光
スパッタを行ってもよい。
マ化させ、スパッタリングに必要な正イオンを効率よく
生成させて、スパッタによって成膜される膜中に水素ま
たは水素原子を均一に添加し、結果として酸素の混入を
7×1019cm-3以下、好ましくは1×1019cm-3以下におさ
えた半導体の成膜のためである。本発明は明細書におい
て非晶質性の半導体膜を単にa-Si膜として略記した。し
かしこれはシリコン半導体を主な半導体とするが、ゲル
マニウム、SixGe1-x(0<x<1) であってもよい。
の半導体であってもよい。また前記他の反応性気体を上
記の手段に応用してもよい。
的に有用なスパッタ法により得られた非単結晶半導体を
熱結晶化させ多結晶半導体を得る工程において、問題と
なる熱結晶化困難の問題を解決することができ、しかも
この多結晶半導体層を用いて高性能な薄膜トランジスタ
を作製することができた。
程において、チャネル形成領域となるa-Si膜の作製時に
添加する水素の分圧比と本実施例で作製した薄膜トラン
ジスタにおけるキャリアの移動度との関係を示したもの
である。
程において、チャネル形成領域となるa-Si膜の作製時に
添加する水素の分圧比と、本実施例で作製した薄膜トラ
ンジシタにおけるしきい値との関係を示したものであ
る。
ラマンスペクトルを示したものである。 (11)・・・ガラス基板 (12)・・・酸化珪素膜 (13)・・・微結晶半導体の活性層 (14)・・・n+a-Si膜 (15)・・
・ゲート酸化膜 (16)・・・アルミ電極 (17)・・・チャネル形成領域 (S)・・・ソ−ス電極 (G)・・・ゲイト電極 (D)・・・ドレイン電極
Claims (14)
- 【請求項1】 絶縁ゲート型電界効果半導体装置であっ
て、 基板上に島状半導体層が前記基板と前記島状半導体層の
間にバッファ層を伴って形成され、 前記島状半導体は、前記半導体装置の活性領域を有し、 ゲート電極がゲート絶縁膜を介して前記島状半導体に隣
接して設けられ、 ソース、ドレイン及びチャネル形成領域を有し、結晶粒
の平均直径がラマンスペクトルの半値幅から平均直径が
5Å〜400Åと計算される構造を有し、電子移動度が
5cm2/V sec 〜300cm2/V sec であり、酸素濃度が7
×1019atmoscm3 以下である珪素を、前記島状半導体
は有し、 前記島状半導体の前記チャネル形成領域のラマンスペク
トルは、ピークが520cm-1より低周波数側にシフト
し、 前記ゲート絶縁膜は、前記島状半導体の側端を越えて延
長していることを特徴とする絶縁ゲート型電界効果半導
体装置。 - 【請求項2】 請求項1において、前記島状半導体は水
素を5atom%以下含んでいることを特徴とする絶縁ゲー
ト型電界効果半導体装置。 - 【請求項3】 請求項1において、前記島状半導体は、
n型半導体、p型半導体、及び真性半導体から選ばれた
半導体を有することを特徴とする絶縁ゲート型電界効果
半導体装置。 - 【請求項4】 請求項1において、絶縁膜は前記半導体
装置のゲート絶縁物であることを特徴とする絶縁ゲート
型電界効果半導体装置。 - 【請求項5】 請求項1において、前記絶縁膜は前記バ
ッファ層の前記島状半導体があるところ以外の一部の上
に延長していることを特徴とする絶縁ゲート型電界効果
半導体装置。 - 【請求項6】 請求項1において、前記ゲート電極はア
ルミニウムを含むことを特徴とする絶縁ゲート型電界効
果半導体装置。 - 【請求項7】 請求項1において、前記島状半導体は珪
素及びゲルマニウムから選ばれた元素でなることを特徴
とする絶縁ゲート型電界効果半導体装置。 - 【請求項8】 請求項1において、前記島状半導体はS
ix Ge1-x (0<x<1)を有することを特徴とする
絶縁ゲート型電界効果半導体装置。 - 【請求項9】 請求項1において、前記島状半導体は前
記島状半導体の結晶が格子歪みを有することで実質的に
バリアがないことを特徴とする絶縁ゲート型電界効果半
導体装置。 - 【請求項10】 基板上に設けられた島状半導体と、 前記基板と島状半導体の間のバッファ層と、 絶縁膜を介して前記島状半導体に隣接して設けられたゲ
ート電極とを有し、 前記島状半導体はソース、ドレイン、及びチャネル形成
領域を有し、珪素又はゲルマニウムを含み、5cm2/V se
c 〜300cm2/V sec の電子移動度を有し、 前記島状半導体のチャネル形成領域のラマンスペクトル
は、ピークが520cm -1より低周波数側にシフトしてい
ることを示し、 前記絶縁膜は前記島状半導体の側端を越えて延長してお
り、 前記バッファ層は前記基板上の前記島状半導体を囲う領
域において前記島状半導体と前記絶縁膜とで覆われてい
ることを特徴とする絶縁ゲート型電界効果半導体装置。 - 【請求項11】 請求項10において、ソース電極とド
レイン電極は前記絶縁膜に形成された開孔を介して島状
半導体に接続されており、前記絶縁膜は前記ソース電極
及びドレイン電極と前記島状半導体との接続部を除いて
前記半導体層の全表面を直接覆っていることを特徴とす
る絶縁ゲート型電界効果半導体装置。 - 【請求項12】 請求項10において、前記島状半導体
は該島状半導体の結晶が格子歪みを有することで実質的
にバリアがないことを特徴とする絶縁ゲート型電界効果
半導体装置。 - 【請求項13】 絶縁ゲート型電界効果半導体装置であ
って、 基板上に、ソース、ドレイン、及びチャネル形成領域を
有し珪素又はゲルマニウムを含む島状半導体と、 前記基板と前記島状半導体の間のバッファ層と、 絶縁膜を介して前記島状半導体に隣接して設けられたア
ルミニウムを含むゲート電極とを有し、 前記島状半導体のチャネル形成領域のラマンスペクトル
は、ピークが520cm -1より低周波数側にシフトしてい
ることを示し、 前記絶縁膜は、前記島状半導体の側端を越えた外側であ
って、前記バッファ層の前記島状半導体が設けられてい
る領域以外の上に延長していることを特徴とする絶縁ゲ
ート型電界効果半導体装置。 - 【請求項14】 請求項1又は請求項10又は請求項1
3において、前記バッファ層は酸化珪素を有することを
特徴とする絶縁ゲート型電界効果半導体装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11206929A JP3142836B2 (ja) | 1999-07-21 | 1999-07-21 | 半導体装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11206929A JP3142836B2 (ja) | 1999-07-21 | 1999-07-21 | 半導体装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2277134A Division JP3030366B2 (ja) | 1990-10-15 | 1990-10-15 | 半導体作製方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000344138A Division JP2001177108A (ja) | 2000-11-10 | 2000-11-10 | 半導体装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000058452A true JP2000058452A (ja) | 2000-02-25 |
JP3142836B2 JP3142836B2 (ja) | 2001-03-07 |
Family
ID=16531401
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11206929A Expired - Lifetime JP3142836B2 (ja) | 1999-07-21 | 1999-07-21 | 半導体装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3142836B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8860037B2 (en) | 2011-10-12 | 2014-10-14 | Panasonic Corporation | Thin-film transistor device |
-
1999
- 1999-07-21 JP JP11206929A patent/JP3142836B2/ja not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8860037B2 (en) | 2011-10-12 | 2014-10-14 | Panasonic Corporation | Thin-film transistor device |
Also Published As
Publication number | Publication date |
---|---|
JP3142836B2 (ja) | 2001-03-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5236850A (en) | Method of manufacturing a semiconductor film and a semiconductor device by sputtering in a hydrogen atmosphere and crystallizing | |
EP0608503B1 (en) | A semiconductor device and its manufacturing method | |
US5744818A (en) | Insulated gate field effect semiconductor device | |
KR100327086B1 (ko) | 박막 반도체 장치의 제조방법, 박막 반도체 장치,액정표시장치 및 전자기기 | |
TW515101B (en) | Method for fabrication of field-effect transistor | |
EP0481777B1 (en) | Method of manufacturing gate insulated field effect transistors | |
JP3142836B2 (ja) | 半導体装置 | |
JP3065528B2 (ja) | 半導体装置 | |
JP4031021B2 (ja) | 薄膜トランジスタの作製方法 | |
JP3153202B2 (ja) | 半導体装置の作製方法 | |
JP3160269B2 (ja) | 半導体装置の作製方法 | |
JP3030366B2 (ja) | 半導体作製方法 | |
JP4001281B2 (ja) | 絶縁ゲイト型電界効果薄膜トランジスタの作製方法 | |
JP2987987B2 (ja) | 結晶半導体薄膜の形成方法並びに薄膜トランジスタの製造方法 | |
KR100524874B1 (ko) | 비정질실리콘박막의결정화방법 | |
JP2001177108A (ja) | 半導体装置 | |
JP2001035791A (ja) | 半導体装置の作製方法 | |
JP2001053291A (ja) | 半導体および半導体装置 | |
JP3614333B2 (ja) | 絶縁ゲイト型電界効果トランジスタ作製方法 | |
JP2001053289A (ja) | 薄膜トランジスタの作製方法 | |
JP3241705B2 (ja) | 薄膜トランジスタの作製方法 | |
JP3397760B2 (ja) | 薄膜トランジスタの作製方法 | |
JP2001053007A (ja) | 半導体装置の作製方法 | |
JP3051363B2 (ja) | 半導体装置の作製方法 | |
JP3614331B2 (ja) | 結晶性珪素膜の形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 7 Free format text: PAYMENT UNTIL: 20071222 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081222 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091222 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 9 Free format text: PAYMENT UNTIL: 20091222 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091222 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 10 Free format text: PAYMENT UNTIL: 20101222 |
|
EXPY | Cancellation because of completion of term |