ES2553229T3 - Nuevo epítopo inmunogénico para inmunoterapia - Google Patents

Nuevo epítopo inmunogénico para inmunoterapia Download PDF

Info

Publication number
ES2553229T3
ES2553229T3 ES12191631.6T ES12191631T ES2553229T3 ES 2553229 T3 ES2553229 T3 ES 2553229T3 ES 12191631 T ES12191631 T ES 12191631T ES 2553229 T3 ES2553229 T3 ES 2553229T3
Authority
ES
Spain
Prior art keywords
peptide
cells
peptides
lymphocytes
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES12191631.6T
Other languages
English (en)
Inventor
Harpreet Singh
Oliver Schoor
Claudia Trautwein
Norbert Hilf
Toni Weinschenk
Steffen Walter
Peter Lewandrowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Immatics Biotechnologies GmbH
Original Assignee
Immatics Biotechnologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Immatics Biotechnologies GmbH filed Critical Immatics Biotechnologies GmbH
Application granted granted Critical
Publication of ES2553229T3 publication Critical patent/ES2553229T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4615Dendritic cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/462Cellular immunotherapy characterized by the effect or the function of the cells
    • A61K39/4622Antigen presenting cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/475Growth factors; Growth regulators
    • C07K14/495Transforming growth factor [TGF]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/7051T-cell receptor (TcR)-CD3 complex
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70539MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • C12N5/0638Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0036Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on NADH or NADPH (1.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/13Transferases (2.) transferring sulfur containing groups (2.8)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/47Brain; Nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/50Colon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/51Stomach
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/54Pancreas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/55Lung
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2239/00Indexing codes associated with cellular immunotherapy of group A61K39/46
    • A61K2239/46Indexing codes associated with cellular immunotherapy of group A61K39/46 characterised by the cancer treated
    • A61K2239/56Kidney
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/30Immunoglobulins specific features characterized by aspects of specificity or valency
    • C07K2317/34Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/11Coculture with; Conditioned medium produced by blood or immune system cells
    • C12N2502/1157Monocytes, macrophages
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y208/00Transferases transferring sulfur-containing groups (2.8)
    • C12Y208/02Sulfotransferases (2.8.2)
    • C12Y208/02011Galactosylceramide sulfotransferase (2.8.2.11)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Mycology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Plant Pathology (AREA)
  • Pulmonology (AREA)
  • Urology & Nephrology (AREA)
  • Neurosurgery (AREA)

Abstract

Péptido consistente en la secuencia TPPIDAHTRNLLRNH acorde con la SEQ ID N.º 14 que induce la reacción cruzada de linfocitos T con dicho péptido.

Description

imagen1
imagen2
imagen3
imagen4
La Tabla 1 expone los péptidos, sus respectivas SEQ ID N. º y la información sobre las proteínas originarias.
Tabla 1: Péptidos
SEQ ID N. º
Código del péptido Secuencia Alelos HLA Gene(s)
1
C20-001 ALSNLEVTL A*02 C20orf42
2
NOX-001 ILAPVILYI A*02 NOX1
3
PCN-001 KLMDLDVEQL A*02 PCNA
4
PCN-002 SMSADVPLV A*02 PCNA
5
TOP-001 KIFDEILVNA A*02 TOP2A, TOP2B
6
TOP-002 AAFVEELDKV A*02 TOP2B
7
CEA-009 VLLLVHNLPQHLFG Clase II CEACAM5
8
TGFBI-001 ALFVRLLALA A*02,A*02/B*13? TGFBI
9
TGFBI-006 GDKLEVSLKNNVVS Clase II TGFBI
10
TGFBI-007 GKKLRVFVYRNSLCIENS Clase II TGFBI
11
TGFBI-008 LKNNWSVNKEPVAEPD Clase II TGFBI
KNNWSVNKEPVAEPD
Clase II TGFBI
KNNWSVNKEPVA
Clase II TGFBI
LKNNWSVNKEPVA
Clase II TGFBI
12
TGFBI-009 NGVIHYIDELLIPDS Clase II TGFBI
GVIHYIDELLIPDSA
Clase II TGFBI
13
TGFBI-010 LNRILGDPEALRDL Clase II TGFBI
14
TGFBI-004 TPPIDAHTRNLLRNH Clase II TGFBI
15
PTP-001 ALTTLMHQL A*02 PTPRZ1
16
GAL-001 SLDPSSPQV A*02 GAL3ST1
17
CHI-001 SLWAGWVL A*02 CHI3L2
18
JAK-001 KLTDIQIEL A*02 JAKMIP2
19
AKR-001 YLIHFPVSV A*02 AKR1C1, AKR1C2
20
FN1-001 IVDDITYNV A*02 FN1
21
EGFR-002 GAVRFSNNPALCNVES Clase II EGFR
AVRFSNNPALCNVES
Clase II EGFR
AVRFSNNPALCNVE
Clase II EGFR
22
EGFR-005 NPTTYQMDVNPEGKYS Clase II EGFR
23
EGFR-006 FKKIKVLGSGAFG Clase II EGFR
24
CHI3L1-001 TTLIKEMKAEFIKEAQPG Clase II CHI3L1
TLIKEMKAEFIKEAQPG
Clase II CHI3L1
TTLIKEMKAEFIKEA
Clase II CHI3L1
TLIKEMKAEFIKEA
Clase II CHI3L1
imagen5
imagen6
imagen7
10
15
20
25
30
35
40
45
50
55
En un metanálisis de estudios que investigaron la expresión génica en el carcinoma colorrectal, el TGFBI fue identificado como uno de los nueve únicos genes que aparecían regulados al alza reiteradamente (4 estudios de TGFBI) (Shih, W, Chetty, R, and Tsao, MS; Expression profiling by microarrays in colorectal cancer, Oncol. Rep., 2005, 13, 517-524).
En tejidos de páncreas humano se apreció un incremento de 32,4 veces en los niveles del ARNm del TGFBI en tumores pancreáticos en comparación con los tejidos de control normales. Los análisis de hibridación in situ revelaron que el ARNm del TGFBI se expresaba principalmente en células cancerosas del interior de la masa tumoral pancreática (Schneider, D, Kleeff, J, Berberat, PO, Zhu, Z, Korc, M, Friess, H, and Buchler, MW; Induction and expression of betaig-h3 in pancreatic cancer cells, Biochim. Biophys. Acta, 2002, 1588, 1-6).
El TGFBI ha sido identificado como un gen promotor de la angiogénesis en un modelo in vitro. Además, en varios tumores se ha detectado un aumento drástico de su expresión. Oligonucleótidos antisentido dirigidos contra el TGFBI bloquearon tanto la expresión génica como la formación del tubo endotelial in vitro, lo cual parece indicar que el TGFBI puede desempeñar un papel esencial en las interacciones entre la matriz y la célula endotelial (Aitkenhead, M, Wang, SJ, Nakatsu, MN, Mestas, J, Heard, C, and Hughes, CC; Identification of endothelial cell genes expressed in an in vitro model of angiogenesis: induction of ESM-1, (beta)ig-h3, and NrCAM, Microvasc. Res., 2002, 63, 159171).
Proteína tirosina fosfatasa, de tipo receptor, Zeta 1 (PTPRZX)
El PTPRZ1 es miembro de la familia de las proteínas tirosina fosfatasa de tipo receptor que codifica una proteína de membrana de un solo paso de tipo 1 dotada de dos dominios citoplasmáticos de tirosina fosfatasa, un dominio alfaanhidrasa carbónica y un dominio de fibronectina de tipo III. La expresión de este gen es inducida en células de cáncer gástrico (Wu, CW, Li, AF, Chi, CW, and Lin, WC; Protein tyrosine-phosphatase expression profiling in gastric cancer tissues, Cancer Lett., 2006, 242, 95-103), en los oligodendrocitos remielinizantes de las lesiones de la esclerosis múltiple (Harroch, S, Furtado, GC, Brueck, W, Rosenbluth, J, Lafaille, J, Chao, M, Buxbaum, JD, and Schlessinger, J; A critical role for the protein tyrosine phosphatase receptor type Z in functional recovery from demyelinating lesions, Nat. Genet., 2002, 32,411-414), y en células de riñón embrionarias humanas en condiciones hipóxicas (Wang, V, Davis, DA, Haque, M, Huang, LE, and Yarchoan, R; Differential gene up-regulation by hypoxiainducible factor-1 alpha and hypoxia-inducible factor-2 alpha in HEK293T-cells, Cancer Res., 2005, 65, 3299-3306).
Tanto la proteína como el transcrito se sobreexpresan en las células de glioblastoma, promoviendo su migración haptotáctica (Lu, KV, Jong, KA, Kim, GY, Singh, J, Dia, EQ, Yoshimoto, K, Wang, MY, Cloughesy, TF, Nelson, SF, and Mischel, PS; Differential induction of glioblastoma migration and growth by two forms of pleiotrophin, J Biol Chem., 2005, 280,26953-26964).
Además, el PTRPZ1 aparece amplificado con frecuencia a nivel del ADN genómico en el glioblastoma (Mulholland, PJ, Fiegler, H, Mazzanti, C, Gorman, P, Sasieni, P, Adams, J, Jones, TA, Babbage, JW, Vatcheva, R, Ichimura, K, East, P, Poullikas, C, Collins, VP, Carter, NP, Tomlinson, IP, and Sheer, D; Genomic profiling identifies discrete deletions associated with translocations in glioblastoma multiforme, Cell Cycle, 2006, 5, 783-791).
Cinasa Janus y proteína interaccionante con los microtúbulos 2 (JAKMIP2)
La JAKMIP2 ha sido identificada como una de las muchas dianas ulteriores confirmadas y presuntas de PAX3-FKHR que aparecen muy sobreexpresadas en el rabdomiosarcoma pediátrico de subtipo alveolar o ARMS (Lae, M, Ahn, E, Mercado, G, Chuai, S, Edgar, M, Pawel, B, Olshen, A, Barr, F, and Ladanyi, M; Global gene expression profiling of PAX-FKHR fusion-positive alveolar and PAX-FKHR fusion-negative embryonal rhabdomyosarcomas, J Pathol., 2007, 212,143-151).
Fibronectina 1 (FN1)
La fibronectina es una glucoproteína de alto peso molecular que contiene alrededor de un 5% de glúcidos y que se une a proteínas receptoras que atraviesan la membrana celular, las integrinas. Además de a las integrinas, también se une a componentes de la matriz extracelular como el colágeno, la fibrina y la heparina. Existen varias isoformas de la fibronectina, todas producto del mismo gen. Las fibronectinas desempeñan un papel esencial en el mantenimiento de la morfología celular normal, la adhesión y la migración celular, la hemostasia, la trombosis, la cicatrización de heridas, la diferenciación y la proliferación (Hynes, RO; Fibronectins, Sci. Am., 1987, 254, 42-51).
La fibronectina polimérica, sFN, se forma in vitro tratando la fibronectina soluble con un péptido de 76 aa, el III1-C (llamado anastelina), que deriva de la primera repetición de tipo III de la fibronectina. Los estudios in vivoconratones portadores de tumores han demostrado que la aplicación sistémica de anastelina o de sFN suprimía el crecimiento, la angiogénesis y la metástasis tumorales (Yi, M and Ruoslahti, E; A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis, Proc. Natl. Acad. Sci. U. S. A, 2001, 98, 620-624). Anginex es un péptido sintético de 33 aminoácidos que se modeló originalmente para reproducir la estructura en lámina beta de proteínas antiangiogénicas. Se ha demostrado que anginex inicia la polimerización de la fibronectina y es inactivo en ratones que carecen de fibronectina plasmática (Akerman, ME, Pilch, J, Peters, D, and Ruoslahti, E; Angiostatic peptides use plasma fibronectin to home to angiogenic vasculature, Proc. Natl. Acad. Sci. U. S. A, 2005, 102, 2040-2045). Un
imagen8
imagen9
imagen10
10
15
20
25
30
35
40
45
50
55
extracellular signal-regulated kinase-and protein kinase B-mediated signalling pathways; Biochem J. 2002; 365:119126). En ratón las proteínas quitinasa 3-like se han hallado muy reguladas al alza en modelos de cáncer gástrico inducido por Helicobacter (Takaishi S, Wang TC; Gene expression profiling in a mouse model of Helicobacterinduced gastric cancer; Cancer Sci. 2007 (3): 284-293).
Doblecortina y cinasa CaM-like 2 (DCAMKL2)
La proteína asociada a los microtúbulos DCX desempeña un papel esencial en el desarrollo de la corteza cerebral en los mamíferos. Se ha publicado la identificación de una proteina-cinasa, la doblecortina cinasa-2 (DCAMKL2), dotada de un dominio (DC) altamente homólogo a la DCX. La DCAMKX2 muestra actividad de unión a los microtúbulos a través de su dominio DC y actividad de proteína-cinasa mediada por un dominio cinasa, organizadas en una estructura en la que ambos dominios son funcionalmente independientes.
La sobreexpresión de la DCAMKL2 estabiliza el citoesqueleto de microtúbulos contra la despolimerización inducida por el frío. La autofosforilación de la DCAMKL2 reduce de forma acusada su afinidad hacia los microtúbulos. Los ARNm de la DCAMKL2 y de la DCX son específicos del sistema nervioso y se expresan durante el período de laminación de la corteza cerebral. La DCX permanece regulada a la baja después del nacimiento, en tanto que la DCAMKL2 persiste en abundancia en la edad adulta, lo cual indica que la secuencia DC posee funciones desconocidas hasta el momento en el sistema nervioso maduro. En las neuronas simpáticas, la DCAMKL2 está localizada en el cuerpo celular y en los segmentos terminales de los axones y las dendritas.
Es posible que la DCAMKL2 actúe como un interruptor dependiente de la fosforilación en el control reversible de la dinámica de los microtúbulos en la cercanía de los conos de crecimiento neuronales. Los patrones de expresión, las actividades funcionales, la regulación y la localización de la DCAMKL2 sugieren que actúa en paralelo o en coordinación con otros miembros de la familia de genes DC (genes que codifican el dominio DC) en acontecimientos importantes para el desarrollo neural y, posiblemente, en aquellos que son propios del sistema nervioso maduro. La DCAMKL2 está compuesta de dos dominios funcionales e independientes, un dominio de unión y de estabilización de microtúbulos (la secuencia DC) y un dominio cinasa con actividad de proteína-fosfotransferasa.
Se ha planteado que la secuencia DC jugaría un papel esencial en la transducción de las señales extracelulares y de las señales intracelulares derivadas de ellas en cambios en la dinámica de los microtúbulos. En particular, dada su capacidad para interaccionar con los microtúbulos regulada por la fosforilación y su localización en los segmentos terminales de los axones y de las dendritas, regiones en que los microtúbulos sufren inestabilidad dinámica, la DCAMKL2 debería ser consideradad como un posible mediador de las reorganizaciones rápidas del citoesqueleto que suceden como respuesta a los procesos de transmisión de señales en las neuronas (Edelman, AM, Kim, WY, Higgins, D, Goldstein, EG, Oberdoerster, M, and Sigurdson, W; Doublecortin kinase-2, a novel doublecortin-related protein kinase associated with terminal segments of axons and dendrites, J Biol Chem., 2005, 280, 8531-8543).
Canal de potasio rectificador de entrada sensible al ATP 10 (KCNJ10)
La función principal de los canales de potasio rectificadores de entrada (Kir) consiste en crear la elevada selectividad hacia el potasio (K+) de la membrana de los gliocitos y el potencial de membrana en reposo (RMP) intensamente negativo, ambas propiedades fisiológicas características de la glía. La propiedad clásica de los canales Kir consiste en que el K+ fluye hacia el interior cuando el RMP es negativo respectoal potencial de equilibrio del K+ (E(K)), pero con potenciales más positivos inhiben las corrientes de salida. Una característica de la glía del SNC es la expresión específica del subtipo KCNJ10, un actor importante en la conductancia del K+ en las membranas de los gliocitos y clave en el ajuste del RMP glial. Así pues, los canales Kir, y en particular el KCNJ10, son reguladores esenciales de las funciones gliales, que a su vez determinan la excitabilidad neuronal y la conducción axonal (Butt, AM and Kalsi, A; Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4. 1 in glial functions, J Cell Mol. Med, 2006, 10, 33-44).
La disminución de la capacidad de amortiguación del potasio y del glutamato en los astrocitos provoca la hiperexcitabilidad de las neuronas y la alteración de la transmisión sináptica. Los canales KCNJ10 son básicamente responsables de la hiperpolarización de los astrocitos corticales y probablemente juegan un papel importante en el amortiguacióndel potasio. La supresióntangible de la depuración del glutamato en los astrocitos a través dela atenuación de la expresión génica del KCNJ10 pone de manifiesto el papel de la hiperpolarización de la membrana en este proceso (Kucheryavykh, YV, Kucheryavykh, LY, Nichols, CG, Maldonado, HM, Baksi, K, Reichenbach, A, Skatchkov, SN, and Eaton, MJ;, Downregulation of Kir4. 1 inward rectifying potassium channel subunits by RNAi impairs potassium transfer and glutamate uptake by cultured cortical astrocytes, Glia 2006, 55 (3), 274 -281).
La amortiguación espacial por parte del KCNJ10 del K(+) extracelular en el sistema nervioso central solo es posible debido a la distribución desigual del canalen la superficie delgliocito. Se ha observado la localización anómala del KCNJ10 en diversos tumores cerebrales humanos (astrocitomas y oligodendrogliomas de alto y bajo grado), lo cual indica que la capacidad de amortiguación de los gliocitos podría estar alterada y provocaría la entrada de agua (edema citotóxico) (Warth, A, Mittelbronn, M, and Wolburg, H; Redistribution of the water channel protein aquaporin4 and the K+ channel protein Kir4. 1 differs in low-and high-grade human brain tumors, Acta Neuropathol. (Berl), 2005, 109, 418-426). El KCNJ10 también apareció regulado al alza en los astrocitos de cerebros dañados. Se ha
10
15
20
25
30
35
40
45
50
55
propuesto la hipótesis siguiente: en condiciones normales en los astrocitos la AQP4 acopla el transporte de agua con el bombeo del K+ mediado por el KCNJ10, pero en estados patológicos, la AQP4 facilita el flujo del líquido edematoso cerebral y el KCNJ10 amortigua el K+ extracelular elevado (Saadoun, S, Papadopoulos, MC, and Krishna, S; Water transport becomes uncoupled from K+ siphoning in brain contusion, bacterial meningitis, and brain tumors: immunohistochemical case review, J Clin Pathol., 2003, 56, 972-975).
Es sabido que los péptidos que son presentados por MHC de clase II están compuestos por una «secuencia central» dotada de un secuencia de aminoácidos que se ajusta a cierto motivo específico del alelo de HLA y, opcionalmente, de extensiones N y/o C-terminales que no interfieren con la función de la secuencia central (es decir, que se consideran irrelevantes para la interacción del péptido y todos o una parte de los clones de linfocitos T que reconocen la contrapartida natural). Las extensiones N y/o C-terminales pueden, por ejemplo, tener entre 1 y 10 aminoácidos de longitud, respectivamente. Estos péptidos se pueden utilizar directamente para cargar las moléculas MHC de clase II o bien la secuencia se puede clonar en vectores de acuerdo con la descripción ofrecida abajo en la presente memoria. Dado que estos péptidos constituyen el producto final del procesamiento de péptidos más grandes en el interior de la célula, también pueden utilizarse péptidos más largos.
En consecuencia, las variantes naturales o artificiales que estimulan la reacción cruzada de los linfocitos T con un péptido de la invención son a menudo variantes de longitud. La Tabla 1 ofrece ejemplos de tales variantes de longitud naturales en las SEQ ID N. º 11 y 12, y 21 y 24, respectivamente.
Si un péptido más largo de aproximadamente 12 residuos de aminoácidos se utiliza directamente para unirse a una molécula MHC de clase II, es preferible que los residuos que flanquean la región de unión a HLA central sean residuos que no afecten sustancialmente a la capacidad del péptido para unirse específicamente a la hendidura de unión de la molécula MHC de clase II o presentar el péptido al CTL. No obstante, como se ha indicado arriba, se apreciará que es posible usar péptidos más grandes, p. ej. los codificados por un polipéptido, ya que estos péptidos más grandes pueden ser fragmentados por células presentadoras de antígeno adecuadas.
También es posible que los epítopos de MHC de clase I, aunque suelen tener entre 8 y 10 aminoácidos de longitud, sean generados por el procesamiento de péptidos más largos o proteínas que incluyen el epítopo real. A semejanza de los epítopos de MHC de clase II, es preferible que los residuos que flanquean la región de unión no alteren sustancialmente la capacidad del péptido para unirse específicamente a la hendidura de unión de la molécula MHC de clase I o para presentar el péptido al CTL ni enmascarar los sitios de escisión proteolítica necesarios para exponer el auténtico epítopo durante el procesamiento.
En consecuencia, la presente invención también da a conocer péptidos y variantes de los epítopos de MHC de clase I dotados de una longitud total de entre 8 y 100, preferiblemente entre 8 y 30, y más preferiblemente entre 8 y 16 aminoácidos, esto es, 8, 9, 10, 11, 12, 13, 14, 15 o 16 aminoácidos.
Por supuesto, el péptido conforme a la presente invención tendrá la capacidad para unirse a una molécula del complejo mayor de histocompatibilidad humano (MHC) de clase I. La unión de un péptido a un complejo MHC puede ser analizada con métodos conocidos en la técnica, como por ejemplo los descritos en el ejemplo 4 de la presente invención o los descritos en la bibliografía para diferentes alelos de MHC de clase II (p. ej. Vogt AB, Kropshofer H, Kalbacher H, Kalbus M, Rammensee HG, Coligan JE, Martin R; Ligand motifs of HLA-DRB5*0T01 and DRB1*1501 molecules delineated from self-peptides; J Immunol. 1994; 153(4): 1665-1673; Malcherek G, Gnau V, Stevanovic S, Rammensee HG, Jung G, Melms A; Analysis of allele-specific contact sites of natural HLA-DR17 ligands; J Immunol. 1994; 153(3):1141-1149; Manici S, Sturniolo T, Imro MA, Hammer J, Sinigaglia F, Noppen C, Spagnoli G, Mazzi B, Bellone M, Dellabona P, Protti MP; Melanoma cells present a MAGE-3 epitope to CD4(+) cytotoxic T cells in association with histocompatibility leukocyte antigen DR11; J Exp Med. 1999; 189(5): 871876; Hammer J, Gallazzi F, Bono E, Karr RW, Guenot J, Valsasnini P, Nagy ZA, Sinigaglia F; Peptide binding specificity of HLA-DR4 molecules: correlation with rheumatoid arthritis association; J Exp Med. 1995 181(5):1847-1855; Tompkins SM, Rota PA, Moore JC, Jensen PE; A europium fluoroimmunoassay for measuring binding of antigen to class II MHC glycoproteins; J Immunol Methods. 1993; 163(2): 209-216; Boyton RJ, Lohmann T, Londei M, Kalbacher H, Haider T, Frater AJ, Douek DC, Leslie DG, Flaveli RA, Altmann DM; Glutamic acid decarboxylase T lymphocyte responses associated with susceptibility or resistance to type I diabetes: analysis in disease discordant human twins, non-obese diabetic mice and HLA-DQ transgenic mice; Int Immunol. 1998 (12):1765-1776).
En una forma de realización de la presente invención, el péptido es parte de una proteína de fusión, que comprende aminoácidos N-terminales de la cadena invariable asociada al antígeno HLA-DR (p33, en lo sucesivo “Ii”) como la derivada del NCBI, número de acceso de GenBank X00497 (Strubin, M., Mach, B. and Long, E. O. The complete sequence of the mRNA for the HLA-DR-associated invariant chain reveals a polypeptide with an unusual transmembrane polarity EMBO J. 1984 3 (4), 869-872).
En un enlace peptídico inverso los residuos de aminoácido no están unidos por enlaces peptídicos (-CO-NH-) sino que el enlace peptídico está invertido. Estos peptidomiméticos retro-inversos pueden sintetizarse con métodos conocidos en la técnica, como por ejemplo los descritos por Meziere et al. J. Immunol. 1997, 159, 3230-3237. Esta estrategia implica la síntesis de seudopéptidos que contengan cambios en la estructura principal, pero no en la orientación de las cadenas laterales. Meziere et al. (1997) demuestran que estos seudopéptidos resultan útiles para
10
15
20
25
30
35
40
45
50
55
las respuestas de MHC y de los linfocitos T cooperadores. Los péptidos retro-inversos, que contienen enlaces NH-CO en lugar de enlaces peptídicos CO-NH, son mucho más resistentes a la proteolisis.
Enlaces no peptídicos son, por ejemplo: -CH2-NH, -CH2S-, -CH2CH2-, -CH=CH-, -COCH2-, -CH(OH)CH2-y -CH2SO-. La patente de Estados Unidos 4. 897. 445 proporciona un método para la síntesis en fase sólida de enlaces no peptídicos (-CH2-NH) en cadenas polipeptídicas que implica la obtención de polipéptidos con procedimientos estándar y la síntesis del enlace no peptídico mediante la reacción de un aminoaldehído y un aminoácido en presencia de NaCNBH3.
Péptidos que comprenden las secuencias descritas arriba pueden ser sintetizados con otros grupos químicos añadidos en los extremos amino y/o carboxi, con el fin de mejorar, por ejemplo, la estabilidad, la biodisponibilidad y/o la afinidad de los péptidos. Por ejemplo, grupos hidrofóbicos como los grupos carbobenzoxilo, dansilo, o tbutiloxicarbonilo pueden añadirse a los extremos amino de los péptidos. De manera similar, se puede colocar un grupo acetilo o un grupo 9-fluorenilmetoxi-carbonilo en los extremos amino de los péptidos. Asimismo, el grupo hidrofóbico t-butiloxicarbonilo, o un grupo amido pueden ser añadidos en los extremos carboxilo de los péptidos.
Adicionalmente, los péptidos dados a conocer pueden ser sintetizados para alterar su configuración estérica. Por ejemplo, puede utilizarse el D-isómero de uno o más de los residuos de aminoácidos del péptido en lugar del Lisómero habitual. Y aún más, al menos uno de los residuos de aminoácidos de los péptidos dados a conocer puede ser sustituido por uno de los consabidos residuos de aminoácidos no naturales. Alteraciones como éstas pueden servir para aumentar la estabilidad, la biodisponibilidad y/o la capacidad de unión de los péptidos dados a conocer.
De manera similar, un péptido dado a conocer puede ser modificado químicamente mediante la reacción con aminoácidos específicos antes o después de la síntesis del péptido. Ejemplos de tales modificaciones son bien conocidos en la técnica y aparecen resumidos por ejemplo en R. Lundblad, Chemical Reagents for Protein Modification, 3rd ed. CRC Press, 2005, que se incorpora en la presente memoria como referencia. La modificación química de aminoácidos incluye, sin ánimo limitativo, la modificación por acilación, amidinación, piridoxilación de lisina, alquilación reductora, trinitrobencilación de grupos amino con ácido 2,4,6-trinitrobencenosulfónico (TNBS), transformación de grupos carboxilo en grupos amida y oxidación del grupo sulfhidrilo con ácido perfórmico para convertir la cisteína en ácido cisteico, formación de derivados mercuriales, formación de disulfuros mixtos con otros compuestos tiol, reacción con maleimida, carboximetilación con ácido yodoacético o yodoacetamida y carbamoilación con cianato a pH alcalino, aunque sin limitación a ello. A este respecto, se remite a las personas versadas en la técnica al Capítulo 15 de Current Protocols In Protein Science, Eds. Coligan et al. (John Wiley & Sons NY 1995-2000), donde hallarán una metodología más extensa relacionada con la modificación química de proteínas.
En resumen, la modificación de p. ej. los residuos arginilos de las proteínas se basa a menudo en la reacción de compuestos dicarbonilo adyacentes como fenilglioxal, 2,3-butanodiona y 1,2-ciclohexanodiona para formar un aducto. Otro ejemplo es la reacción del metilglioxal con residuos de arginina. La cisteína se puede modificar sin la modificación simultánea de otros sitios nucleofílicos como sucede con la lisina y la histidina. Así pues, para la modificación de la cisteína hay disponible un gran número de reactivos. Las páginas web de empresas como Pierce Chemical Company, Sigma-Aldrich y otras ofrecen información sobre reactivos concretos.
La reducción selectiva de los puentes disulfuro de las proteínas también es habitual. El tratamiento térmico al cual se someten los productos biofarmacéuticos a veces genera y oxida puentes disulfuro. El reactivo K de Woodward se puede utilizar para modificar residuos de ácido glutámico concretos. Se puede emplear N-(3-(dimetilamino)propil)-N’etilcarbodiimida para formar enlaces cruzados intramoleculares entre un residuo de lisina y un residuo de ácido glutámico. Por ejemplo, el dietilpirocarbonato es un reactivo empleado para la modificación de residuos histidilo en proteínas. La histidina también puede ser modificada con 4-hidroxi-2-nonenal. La reacción de los residuos de lisina y otros grupos α-amino es útil, por ejemplo, para la unión de péptidos a superficies o para la formación de enlaces cruzados entre proteínas/péptidos. La lisina es el sitio de fijación del poli(etilen)glicol y el principal sitio de modificación en la glucosilación de proteínas. Los residuos de metionina de las proteínas se pueden modificar por ejemplo con yodoacetamida, bromoetilamina y cloramina T. Los residuos tirosilo se pueden modificar con tetranitrometano y N-acetilimidazol. La formación de enlaces cruzados por medio de la formación de ditirosina se puede consumar con peróxido de hidrógeno/iones de cobre.
En estudios recientes sobre la modificación del triptófano se han empleado N-bromosuccinimida, 2-hidroxi-5nitrobenzilbromuro o 3-bromo-3-metil-2-(2-nitrofenilmercapto)-3H-indol (BPNS-escatol).
La modificación de proteínas terapéuticas y péptidos con PEG se asocia a menudo con una prolongación de la semivida en circulación, mientras que la unión por entrecruzamiento de proteínas con glutaraldehído, diacrilato de polietilenglicol y formaldehído se emplea en la preparación de hidrogeles. La modificación química de alérgenos con fines de inmunoterapia se consigue a menudo mediante la carbamilación con cianato potásico.
En general, los péptidos (al menos aquellos que contienen enlaces peptídicos entre los residuos de aminoácidos) pueden ser sintetizados utilizando la síntesis de péptidos en fase sólida por el método de Fmoc-poliamida, como muestra Lu et al J. Org. Chem. 1981, 46, 3433 y las referencias que aparecen en el mismo. La protección provisional del grupo N-amino se consigue con el grupo 9-fluorenilmetiloxicarbonilo (Fmoc). La escisión repetida de este grupo
15
25
35
45
55
protector muy sensible al pH básico se lleva a cabo con piperidina al 20% en N,N-dimetilformamida. Los grupos funcionales de las cadenas laterales se podrían proteger si se transformaran en éteres de butilo (en el caso de la serina, treonina y tirosina), ésteres de butilo (en el caso del ácido glutámico y aspártico), derivados butiloxicarbonílicos (en la lisina y la histidina), derivados tritilados (en la cisteína) y derivados 4-metoxi-2,3,6trimetilbenzenosulfonílicos (en la arginina). Cuando los residuos C-terminales son glutamina o asparragina se utiliza el grupo 4,4'-dimetoxibenzhidrilo para proteger los grupos funcionales amido de la cadena lateral. El soporte en fase sólida se basa en un polímero de polidimetil-acrilamida constituido por los tres monómeros dimetilacrilamida (monómero estructural), bisacriloiletilendiamina (entrelazante) y acriloilsarcosina metiléster (funcionalizador). El agente escindible que mantiene unido el péptido a la resina es un derivado del ácido 4-hidroximetilfenoxiacético, sensible a pH ácido. Todos los derivados de aminoácidos se añaden en forma de derivados anhídridos simétricos preformados salvo la asparragina y la glutamina, que se añaden utilizando un procedimiento de acoplamiento inverso con N,N-diciclohexil-carbodiimida/1-hidroxibenzotriazol. Todas las reacciones de acoplamiento y desprotección se controlan con procedimientos de ensayo con ninhidrina, ácido trinitrobencenosulfónico o isotina. Una vez completada la síntesis, los péptidos se separan del soporte de resina y al mismo tiempo se eliminan los grupos protectores de las cadenas laterales mediante el tratamiento con ácido trifluoroacético al 95% con una mezcla de capturadores (scavengers) al 50%. Los capturadores utilizados normalmente son etanditiol, fenol, anisol y agua, dependiendo de la elección exacta de los aminoácidos constituyentes del péptido que se está sintetizando. Además es posible optar por una combinación de métodos en fase sólida y fase en solución para la síntesis de péptidos (véase, por ejemplo, Bruckdorfer T, Marder O, Albericio F. From production of peptides in milligram amounts for research to multi-ton quantities for drugs of the future Curr Pharm Biotechnol. 2004 Feb; 5(l):29-43 and the references as cited therein).
El ácido trifluoroacético se elimina por evaporación en vacío y se procede a la trituración con dietiléter para obtener el péptido bruto. Todos los capturadores (scavengers) se eliminan con un procedimiento de extracción simple que con la liofilización de la fase acuosa proporciona el péptido bruto exento de ellos. Los reactivos para la síntesis de péptidos se pueden conseguir en general por ejemplo de Calbiochem-Novabiochem (UK) Ltd, Nottingham NG7 2QJ, Reino Unido.
La purificación puede efectuarse mediante una sola técnica o una combinación de varias como son la recristalización, la cromatografía por exclusión de tamaño, cromatografía de intercambio iónico, cromatografía por interacción hidrofóbica, y (normalmente) cromatografía de líquidos de alto rendimiento con fase inversa utilizando p. ej. la separación con gradiente de acetonitrilo/agua.
El análisis de los péptidos puede efectuarse utilizando cromatografía de capa fina, electroforesis, en particular electroforesis capilar, extracción en fase sólida (CSPE), cromatografía de líquidos de alto rendimiento con fase inversa, análisis de aminoácidos tras hidrólisis ácida y análisis con espectrometría de masas por bombardeo con átomos rápidos (FAB), así como análisis con espectrometría de masas MALDI y ESI-Q-TOF.
Otro aspecto de la invención proporciona un ácido nucleico (p. ej. un polinucleótido) que codifica un péptido de la invención. El polinucleótido puede ser, por ejemplo, de ADN, ADNc, ARN, ARNm y ARNsi o combinaciones de los mismos, mono y/o bicatenarios. Por supuesto, sólo los péptidos que contengan residuos de aminoácidos naturales unidos por enlaces peptídicos naturales pueden ser codificados por un polinucleótido. Otro aspecto más de la invención proporciona un vector de expresión capaz de expresar un polipéptido conforme a la invención.
Se han desarrollado diversos métodos para unir OPERABLY polinucleótidos, especialmente ADN, a vectores, por ejemplo a través de extremos cohesivos complementarios. Por ejemplo, al segmento de ADN se le pueden añadir prolongaciones de homopolímeros complementarios para insertarlo en el vector de ADN. El vector y el segmento de ADN se unen a continuación por medio de puentes de hidrógeno entre las colas homopoliméricas complementarias para formar moléculas de ADN recombinante.
Otro método alternativo para unir el segmento de ADN a los vectores son los ligadores sintéticos que contienen uno
o más sitios de restricción. Existen ligadores sintéticos comerciales que contienen diversas dianas para las endonucleasas de restricción que facilitan varios proveedores como International Biotechnologies Inc. New Haven, CN, EE. UU.
Un método deseable para modificar el ADN que codifica el polipéptido de la invención emplea la reacción en cadena de la polimerasa tal y como exponen Saiki et al (1988) Science 239, 487-491. Este método puede ser utilizado para introducir el ADN en un vector adecuado, por ejemplo diseñando las dianas de restricción adecuadas, o puede ser empleado para modificar el ADN de otros modos útiles conocidos en la técnica.
Si se opta por vectores virales, son preferibles los vectores poxvíricos o adenovíricos.
El ADN (o ARN en el caso de los vectores retrovíricos) se puede expresar en un hospedador adecuado para producir un polipéptido el péptido de la invención. Así pues, el ADN que codifica el péptido de la invención puede ser utilizado conforme a técnicas conocidas, modificado adecuadamente siguiendo las enseñanzas contenidas en la presente memoria para construir un vector de expresión que se emplee para transformar una célula hospedadora a fin de que exprese y produzca el péptido de la invención. Tales técnicas incluyen las reveladas en las patentes de
10
15
20
25
30
35
40
45
50
55
EE. UU. N. º 4. 440. 859 expedida el 3 de abril de 1984 a Rutter et al., 4. 530. 901 expedida el 23 de julio de 1985 a Weissman, 4. 582. 800 expedida el 15 de abril de 1986 a Crowl, 4. 677. 063 expedida el 30 de junio de 1987 a Mark et al., 4. 678. 751 expedida el 7 de julio de 1987 a Goeddel, 4. 704. 362 expedida el 3 de noviembre de 1987 a Itakura et al., 4. 710. 463 expedida el 1 de diciembre de 1987 a Murray, 4. 757. 006 expedida el 12 de julio de 1988 a Toole, Jr. et al., 4. 766. 075 expedida el 23 de agosto de 1988 a Goeddel et al. y 4. 810. 648 expedida el 7 de marzo de 1989 a Stalker.
El ADN (o ARN en el caso de los vectores retrovíricos) que codifica el polipéptido que constituye el compuesto de la invención se puede unir con una amplia variedad de secuencias de ADN distintas para introducirlo en un hospedador adecuado. El ADN acompañante dependerá de la naturaleza del hospedador, el modo de introducir el ADN en su interior y de si se pretende que se integre o que se mantenga como un episoma.
En general, el ADN se inserta en un vector de expresión, como un plásmido, con la orientación apropiada y el marco de lectura correcto para asegurar la expresión. Si es necesario, el ADN se puede enlazar con secuencias nucleotídicas de control que regulan la transcripción o la traducción y que son reconocidas por el hospedador deseado, aunque en general tales controles ya suelen estar incluidos en el propio vector de expresión. A continuación, el vector se introduce en el hospedador mediante técnicas estándar. En general, el vector no consigue transformar todos los hospedadores,lo que hará necesario seleccionar las células hospedadoras que hayan quedado transformadas. Una técnica de selección consiste en incorporar en el vector de expresión una secuencia de ADN con los elementos de control necesarios que codifique un rasgo seleccionable en la célula transformada, como por ejemplo de resistencia a antibióticos.
Otra alternativa consiste en incorporar el gen de ese rasgo seleccionable en otro vector con el que se cotransforma la célula hospedadora.
Las células hospedadoras que hayan sido transformadas con el ADN recombinante de la invención se cultivarán durante el tiempo suficiente y en las condiciones apropiadas que las personas versadas en la técnica conocen a la vista de las enseñanzas reveladas en la presente memoria para que el polipéptido pueda expresarse y, finalmente, ser recuperado.
Son muchos los sistemas de expresión conocidos, como bacterias (E. coli, Bacillus subtilis, etc.), levaduras (Saccharomyces cerevisiae, etc.), hongos filamentosos (género Aspergillus, etc.), células vegetales, animales o de insectos. Preferiblemente el sistema consistirá en células de mamífero, como las células de cáncer colorrectal o de glioblastoma disponibles en la ATCC Cell Biology Collection.
Un típico plásmido que sirve como vector para células de mamífero es el pSVL disponible en Pharmacia, Piscataway, NJ, EE. UU. Un ejemplo de vector de expresión inducible para mamífero es el pMSG, también suministrado por Pharmacia. Otros vectores plasmídicos de levadura son pRS403-406 y pRS413-416, en general proveidos por Stratagene Cloning Systems, La Jolla, CA 92037, EE. UU. Los plásmidos pRS403, pRS404, pRS405 y pRS406 son plásmidos integrativos de levadura (YIp) que incorporan los marcadores seleccionables de levadura HIS3, TRP1, LEU2 y URA3. Los plásmidos pRS413-416 son plásmidos centroméricos de levadura (Ycp). En la técnica se conocen otros vectores y sistemas de expresión aptos para el uso con una variedad de células hospedadoras.
La presente invención también se refiere a una célula hospedadora transformada con un vector polinucleotídico de la presente invención en que dicha célula hospedadora es una célula presentadora de antígeno.
La transformación de las células hospedadoras adecuadas con el constructo de ADN de la presente invención se consuma con métodos consabidos que normalmente dependen del tipo de vector utilizado. En lo referente a la transformación de células hospedadoras procariotas, véanse por ejemplo Cohen et al. (1972) Proc. Natl. Acad. Sci. USA 69, 2110, y Sambrook et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, EE. UU. La transformación de células de levadura aparece descrita en Sherman et al (1986) Methods In Yeast Genetics, A Laboratory Manual, Cold Spring Harbor, NY, EE. UU. El método de Beggs, Nature 1978, 275,104-109 también resulta útil. En lo que concierne a los reactivos adecuados para transfectar las células de vertebrados, por ejemplo el fosfato de calcio y el DEAE-dextrano o las formulaciones con liposomas, se pueden adquirir de Stratagene Cloning Systems, o Life Technologies Inc., Gaithersburg, MD 20877, EE. UU. La electroporación también es útil para la transformación y/o transfeccion de las célulasy es perfectamente conocida su aplicación en la transformación de células de levadura, bacteria, insecto y vertebrado.
Las células transformadas con éxito, es decir, las que contengan un constructo de ADN de la presente invención, se pueden identificar con técnicas bien conocidas como la PCR. Otra alternativa consiste en detectar la presencia de la proteína en el sobrenadante por medio de anticuerpos.
Se apreciará que ciertas células hospedadoras de la invención son útiles para la preparación de péptidos de la invención.
La célula hospedadora es una célula presentadora de antígeno, en particular una célula dendrítica o célula presentadora de antígeno. Células presentadoras de antígeno cargadas con una proteína de fusión recombinante
10
15
20
25
30
35
40
45
50
55
que contiene fosfatasa ácida prostática (PAP) están siendo investigadas en este momento como tratamiento para el cáncer de próstata (Sipuleucel-T) (Small EJ, Schellhammer PF, Higano CS, Redfern CH, Nemunaitis JJ, Valone FH, Verjee SS, Jones LA, Hershberg RM.; Placebo-controlled phase 3 trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer; J Clin Oncol. 2006; 24(19):3089-3094; Rini BI, Weinberg V, Fong L, Conry S, Hershberg RM, Small EJ; Combination immunotherapy with prostatic acid phosphatase pulsed antigen-presenting cells (Provenge) plus bevacizumab in patients with serologic progression of prostate cancer after definitive local therapy; Cancer. 2006; 107(l):67-74).
Otro aspecto de la invención proporciona un método para producir un péptido. El método comprende el cultivo de la célula hospedadora y el aislamiento del péptido a partir de dicha célula o de su medio de cultivo.
En otra forma de realización el péptido, el ácido nucleico o el vector de expresión de la invención se emplean en medicina. Por ejemplo, el péptido puede ser preparado para la inyección por vía intravenosa (i. v.), subcutánea (s. c.), intradérmica (i. d.), intraperitoneal (i. p.) o intramuscular (i. m.). Las vías preferidas para la inyección del péptido son s. c, i. d., i. p., i. m. e i. v. Los métodos preferidos para la inyección del ADN son i. d., i. m., s. c., i. p. e i. v. Según el péptido o ADN de que se trate se pueden administrar dosis de, por ejemplo, entre 50 µg y 1,5 mg, preferiblemente de 125 µg a 500 µg de péptido o ADN. Dosis de este rango se han utilizado con éxito en varios ensayos (Brunsvig PF, Aamdal S, Gjertsen MK, Kvalheim G, Markowski-Grimsrud CJ, Sve I, Dyrhaug M, Trachsel S, Møller M, Eriksen JA, Gaudernack G; Telomerase peptide vaccination: a phase I/II study in patients with non-small cell lung cancer; Cancer Immunol Immunother. 2006; 55(12):1553-1564; M. Staehler, A. Stenzl, P. Y. Dietrich, T. Eisen, A. Haferkamp, J. Beck, A. Mayer, S. Walter, H. Singh, J. Frisch, C. G. Stief; An open label study to evaluate the safety and immunogenicity of the peptide based cancer vaccine IMA901, Reunión de ASCO 2007; Resumen N. º 3017).
Un aspecto importante de la presente invención es un método in vitro para producir CTL activados. El método comprende la puesta en contacto en condiciones in vitro de CTL con moléculas MHC de clase II humanas cargadas con antígeno y expresadas en la superficie de una célula presentadora de antígeno adecuada por tiempo suficiente para activar dichos CTL de una manera específica de antígeno. El antígeno es un péptido conforme a la invención. Preferentemente se emplea una cantidad suficiente del antígeno con una célula presentadora de antígeno.
Cuando se utilice como antígeno un epítopo de MHC de clase II, los CTL serán linfocitos cooperadores CD4positivos, preferiblemente del tipo TH1. Las moléculas MHC de clase II pueden expresarse en la superficie de cualquier célula adecuada pero es preferible que la célula no exprese de forma natural moléculas MHC de clase II (en cuyo caso la célula será transfectada para expresar dicha molécula). Si, en cambio, la célula expresa de forma natural moléculas MHC de clase II es preferible que sea defectuosa en los mecanismos de procesamiento o de presentación de los antígenos. De ese modo será posible que la célula que expresa la molécula MHC de clase II quede completamente sensibilizada con el antígeno peptídico escogido antes de activar al CTL.
La célula presentadora de antígeno (o célula estimuladora) normalmente posee moléculas MHC de clase II en su superficie y es preferible que sea básicamente incapaz de cargar dicha molécula de MHC de clase II con el antígeno seleccionado. La molécula MHC de clase II puede cargarse fácilmente in vitro con el antígeno seleccionado.
Preferiblemente, la célula de mamífero carecerá del transportador de péptidos TAP o bien este estará presente en un nivel reducido o escasamente funcional. Las células adecuadas que carecen del transportador de péptidos TAP incluyen las células T2, RMA-S y de Drosophila. TAP es el transportador relacionado con el procesamiento de los antígenos.
La estirpe celular humana deficiente en carga de péptidos T2 está disponible en la American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852, EE. UU. con el N. º de catálogo CRL 1992; la estirpe de células de Drosophila Schneider line 2 está disponible en la ATCC con el N. º de catálogo CRL 19863; la estirpe de células de ratón RMA-S está descrita en Karre and Ljunggren (1985) J. Exp. Med. 162,1745.
Es preferible que la célula hospedadora no exprese las moléculas MHC de clase I antes de la transfección. Preferiblemente la célula estimuladora expresará una molécula importante para la coestimulación de los linfocitos T, como cualquiera de las siguientes: B7. 1, B7. 2, ICAM-1 o LFA3.
Las secuencias de ácidos nucleicos de numerosas moléculas MHC de clase II y de las moléculas co-estimuladoras están disponibles públicamente en las bases de datos GenBank y EMBL.
De forma similar, en el caso del epítopo de MHC de clase I usado como antígeno, las CTL son linfocitos cooperadores CD8-positivos. Las moléculas MHC de clase I pueden expresarse en la superficie de cualquier célula adecuada y es preferible que la célula no exprese de forma natural moléculas MHC de clase I (en cuyo caso la célula será transfectada para expresar dicha molécula). Si, en cambio, la célula expresa de forma natural moléculas MHC de clase I ha de ser defectuosa en los mecanismos de procesamiento o de presentación de los antígenos.
De ese modo será posible que la célula que expresa la molécula MHC de clase I quede completamente sensibilizada con el antígeno peptídico escogido antes de activar el CTL.
10
15
20
25
30
35
40
45
50
55
Si una célula presentadora de antígeno es transfectada para expresar un epítopo de ese tipo, la célula comprenderá preferentemente un vector de expresión capaz de expresar un péptido que contenga la SEQ ID N. º 14.
Existen otros métodos para generar CTL in vitro. Por ejemplo, los métodos descritos en Peoples et al., Proc. Natl. Acad. Sci. USA 1995, 92, 432-436 y Kawakami et al (1992) J. Immunol. 148, 638-643 emplean linfocitos autólogos infiltrados en el tumor para generar los CTL. Plebanski et al (1995) Eur. J. Immunol. 25, 1783-1787 recurren a linfocitos autólogos de sangre periférica (PLB) para la preparación de los CTL. Jochmus et al (1997) J. Gen. Virol. 78, 1689-1695 describen la producción de CTL autólogos estimulando células dendríticas con el péptido o el polipéptido, o a través de la infección con virus recombinantes. Hill et al (1995) J. Exp. Med. 181, 2221-2228 y Jerome et al (1993) J. Immunol. 151, 1654-1662 emplean linfocitos B para la producción de CTL autólogos. Asimismo, para la preparación de CTL autólogos se pueden usar macrófagos estimulados con péptido o polipéptido
o infectados con virus recombinantes. S. Walter et al. (Walter S, Herrgen L, Schoor O, Jung G, Wernet D, Burning HJ, Rammensee HG, Stevanovic S. Cutting edge: predetermined avidity of human CD8 T-cells expanded on calibrated MHC/anti-CD28-coated microspheres. J Immunol. 2003 Nov 15; 171 (10):4974-8) describen la sensibilizaciónin vitro de linfocitos T mediante células presentadoras de antígeno artificiales, que es otro modo adecuado para generar linfocitos T contra el péptido de elección.
Para la preparación de los CTL también se pueden utilizar células alogénicas; en WO 97/26328 se describe detalladamente un método a modo de ejemplo. Además de células de Drosophila y células T2, para presentar antígenos se pueden usar, por ejemplo, otros tipos tales como células CHO, células de insecto infectadas con baculovirus, bacterias, levaduras o células diana infectadas con virus vacunal. Asimismo se pueden utilizar virus vegetales (véase por ejemplo Porta et al., Virology, 1994, 202, 449-955, que describen el desarrollo del virus del mosaico del chícharo como sistema de alto rendimiento para la presentación de péptidos extraños).
Los CTL activados que están dirigidos contra el péptido de la invención son útiles como tratamiento. Así pues, otro aspecto de la invención proporciona CTL activados obtenibles con los susodichos métodos de la invención.
Los CTL activados producidos con el susodicho método reconocerán selectivamente una célula que exprese de forma aberrante un polipéptido que comprenda una secuencia de aminoácidos de la SEQ ID N. º 14.
Preferiblemente el CTL reconoce la célula interaccionando a través de su TCR con el complejo HLA/péptido, por ejemplo uniéndosele. Los CTL son útiles en un método destinado a destruir células diana en un paciente cuyas células diana expresen de forma aberrante un polipéptido que comprenda una secuencia de aminoácidos de la invención. Al paciente se le administrará un número eficaz de CTL activados. Los CTL que se le administren pueden proceder del mismo paciente y ser activados del modo antes descrito, es decir, ser CTL autólogos. Otra alternativa consiste en que los CTL no sean del paciente y procedan de otro individuo. Por supuesto, es preferible que el donante sea un individuo sano. Por «individuo sano» los inventores entienden un individuo que goce de buen estado de salud general, preferentemente con un sistema inmunitario competente y, más preferentemente, que no sufra ninguna enfermedad que pueda detectarse fácilmente mediante análisis.
Las células diana in vivo para los CTL CD4-positivos acordes con la presente invención pueden ser células del tumor (que a veces expresan MHC de clase II) y/o células estromales que envuelven el tumor (células tumorales) (que a veces también expresan MHC de clase II; (Dengjel, J, Nastke, MD, Gouttefangeas, C, Gitsioudis, G, Schoor, 0, Altenberend, F, Mulier, M, Kramer, B, Missiou, A, Sauter, M, Hennenlotter, J, Wernet, D, Stenzl, A, Rammensee, HG, Klingel, K, and Stevanovic, S; Unexpected Abundance of HLA Class II Presented Peptides in Primary Renal Cell Carcinomas, Clin Cancer Res., 2006, 12, 4163-4170)).
Los CTL de la invención se pueden usar como principios activos de una composición terapéutica. Así pues, la invención también da a conocer un método para destruir células diana en un paciente cuyas células diana expresen de forma aberrante un polipéptido que comprenda una secuencia de aminoácidos de la invención. El método comprende la administración al paciente de un número eficaz de CTL tal y como se ha definido antes.
Por «expresado de forma aberrante» los inventores también quieren decir que el polipéptido está sobreexpresado en comparación con los niveles normales de expresión o que el gen está reprimido en el tejido del que deriva el tumor pero en cambio se expresa en éste. Por «sobreexpresado» los inventores quieren decir que el nivel del polipéptido es como mínimo 1,2 veces mayor que el nivel presente en el tejido normal; preferiblemente como mínimo 2 veces mayor, y más preferiblemente como mínimo 5 o 10 veces mayor que el del tejido normal.
Los CTL se pueden obtener por métodos conocidos en la materia, como, por ejemplo, los antes descritos.
Los protocolos para la llamada transferencia de linfocitos T a un receptor son perfectamente conocidos y se pueden encontrar por ejemplo en: (Rosenberg, SA, Lotze, MT, Muul, LM, Chang, AE, Avis, FP, Leitman, S, Linehan, WM, Robertson, CN, Lee, RE, Rubin, JT, et al., A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interIeukin-2 or high-dose interleukin-2 alone, N. Engl. J. Med., 1987, 316, 889-897; Rosenberg, SA, Packard, BS, Aebersold, PM, Solomon, D, Topalian, SL, Toy, ST, Simon, P, Lotze, MT, Yang, JC, Seipp, CA, et al.; Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report, N. Engl. J Med, 1988, 319, 1676-1680; Dudley, ME, Wunderlich, JR, Robbins, PF, Yang, JC, Hwu, P, Schwartzentruber, DJ, Topalian, SL, Sherry, R, Restifo, NP, Hubicki, AM, Robinson,
10
15
20
25
30
35
40
45
50
55
60
MR, Raffeld, M, Duray, P, Seipp, CA, Rogers-Freezer, L, Morton, KE, Mavroukakis, SA, White, DE, and Rosenberg, SA; Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes, Science, 2002, 298, 850-854; Yee, C, Thompson, JA, Byrd, D, Riddell, SR, Roche, P, Celis, E, and Greenberg, PD; Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells, Proc. Natl. Acad. Sci. U. S. A, 2002, 99, 16168-16173; Dudley, ME, Wunderlich, JR, Yang, JC, Sherry, RM, Topalian, SL, Restifo, NP, Royal, RE, Kammula, U, White, DE, Mavroukakis, SA, Rogers, LJ, Gracia, GJ, Jones, SA, Mangiameli, DP, Pelletier, MM, Gea-Banacloche, J, Robinson, MR, Berman, DM, Filie, AC, Abati, A, and Rosenberg, SA; Adoptive cell transfer therapy following nonmyeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma,
J. Clin. Oncol., 2005, 23, 2346-2357); y aparecen revisados en (Gattinoni, L, Powell, DJ, Jr., Rosenberg, SA, and Restifo, NP; Adoptive immunotherapy for cancer: building on success, Nat. Rev. Immunol., 2006, 6, 383-393) y (Morgan, RA, Dudley, ME, Wunderlich, JR, Hughes, MS, Yang, JC, Sherry, RM, Royal, RE, Topalian, SL, Kammula, US, Restifo, NP, Zheng, Z, Nahvi, A, de Vries, CR, Rogers-Freezer, LJ, Mavroukakis; SA, and Rosenberg, SA; Cancer Regression in Patients After Transfer of Genetically Engineered Lymphocytes, Science, 2006, 314 (5796): 126-129).
Cualquier molécula de la invención, ya sea péptido, ácido nucleico, vector de expresión, célula o CTL activado es útil para el tratamiento de trastornos caracterizados por células que eluden la respuesta inmunitaria. Por consiguiente, cualquier molécula de la presente invención puede ser utilizada como medicamento o en la fabricación de un medicamento. La molécula puede ser utilizada sola o combinada con otra molécula o moléculas de la invención o con cualquier o cualesquier moléculas conocidas.
Preferiblemente, el medicamento es una vacuna. La vacuna puede administrarse directamente al paciente, en el órgano afectado o por vía sistémica, o aplicarse ex vivo a células derivadas del paciente o a una estirpe celular humana que después se administra al paciente, o utilizarse in vitro para seleccionar una subpoblación de células inmunitarias derivadas del paciente que después se le vuelven a administrar. Si el ácido nucleico se administra a células in vitro, puede ser útil que estas células sean transfectadas para que expresen simultáneamente citocinas inmunoestimuladoras, como la interleucina-2. El péptido puede ser sustancialmente puro, o combinarse con un adyuvante inmunoestimulador (véase abajo) o utilizarse en combinación con citocinas inmunoestimuladoras, o bien administrarse mediante otro sistema de liberación adecuado, como por ejemplo liposomas. El péptido también se puede conjugar con un transportador adecuado como la hemocianina de lapa californiana (KLH) o el manano (véase WO 95/18145 y Longenecker et al. (1993) Ann. NY Acad. Sci. 690, 276-291). El péptido también puede estar marcado, o ser una proteína de fusión, o ser una molécula híbrida. Se espera que los péptidos de la presente invención estimulen a los CTL CD4 o CD8. No obstante, la estimulación es más eficiente si se cuenta con la ayuda de los linfocitos T positivos para el CD opuesto. Así pues, en el caso de los epítopos de MHC de clase II que estimulan a los CTL CD4, el compañero de fusión o las secciones de una molécula híbrida adecuada proporcionan epítopos que estimulan a los linfocitos T CD8-positivos. Y viceversa, en los epítopos de MHC de clase I que estimulan a los CTL CD8, la pareja de fusión o las secciones de una molécula híbrida proporcionan epítopos que estimulan a los linfocitos T CD4-positivos. Los epítopos estimuladores de los CD4 y los CD8 son bien conocidos en la técnica e incluyen los identificados en la presente invención.
En un aspecto de la invención, la vacuna comprende al menos un péptido, preferiblemente dos a 50, más preferiblemente dos a 25, incluso más preferiblemente dos a 15 y más preferiblemente dos, tres, cuatro, cinco, seis, siete, ocho, nueve, diez, once, doce o trece péptidos o péptidos adicionales. Los péptidos pueden derivar de uno o más TAA específicos y se pueden unir a moléculas MHC de clase I y/o II.
Preferiblemente, cuando los péptidos dados a conocer se usan en una vacuna o medicamento de la invención, están presentes en forma de sal, como por ejemplo, una sal de acetato o una sal de cloruro. El ejemplo 7 presenta estudios con la vacuna IMA-910, que contiene algunos de los péptidos dados a conocer y describe la preparación de la misma con péptidos en forma de sal y su tamaño de partícula.
El polinucleótido puede ser sustancialmente puro, o estar contenido en un vector o en un sistema de liberación adecuado. El ácido nucleico puede ser ADN, ADNc, ARN o una combinación de los mismos. Los métodos para diseñar e introducir ese ácido nucleico son bien conocidos por los expertos en la materia. Se puede obtener una visión general por ejemplo en S. Pascolo: Vaccination with messenger RNA Methods Mol Med 2006, 127; 23-40; R. Stan, JD Wolchok and AD Cohen DNA vaccines against cancer Hematol Oncol Clin North Am 2006, 3; 613-636 or A Mahdavi and BJ Monk Recent advances in human papillomavirus vaccines Curr Oncol Rep 2006, 6, 465-472. Las vacunas polinucleotídicas son fáciles de preparar, pero el mecanismo por el cual tales vectores inducen la respuesta inmunitaria no se conoce con exactitud. Los vectores y sistemas de liberación adecuados incluyen los de ADN y/o ARN viral, como los sistemas basados en adenovirus, virus vacunal, retrovirus, herpesvirus, virus adeno-asociados o híbridos que contienen elementos de varios virus. Los sistemas de liberación no virales incluyen lípidos catiónicos y polímeros catiónicos que son bien conocidos como técnicas para la introducción de ADN. Los métodos de introducción físicos, como la «pistola génica», también pueden utilizarse. El péptido o péptidos codificados por el ácido núcleico pueden ser una proteína de fusión, por ejemplo con un epítopo que estimule los linfocitos T para el respectivo CDR opuesto, tal y como se ha indicado antes.
10
15
20
25
30
35
40
45
50
55
60
El medicamento de la invención también puede incluir uno o varios adyuvantes. Los adyuvantes son sustancias que potencian o estimulan de forma inespecífica la respuesta inmunitaria (p. ej. respuestas inmunitarias mediadas por CTL y linfocitos T cooperadores (TH) contra un antígeno, y podrían ser considerados útiles en el medicamento de la presente invención. Entre los adyuvantes adecuados se incluyen, entre otros: 1018 ISS, sales de aluminio, Amplivax, AS15, BCG, CP-870. 893, CpG7909, CyaA, dSLIM, GM-CSF, IC30, IC31, Imiquimod, ImuFact IMP321, IS Patch, ISS, ISCOMATRIX, JuvImmune, LipoVac, MF59, lípido monofosforilo A, Montanide IMS 1312, Montanide ISA 206, Montanide ISA 50V, Montanide ISA-51, OK-432, OM-174, OM-197-MP-EC, ONTAK, sistema de vectores PepTel®, micropartículas de PLG, resiquimod, SRL172, virosomas y otras partículas seudovíricas, YF-17D, VEGF trap, R848, beta-glucano, Pam3Cys, estimulón QS21 de Aquila, que deriva de la saponina, extractos de micobacterias y miméticos sintéticos de la pared bacteriana, y otros adyuvantes patentados como Detox de Ribi, Quil o Superfos. Se prefieren los adyuvantes como el adyuvante de Freund o el GM-CSF. Varios adyuvantes inmunitarios (p. ej., MF59) específicos para las células dendríticas y su preparación han sido descritos con anterioridad (Dupuis M, Murphy TJ, Higgins D, Ugozzoli M, van Nest G, Ott G, McDonald DM; Dendritic cells internalize vaccine adjuvant after intramuscular injection; Cell Immunol. 1998; 186(1):18-27; Allison AC; The mode of action of immunological adjuvants; Dev Biol Stand. 1998; 92:3-11). También pueden utilizarse citocinas. A varias citocinas se les ha atribuido una influencia directa en la migración de las células dendríticas hacia los tejidos linfoides (p. ej. el TNF-α), como parte de un proceso que acelera su maduración hasta convertirlas en células presentadoras antígeno de los linfocitos T (p. ej. GM-CSF, IL-1 e IL-4) (Patente de EE. UU. N. º 5. 849. 589) y en el que actúan como inmunoadyuvantes (p. ej. la IL-12) (Gabrilovich DI, Cunningham HT, Carbone DP; IL-12 and mutant P53 peptidepulsed dendritic cells for the specific immunotherapy of cancer; J Immunother Emphasis Tumor Immunol. 1996 (6):414-418).
También se ha descrito que los oligonucleótidos de CpG inmunoestimuladores potencian los efectos de los adyuvantes en las vacunas. Sin limitarse a la teoría, los oligonucleótidos de CpG actúan activando el sistema inmunitario innato (no adaptativo) a través de los receptores de tipo Toll (TLR), principalmente el TLR9. La activación del TLR9 desencadenada por los CpG potencia las respuestas humorales y celulares específicas de antígeno contra una amplia gama de antígenos, incluidos antígenos peptídicos o proteicos, virus vivos o muertos, vacunas de células dendríticas, vacunas de células autólogas y conjugados de polisacáridos, tanto en vacunas profilácticas como terapéuticas. Más importante aún, potencian la maduración y la diferenciación de las células dendríticas, lo cual resulta en una mayor activación de los linfocitos TH1 y una generación más potente de linfocitos T citotóxicos (CTL), incluso sin la ayuda de los linfocitos T CD4. La tendencia hacia la respuesta TH1 provocada por la estimulación del TLR9 se mantiene incluso en presencia de adyuvantes vacunales como el aluminio o el adyuvante de Freund incompleto (IFA) que normalmente promueven un sesgo hacia la respuesta TH2. Los oligonucleótidos de CpG muestran incluso una mayor actividad adyuvante cuando se formulan o administran conjuntamente con otros adyuvantes o en formulaciones como micropartículas, nanopartículas, emulsiones de lípidos o formulaciones similares, que son especialmente necesarias para inducir una respuesta potente cuando el antígeno es relativamente débil. También aceleran la respuesta inmunitaria y permiten reducir las dosis de antígeno aproximadamente en dos órdenes de magnitud, habiendo obtenido en algunos experimentos respuestas de anticuerpos comparables a las conseguidas con la dosis completa de vacuna sin CpG (Arthur M. Krieg, Therapeutic potential of Toll-like receptor 9 activation, Nature Reviews, Drug Discovery, 5, June 2006, 471-484). La patente de EE. UU. N. º 6. 406. 705 B1 describe el uso combinado de oligonucleótidos de CpG, adyuvantes que no son ácidos nucleicos y un antígeno para inducir una respuesta inmunitaria específica de antígeno. Un componente preferido de la composición farmacéutica de la presente invención es un antagonista CpG del TLR9 comercial conocido como dSLIM (inmunomodulador en horquilla doble), fabricado por Mologen (Berlín, Alemania). También se pueden utilizar otras moléculas que se unen a los TLR como ARN que se unen a TLR 7, TLR 8 y/o TLR 9.
Otros ejemplos de adyuvantes útiles incluyen, entre otros, CpG químicamente modificados (p. ej. CpR, Idera), Poli(I:C), como AmpliGen, ADN o ARN bacteriano sin CpG, así como pequeñas moléculas inmunoactivas y anticuerpos como ciclofosfamida, sunitinib, bevacizumab, celebrex, NCX-4016, sildenafilo, tadalafilo, vardenafilo, sorafinib, XL-999, CP-547632, pazopanib, ZD2171, AZD2171, anti-CTLA4 y SC58175, que pueden actuar terapéuticamente y/o como adyuvantes. Las cantidades y concentraciones de adyuvantes y de aditivos útiles en el contexto de la presente invención pueden ser determinadas fácilmente por las personas versadas en la técnica sin demasiada experimentación.
Los adyuvantes preferidos son dSLIM, BCG, OK432, ALDARA, PeviTer y JuvImmune.
Preferiblemente los medicamentos de la presente invención son activos contra el cáncer. El cáncer puede ser no metastásico o metastásico, en concreto cáncer de la cavidad bucal o la faringe, cáncer del tubo digestivo, cáncer de colon, recto o ano, cáncer de las vías respiratorias, cáncer de mama, cáncer de cuello de útero, vagina o vulva, cáncer del cuerpo uterino y de ovario, cáncer de las vías genitales masculinas, cáncer de las vías urinarias, cáncer de hueso y tejidos blandos, sarcoma de Kaposi, melanoma cutáneo, melanoma ocular, y cáncer ocular no melanómico, cáncer de cerebro y del sistema nervioso central, cáncer de tiroides y de otras glándulas endocrinas, linfoma de hodgkin, linfoma no hodgkiniano y mieloma. Más preferiblemente el trastorno neoplásico tratado con el método de la presente invención es cáncer colorrectal, cáncer de pulmón, cáncer de mama, cáncer de páncreas, cáncer de próstata, cáncer de estómago, GIST o glioblastoma.
imagen11
imagen12
10
15
20
25
30
35
40
45
50
continuación se reveló la identidad de las secuencias peptídicas mediante espectrometría de masas (ESI-LCMS/MS) con disociación inducida por colisión (CID). La secuencia del TUMAP identificada se confirmó comparando el patrón de fragmentación generado por el TUMAP natural con el patrón de fragmentación de un péptido de referencia sintético de secuencia idéntica.
Las Figuras 1 y 2 muestran a modo de ejemplo espectros obtenidos de tejido tumoral de varios TUMAP asociados a MHC de clase I (Fig. 1a-1h) y a MHC de clase II (Fig. 2a-2f).
3. Perfiles de expresión de genes que codifican los péptidos
Los péptidos identificados como presentes en la superficie de las células tumorales a través de las moléculas MHC probablemente son capaces de estimular los linfocitos T con una alta especificidad de reconocimiento contra el tumor del cual derivan. A fin de minimizar el riesgo de que la vacuna con tales péptidos genere autoinmunidad los inventores se centraron en los péptidos derivados de proteínas que aparecen sobreexpresadas en las células tumorales en comparación con la mayoría de los tejidos normales.
El péptido ideal sería el derivado de una proteína que sea exclusiva del tumor y no esté presente en ningún otro tejido. Para identificar los péptidos que derivaban de genes dotados con un perfil de expresión similar al ideal los péptidos identificados se asignaron a las proteínas y después a los genes originarios y se generaron los perfiles de expresión de dichos genes.
Fuentes de ARN y preparación
Las muestras de tejido extirpado fueron facilitadas por diversos centros clínicos (véase Tabla 2); todos los pacientes otorgaron su consentimiento informado por escrito.
Las muestras de tejido tumoral se congelaron rápidamente en nitrógeno líquido inmediatamente después de la operación y se homogeneizaron a mano en un mortero con nitrógeno líquido. El ARN total se preparó a partir de estas muestras con TRIzol (Invitrogen, Karlsruhe, Alemania) y después se purificó con RNeasy (QIAGEN, Hilden, Alemania); ambos métodos se efectuaron siguiendo las instrucciones del fabricante.
El ARN total procedente de tejidos humanos sanos se obtuvo por canales comerciales (Ambion, Huntingdon, Reino Unido; Clontech, Heidelberg, Alemania; Stratagene, Amsterdam, Holanda; BioChain, Hayward, CA, EE. UU.). El ARN de varios individuos (de 2 a 123 individuos) se mezcló de tal modo que el ARN de cada uno de ellos estuviera representado en la misma proporción. Cuatro voluntarios sanos donaron sangre de la que se extrajeron los leucocitos.
La calidad y la cantidad de las muestras de ARN se valoró con Agilent 2100 Bioanalyzer (Agilent, Waldbronn, Alemania) y el RNA 6000 Pico LabChip Kit (Agilent).
Experimentos con micromatrices
El análisis de la expresión génica de todas las muestras de ARN de tejido tumoral y normal se efectuó con micromatrices oligonucleotídicas Affymetrix Human Genome (HG) U133A o HG-U133 Plus 2.0 (Affymetrix, Santa Clara, CA, EE. UU.). Todos los pasos se llevaron a cabo siguiendo el manual de Affymetrix (http://www.affimetrix. com/support/technical/manual/expression_manual.affx).
En resumen, a partir de 5–8 µg de ARN total se sintetizó ADNc bicatenario con SuperScript RTII (Invitrogen) y el cebador oligo-dT-T7 (MWG Biotech, Ebersberg, Alemania) siguiendo las indicaciones del manual. La transcripción in vitro se llevó a cabo con el BioArray High Yield RNA Transcript Labelling Kit (ENZO Diagnostics, Inc., Farmingdale, NY, EE. UU.) en el caso de las matrices U133A y con el GeneChip IVT Labelling Kit (Affymetrix) en el de las matrices U133 Plus 2. 0, y después se procedió a la fragmentación del ARNc, a su hibridación y tinción con estreptavidinaficoeritrina y un anticuerpo anti-estreptavidina biotinilado (Molecular Probes, Leiden, Holanda). Las imágenes se analizaron con el Agilent 2500A GeneArray Scanner (U133A) o con el Affymetrix Gene-Chip Scanner 3000 (U133 Plus 2.0), y los datos se analizaron con el software GCOS (Affymetrix), aplicando los ajustes programados en todos los parámetros. Para la normalización se utilizaron 100 genes constitutivos (Housekeeping) suministrados por Affymetrix (http://www. affymetrix. com/support/technical/mask_files. affx). Los valores de expresión relativa se calcularon a partir de los ratios logarítmicos de señal dados por el software y la muestra normal se ajustó de forma arbitraria en 1,0.
Los perfiles de expresión de todos los péptidos como los descritos muestran una elevada expresión del correspondiente gen en el tejido tumoral, mientras que el gen no se expresa o lo hace muy poco en los tejidos normales.
La Fig. 3 muestra los perfiles correspondientes a los genes de los péptidos específicos del glioblastoma PTP-001 (gen: PTPRZ1, Fig. 3a), y CHI-001 (gen: CH3L2, Fig. 3b).
imagen13
imagen14
10
15
20
25
30
35
40
45
50
55
5. Unión de los péptidos restringidos a HLA de clase I a HLA-A*0201
El ensayo de unión a HLA se realizó con el Kit ELISA EpI (proporcionado por Sceren Buus, Instituto de Inmunología y Microbiología Médicas de la Universidad de Copenhague, Dinamarca) siguiendo las indicaciones de Sylvester-Hvid (Sylvester-Hvid, C, Kristensen, N, Blicher, T, Ferre, H, Lauemoller, SL, Wolf, XA, Lamberth, K, Nissen, MH, Pedersen, LO, and Buus, S; Establishment of a quantitative ELISA capable of determining peptide -MHC class I interaction, Tissue Antigens, 2002, 59, 251-258) y del manual del fabricante del Kit ELISA EpI.
Preparación de las soluciones de péptidos
Los péptidos se disolvieron en DMSO + TFA al 0,5% (Merck, Darmstadt, Alemania) hasta una concentración de 10 mg/ml. La solución de trabajo más alta usada en este ensayo fue de 200 µM, resultado de diluir la solución madre a
1:50 con tampón de dilución para péptidos (PBS con Lutrol-F68 al 0,1% yrojo de fenol 10 mg/l) hasta un volumen final de 100 µl. Se hizo una dilución seriada 5x con tampón de dilución para péptidos.
Replegamiento de los complejos de HLA-A*0201/péptido
Conforme a las indicaciones del manual de instrucciones, se preparó una solución de HLA-A*0201 concentrada 2x mezclando tampón pH 3x (pH 6,6), Lutrol-F68, β2m humana y HLA-A*0201 recombinante (todos incluidos en el Kit ELISA EpI) con PBS.
Para el proceso de replegamiento se mezclaron 15 µl de las diluciones seriadas del péptido con 15 µl de la mezcla de MHC concentrada 2x en placas de 96 pocillos (Nunc, Rochester, NY, EE. UU.) que se incubaron a 18 °C durante 48 horas.
Cuantificación de los complejos mediante ELISA
Se recubrieron placas Maxisorp (Nunc, Rochester, NY, EE. UU.) con anticuerpo w6/32 5 µg/ml diluido en tampón de recubrimiento (pH 9,6), se incubaron durante 24 h a 4 °C y se bloquearon con PBS al que se había añadido leche en polvo desnatada al 5% (Merck, Darmstadt, Alemania) hasta el día siguiente a 4 °C.
El patrón del complejo MHC (Kit ELISA EpI) se diluyó con PBS al que se había añadido leche en polvo desnatada al 2% (PBS/leche desnatada) hasta una concentración de 10 nM. Se preparó una dilución seriada 3,16 x y se transfirió a una placa Maxisorp recubierta y bloqueada. Los complejos de péptido-MHC se diluyeron 10x con PBS/leche desnatada al 2%, se transfirieron a la misma placa Maxisorp y se incubaron durante 2 horas a 4 °C. Se añadió anticuerpo de conejo anti-hfl2m (Kit ELISA EpI) diluido 1:2500 enuna solución de PBS/leche desnatada al 2% y se incubó 1 hora a 4 °C. El tampón de amplificación (polímero de anticuerpo de cabra anti-conejo conjugado con HRP) y suero de ratón (ambos suministrados con el Kit ELISA EpI) se diluyeron con PBS/leche desnatada al 2%, se añadieron a las placas y se incubaron 30 minutos a temperatura ambiente. A continuación se añadió el tampón de desarrollo (tetrametilbencidina, TMB; Kit ELISA EpI) y las placas se incubaron a oscuras durante 30 minutos a temperatura ambiente. La reacción se detuvo añadiendo ácido sulfúrico 0,2 M (VWR, Darmstadt, Alemania). Las placas se leyeron a una D.O. de 450 nm con un lector de ELISA VERSAmax (Molecular Devices, Sunnyvale, CA, EE. UU.).
Los datos se interpretaron con Excel y Prism®, Graphpad 3.0.
Los resultados se muestran en la Figura 4. Cuanto más bajo es el valor de KD mayor es la afinidad hacia el HLAA*0201. Las afinidades de unión abarcaron un amplio abanico de aproximadamente cuatro décadas, pero la mayoría de los péptidos presentaron afinidades similares dentro de una década (C20-001, ODC-001, PCN-001, TOP-001). La afinidad de MUC-001 se sitúa alrededor de una década por debajo de la mayoría de los ligandos incluidos, pero pese a ello dicho péptido fue capaz de inducir la respuesta de los linfocitos T en una vacuna empleada contra el carcinoma renal (Wierecky, J, Muller, MR, Wirths, S, Haider-Oehler, E, Dorfel, D, Schmidt, SM, Hantschel, M, Brugger, W, Schroder, S, Horger, MS, Kanz, L, and Brossart, P; Immunologic and clinical responses after vaccinations with peptide-pulsed dendritic cells in metastatic renal cancer patients, Cancer Res., 2006, 66, 5910-5918). Por otra parte, NOX-001 presenta una afinidad de unión ligeramente mayor y TGFBI-001 presenta la afinidad más potente, con un valor KD unas 100 veces menor que la mayoría de los demás péptidos.
En términos absolutos, los valores KD comprendidos entre 0,01 y 0,1 nM como los que se observan en la mayoría de estos péptidos ya representan una unión potente. Afinidades similares se han observado en péptidos de la vacuna contra el carcinoma de células renales IMA901, que ha sido probada con éxito (H. Singh-Jasuja, S. Walter, T. Weinschenk, A. Mayer, P. Y. Dietrich, M. Staehler, A. Stenzl, S. Stevanovic, H. Rammensee, J. Frisch; Correlation of T-cell response, clinical activity and regulatory T-cell levels in renal cell carcinoma patients treated with IMA901, a novel multi-peptide vaccine; Reunión de ASCO 2007 Póster n.º 3017; M. Staehler, A. Stenzl, P. Y. Dietrich, T. Eisen,
A. Haferkamp, J. Beck, A. Mayer, S. Walter, H. Singh, J. Frisch, C. G. Stief; An open label study to evaluate the safety and immunogenicity of the peptide based cancer vaccine IMA901, Reunión de ASCO 2007; Póster n.º 3017). En definitiva, las propiedades de unión de los péptidos dados a conocer son bastante similares a las de los péptidos que han demostrado generar una respuesta de los linfocitos T en condiciones in vivo.
5
10
15
20
25
30
35
40
45
50
6. Inmunogenicidad in vitro de los péptidos presentados por MHC de clase I
Sensibilización in vitro de linfocitos T CD8+
Para llevar a cabo las estimulaciones in vitro con células presentadoras de antígeno artificiales (aAPC) cargadas con un complejo péptido-MHC (pMHC) y anticuerpo anti-CD28, en primer lugar se aislaron células mononucleares de sangre periférica (PBMC) de capas leucocíticas HLA-A*02+ recién obtenidascon un medio de separación en gradiente de densidad convencional (PAA, Cölbe, Alemania). Las capas leucocíticas procedían del banco de sangre de Tubinga y del Katharinenhospital de Stuttgart. Las PBMC aisladas se incubaron hasta el día siguiente con medio para linfocitos T (TCM) para la sensibilización humana in vitro. El medio consistía en RPMI-Glutamax (Invitrogen, Karlsruhe, Alemania) suplementado con suero AB humano termoinactivado al 10% (PAA, Cölbe, Alemania), penicilina 300 U/ml/estreptomicina 100 µg/ml (Cambrex, Verviers, Bélgica), piruvato sódico 1 mM (CC Pro, Neustadt, Alemania) y gentamicina 20 µg/ml (Cambrex). Los linfocitos CD8+ se aislaron con un kit de selección positiva MACS para CD8+ (Miltenyi, Bergisch Gladbach, Alemania) siguiendo las instrucciones del fabricante. Los linfocitos T CD8+ obtenidos se incubaron hasta su uso en TCM suplementado con IL-7 2,5 ng/ml (PromoCell, Heidelberg, Alemania) e IL-2 10 U/ml (Chiron, Munich, Alemania). La fabricación de las microperlas recubiertas de pMHC/anti-CD28, las estimulaciones de los linfocitos T y las lecturas se llevaron a cabo del modo descrito por otros con pequeñas modificaciones (Walter, S, Herrgen, L, Schoor, O, Jung, G, Werner, D, Buhring, HJ, Rammensee, HG, and Stevanovic, S; Cutting edge; predetermined avidity of human CD8 T cells expanded on calibrated MHC/anti-CD28coated microspheres, J. Immunol., 2003, 171, 4974-4978). En suma, se sintetizaron moléculas recombinantes y biotiniladas de HLA-A*0201 desprovistas del dominio transmembrana y biotiniladas en el extremo carboxi de la cadena pesada según el método descrito por Altman et al. (Altman, JD, Moss, PA, Goulder, PJ, Barouch, DH, Heyzer-WilKams, MG, Bell, JI, McMichael, AJ, and Davis, MM; Phenotypic analysis of antigen-specific T lymphocytes, Science, 1996, 274, 94-96). El anticuerpo coestimulador purificado Ab 9. 3, una IgG2a de ratón anti-CD28 humana (Jung G, et al. Induction of cytotoxicity in resting human T lymphocytes bound to tumor cells by antibody heteroconjugates. Proc Natl Acad Sci USA, 1987, 84, 4611-4615) se biotiniló químicamente con sulfo-Nhidroxisuccinimidobiotina siguiendo las recomendaciones del fabricante (Perbio, Bonn, Alemania). Las microperlas utilizadas consistían en partículas de poliestireno de 5,60 µm recubiertas de estreptavidina (Bangs Laboratories, Illinois, EE. UU.). Los complejos pMHC usados como controles positivo y negativo fueron A*0201/MLA-001 (péptido ELAGIGILTV de Melan-A modificado/MART-1) y A*0201/DDX5-001 (YLLPAIVHI de DDX5) o A*0201/HBV-001 (FLPSDFFPSV), respectivamente.
Se tapizaron placas de 96 pocillos con 800. 000 microperlas/200 µl en presencia de 600 ng de anti-CD28 biotinilado más 200 ng del pMHC-biotina relevante (microperlas de alta densidad) o de 2 ng del relevante más 200 ng de MHC irrelevante (biblioteca de pMHC) (microperlas de baja densidad). Las estimulaciones se iniciaron en placas de 96 pocillos en las que se incubaron simultáneamente 1x106 linfocitos T CD8+ con 2x105 microperlas recubiertas y lavadas en 200 µl de TCM suplementado con IL-12 5 ng/ml (PromoCell) durante 3-4 días a 37 °C. La mitad del medio se renovó con TCM fresco suplementado con IL-2 80 U/ml y la incubación continuó otros 3-4 días a 37 °C. Este ciclo de estimulación se efectuó en total tres veces. Por último, se llevaron a cabo análisis tetraméricos de los tetrámeros MHC fluorescentes (producidos del modo descrito por Altman, JD, Moss, PA, Goulder, PJ, Barouch, DH, Heyzer-Williams, MG, Bell, JI, McMichael, AJ, and Davis, MM; Phenotypic analysis of antigen-specific T lymphocytes, Science, 1996, 274, 94-96) más anticuerpo CD8-FITC del clon SK1 (BD, Heidelberg, Alemania) en un citómetro LSR II FACSCalibur (BD). Las células específicas de péptido se calcularon en forma de porcentaje respecto al total de linfocitos T CD8+. La evaluación del análisis tetramérico se hizo con el programa FCS Express (De Novo Software). La sensibilización in vitro de los linfocitos CD8+ tetrámero+ específicos se detectó aplicando el acotamiento de subpoblaciones (gating) adecuado y comparando los resultados con las estimulaciones del control negativo. La inmunogenicidad para un antígeno dado quedaba confirmada si al menos un pocillo estimulado in vitro y evaluable de un donante sano contenía una línea de linfocitos T CD8+ específica después de la estimulación in vitro (esto es, el pocillo contenía al menos un 1% de tetrámero+ específico entre los linfocitos T CD8+ y el porcentaje de células tetrámero+ específicas era al menos 10x de la mediana de las estimulaciones del control negativo).
Péptidos como los descritos se analizaron junto con péptidos cuya inmunogenicidad in vivo es conocida a efectos comparativos. En la Figura 5 se expone una tinción representativa que muestra la generación de estirpes de linfocitos T específicas para NOX-001 y ODC-001. Los resultados se resumen en la tabla 3.
Tabla 3: Comparación de la inmunogenicidad in vitro de péptidos como los descritos y de péptidos vacunales
Antígeno
Inmunogenicidad detectada
TGFBI-001
NOX-001
PCN-001
TOP-001
(continuación)
Antígeno
Inmunogenicidad detectada
C20-001
ODC-001
CCN-001
PTP-001
CHI-001
JAK-001
Tabla 3a: Inmunogenicidad in vitro de los péptidos dados a conocer
Antígeno
Donantes positivos / donantes analizados Pocillos positivos / pocillos analizados
IMA-HBV-001
7/16(44%) 10/107(9%)
IMA-TGFBI-001
3/4 (75%) 4/22 (18%)
IMA-NOX-001
3/5 (60%) 9/60 (15%)
IMA-PCN-001
3/4 (75%) 4/42 (10%)
IMA-TOP-001
2/5 (40%) 7/72 (10%)
IMA-C20-001
1/5 (20%) 1/60 (2%)
IMA-ODC-001
1/5 (20%) 1/60 (2%)
IMA-HBV-001
2/5 (40%) 10/54 (19%)
IMA-CEA-004
4/4 (100%) 50/60 (83% )
IMA-CCN-001
5/5 (100%) 42/54 (78%)
IMA-MET-001
4/6 ( 67% ) 30/72 (42%)
5 Aquí se resumen los resultados de los experimentos de inmunogenicidad in vitro llevados a cabo por los inventores. Los resultados han sido obtenidos con la estimulación de linfocitos CD8+ con microperlas de alta densidad. La variabilidad de los lotes de suero humano puede influir,y mucho, en los resultados de las pruebas de inmunogenicidad, por lo que solo se evaluaron los ensayos en que se usó un único lote de suero.
7. Inmunogenicidad in vitro de los péptidos presentados por MHC de clase II
10 Los linfocitos T cooperadores prestan una importante función de apoyo a los CTL para activar y mantener la respuesta inmunitaria contra las células tumorales. Por tanto, en la vacuna IMA910 se incluyeron péptidos MHC de clase II. El TGFBI-004, uno de los tres péptidos de clase II presentes en IMA910, fue analizado para determinar su potencial inmunogénico in vitro y demostró ser un inductor de linfocitos Tespecíficos tanto CD4+ como CD8+. La generación de linfocitos T CD4+ y CD8+ funcionales ha sido demostrada en experimentos con estimulaciones en un
15 sistema autólogo.
Principio de la prueba
En condiciones in vitro se analizó la sensibilización y la expansión de linfocitos T CD4+ y CD8+ humanos específicos mediante la sensibilización de PBMC carentes de monocitos con células dendríticas autólogas y la reestimulación con PBMC autólogos. En resumen, para generar los linfocitos T CD4+ específicos de antígeno se estimularon PBMC 20 desprovistas de monocitos procedentes de un donante sano (genotipo HLA de clase I: A1/A25/B8/B18 y clase II: DQB1*02/DQB1*06/DRB1*03/DRB1*15/DRB3/DRB5) con células dendríticas autólogas pulsadas con el péptido y se reestimularon con PBMC autólogos más péptido. Como sistema de lectura se evaluó la producción de IFN-γ con ELISPOT y citometría de flujo tras la reestimulación de corta duración. Tras ocho estimulaciones los linfocitos T fueron analizados con ELISPOT y tinción intracelular del IFN-γ más CD4-FITC y CD8-PerCP para determinar el 25 porcentaje de células productoras de dicho interferón en las diversas subpoblaciones de linfocitos T. Como control
5
10
15
20
25
30
35
40
45
50
55
negativo del experimento se usaron células estimuladas con el péptido TGFBI-004 recolectadas de pocillos distintos, agrupadas e incubadas con el péptido irrelevante.
Generación de células dendríticas (CD)
Las células dendríticas (CD) humanas se obtuvieron de monocitos cultivados en medio para CD consistente en RPMI 1640-Glutamax/25mM Hepes (Invitrogen, Alemania) complementado con plasma autólogo al 10%/penicilina 100 U/ml y estreptomicina 100 µg/ml. En primer lugar, de la sangre de un donante sano (Banco de sangre de Tubinga) se extrajeron la capa leucotítica y el plasma por centrifugación. A continuación se aislaron las PBMC de la capa leucocítica mediante separación en gradiente de densidad convencional (Lymphocyte Separation Medium, PAA, Austria) y se resuspendió con medio de CD para contabilizar el número total de células. Se lavaron entre 100 y 120 millones de PBMC y después se resuspendieron con 15 ml de medio X-Vivo 20 (BioWhittaker, Bélgica) y se trasfirieron a un frasco de cultivo celular. Dos horas después de permanecer a 37 °C, se extrajeron los medios con los leucocitos de sangre periférica (PBL), los monocitos adherentes se separaron lavando dos veces con 10 ml de PBS y se cultivaron durante 6 días en 10 ml de medio para CD con GM-CSF 100 ng/ml e IL-4 30 ng/ml (ImmunoTools, Alemania) o 20 ng/ml (R&D systems, Alemania). El tercer y quinto día se añadieron GM-CSF 100 ng/ml e IL-4 30 ng/ml (Immunotools) o IL-4 20 ng/ml (R&D Systems, Alemania). El día séptimo se activaron las CD inmaduras con TNF-alfa 10 ng/ml (R&D Systems, Alemania) y poli(IC) 20 µg/ml (Sigma Aldrich, Alemania) o LPS 100 ng/ml durante 24 horas. Las PBMC restantes y los PBL obtenidos se fraccionaron en alícuotas y se congelaron.
Sensibilización in vitro de linfocitos T específicos
Para generar linfocitos T CD4+ se procedió a estimular 3 millones de PBMC/PBL con 2 x 105 células dendríticas (CD) autólogas. Las células dendríticas se recolectaron el día 8 (véase el apartado 3. 1, Generación de las células dendríticas). Con el fin de recolectar la mayor cantidad posible de células, incluidas las adherentes, se empleó PBS con EDTA 5 mM. Después de lavarlas con medio para CD se procedió al recuento. Para la carga con el péptido, las células dendríticas se resuspendieron en 1 ml de medio para CD y se incubaron con péptido 25 µg/ml durante 2 horas a 37 °C. Los péptidos usados para la sensibilización reiterada de las CD fueron: TGFBI-004, Posmix (mezcla de péptidos del EBV y de CMV), Padre y CMV. Las PBMC/PBL autólogas se descongelaron, se lavaron con medio para CD (al menos dos veces) y se sembraron en una placa de 24 pocillos con una densidad de 3 millones de céls. /ml en 1 ml. Acto seguido las células dendríticas cargadas con el péptido (en forma de 1 ml de suspensión portadora del péptido) se añadieron a las PBMC/PBL sembradas y se incubaron durante 7 días a 37 °C. Tras la sensibilización, los CTL obtenidos volvieron a ser estimulados con PBMC autólogas cargadas con el péptido que habían permanecido crioconservadas y habían sido irradiadas (30 Gy; Gammacell 1000 Elite, Nordion International,
Canadá). Con tal fin, en cada pocillo se depositaron 5 x 105 CTL y 2,5 x 106 PBMC. La sensibilización repetida de las PBMC con el péptido se efectuó del mismo modo que con las células dendríticas. El día posterior a la primera reestimulación, se añadió IL-2 (R&D Systems, Alemania) a una concentración final de 2 ng/ml, así como IL-7 a razón de 5 ng/ml. En adelante, se siguió añadiendo al medio de cultivo IL-2 cada dos días e IL-7 cada siete. La segunda reestimulación se efectuó 7 días después, pero esta vez a los CTL cultivados se les añadió el péptido solo, sin PBMC. Las sucesivas reestimulaciones se efectuaron en ciclos de 7 días, añadiendo alternativamente las PBMC cargadas con el péptido y el péptido solo. Los análisis se llevaron a cabo tras la octava estimulación mediante tinción intracelular del IFN-γ y ELISPOT de IFN-γ.
Resultados
Se pudieronsensibilizar estirpes de linfocitos T CD4+ para que reaccionaran de forma específica ante el péptido de interés (Figura 6 y Figura 3). Con ELISPOT se detectó respuesta de los linfocitos T en dos de las cuatro estirpes analizadas, mientras que con la tinción intracelular de citocinas se detectaron linfocitos CD4+ y/o CD8+ que producían IFN-γ específicamente ante el TGFBI-004 en tres de las cuatro estirpes. Por tanto, el TGFBI-004 fue capaz de desencadenar respuestas por parte de los linfocitos T CD4+ y CD8+ en un donante analizado con el citado sistema experimental. De acuerdo con este resultado alentador, es probable que dicho péptido sea inmunogénico y capaz de inducir respuestas por parte de los linfocitos T.
8. Validación funcional ejemplificada por NOX-001 y TGFBI-001
La inmunogenicidad de los péptidos incluidos en la vacuna IMA910 quedó demostrada en condiciones in vitro con la plataforma de validación de TUMAP de Immatics (immatics biotechnologies GmbH, Tubinga, Alemania). La inducción de los linfocitos T específicos constituye un indicador de la capacidad de los péptidos para activar el sistema inmunitario. Puesto que la respuesta inmunitaria antitumoral solo es eficiente si los linfocitos T activados hacen gala de una elevada afinidad y plena funcionalidad, se investigó la capacidad de los TUMAP para sensibilizarloscon esa afinidad y funcionalidad analizando sucapacidad para producir IFN-γ o destruir células de diversas estirpes tumorales. Para la validación en profundidad se escogieron dos péptidos, NOX-001 y TGFBI-001, en virtud de sus capacidad para inducir CTL dotados de gran afinidad en condiciones in vitro. Los resultados demuestran que existen linfocitos T precursores con gran afinidad contra ambos péptidos en los seres humanos, y que NOX-001 permite generar estirpes de linfocitos T CD8+ funcionales.
10
15
20
25
30
35
40
45
50
55
Principio de la prueba
Para ahondar en la inmunogenicidad de los péptidos de IMA910 y en las propiedades de los linfocitos T específicos, se seleccionaron dos péptidos para proseguir la evaluación: NOX-001 y TGFBI-001. Los experimentos en cuestión se efectuaron en immatics biotechnologies GmbH, Tubinga, Alemania (la selección de las células se llevó a cabo en la Universidad de Tubinga, en el laboratorio del Dr. Bühring).
Según su capacidad para ser activadas por antígenos de alta o baja densidad, las estirpes de linfocitos T se pueden dividir en linfocitos de alta y baja afinidad. Como se ha demostrado antes (Walter, S, Herrgen, L, Schoor, O, Jung, G, Wernet, D, Buhring, HJ, Rammensee, HG, and Stevanovic, S; Cutting edge: predetermined avidity of human CD8 T cells expanded on calibrated MHC/anti-CD28-coated microspheres, J. Immunol., 2003, 171, 4974-4978), se pueden generar CTL humanos de gran afinidad usando menos péptido para la activación que en el caso de los linfocitos T CD8+ de baja afinidad. También se ha demostrado que las células expandidas de esa forma son más eficaces a la hora de reconocer las estirpes de células tumorales que expresan el antígeno, por lo que podrían constituir una herramienta importante para el desarrollo de estrategias terapéuticas.
A fin de determinar la capacidad de los péptidos para generar estirpes de CTL de alta afinidad, los linfocitos CD8+ humanos aislados se sensibilizaron y expandieron mediante repetidas estimulaciones in vitro con perlas recubiertas de pMHC en baja densidad (complejo péptido-MHC) y anticuerpo anti-CD28 en presencia de IL-12 e IL-2. Al cabo de tres estimulaciones, una parte de los linfocitos T sensibilizados in vitro se sometió a tinción con tetrámeros de pMHC y a análisis por citometría. Las células tetrámero-positivas de cada donante se agruparon después según la espeficidad hacia el antígeno, se tiñeron con tetrámetros de pMHCy con el anticuerpo anti-CD8-FITC humano y, por último, se sometieron a cribado por FACS en un citómetro FACSAria. Las células seleccionadas se cultivaron y expandieron en presencia de células nodriza irradiadas, citocinas y mitógeno. Para averiguar si se generaban linfocitos específicos de antígeno con alta afinidad sensibilizados, se procedió a la tinción con tetrámeros de pMHC. Y para determinar su funcionalidad se analizó la producción de IFN-γ con ELISPOT y se examinó la destrucción de estirpes de células tumorales con un ensayo de citotoxicidad con tinción vital después de reestimular a las células con el péptido correspondiente y las pertinentes estirpes tumorales.
Generación de estirpes de linfocitos T CD8+ específicos
Las estimulaciones in vitrocon células presentadoras de antígeno artificiales (aAPC) cargadas con complejo péptido-MHC (pMHC) y anticuerpo anti-CD28 se hicieron del modo antes descrito. La única diferencia respecto al método anterior es que se realizaron con perlas cargadas con 2 ng de una peptidoteca (pMHC)MHC relevante más 200 ng de una irrelevante (perlas de baja densidad) en lugar de con 200 ng de MHC relevante (perlas de alta densidad). De ese modo se generaron mayoritariamente linfocitos T con alta afinidad para la validación en profundidad de los péptidos. Al cabo de tres estimulaciones, una parte de los linfocitos T sensibilizados in vitro se sometió a la tinción con tetrámeros de pMHC y a análisispor citometría. La inmunogenicidad para un antígeno dado quedaba confirmada si por lo menos un pocillo estimulado in vitro y evaluable de un donante sano contenía una estirpe de linfocitos T CD8+ específica después tras la estimulación (esto es, el pocillo contenía al menos un 1% de tetrámero+ específico entre los linfocitos T CD8+ y el porcentaje de células tetrámero+ específicas era al menos 10x de la mediana de las estimulaciones del control negativo). Las células tetrámero-positivas de cada donante se agruparon después según la espeficidad hacia el antígeno, se tiñeron con el correspondiente tetrámetro de pMHCy anticuerpo anti-CD8-FITC humano clon SKI y, por último, se sometieron a cribado por FACS en un citómetro FACSAria (BD Biosciences, Alemania). Las células seleccionadas se cultivaron en medio para linfocitos T (RPMI-Glutamax complementado con suero AB humano termoinactivado al 10%, penicilina 100 U/ml, estreptomicina 100 µg/ml, piruvato sódico 1 mM y gentamicina 20 µg/ml) en presencia de 5 x 105 céls./ml de PBMC alogénicas recién extraídas e irradiadas, 5 x 104 céls./ml de células LG2-EBV irradiadas, IL-2 150 U/ml (Chiron, Munich, Alemania) yPHA-L 0,5 µg/ml (Roche Diagnostics, Mannheim, Alemania). La expansión de dichas células tuvo lugar en medio para linfocitos T con IL-2 150 U/ml. Para averiguar si se generaban linfocitos específicos de antígeno con alta afinidad sensibilizados se efectuó la tinción con tetrámeros de pMHC del modo indicado antes y se analizaron en un citómetro de cuatro colores FACSCalibur (BD Biosciences, Alemania).
Pruebas de funcionalidad
A fin de determinar su funcionalidad se evaluó la producción de IFN-γ con ELISPOT (IFNγ ELISPOT Set, BD, Alemania) tras la reestimulación de las células con el péptido correspondiente. Además, se investigó la citotoxicidad celular de los CTL específicos en la destrucción de estirpes tumorales con el Kit de citotoxicidad celular LIVE/DEAD ((L7010, Invitrogen, Alemania). Ambos ensayos se llevaron a cabo conforme a las instrucciones del fabricante, si no se indica otra cosa.
Resultados
Ambos péptidos, NOX-001 y TGFBI-001, fueron inmunogénicos in vitro tal y como demuestra la sensibilización lograda mediante las células aAPC con baja densidad de pMHC. Tanto con NOX-001 como con TGFBI-001 se detectaron estirpes de linfocitos T específicos en la citometría FACS, lo que demuestra la existencia de linfocitos T CD8+ precursores de alta afinidad en los donantes sanos.

Claims (1)

  1. imagen1
ES12191631.6T 2007-07-27 2008-07-25 Nuevo epítopo inmunogénico para inmunoterapia Active ES2553229T3 (es)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP07014797 2007-07-27
EP07014797 2007-07-27
US95316107P 2007-07-31 2007-07-31
US953161P 2007-07-31

Publications (1)

Publication Number Publication Date
ES2553229T3 true ES2553229T3 (es) 2015-12-07

Family

ID=39766525

Family Applications (7)

Application Number Title Priority Date Filing Date
ES12191621.7T Active ES2553270T3 (es) 2007-07-27 2008-07-25 Nuevo epítopo inmunogénico para inmunoterapia
ES12191628.2T Active ES2555282T3 (es) 2007-07-27 2008-07-25 Nuevos epítopos inmunogénicos para inmunoterapia
ES12191623.3T Active ES2551589T3 (es) 2007-07-27 2008-07-25 Nuevo epítopo inmunogénico para inmunoterapia
ES10014673.7T Active ES2553207T3 (es) 2007-07-27 2008-07-25 Nuevo epítopo inmunogénico para inmunoterapia
ES12191631.6T Active ES2553229T3 (es) 2007-07-27 2008-07-25 Nuevo epítopo inmunogénico para inmunoterapia
ES15193843.8T Active ES2689851T3 (es) 2007-07-27 2008-07-25 Nuevos epítopos inmunogénicos para inmunoterapia
ES08785106.9T Active ES2689725T3 (es) 2007-07-27 2008-07-25 Nuevos epítopos inmunogénicos para inmunoterapia

Family Applications Before (4)

Application Number Title Priority Date Filing Date
ES12191621.7T Active ES2553270T3 (es) 2007-07-27 2008-07-25 Nuevo epítopo inmunogénico para inmunoterapia
ES12191628.2T Active ES2555282T3 (es) 2007-07-27 2008-07-25 Nuevos epítopos inmunogénicos para inmunoterapia
ES12191623.3T Active ES2551589T3 (es) 2007-07-27 2008-07-25 Nuevo epítopo inmunogénico para inmunoterapia
ES10014673.7T Active ES2553207T3 (es) 2007-07-27 2008-07-25 Nuevo epítopo inmunogénico para inmunoterapia

Family Applications After (2)

Application Number Title Priority Date Filing Date
ES15193843.8T Active ES2689851T3 (es) 2007-07-27 2008-07-25 Nuevos epítopos inmunogénicos para inmunoterapia
ES08785106.9T Active ES2689725T3 (es) 2007-07-27 2008-07-25 Nuevos epítopos inmunogénicos para inmunoterapia

Country Status (17)

Country Link
US (5) US8080634B2 (es)
EP (7) EP2565204B1 (es)
JP (4) JP5484326B2 (es)
KR (3) KR101291394B1 (es)
CN (3) CN101765610B (es)
AU (1) AU2008281014B2 (es)
BR (1) BRPI0813626A2 (es)
CA (1) CA2694805C (es)
EA (1) EA018456B1 (es)
ES (7) ES2553270T3 (es)
HK (7) HK1159129A1 (es)
HU (5) HUE026776T2 (es)
MX (1) MX2010001090A (es)
NZ (1) NZ582822A (es)
PL (7) PL2338907T3 (es)
UA (2) UA101810C2 (es)
WO (1) WO2009015842A2 (es)

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1716234B1 (de) * 2004-02-20 2013-10-02 Mologen AG Substituiertes, nicht-kodierendes nukleinsäuremolekül zur therapeutischen und prophylaktischen immunstimulation in menschen und höheren tieren
US9732131B2 (en) 2006-02-27 2017-08-15 Calviri, Inc. Identification and use of novopeptides for the treatment of cancer
US20090004213A1 (en) * 2007-03-26 2009-01-01 Immatics Biotechnologies Gmbh Combination therapy using active immunotherapy
GB201004575D0 (en) * 2010-03-19 2010-05-05 Immatics Biotechnologies Gmbh Composition of tumor associated peptides and related anti cancer vaccine for the treatment of gastric cancer and other cancers
GB201019331D0 (en) * 2010-03-19 2010-12-29 Immatics Biotechnologies Gmbh Methods for the diagnosis and treatment of cancer based on AVL9
GB201004551D0 (en) 2010-03-19 2010-05-05 Immatics Biotechnologies Gmbh NOvel immunotherapy against several tumors including gastrointestinal and gastric cancer
CN102168066A (zh) * 2011-01-31 2011-08-31 浙江大学 体外诱导乙型肝炎病毒特异性细胞毒性t淋巴细胞的方法
CN102183640A (zh) * 2011-01-31 2011-09-14 浙江大学 筛选和鉴定乙肝病毒特异性细胞毒性t淋巴细胞表位方法
WO2013054320A1 (en) 2011-10-11 2013-04-18 Tel Hashomer Medical Research Infrastructure And Services Ltd. Antibodies to carcinoembryonic antigen-related cell adhesion molecule (ceacam)
US20130302366A1 (en) 2012-05-09 2013-11-14 Christopher Marshall Conformationally Specific Viral Immunogens
ES2900004T3 (es) * 2013-08-05 2022-03-15 Immatics Biotechnologies Gmbh Nueva inmunoterapia contra diversos tumores como el cáncer de pulmón, incluido el carcinoma de pulmón amicrocítico (NSCLC)
GB201319446D0 (en) * 2013-11-04 2013-12-18 Immatics Biotechnologies Gmbh Personalized immunotherapy against several neuronal and brain tumors
MX2019013161A (es) * 2013-11-04 2020-02-03 Immatics Biotechnologies Gmbh Inmunoterapia personalizada contra diversos tumores cerebrales y neuronales.
WO2015149016A2 (en) 2014-03-28 2015-10-01 University Of Washington Through Its Center For Commercialization Breast and ovarian cancer vaccines
MD20160130A2 (ro) 2014-04-27 2017-04-30 Ccam Biotherapeutics Ltd. Anticorpi umanizaţi contra CEACAM1
US11427647B2 (en) 2014-04-27 2022-08-30 Famewave Ltd. Polynucleotides encoding humanized antibodies against CEACAM1
GB201408255D0 (en) 2014-05-09 2014-06-25 Immatics Biotechnologies Gmbh Novel immunotherapy against several tumours of the blood, such as acute myeloid leukemia (AML)
IL248203A0 (en) 2014-05-09 2016-11-30 Immatics Biotechnologies Gmbh Innovative immunotherapy against blood tumors such as acute leukemia in the spinal cord
TWI755158B (zh) 2015-03-17 2022-02-11 德商英麥提克生物技術股份有限公司 用於抗胰臟癌與其他癌症的免疫治療的新穎胜肽及胜肽的組合
GB201504502D0 (en) * 2015-03-17 2015-04-29 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against pancreatic cancer and other cancers
GB201505305D0 (en) 2015-03-27 2015-05-13 Immatics Biotechnologies Gmbh Novel Peptides and combination of peptides for use in immunotherapy against various tumors
IL254129B2 (en) 2015-03-27 2023-10-01 Immatics Biotechnologies Gmbh New peptides and a combination of peptides for use in immunotherapy against various tumors
GB201505585D0 (en) 2015-03-31 2015-05-13 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides and scaffolds for use in immunotherapy against renal cell carinoma (RCC) and other cancers
GB201507030D0 (en) * 2015-04-24 2015-06-10 Immatics Biotechnologies Gmbh Immunotherapy against lung cancers, in particular NSCLC
GB201507719D0 (en) * 2015-05-06 2015-06-17 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides and scaffolds thereof for use in immunotherapy against colorectal carcinoma (CRC) and other cancers
IL308202A (en) * 2015-05-06 2024-01-01 Immatics Biotechnologies Gmbh New peptides and a combination of peptides and their supporters for the use of immunotherapy against colon tumors and other types of cancer
NL2014935B1 (en) 2015-06-08 2017-02-03 Applied Immune Tech Ltd T cell receptor like antibodies having fine specificity.
GB201510771D0 (en) * 2015-06-19 2015-08-05 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy and methods for generating scaffolds for the use against pancreatic cancer
PE20180253A1 (es) * 2015-06-19 2018-02-02 Immatics Biotechnologies Gmbh Nuevos peptidos y nuevas combinaciones de peptidos para el uso en la inmunoterapia y metodos para crear soportes para el uso contra el cancer de pancreas y otros tipos de cancer
GB201511191D0 (en) * 2015-06-25 2015-08-12 Immatics Biotechnologies Gmbh T-cell epitopes for the immunotherapy of myeloma
CN108026154B (zh) 2015-07-01 2022-03-08 伊玛提克斯生物技术有限公司 用于卵巢癌和其他癌症免疫治疗的新型肽和肽组合物
GB201511546D0 (en) * 2015-07-01 2015-08-12 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against ovarian cancer and other cancers
MY189596A (en) * 2015-07-15 2022-02-18 Immatics Biotechnologies Gmbh A novel peptides for use in immunotherapy against epithelial ovarian cancer and other cancers
US20170136108A1 (en) 2015-08-28 2017-05-18 Immatics Biotechnologies Gmbh Novel peptides, combination of peptides and scaffolds for use in immunotherapeutic treatment of various cancers
GB201515321D0 (en) * 2015-08-28 2015-10-14 Immatics Biotechnologies Gmbh Novel peptides, combination of peptides and scaffolds for use in immunotherapeutic treatment of various cancers
TWI794761B (zh) 2015-08-28 2023-03-01 德商英麥提克生物技術股份有限公司 用於多種癌症之免疫治療的新穎胜肽、胜肽的組合物及支架
LU92821B1 (en) 2015-09-09 2017-03-20 Mologen Ag Combination comprising immunostimulatory oligonucleotides
GB2542425A (en) 2015-09-21 2017-03-22 Mologen Ag Means for the treatment of HIV
GB201521894D0 (en) * 2015-12-11 2016-01-27 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against various cancers
SG11201804957VA (en) 2015-12-16 2018-07-30 Gritstone Oncology Inc Neoantigen identification, manufacture, and use
GB201603987D0 (en) * 2016-03-08 2016-04-20 Immatics Biotechnologies Gmbh Uterine cancer treatments
GB201604458D0 (en) * 2016-03-16 2016-04-27 Immatics Biotechnologies Gmbh Peptides and combination of peptides for use in immunotherapy against cancers
JP7075125B2 (ja) 2016-05-25 2022-05-25 イマティクス バイオテクノロジーズ ゲーエムベーハー 標的としてのおよび胆嚢がんおよび胆管がんおよびその他のがんに対する免疫療法で使用するための新規ペプチド、ペプチド組み合わせ
GB201609193D0 (en) 2016-05-25 2016-07-06 Immatics Biotechnologies Gmbh Novel peptides, combination of peptides as targets for use in immunotherapy against gallbladder cancer and cholangiocarcinoma and other cancers
TWI796299B (zh) * 2016-08-26 2023-03-21 德商英麥提克生物技術股份有限公司 用於頭頸鱗狀細胞癌和其他癌症免疫治療的新型肽和支架
DE102016123893A1 (de) 2016-12-08 2018-06-14 Immatics Biotechnologies Gmbh T-Zellrezeptoren mit verbesserter Bindung
KR102639592B1 (ko) 2016-12-08 2024-02-21 이매틱스 바이오테크놀로지스 게엠베하 짝짓기가 향상된 t 세포 수용체
TWI796314B (zh) * 2017-01-27 2023-03-21 德商英麥提克生物技術股份有限公司 用於卵巢癌和其他癌症免疫治療的新型肽和肽組合物
NZ754139A (en) 2017-01-27 2022-07-01 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against ovarian cancer and other cancers
EA201991444A1 (ru) 2017-01-27 2019-12-30 Имматикс Байотекнолоджиз Гмбх Новые пептиды и комбинации пептидов для применения в иммунотерапии рака яичника и других видов рака
WO2018223092A1 (en) 2017-06-02 2018-12-06 Arizona Board Of Regents On Behalf Of Arizona State University A method to create personalized cancer vaccines
US12025615B2 (en) 2017-09-15 2024-07-02 Arizona Board Of Regents On Behalf Of Arizona State University Methods of classifying response to immunotherapy for cancer
JP7227237B2 (ja) 2017-10-10 2023-02-21 グリットストーン バイオ インコーポレイテッド ホットスポットを利用した新生抗原の特定
CN111630602A (zh) 2017-11-22 2020-09-04 磨石肿瘤生物技术公司 减少新抗原的接合表位呈递
WO2019105485A1 (zh) * 2017-12-01 2019-06-06 上海桀蒙生物技术有限公司 个性化癌症疫苗的制备方法
CN109045290B (zh) * 2018-11-02 2021-08-31 遵义医学院附属医院 基于内皮细胞特异分子-1的双靶标肿瘤疫苗及其制备方法
WO2021067550A1 (en) 2019-10-02 2021-04-08 Arizona Board Of Regents On Behalf Of Arizona State University Methods and compositions for identifying neoantigens for use in treating and preventing cancer
CA3161321A1 (en) 2019-12-11 2021-06-17 Victor LEVITSKY Recombinant peptide-mhc complex binding proteins and their generation and use
CN114945584A (zh) * 2019-12-11 2022-08-26 分子合作伙伴股份公司 重组肽-mhc复合物结合蛋白及其生成和用途
CN113881707B (zh) * 2021-10-25 2023-07-14 中国人民解放军军事科学院军事医学研究院 调控脐带间充质干细胞免疫抑制作用的产品、方法及用途

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440859A (en) 1977-05-27 1984-04-03 The Regents Of The University Of California Method for producing recombinant bacterial plasmids containing the coding sequences of higher organisms
US4704362A (en) 1977-11-08 1987-11-03 Genentech, Inc. Recombinant cloning vehicle microbial polypeptide expression
DD147855A5 (de) 1978-12-22 1981-04-22 Biogen Nv Verfahren zur erzeugung mindestens eines hbv-antigenwirkung aufweisenden polypeptids
US4530901A (en) 1980-01-08 1985-07-23 Biogen N.V. Recombinant DNA molecules and their use in producing human interferon-like polypeptides
US4678751A (en) 1981-09-25 1987-07-07 Genentech, Inc. Hybrid human leukocyte interferons
US4766075A (en) 1982-07-14 1988-08-23 Genentech, Inc. Human tissue plasminogen activator
US4582800A (en) 1982-07-12 1986-04-15 Hoffmann-La Roche Inc. Novel vectors and method for controlling interferon expression
JPS6081130A (ja) * 1983-10-07 1985-05-09 Fujisawa Pharmaceut Co Ltd 抗hla−a2抗体およびそれを産生するハイブリド−マ
US4757006A (en) 1983-10-28 1988-07-12 Genetics Institute, Inc. Human factor VIII:C gene and recombinant methods for production
US4677063A (en) 1985-05-02 1987-06-30 Cetus Corporation Human tumor necrosis factor
US4810648A (en) 1986-01-08 1989-03-07 Rhone Poulenc Agrochimie Haloarylnitrile degrading gene, its use, and cells containing the gene
US4897445A (en) 1986-06-27 1990-01-30 The Administrators Of The Tulane Educational Fund Method for synthesizing a peptide containing a non-peptide bond
WO1989001514A1 (en) 1987-08-10 1989-02-23 The University Of Melbourne Molecular cloning of human rotavirus serotype 4 gene 9 encoding vp7, the major outer capsid neutralisation specific glycoprotein and expression of vp7 and fragments thereof for use in a vaccine
US5651972A (en) 1989-04-21 1997-07-29 University Of Florida Research Foundation, Inc. Use of recombinant swine poxvirus as a live vaccine vector
US5119700A (en) 1991-03-01 1992-06-09 Titan Tool Company Automatic stud driving tool having collarless retention mechanism for driven head
US20020168374A1 (en) * 1992-08-07 2002-11-14 Ralph T. Kubo Hla binding peptides and their uses
AUPM322393A0 (en) 1993-12-24 1994-01-27 Austin Research Institute, The Mucin carbohydrate compounds and their use in immunotherapy
JPH11503320A (ja) * 1995-04-07 1999-03-26 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Hla−g検出用抗体
WO1997026328A1 (en) 1996-01-17 1997-07-24 Imperial College Innovations Limited Immunotherapy using cytotoxic t lymphocytes (ctl)
US5849589A (en) 1996-03-11 1998-12-15 Duke University Culturing monocytes with IL-4, TNF-α and GM-CSF TO induce differentiation to dendric cells
DE69733352T2 (de) * 1996-03-21 2006-04-27 Epimmune, Inc., San Diego Hla-a2.1 bindende peptide und deren verwendung
JP4063359B2 (ja) * 1997-01-23 2008-03-19 タカラバイオ株式会社 硫酸基転移酵素遺伝子
US6406705B1 (en) 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
DK1015477T3 (da) * 1997-05-30 2011-02-07 Human Genome Sciences Inc 32 humane sekreterede proteiner
DE19739089A1 (de) 1997-09-06 1999-03-11 Hella Kg Hueck & Co Scheinwerfer für Fahrzeuge
CA2304208A1 (en) * 1997-09-19 1999-03-25 Dana-Farber Cancer Institute, Inc. Intrabody-mediated control of immune reactions
US6747137B1 (en) 1998-02-13 2004-06-08 Genome Therapeutics Corporation Nucleic acid sequences relating to Candida albicans for diagnostics and therapeutics
AU5284200A (en) 1999-06-03 2000-12-28 Cold Spring Harbor Laboratory Substrate trapping protein tyrosine phosphatases
CA2384713A1 (en) * 1999-09-29 2001-04-05 Human Genome Sciences, Inc. Colon and colon cancer associated polynucleotides and polypeptides
CA2392757A1 (en) * 2000-01-31 2001-08-02 Human Genome Sciences Inc. Nucleic acids, proteins, and antibodies
US20020048763A1 (en) * 2000-02-04 2002-04-25 Penn Sharron Gaynor Human genome-derived single exon nucleic acid probes useful for gene expression analysis
WO2001072331A1 (en) * 2000-03-31 2001-10-04 Vaccine Chip Technology Aps Immunostimulating properties of a fragment of tgf-beta
GB0011220D0 (en) 2000-05-10 2000-06-28 Blockfoil Group Limited Foil embossing
CA2411278A1 (en) * 2000-06-09 2001-12-20 Corixa Corporation Compositions and methods for the therapy and diagnosis of colon cancer
US20030017167A1 (en) * 2000-06-09 2003-01-23 Corixa Corporation Compositions and methods for the therapy and diagnosis of colon cancer
CA2416285A1 (en) * 2000-07-17 2002-01-24 Diadexus, Inc. Method of diagnosing, monitoring, staging, imaging and treating colon cancer
AU8678501A (en) * 2000-08-24 2002-03-04 Genentech Inc Compositions and methods for the diagnosis and treatment of tumor
JP2002173450A (ja) * 2000-12-07 2002-06-21 Hokkaido Technology Licence Office Co Ltd 糖脂質特異的硫酸転移酵素遺伝子を含む医薬組成物
MXPA03005004A (es) * 2000-12-08 2004-09-10 Protein Design Labs Inc Metodos de diagnostico de cancer colorrectal y/o cancer de pecho, composiciones, y metodos para rastrear moduladores de cancer colorrectal y/o cancer de pecho.
US6455026B1 (en) 2001-03-23 2002-09-24 Agy Therapeutics, Inc. Use of protein tyrosine phosphatase zeta as a biomolecular target in the treatment and visualization of brain tumors
US20030118585A1 (en) 2001-10-17 2003-06-26 Agy Therapeutics Use of protein biomolecular targets in the treatment and visualization of brain tumors
JP2003012544A (ja) * 2001-03-27 2003-01-15 Kouji Egawa 癌予防・治療剤
US20040236091A1 (en) * 2001-03-28 2004-11-25 Chicz Roman M. Translational profiling
KR100628425B1 (ko) * 2001-06-20 2006-09-28 제넨테크, 인크. 종양의 진단 및 치료를 위한 방법 및 이를 위한 조성물
WO2003042661A2 (en) 2001-11-13 2003-05-22 Protein Design Labs, Inc. Methods of diagnosis of cancer, compositions and methods of screening for modulators of cancer
DE10225144A1 (de) * 2002-05-29 2003-12-18 Immatics Biotechnologies Gmbh An MHC-Moleküle bindende Tumor-assoziierte Peptide
JP2005185101A (ja) * 2002-05-30 2005-07-14 National Institute Of Agrobiological Sciences 植物の全長cDNAおよびその利用
EP1482034A4 (en) * 2002-06-06 2005-09-21 Yamanouchi Pharma Co Ltd NEW OXIDASE
AU2003295328A1 (en) * 2002-10-02 2004-04-23 Genentech, Inc. Compositions and methods for the diagnosis and treatment of tumor
US20060188889A1 (en) * 2003-11-04 2006-08-24 Christopher Burgess Use of differentially expressed nucleic acid sequences as biomarkers for cancer
KR100494979B1 (ko) 2003-07-14 2005-06-14 주식회사 정우인터내셔날 조직 절편 보호 및 해상력 증진용 액상 커버 슬립, 그제조용 조성물, 그로부터 제조된 커버슬립을 구비한슬라이드 구조체 및 그 제조방법
CA2536911A1 (en) * 2003-09-01 2005-03-10 Kureha Corporation Antibody against nox1 polypeptide, method of diagnosing cancer with the use of nox1 gene and method of screening cancer growth inhibitor
WO2005071059A2 (en) 2004-01-27 2005-08-04 Compugen Ltd. Methods of identifying putative gene products by interspecies sequence comparison and biomolecular sequences uncovered thereby
DE102004026135A1 (de) * 2004-05-25 2006-01-05 Immatics Biotechnologies Gmbh An MHC-Moleküle bindende Tumor-assoziierte Peptide
CA2608236A1 (en) * 2005-05-12 2006-11-23 Introgen Therapeutics, Inc. P53 vaccines for the treatment of cancers
EP1748067A1 (en) * 2005-07-29 2007-01-31 Institut Pasteur Polynucleotides encoding MHC class I-restricted hTERT epitopes, analogues thereof or polyepitopes
US8030443B2 (en) * 2005-08-09 2011-10-04 Kurume University Squamous cell carcinoma antigen-derived peptide binding to HLA-A24 molecule
SI1760089T1 (sl) * 2005-09-05 2009-12-31 Immatics Biotechnologies Gmbh S tumorjem povezani peptidi, ki se veĹľejo na molekule humanega levkocitnega antigena (HLA) razreda I ali II in ustrezno cepivo proti raku
ES2341295T3 (es) * 2005-09-05 2010-06-17 Immatics Biotechnologies Gmbh Peptidos asociados a tumores unidos promiscuamente a moleculas del antigeno de leucocito humano (hla) de clase ii.
AU2007218045B2 (en) * 2006-02-20 2011-11-10 Phylogica Limited Method of constructing and screening libraries of peptide structures
WO2007119515A1 (ja) * 2006-03-28 2007-10-25 Dainippon Sumitomo Pharma Co., Ltd. 新規腫瘍抗原ペプチド
JP5808079B2 (ja) * 2007-03-05 2015-11-10 株式会社癌免疫研究所 癌抗原特異的t細胞のレセプター遺伝子およびそれによりコードされるペプチドならびにそれらの使用
US20090004213A1 (en) * 2007-03-26 2009-01-01 Immatics Biotechnologies Gmbh Combination therapy using active immunotherapy
DE602008000891D1 (de) 2008-04-30 2010-05-12 Immatics Biotechnologies Gmbh Neuartige Formulierungen von Tumor-assoziierten Peptiden, welche an menschliche Leukozytenantigene der Klasse I oder II für Impfungen binden

Also Published As

Publication number Publication date
CN101765610B (zh) 2014-01-29
EP2562183B1 (en) 2015-10-07
PL3042914T3 (pl) 2019-01-31
EP2338907B1 (en) 2015-09-30
JP6130469B2 (ja) 2017-05-17
CA2694805A1 (en) 2009-02-05
HUE026776T2 (en) 2016-08-29
PL2183278T3 (pl) 2018-12-31
ES2555282T3 (es) 2015-12-30
WO2009015842A3 (en) 2009-04-02
AU2008281014A1 (en) 2009-02-05
US8080634B2 (en) 2011-12-20
BRPI0813626A2 (pt) 2014-12-23
MX2010001090A (es) 2010-04-07
NZ582822A (en) 2012-06-29
EA018456B1 (ru) 2013-08-30
HUE025636T2 (en) 2016-04-28
HK1183040A1 (en) 2013-12-13
HK1183041A1 (en) 2013-12-13
PL2562184T3 (pl) 2016-03-31
ES2689725T3 (es) 2018-11-15
JP2014138588A (ja) 2014-07-31
JP5818920B2 (ja) 2015-11-18
HK1223381A1 (zh) 2017-07-28
EP3042914A1 (en) 2016-07-13
EP2562183A1 (en) 2013-02-27
KR101351195B1 (ko) 2014-01-14
ES2553270T3 (es) 2015-12-07
KR20120087897A (ko) 2012-08-07
JP2016040257A (ja) 2016-03-24
CN103864893A (zh) 2014-06-18
EP2183278B1 (en) 2018-07-04
PL2338907T3 (pl) 2016-03-31
JP2010534463A (ja) 2010-11-11
HUE027164T2 (en) 2016-08-29
EA201000207A1 (ru) 2010-08-30
CN105566450A (zh) 2016-05-11
EP2562184A1 (en) 2013-02-27
JP5484326B2 (ja) 2014-05-07
US8669230B2 (en) 2014-03-11
UA101810C2 (ru) 2013-05-13
US20140271692A1 (en) 2014-09-18
EP2565204B1 (en) 2015-10-07
ES2689851T3 (es) 2018-11-16
CA2694805C (en) 2014-09-09
HK1183038A1 (en) 2013-12-13
EP2565204A1 (en) 2013-03-06
JP2016074693A (ja) 2016-05-12
AU2008281014B2 (en) 2012-06-28
PL2562182T3 (pl) 2016-03-31
US20090136528A1 (en) 2009-05-28
AU2008281014A2 (en) 2010-04-29
KR101313915B1 (ko) 2013-10-01
ES2553207T3 (es) 2015-12-07
ES2551589T3 (es) 2015-11-20
EP3042914B1 (en) 2018-07-04
US10420800B2 (en) 2019-09-24
HUE026142T2 (en) 2016-05-30
EP2562182A1 (en) 2013-02-27
HUE027057T2 (en) 2016-08-29
US20190076476A1 (en) 2019-03-14
WO2009015842A2 (en) 2009-02-05
EP2562184B1 (en) 2015-10-07
HK1183039A1 (en) 2013-12-13
KR20100040889A (ko) 2010-04-21
HK1223382A1 (zh) 2017-07-28
US20110117117A1 (en) 2011-05-19
US9950048B2 (en) 2018-04-24
KR20130079650A (ko) 2013-07-10
EP2562183A8 (en) 2013-05-08
PL2565204T3 (pl) 2016-03-31
EP2183278A2 (en) 2010-05-12
KR101291394B1 (ko) 2013-08-07
UA103751C2 (ru) 2013-11-25
PL2562183T3 (pl) 2016-03-31
CN101765610A (zh) 2010-06-30
EP2562182B1 (en) 2015-10-07
US20160051654A1 (en) 2016-02-25
EP2338907A1 (en) 2011-06-29
HK1159129A1 (en) 2012-07-27
US9511128B2 (en) 2016-12-06
CN103864893B (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
ES2553229T3 (es) Nuevo epítopo inmunogénico para inmunoterapia
JP5738348B2 (ja) 神経細胞性脳腫瘍に対する新規免疫療法
ES2554981T3 (es) Nueva inmunoterapia contra tumores neuronales y cerebrales
AU2012216641B2 (en) Novel immunogenic epitopes for immunotherapy