IN2015DN02427A - - Google Patents

Info

Publication number
IN2015DN02427A
IN2015DN02427A IN2427DEN2015A IN2015DN02427A IN 2015DN02427 A IN2015DN02427 A IN 2015DN02427A IN 2427DEN2015 A IN2427DEN2015 A IN 2427DEN2015A IN 2015DN02427 A IN2015DN02427 A IN 2015DN02427A
Authority
IN
India
Application number
Other languages
English (en)
Inventor
Dorai Ramprasad
Original Assignee
Grace W R & Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50545257&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=IN2015DN02427(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Grace W R & Co filed Critical Grace W R & Co
Publication of IN2015DN02427A publication Critical patent/IN2015DN02427A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/08Preparation by ring-closure
    • C07D213/09Preparation by ring-closure involving the use of ammonia, amines, amine salts, or nitriles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/08Preparation by ring-closure
    • C07D213/09Preparation by ring-closure involving the use of ammonia, amines, amine salts, or nitriles
    • C07D213/10Preparation by ring-closure involving the use of ammonia, amines, amine salts, or nitriles from acetaldehyde or cyclic polymers thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/20After treatment, characterised by the effect to be obtained to introduce other elements in the catalyst composition comprising the molecular sieve, but not specially in or on the molecular sieve itself
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Pyridine Compounds (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
IN2427DEN2015 2012-10-25 2015-03-25 IN2015DN02427A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261718385P 2012-10-25 2012-10-25
PCT/US2013/066593 WO2014066626A1 (en) 2012-10-25 2013-10-24 Process and catalyst for the production of pyridine and alkyl derivatives thereof

Publications (1)

Publication Number Publication Date
IN2015DN02427A true IN2015DN02427A (ja) 2015-09-04

Family

ID=50545257

Family Applications (1)

Application Number Title Priority Date Filing Date
IN2427DEN2015 IN2015DN02427A (ja) 2012-10-25 2015-03-25

Country Status (10)

Country Link
US (3) US9598366B2 (ja)
EP (1) EP2912018B1 (ja)
JP (1) JP6322198B2 (ja)
CN (2) CN104736520A (ja)
CA (1) CA2889511C (ja)
IN (1) IN2015DN02427A (ja)
RU (1) RU2671215C2 (ja)
SA (1) SA515360260B1 (ja)
TW (1) TWI598335B (ja)
WO (1) WO2014066626A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9539302B2 (en) 2009-06-18 2017-01-10 Allergan, Inc. Safe desmopressin administration
TWI598335B (zh) * 2012-10-25 2017-09-11 W R 康格雷氏公司 用於製造吡啶及其烷基衍生物之改良方法、觸媒
CN105712924A (zh) * 2016-03-24 2016-06-29 广西新天德能源有限公司 以改性分子筛催化生产吡啶及甲基吡啶的方法
CN107983398B (zh) * 2017-10-27 2020-07-17 苏州盖德精细材料有限公司 一种用于3-甲基吡啶制备的纳米凹凸棒土复合催化剂的生产方法
JP7481439B2 (ja) * 2019-10-29 2024-05-10 ダブリュー・アール・グレース・アンド・カンパニー-コーン 修飾ゼオライト触媒組成物及び使用方法
CN115888801B (zh) * 2022-09-28 2024-03-29 山东明化新材料有限公司 用于提高3,5-二甲基吡啶收率的改性催化剂及提高3,5-二甲基吡啶收率的生产方法

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3272825A (en) 1962-12-13 1966-09-13 Koei Chemical Co Method of producing pyridine
US3946020A (en) 1970-12-28 1976-03-23 Koei Chemical Co., Ltd. Process for producing pyridine bases
GB1490927A (en) 1975-08-22 1977-11-02 Ici Ltd Process for the manufacture of pyridine and/or methyl pyridines
US4220783A (en) 1979-05-09 1980-09-02 Mobil Oil Corporation Synthesis of pyridine and alkylpyridines
US4675410A (en) 1983-07-11 1987-06-23 Nepera Inc. Process for the production of pyridine or alkyl substituted pyridines
US4810794A (en) 1986-02-06 1989-03-07 Koei Chemical Co., Ltd. Process for producing pyridine bases
US4985384A (en) * 1986-08-25 1991-01-15 W. R. Grace & Co-Conn. Cracking catalysts having aromatic selectivity
US4861894A (en) 1987-06-11 1989-08-29 Mobil Oil Corp. Pyridine and alkylpyridine synthesis using a crystalline silicate catalyst having the ZSM-5 structure
US4765884A (en) 1987-07-02 1988-08-23 Phillips Petroleum Company Cracking catalyst and process
US4873211A (en) 1987-07-02 1989-10-10 Phillips Petroleum Company Cracking catalyst and process
CA1333793C (en) * 1988-09-30 1995-01-03 Gerald L. Goe Pyridine base synthesis process and catalyst for same
US5218122A (en) * 1988-09-30 1993-06-08 Reilly Industries, Inc. Pyridine base synthesis process and catalyst for same
US5237068A (en) * 1989-02-08 1993-08-17 Koei Chemical Company, Limited Process for producing pyridine bases
JP2862257B2 (ja) * 1989-02-08 1999-03-03 広栄化学工業株式会社 ピリジン塩基類を製造する方法
US5013843A (en) 1990-06-07 1991-05-07 Nepera, Inc. High yield of pyridine and/or alkylpyridine(s) in condensation reaction of ternary aldehydes and/or ketones with ammonia
US5126298A (en) 1991-03-12 1992-06-30 Mobil Oil Corp. Cracking catalysts comprising clays with different particle sizes, and method of preparing and using the same
US5110776A (en) 1991-03-12 1992-05-05 Mobil Oil Corp. Cracking catalysts containing phosphate treated zeolites, and method of preparing the same
BR9509756A (pt) * 1994-11-23 1998-06-16 Exxon Chemical Patents Inc Processo de conversão de hidrocarbonetos usando um catalisador de zeólito ligado em zeólito
AU6288596A (en) * 1995-06-23 1997-01-22 Reilly Industries, Inc. Pyridine base synthesis
US6156689A (en) * 1997-10-23 2000-12-05 Phillips Petroleum Company Catalyst composition comprising zinc compound or boron compound and hydrocarbon conversion process
US5969143A (en) * 1997-12-31 1999-10-19 Mobil Oil Corporation Pyridine/picoline production process
US20020049133A1 (en) * 1999-03-02 2002-04-25 Michael S. Ziebarth High zeolite content and attrition resistant catalyst, methods for preparing the same and catalyzed processes therewith
RU2243217C2 (ru) * 2000-06-26 2004-12-27 Коеи Кемикал Компани, Лимитед Способ получения пиридиновых оснований
US6495695B2 (en) * 2001-03-30 2002-12-17 Council Of Scientific And Industrial Research Process for the preparation of a collidine and 2,3,5,6-tetramethyl pyridine
DE10124998A1 (de) 2001-05-22 2003-01-02 Sued Chemie Ag Katalysator für säurekatalysierte Kohlenwasserstoff-Umwandlungen
US7026267B2 (en) * 2002-12-20 2006-04-11 Exxonmobil Chemical Patents Inc. Molecular sieve catalyst composition, its production and use in conversion processes
FR2868418B1 (fr) 2004-04-05 2008-08-29 Inst Francais Du Petrole Procede de production de phenylalcanes utilisant un catalyseur zeolithique a base de silice-alumine
ITMI20041289A1 (it) * 2004-06-25 2004-09-25 Enitecnologie Spa Catalizzatore e processo per la preparazione di idrocarburi aromatici alchilati
WO2008005155A2 (en) * 2006-07-06 2008-01-10 W.R. Grace & Co. - Conn. Aluminum sulfate bound catalysts
RU2442649C2 (ru) * 2007-02-21 2012-02-20 В.Р.Грейс Энд Ко.-Конн. Катализатор, уменьшающий уровень содержания серы в бензине, для способа каталитического крекинга в псевдоожиженном слое катализатора
CN101347744B (zh) * 2008-09-05 2010-12-08 江苏扬农化工股份有限公司 以微球型高硅zsm-5分子筛为载体的吡啶合成催化剂及其制备方法
US20110108462A1 (en) 2009-11-10 2011-05-12 Yun-Feng Chang High solids catalyst formulation and spry drying
CN101856622B (zh) * 2009-12-16 2012-06-13 中国科学院大连化学物理研究所 一种合成吡啶碱的共结晶沸石催化剂及其制备方法
TWI598335B (zh) * 2012-10-25 2017-09-11 W R 康格雷氏公司 用於製造吡啶及其烷基衍生物之改良方法、觸媒

Also Published As

Publication number Publication date
US10137439B2 (en) 2018-11-27
SA515360260B1 (ar) 2017-07-31
US10618039B2 (en) 2020-04-14
TW201431840A (zh) 2014-08-16
WO2014066626A1 (en) 2014-05-01
CA2889511A1 (en) 2014-05-01
JP6322198B2 (ja) 2018-05-09
RU2015119458A (ru) 2016-12-20
US20150239841A1 (en) 2015-08-27
CN104736520A (zh) 2015-06-24
US9598366B2 (en) 2017-03-21
EP2912018B1 (en) 2021-08-25
TWI598335B (zh) 2017-09-11
JP2015535254A (ja) 2015-12-10
US20170157599A1 (en) 2017-06-08
CA2889511C (en) 2022-11-22
EP2912018A1 (en) 2015-09-02
US20190091667A1 (en) 2019-03-28
EP2912018A4 (en) 2016-08-10
CN113429337A (zh) 2021-09-24
RU2671215C2 (ru) 2018-10-30

Similar Documents

Publication Publication Date Title
BR112014017635A2 (ja)
BR112014017614A2 (ja)
BR112014017625A2 (ja)
BR112014017659A2 (ja)
BR112014017646A2 (ja)
BR112014017638A2 (ja)
AR092201A1 (ja)
BR112014023284A2 (ja)
BR112014017634A2 (ja)
BR112014017609A2 (ja)
BR112014017673A2 (ja)
BR112014017644A2 (ja)
BR112014017647A2 (ja)
BR112014017618A2 (ja)
BR112014022767A2 (ja)
BR112014017630A2 (ja)
BR112014021139A2 (ja)
BR112014017652A2 (ja)
BR112014025930A2 (ja)
BR112014017621A2 (ja)
BR112014017622A2 (ja)
BR112014017627A2 (ja)
BR112014017623A2 (ja)
BR112014017641A2 (ja)
BR112014017631A2 (ja)