GB2100227A - Core end protector - Google Patents
Core end protector Download PDFInfo
- Publication number
- GB2100227A GB2100227A GB8216002A GB8216002A GB2100227A GB 2100227 A GB2100227 A GB 2100227A GB 8216002 A GB8216002 A GB 8216002A GB 8216002 A GB8216002 A GB 8216002A GB 2100227 A GB2100227 A GB 2100227A
- Authority
- GB
- United Kingdom
- Prior art keywords
- core
- core plug
- plug
- opening
- plugs
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H75/00—Storing webs, tapes, or filamentary material, e.g. on reels
- B65H75/02—Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
- B65H75/18—Constructional details
- B65H75/185—End caps, plugs or adapters
Landscapes
- Storage Of Web-Like Or Filamentary Materials (AREA)
- Buffer Packaging (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Abstract
A solid core plug formed from wood, plastics or a composite woody material is of substantially cylindrical shape with a body portion 17 and an integral tapered forward portion. The outer face 16 of the body portion has a diameter substantially equal to the inside diameter of the core 15 for which the core plug is intended, and the inner face of the forward portion is of slightly less diameter than the outer face to facilitate entry of the core plug into the ends of a core. The core plug includes an opening or groove 19 spaced from the center thereof and at or near its remote outer edge, the groove extending the full length of the plug for facilitating removal of the core plug from a core. The groove may be curved or straight sided. <IMAGE>
Description
SPECIFICATION
Core plug
BACKGROUND OF INVENTION
The present invention relates generally to an improved core plug for protecting the ends of hollow paper cores on which paper, plastic, fabric and other materials are wound for storage, shipment and use.
More particularly, the present invention relates to a core plug formed from wood, plastic, or a composite woody material, that has increased strength over existing core plugs as a result of the development of a novel means for removing the core plugs from cores after use.
In paper mills, textile mills and the like, rolls of paper and/or fabric are generally wound on tubular cores which are usually made of a paper material such as cardboard or paperboard. These cores are relatively strong except that they are vulnerable at their ends where they can be easily damaged. During shipment and handling, the rolls of paper and other materials are repeatedly picked up and moved, and if the core ends become deformed in any way, the entire roll of paper or other material becomes unusable because it cannot be properly chucked. Thus in order to protect such cores, core plugs are commonly inserted into the ends of the core.
Core plugs are presently available in a number of sizes to accommodate different sized cores. Such core plugs are formed from a variety of different types of materials, and include various distinctive features to increase their strength and utiiity. However, in general, the majority of such core plugs are formed from wood or molded wood material. Molded wood core plugs are available from Moldwood
Corporation, Drawer 430, York, Alabama 36925. Core plugs supplied by Moldwood Corporation and as described in their sales literature are conventional in design with a centrally located hole for removing the core plugs from cores. Most core plugs must be removed before the rolls of paper, fabric or the like can be used. The core plugs may be removed by inserting a metal bar or rod into the hole provided in the plug where the plugs are wedged or pulled out.However, in general the metal bar or rod is inserted in the hole in one core plug and butted against the inside of the opposite core plug so that it can be driven out. Since core plugs may differ in size, the holes provided therein may also be of different size.
Generally the bars or rods that are used to remove the core plugs are metal stock of from about 1/2 to 3/4 inch in diameter. Thus the holes in the core plugs must be at least as large as the bars or rods used to remove them.
Other core plug designs are disclosed in U.S. Patent No. 4,01 5,711; U.S. Patent No. 3,627,220; U.S. Patent No. 3,547,367; U.S. Patent No. 2,196,378; and U.S. Patent No. 1,919,769. The core plugs described in the aforementioned patents are in the form of shells made from plastic materials or metal, and with the exception of the core plug disclosed in U.S. Patent No.2,196,378, all include a centrally located hole for removing the core plugs from a core. In U.S. Patent No. 2,196,378, the core plug includes a pair of intersecting ribs which divide the face of the core plug into four quadrants. Thus, in order not to inhibit the increased strength provided by the intersecting ribs, the hole for removing the core plug is located off center in one of the quadrants.
Notwithstanding the features and advantages described for the core plugs presently in use, the core plug of the present invention offers increased strength and durability over existing core plugs.
SUMMARY OF INVENTION
The present invention relates to an improved core plug made from wood, plastic, or a composite woody material. The core plug of the invention comprises a solid body portion with an integral tapered forward portion of substantially cylindrical shape. The outer face of the body portion has a diameter that is substantially equal to the inside diameter of the core for which the core plug is intended. Meanwhile, the inner face of the forward portion of the core plug is of slightly less diameter than the outer face to facilitate entry of the core plug into the end of a core. In this form, the core plug of the present invention has considerable strength since it does not contain the usual center hole which is used to remove a conventional core plug from a core when it is desired to chuck the core for mounting on an unwinder, rewinder or the like.In contrast to the prior art, the core plug disclosed herein is provided with an opening or groove spaced from the center of the plug and near its remote outer surface which extends the full length thereof. This arrangement permits the core plugs of the present invention to be readily and easily removed from cores in the normal fashion using a standard core plug remover as described hereinbefore. However, because the core plugs of the present invention do not contain the usual center hole, they are much stronger than conventional prior art core plugs made from the same material.
Accordingly, it is an object of the present invention to provide an improved core plug for protecting the ends of hollow paperboard cores, with plain or reinforced ends, on which paper, plastic, fabric and other materials are wound for storage, shipment and use.
Another object of the present invention is to provide a core plug of increased strength that is a result of the omission of the usual center hole required for removing the core plug from a core.
The core plug of the present invention is preferably made of wood, plastic or a composite woody material in a mold, or machined from stock where desired. An example of a composite woody material is molded wood which may be defined as a composition of wood shavings, chips or sawdust, resins and/or glue which is mixed together and heated under pressure in a mold to produce the desired shape.
The significant point is that the core plugs of the present invention are substantially solid bodies which include a core plug removing opening or groove spaced from the center.
Other and further objects of the invention will become more apparent from a consideration of the following detailed description taken with the accompanying drawing.
DESCRIPTION OF DRAWING
FIGURE 1 is a perspective view of a typical core having conventional prior art core plugs located in each end;
FIGURE 2 is a perspective view with one end in section showing a tubular paper core with both
ends reinforced with core plugs made according to the present invention;
FIGURE 3 is an enlarged perspective view of a core plug made according to the present invention;
FIGURE 4 is an end view of a core plug according to the present invention showing a typical shape
for the core plug opening or groove; and,
FIGURE 5 is a view similar to Figure 4 showing a modified shape for the opening or groove.
DETAILED DESCRIPTION
As shown in Figure 1, an elongated paper core 10 is illustrated with a pair of conventional end
core plugs 11, 12 inserted in each end. The conventional core plugs each include centrally located holes
13, 14 through which a core plug removing bar can be inserted for removing the core plugs. These core
plugs 11, 12 serve to protect the ends of the core 10 during storage and shipment by absorbing impact
shocks during handling and crushing loads during shipment. Meanwhile, Figure 2 illustrates the novel
core plug design according to the present invention.
In Figure 2, a typical paperboard core 1 5 is illustrated with core plugs 1 6, 1 7 inserted in each end.
These core plugs 16, 17 are preferably made from wood or a molded woody material but may be
fabricated from other materials such as plastic where cost is no object. Each core plug 1 6, 1 7 is
provided with a core plug removing opening or groove 1 8, 1 9 located near the outer surface thereof
which gives the core plugs 1 6, 1 7 greater crush strength than the conventional core plugs 11, 12 shown in Figure 1. The increased strength has been demonstrated by the results of crush tests
conducted on sample core plugs.
A series of core crushing experiments were conducted on wooden pine core plugs and molded
wood core plugs to measure their resistance to crushing. The tests were conducted according to
standard testing procedures established by the Composite Can and Tube Institute (CCTI). Each of the
core plugs has a nominal outside diameter of about three inches.
In each case a core containing a core plug is placed in a compression testing machine having
upper and lower platens which are held rigidly parallel during testing permitting movement in a vertical
direction only. The speed of the moving platen is set at 1/2 inch per minute. The core containing core
plug is placed at the center between the two platens, and a crushing load is applied until the load
becomes constant, or drops, indicating core plug failure, or the equipment reaches its load limit. The
data is recorded on a strip chart and the applied load readings are taken from the curve on 0.1 inch
increments.
EXAMPLE I
In this example a series of core crushing tests were conducted with wooden pine core plugs. The
results obtained from four separate tests using conventional core plugs and core plugs made according
to the present invention were averaged to produce the data shown in Table I. The data shows that for
wooden pine plugs, grain direction plays a major role in overall crush resistance. In the tests where the
grain direction is aligned with the direction of applied force, crush strengths are generally higher than
those obtained with the grain direction oriented perpendicular to the applied force. Where the grain
direction is perpendicular to the direction of applied force, crush strength is influenced primarily by
compression of the wood grain.
TABLE I
Grain Direction Parallel to Force Applied
Load Applied
Increments Center Hole Side Opening Top Opening
(inches) (Ib) (Ib) (Ib)
.1 880 870 890
.2 1270 1270 1100
.3 1770 1800 1370
.5 3200 3740 2530 Failed @ ( 0.51 0.51 (3540)
.7 8310 4960
Failed @ 0.80
(6620)
.9 10000* Grain Direction Perpendicular to Force Applied
Load Applied
Increments Center Hole Side Opening Top Opening
(inches) (Ib) (Ib) (Ib)
.1 810 910 800
.2 1110 1180 970
.3 1500 1530 1120
.5 2440 2390 1820
.7 3230 3050 2770
Failed @ 0.84
(3610)
.9 3830 Failed (B 1.02 (3830)
* Load Limit of Compression Testing Machine
In the data shown in Table I, the reference "center hole" is to a conventional wooden pine plug with a core plug removing hole in the center.The references "side opening" and "top opening" are to core plugs made according to the present invention with the core plug turned so that the removal opening is located either at the side or top of the core plug. The data shows that the conventional core plug failed in each case before reaching the 0.9 inch increment of compression and a load of about 3600 pounds. With the grain aligned with the applied force, the center hole core plug failed at 3610 pounds compression. Meanwhile, the core plugs according to the present invention resisted failure until at least a greater force was applied. With the grain parallel to the applied force, and the core plug turned so the opening was on one side, there was no failure with the maximum of 10,000 pounds of load applied. With the same grain direction and the opening at the top (or bottom) the core plug failed at 6620 pounds.With the grain perpendicular to the applied force, and the opening at one side, the core plug failed at 3830 pounds. Meanwhile, with the opening at the top (or bottom), the core plug withstood the same load without failure.
EXAMPLE II
In this example a series of core crushing tests were conducted with molded wood plugs. The results obtained from several separate tests using both styles of core plugs were averaged to produce the data shown in Table II. Only one set of data points were gathered since molded core plugs do not have the same grain effects encountered with solid wooden plugs.
TABLE II
Load Applied
Increments Center Hole Side Opening Top Opening
(inches) (Ib) (Ib) (Ib)
.1 980 1160 1030
.2 1700 1700 1370
.3 2460 2430 1780
.5 4910 5230 3360
Failed @ 0.50
(4980)
.7 10000* 6160
.9 10000* * Load Limit of Compression Testing Machine
In the data shown in Table II, the references to "center hole", "side opening" and "top opening" are the same as described for Example I. In this test with molded plugs, the conventional center hole core plug failed at an average load of 4980 pounds. With the core plug manufactured according to the
present invention, and the opening located at one side, there was no failure at 10,000 pounds and a
deflection of 0.70 inch. When the core plug was turned to orient the opening at the top (or bottom), there was no failure at 10,000 pounds with a deflection of 0.89 inch.Accordingly, it may be seen that
both solid wooden core plugs and molded core plugs made according to the present invention are
stronger in crush strength than conventional center hole core plugs made from the same materials.
An example of the core plug of the present invention is shown enlarged in Figure 3. The core plug
20 has a solid cylindrical body portion 21 that fas tightly into the end of a core and an integral tapered
forward portion 22 for facilitating entry of the core plug into the core. The outer face 23 of the core plug
and the cylindrical body portion 21 are formed with a diameter that is substantially equal to the inside
diameter of the core for which the core plug is intended. The inner face 24 of the core plug and the
tapered forward portion 22 is of slightly less diameter than the outer face 23. The core plug 20 includes
a core plug removal opening or groove 25 spaced from the center thereof at the outer peripheral surface
which extends the full length of the core plug.In the case of solid wooden core plugs, the opening or
groove may be applied to the core plug by milling, routing or drilling. Where the core plugs are molded,
the opening or groove may be molded in place.
As shown in Figures 4 and 5, the shape of the opening or groove 25 is not particularly significant.
However, in order to accommodate a core plug removing rod or bar, the geometry of the opening or
groove must meet certain minimum dimensions. For instance, the opening should have a minimum area
of about 0.2 square inch, and a maximum area no greater than about 20% of the total area of the outer
face of the core plug. Other exemplary dimensions for the opening 25 in a core plug of nominally three
inches diameter are a depth "a" as measured from an edge of the core plug equal to or less than about
one inch; a width "b" as measured along the outer edge of the core plug equal to or less than about one
inch; or a distance "c" from the center line of the outer end 23 of the core plug to the bottom of opening
25 equal to or less than about one-third the diameter of the outer end 23.It should be understood in
this regard that for the paper industry, core plugs are used which vary in size from about two inches up
to fourteen inches in diameter. Conventional center holes in these plugs vary in size from about one inch
up to four inches in diameter. However, in order to increase the strength of a core plug the opening in the core plug to facilitate its removal should be as small as possible. In such a case, the opening should
be at least large enough to accommodate the rod or bar normally used to remove core plugs from cores.
It wiil thus be seen that the core plug of the present invention is distinct from prior art core plugs and because of this distinctiveness achieves a strength greater than conventional core plugs.
Accordingly, while the detailed disclosure set forth above fully describes the new core plug in at least one embodiment, it is obvious that modifications and variations may be made to the core plug by those skilled in the art within the limitations of the claims appended hereto.
Claims (8)
1. A core plug for reinforcing the ends of tubular cores for paper or the like, said core plug comprising a solid cylindrical body portion that fits tightly into the end of a core and an integral, tapered forward portion ahead of said body portion for facilitating entry of the core plug into the end of a core, said core plug having an outer face of slightly greater diameter than its inner face, the improvement wherein said core plug has an opening at or near its outer peripheral surface that extends the full length of the core plug for facilitating removal of the core plug from a core.
2. The core plug of claim 1 wherein the opening has a minimum area of at least about 0.2 square inch.
3. The core plug of claim 2 wherein the opening has an area no greater than about 20% of the total area of the outer face of the core plug.
4. The core plug of claim 3 formed from wood, plastic or a composite woody material.
5. The core plug of claim 4 wherein the opening is in the shape of a groove with substantially curved sides and a curved bottom.
6. The core plug of claim 4 wherein the opening is in the shape of a groove with substantially straight sides and a substantially flat bottom.
7. The core plug of claim 5 or 6 wherein the opening has a depth and width no greater than about one-third the diameter of the outer face of the core plug.
8. The core plug of claim 7 wherein the edge of the opening closest to the center of the core plug is spaced from the center of the core plug by a distance equal to or less than about one-third the diamter of the outer face of the core plug.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US27041381A | 1981-06-04 | 1981-06-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
GB2100227A true GB2100227A (en) | 1982-12-22 |
GB2100227B GB2100227B (en) | 1984-09-05 |
Family
ID=23031234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
GB8216002A Expired GB2100227B (en) | 1981-06-04 | 1982-06-01 | Core end protector |
Country Status (17)
Country | Link |
---|---|
JP (1) | JPS57209176A (en) |
AT (1) | AT381685B (en) |
AU (1) | AU536191B2 (en) |
BE (1) | BE893422A (en) |
CA (1) | CA1167824A (en) |
CH (1) | CH657116A5 (en) |
DE (1) | DE3219771A1 (en) |
FI (1) | FI72489C (en) |
FR (1) | FR2507167B1 (en) |
GB (1) | GB2100227B (en) |
IT (1) | IT1198376B (en) |
MX (1) | MX155613A (en) |
NL (1) | NL8202149A (en) |
NO (1) | NO154689C (en) |
NZ (1) | NZ200758A (en) |
SE (1) | SE452744B (en) |
ZA (1) | ZA823750B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0170718A1 (en) * | 1984-08-10 | 1986-02-12 | Werzalit - Werke J.F. Werz KG | Deformation safety for heavy rolls |
EP0314818A1 (en) * | 1987-10-31 | 1989-05-10 | Werzalit AG + Co. | Plug for paper or cardboard winding tubes |
EP1284231A3 (en) * | 2001-08-18 | 2003-08-27 | Frank Germeroth | Plug |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62256792A (en) * | 1986-04-30 | 1987-11-09 | Sharp Corp | Method for growing compound semiconductor single crystal in vapor phase |
JPS62283897A (en) * | 1986-05-30 | 1987-12-09 | Sharp Corp | Vapor growth method for compound semiconductor single crystal |
JPH04112172A (en) * | 1990-08-30 | 1992-04-14 | Fuji Photo Film Co Ltd | Preparation of photosensitive roll body for photography |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1919769A (en) * | 1931-08-07 | 1933-07-25 | Robert J Brown | Core plug |
US2196378A (en) * | 1938-04-05 | 1940-04-09 | Int Paper Co | Core plug |
US3115969A (en) * | 1960-09-29 | 1963-12-31 | Beaudoin Andre | Core plug |
DE1211529B (en) * | 1962-07-10 | 1966-02-24 | Joenkoeping Vulcan Ab | Wooden bung for paper rolls |
US3840194A (en) * | 1972-03-09 | 1974-10-08 | Uniflex | Core plug |
US3865326A (en) * | 1973-10-09 | 1975-02-11 | Andre Beaudoin | Core plug |
-
1982
- 1982-05-12 SE SE8202967A patent/SE452744B/en not_active IP Right Cessation
- 1982-05-20 CA CA000403412A patent/CA1167824A/en not_active Expired
- 1982-05-26 DE DE19823219771 patent/DE3219771A1/en active Granted
- 1982-05-26 NZ NZ200758A patent/NZ200758A/en unknown
- 1982-05-26 NL NL8202149A patent/NL8202149A/en not_active Application Discontinuation
- 1982-05-28 ZA ZA823750A patent/ZA823750B/en unknown
- 1982-05-28 AU AU84253/82A patent/AU536191B2/en not_active Ceased
- 1982-05-31 FI FI821920A patent/FI72489C/en not_active IP Right Cessation
- 1982-06-01 GB GB8216002A patent/GB2100227B/en not_active Expired
- 1982-06-01 JP JP57094672A patent/JPS57209176A/en active Granted
- 1982-06-02 CH CH3380/82A patent/CH657116A5/en not_active IP Right Cessation
- 1982-06-03 NO NO821857A patent/NO154689C/en unknown
- 1982-06-03 AT AT0214782A patent/AT381685B/en not_active IP Right Cessation
- 1982-06-03 FR FR8209688A patent/FR2507167B1/en not_active Expired
- 1982-06-03 IT IT21663/82A patent/IT1198376B/en active
- 1982-06-04 MX MX193009A patent/MX155613A/en unknown
- 1982-06-04 BE BE0/208274A patent/BE893422A/en not_active IP Right Cessation
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0170718A1 (en) * | 1984-08-10 | 1986-02-12 | Werzalit - Werke J.F. Werz KG | Deformation safety for heavy rolls |
EP0314818A1 (en) * | 1987-10-31 | 1989-05-10 | Werzalit AG + Co. | Plug for paper or cardboard winding tubes |
EP1284231A3 (en) * | 2001-08-18 | 2003-08-27 | Frank Germeroth | Plug |
Also Published As
Publication number | Publication date |
---|---|
AT381685B (en) | 1986-11-10 |
IT1198376B (en) | 1988-12-21 |
FI72489B (en) | 1987-02-27 |
JPS57209176A (en) | 1982-12-22 |
FI72489C (en) | 1987-06-08 |
AU8425382A (en) | 1982-12-23 |
DE3219771A1 (en) | 1982-12-30 |
SE452744B (en) | 1987-12-14 |
SE8202967L (en) | 1982-12-05 |
NO154689C (en) | 1986-12-03 |
FR2507167B1 (en) | 1986-03-21 |
CA1167824A (en) | 1984-05-22 |
NZ200758A (en) | 1985-10-11 |
NO154689B (en) | 1986-08-25 |
ATA214782A (en) | 1986-04-15 |
IT8221663A0 (en) | 1982-06-03 |
NO821857L (en) | 1982-12-06 |
JPS6143275B2 (en) | 1986-09-26 |
NL8202149A (en) | 1983-01-03 |
ZA823750B (en) | 1983-03-30 |
DE3219771C2 (en) | 1989-03-02 |
GB2100227B (en) | 1984-09-05 |
BE893422A (en) | 1982-10-01 |
FR2507167A1 (en) | 1982-12-10 |
FI821920A0 (en) | 1982-05-31 |
MX155613A (en) | 1988-04-06 |
AU536191B2 (en) | 1984-04-19 |
CH657116A5 (en) | 1986-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4484715A (en) | Core plug | |
US5067418A (en) | Recyclable paperboard pallet | |
US4460087A (en) | Core plug | |
CA2121276C (en) | Tubular core assembly having inside-diameter reducing end members secured by mechanical interlocking member | |
DE69024590T2 (en) | CONTAINER WITH INK-JET PRINT HEAD CARTRIDGE | |
DE2115976C3 (en) | End support plate for use with a packaging roll | |
CA1109432A (en) | Supporting and spacing member for web material rolls | |
US4547417A (en) | Core plug | |
GB2100227A (en) | Core end protector | |
EP0416668A2 (en) | Method of manufacturing a pallet chock | |
US5535961A (en) | Fabric shell | |
EP0007383A1 (en) | Core inserts for the shaftless mounting of bobbin cores into axial tensioning winding or unwinding supports | |
US4875636A (en) | Non-returnable newsprint carrier system | |
WO1997009239A1 (en) | Pallet | |
DE9206399U1 (en) | Support core for wound recording media | |
US3547367A (en) | Paper roll plug | |
US7036766B2 (en) | Reusable collapsible core | |
EP3663247B1 (en) | Winding core end protector | |
WO2006089216A2 (en) | Reusable collapsible core | |
US4591200A (en) | Lifting wedge | |
US3924743A (en) | Apparatus and process for plugging a paper roll core | |
EP0513904B1 (en) | Yarn carrier for multiple use | |
CA2121273C (en) | Tubular core assembly for winding paper and other small material including frustroconical core inserts | |
US2900184A (en) | Drill removing means for multiple spindle drill | |
US10843892B2 (en) | Winding core end protector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PCNP | Patent ceased through non-payment of renewal fee |
Effective date: 19970601 |