ES2240736T5 - Procedimiento de epoxidacion de olefinas. - Google Patents
Procedimiento de epoxidacion de olefinas. Download PDFInfo
- Publication number
- ES2240736T5 ES2240736T5 ES02726127T ES02726127T ES2240736T5 ES 2240736 T5 ES2240736 T5 ES 2240736T5 ES 02726127 T ES02726127 T ES 02726127T ES 02726127 T ES02726127 T ES 02726127T ES 2240736 T5 ES2240736 T5 ES 2240736T5
- Authority
- ES
- Spain
- Prior art keywords
- reaction
- reactor
- bed
- liquid
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D301/00—Preparation of oxiranes
- C07D301/02—Synthesis of the oxirane ring
- C07D301/03—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
- C07D301/12—Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with hydrogen peroxide or inorganic peroxides or peracids
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Epoxy Compounds (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Un procedimiento para la epoxidación catalítica de olefinas con peróxido de hidrógeno en un sistema de reacción de flujo continuo, en el que la mezcla de reacción se hace pasar a través de un lecho fijo de catalizador en modo de operación en flujo descendente en el que se utiliza un reactor de lecho fijo que comprende medios de refrigeración y el calor de reacción se elimina, al menos parcialmente, durante el transcurso de la reacción.
Description
Procedimiento de epoxidación de olefinas.
A partir del documento EP-A 100
119 se sabe que el propeno puede ser transformado por el peróxido de
hidrógeno en óxido de propeno si se utiliza zeolita que contiene
titanio como catalizador.
El peróxido de hidrógeno sin reaccionar no se
puede recuperar económicamente de la mezcla de reacción de
epoxidación. Además, el peróxido de hidrógeno sin reaccionar supone
esfuerzo y desembolso adicional en el desarrollo de la mezcla de
reacción. Por consiguiente la epoxidación de propeno se lleva a cabo
preferentemente con un exceso de propeno y hasta una conversión
elevada en peróxido de hidrógeno. Con el fin de conseguir una
conversión elevada en peróxido de hidrógeno es ventajoso utilizar
un sistema de reacción en flujo continuo. Dicho sistema de reacción
puede comprender uno o más reactores de flujo tubulares o una
disposición de dos o más reactores de mezclado de flujo conectados
en serie. Ejemplos de reactores de mezclado de flujo son los
reactores de tanque agitado, los reactores de reciclo, los
reactores de lecho fluidizado y los reactores de lecho fijo con
reciclo de la fase líquida.
Con el fin de conseguir una velocidad de
reacción elevada es necesaria una concentración elevada de propeno
en la fase líquida. La reacción por consiguiente se realiza
preferentemente en una atmósfera de propeno a presión elevada a
efecto de que en general esté presente un sistema multifase de
reacción.
Además la epoxidación de olefinas con
hidroperóxidos es semejante a la mayoría de las reacciones de
oxidación muy exotérmicas. Por lo tanto se han de tomar
precauciones para asegurar la eliminación suficiente del calor
generado por la reacción exotérmica con el fin de controlar la
reacción. Este problema es especialmente pronunciado en los
sistemas de flujo continuo que utilizan reactores de lecho fijo.
Además la conversión y selectividad del producto en las reacciones
de epoxidación de olefinas son muy sensibles a los cambios de
temperatura con el resultado de que el control eficaz de la
temperatura carece de importancia principal.
En A. Gianetto, "Multiphase Reactors: Types,
Characterictics and Uses", en Multiphase Chemical
Reactors:
Theory, Design, Scale-up, Hemisphere Publishing Corporation, 1986 se proporcionan los criterios que rigen la selección entre los reactores multifase de lecho fijo en flujo ascendente y flujo descendente. Las ventajas del régimen en flujo ascendente en comparación con el régimen en flujo descendente son:
Theory, Design, Scale-up, Hemisphere Publishing Corporation, 1986 se proporcionan los criterios que rigen la selección entre los reactores multifase de lecho fijo en flujo ascendente y flujo descendente. Las ventajas del régimen en flujo ascendente en comparación con el régimen en flujo descendente son:
- -
- mejor mezclado resultante en las transferencias de calor y de masa mejoradas;
- -
- a los mismos caudales de fluido la operación en flujo ascendente proporciona mayores coeficientes volumétricos de transferencia de masa de gas/líquido;
- -
- mejor distribución del líquido en la sección transversal;
- -
- mejor disipación del calor y temperatura más uniforme;
- -
- mejor humectación del catalizador y por consiguiente aumento de la eficacia del catalizador;
- -
- envejecimiento más lento del catalizador
- -
- impedimento de la compactación del lecho catalítico.
Los inconvenientes son:
- -
- mayores pérdidas de carga y coste energético de bombeo más elevado;
- -
- el reactor debe de comprender medios para mantener el catalizador en su lugar en el caso de altas velocidades;
- -
- puede tener lugar una mayor resistencia a la transferencia de masa en el interior del líquido y un aumento de las posibles reacciones secundarias homogéneas.
En vista de las ventajas con respecto a la
transferencia y disipación de calor, la operación en flujo
ascendente de un reactor de lecho fijo para los sistemas de
reacción multifase es la selección natural para las reacciones muy
exotérmicas en las cuales es importante el control de
temperatura.
Esto está también reflejado en el documento WO
97/47614 en el que en el ejemplo 8 se describe la reacción de
propeno con peróxido de hidrógeno utilizando un reactor tubular de
lecho fijo que tiene una camisa de refrigeración en operación en
flujo ascendente. Pero no obstante el rendimiento y la selectividad
del producto son todavía insuficientes para los objetivos
comerciales.
El documento EP-A 659 473
describe un procedimiento de epoxidación en el que una mezcla
líquida de peróxido de hidrógeno, disolvente y propeno se conduce
sobre una sucesión de zonas de reacción en lecho fijo conectadas en
serie en operación en flujo descendente. Ningún medio de control de
temperatura está presente dentro del reactor para eliminar el calor
generado procedente de las zonas de reacción individuales. Por lo
tanto, cada zona de reacción se puede considerar un reactor
adiabático independiente. En cada zona de reacción la reacción se
lleva a cabo hasta una conversión parcial, se elimina la mezcla de
reacción líquida en cada zona de reacción, se lleva sobre un
intercambiador de calor externo para extraer el calor de reacción y
a continuación se recicla la proporción principal de esta fase
líquida a esta zona de reacción y una proporción mínima de la fase
líquida se pasa a la zona siguiente. Al mismo tiempo se alimenta
propeno gaseoso junto con la mezcla de materia prima líquida, se
conduce en una corriente paralela a la fase líquida sobre las zonas
de reacción en lecho fijo y se extrae al final del sistema de
reacción además de la mezcla de reacción líquida como una corriente
de gas residual que contiene oxígeno. Aunque este procedimiento de
reacción permite que el rendimiento en óxido de propeno aumente en
comparación con los reactores tubulares convencionales sin control
de temperatura descritos en el documento EP-A 659
473, ello no obstante implica costes adicionales considerables
teniendo en cuenta la complejidad del sistema de reacción requerida
para llevar a cabo el procedimiento.
A partir del documento US-A 5
849 937 se conoce un procedimiento para la epoxidación de propeno
que utiliza hidroperóxidos, especialmente hidroperóxidos orgánicos.
Se alimenta la mezcla de reacción a una cascada de reactores en
lecho fijo conectados en serie en régimen de flujo descendente con
respecto a cada reactor individual. De manera similar a lo dado a
conocer en el documento EP-A 659 473 en cada reactor
solamente se lleva a cabo la conversión parcial y los reactores no
están equipados con medios de intercambio de calor. Como en el
documento EP-A 659 473 se elimina el calor de
reacción haciendo pasar el efluente de cada reactor a través de
intercambiadores de calor antes de introducir la mezcla de reacción
en el siguiente reactor en lecho fijo en serie añadiéndose de este
modo a la complejidad del sistema de reacción.
Un procedimiento de epoxidación adicional
relacionado se da a conocer en el documento U.S. nº 5.912.367.
Los inconvenientes de los sistemas de reacción
expuestos en los documentos EP-A 659 473 y
US-A 5 849 937 son la complejidad y por lo tanto el
aumento de los costes de inversión y la gran sensibilidad a los
cambios de los parámetros del proceso como la velocidad de flujo
debida a las zonas de reacción independientes y a los reactores
operados de manera adiabática respectivamente.
En vista de la técnica anterior citada, el
objetivo de la presente invención consiste en proporcionar un
procedimiento para la epoxidación de olefinas que produzca mejor
conversión y selectividad del producto en comparación con la del
documento WO 97/47614 a la vez que se evitan los inconvenientes de
lo dado a conocer en los documentos EP-A 659 473 y
US-A 5 849 937 que se pueden llevar a cabo
utilizando sistemas de reacción convencionales.
Este objetivo se consigue mediante un
procedimiento para la epoxidación catalítica de olefinas con
peróxido de hidrógeno en un sistema de reacción de flujo continuo,
en el que la mezcla de reacción se pasa a través de un lecho fijo
de catalizador en modo de operación en flujo descendente en un
reactor de lecho fijo que comprende medios de refrigeración y el
calor de reacción se elimina, al menos parcialmente, durante el
transcurso de la reacción, con lo que el lecho fijo de catalizador
se mantiene en un estado de lecho de goteo.
Los autores de la presente invención han
descubierto sorprendentemente, contrariamente al conocimiento
general en los libros de texto ejemplificados por A. Gianetto
supra, que el reactor de lecho de goteo refrigerado se puede
operar con éxito en una operación en flujo descendente para aumentar
la selectividad del producto y de este modo el rendimiento del
producto general en comparación con una operación en flujo
ascendente como se utilizaba anteriormente en la técnica anterior.
Este efecto es aún más sorprendente, ya que es sabido que la
epoxidación de olefinas es una reacción muy exotérmica que es
difícil de controlar ya que esta reacción tiene una temperatura de
activación considerablemente elevada y por consiguiente ha de ser
conducida a una determinada temperatura mínima para conseguir la
conversión económicamente razonable. Pero por otra parte el calor
generado por la reacción exotérmica ha de eliminarse eficazmente del
reactor ya que a temperaturas aumentadas tienen lugar reacciones
secundarias no deseadas con el resultado de que disminuye la
selectividad del producto. El efecto del aumento limitado de la
temperatura dentro del lecho catalítico se expone en alguna
extensión en el documento EP-A-659
473. Con respecto a los ejemplos se da a conocer que en los
reactores tubulares convencionales el aumento de temperatura en el
lecho catalítico sobrepasa los 15ºC mientras que según los ejemplos
en el documento EP-A 659 473 el aumento de
temperatura es de 8ºC como mucho y en la realización preferida
5½ºC. Por lo tanto según lo dado a conocer en el documento
EP-A-659 473 el aumento de
temperatura en el interior del lecho catalítico ha de mantenerse
tan bajo como sea posible con el fin de conseguir altos rendimientos
de óxido de propileno. Este aumento de la temperatura reducida
únicamente podría conseguirse según el documento
EP-A-659 473 conduciendo la reacción
en una zona de reacción única a solamente una conversión parcial con
el resultado de que la mayoría de la mezcla química ha de
reciclarse, y en el intermedio enfriando la mezcla de reacción.
Según lo dado a conocer de A. Gianetto et
al. al operar un reactor de lecho fijo tubular convencional
debe esperarse una disipación de calor y una temperatura no uniforme
en el interior del lecho catalítico en caso de operación en flujo
descendente. Por lo tanto debe esperarse que utilizando una
operación en flujo descendente en un reactor en lecho fijo
convencional enfriado sin enfriamiento externo intermedio de la
mezcla de reacción tenga lugar un aumento de la temperatura alta
dentro del catalizador debido a una escasa disipación de calor la
cual disminuiría drásticamente la selectividad del producto y de
este modo el rendimiento. Pero contrariamente a esta expectativa,
como se mostrará en más detalle a continuación en los ejemplos, se
consigue mejor selectividad del producto a la misma conversión
comparada con la alteración en flujo ascendente y se pueden obtener
rendimientos generales similares o incluso mejores basados en el
peróxido de hidrógeno en comparación con las realizaciones más
preferidas en el documento EP-A-659
483 aunque se utilizó un sistema de reactor convencional sin
enfriamiento intermedio externo.
En la práctica de la presente invención se puede
utilizar cualquier reactor que tenga un lecho catalítico fijo y
medios de refrigeración. Deberían evitarse las condiciones de
reacción adiabáticas dadas a conocer en los documentos
EP-A 659 473 y US-A 5 849 937.
Preferentemente, se utilizan reactores tubulares, multitubulares o
multiplacas. Más preferentemente, se aplican los reactores tubulares
que tienen una camisa de refrigeración ya que están disponibles
normalmente a un coste relativo bajo. Como medio de refrigeración
que se bombea mediante los medios de refrigeración, se puede
utilizar preferentemente la camisa de refrigeración, todos los
medios de refrigeración normales como aceites, alcoholes, sales
líquidas o agua. El agua es el más preferido.
El procedimiento según la invención para la
epoxidación de olefinas, preferentemente propano, se realiza
normalmente a una temperatura de 30ºC a 80ºC, preferentemente entre
40ºC y 60ºC. Según una realización preferida de la presente
invención el perfil de temperatura dentro del reactor se mantiene de
modo que la temperatura media de refrigeración de los medios de
refrigeración del reactor tubular sea al menos 40ºC y la temperatura
máxima dentro del lecho catalítico sea de 60ºC como mucho,
preferentemente 55ºC. Con preferencia la temperatura del medio de
refrigeración se controla mediante un termostato.
La temperatura máxima dentro del lecho
catalítico se mide con una pluralidad de medios adecuados de
medición de temperatura como termopares o con un
Pt-100 dispuesto aproximadamente a lo largo del eje
del reactor tubular preferentemente a distancias adecuadas con
respecto uno de otro. De este modo se ajustan el número, la posición
dentro del reactor y las distancias entre los medios de medición de
temperatura para medir la temperatura del lecho catalítico dentro
del reactor completo tan exacta como sea necesario.
La temperatura máxima del lecho catalítico se
puede ajustar por diferentes medios. Dependiendo del tipo de
reactor seleccionado la temperatura máxima del lecho catalítico se
puede ajustar controlando el caudal de la mezcla de reacción que
pasa a través del reactor, controlando el caudal del medio de
refrigeración que pasa a través de los medios de refrigeración o
disminuyendo la actividad del catalizador, por ejemplo diluyendo del
catalizador con material
inerte.
inerte.
El caudal del medio de refrigeración se ajusta
preferentemente para mantener la diferencia de temperatura entre la
entrada del medio de refrigeración en el interior de los medios de
refrigeración y la salida por debajo de 5ºC, preferentemente por
debajo de 3ºC, más preferentemente 2ºC.
Seleccionando dicho perfil de temperatura
definido con escaso margen en el interior del reactor se puede
conseguir un equilibrio optimizado entre la conversión del peróxido
de hidrógeno y la selectividad del óxido de olefina.
La presión en el interior del reactor se
mantiene normalmente entre 5 y 50 bar preferentemente entre 15 y 30
bar.
Según una realización preferida la mezcla de
reacción se hace pasar a través del lecho catalítico con una
velocidad superficial de 1 a 100 m/h, preferentemente entre 5 y 50
m/h, la más preferida entre 5 y 30 m/h. La velocidad superficial se
define como la relación de la velocidad de flujo en volumen/sección
transversal del lecho catalítico. Por consiguiente la velocidad
superficial se puede variar en un reactor dado ajustando el caudal
de la mezcla de reacción.
Además se prefiere pasar la mezcla de reacción a
través de lecho catalítico con una velocidad espacial por hora del
líquido (LHSV) de 1 a 20 h^{-1}, preferentemente de 1,3 a 15
h^{-1}.
Siempre que el caudal de la mezcla de reacción
se ajuste para cumplir los requisitos definidos anteriormente para
la velocidad superficial y la velocidad espacial por hora del
líquido se pueden conseguir particularmente grandes
selectividades.
Según la presente invención el procedimiento se
realiza para mantener el lecho catalítico en estado de lecho de
goteo. Se ha descubierto de forma sorprendente que si el estado de
lecho de goteo se mantiene bajo determinadas condiciones de flujo,
el efecto de la presente invención, es decir, el aumento de
selectividad del óxido de propeno será particularmente
pronunciado.
Estas condiciones son las siguientes:
- G/\lambda < 2000 m/h y
- L_{\psi} < 50 m/h,
\newpage
en las
que
- G
- es la velocidad superficial gaseosa definida como el caudal gaseoso en m^{3}/h en el reactor de flujo continuo dividido por la sección transversal del lecho catalítico en m^{2},
- L
- es la velocidad superficial del líquido definida como el caudal de líquido en m^{3}/h en el reactor de flujo continuo dividido por la sección transversal del lecho catalítico en m^{2},
y
- \rho_{G}
- es la densidad de la fase gaseosa en g/cm^{3}
- \rho_{L}
- es la densidad de la fase líquida en g/cm^{3}
- \rho_{W}
- es la densidad del agua en g/cm^{3}
- \rho_{aire}
- es la densidad del aire en g/cm^{3}_{,}
- \sigma_{W}
- es la tensión superficial del agua en din/cm,
- \sigma_{L}
- es la tensión superficial de la fase líquida en din/cm,
- \mu_{L}
- es la viscosidad de la fase líquida en centipoises,
- \mu_{W}
- es la viscosidad del agua en centipoises.
Con el fin de poder operar el proceso de manera
continua cuando se cambia y/o se regenera el catalizador de
epoxidación, si se desea, dos o más reactores de flujo también se
pueden operar en paralelo o en serie de la manera descrita
anteriormente.
Las zeolitas cristalinas, que contienen titanio,
especialmente aquellas de composición (TiO_{2})_{x}
(SiO_{2})_{1-x}, en la que x está
comprendida entre 0,001 y 0,05 y que tienen una estructura
cristalina de MFI o de MFL, conocida como
silicalita-1 de titanio y
silicalita-2 de titanio, son adecuadas como
catalizadores para el proceso de epoxidación según la invención.
Dichos catalizadores se pueden producir, por ejemplo, según el
procedimiento descrito en el documento US-A
4.410.501. El catalizador de silicalita de titanio se puede emplear
moldeado en forma de gránulos, extruidos o cuerpos moldeados. Para
el proceso de moldeo el catalizador puede contener de 1 a 99% de un
aglutinante o material portador, siendo adecuados todos los
aglutinantes y materiales portadores que no reaccionen con el
peróxido de hidrógeno o con el epóxido en las condiciones de
reacción empleadas para la epoxidación. Como catalizadores de lecho
fijo se utilizan preferentemente extruidos con un diámetro de 1 a 5
mm.
Al poner en práctica la presente invención es
preferible que la corriente de alimentación general al reactor
comprenda una solución acuosa de peróxido de hidrógeno, una olefina
y un disolvente orgánico. De este modo estos componentes pueden ser
introducidos dentro del reactor como alimentaciones independientes o
una o más de estas alimentaciones se mezclan antes de la
introducción al interior del reactor.
Utilizando el procedimiento según la invención
se pueden epoxidar algunas olefinas, en particular las olefinas con
2 a 6 átomos de carbono. El procedimiento según la invención es más
particularmente adecuado para la epoxidación de propeno a óxido de
propeno. Por razones económicas se preferiría para un procedimiento
a escala industrial utilizar propeno no en forma pura sino como
mezcla técnica con propano que como norma contiene 1 a 15% vol. de
propano. El proteno se puede alimentar en forma líquida así como en
forma gaseosa dentro del sistema de reacción.
Se utiliza peróxido de hidrógeno en el
procedimiento según la invención en forma de una solución acuosa con
un contenido en peróxido de hidrógeno de 1 a 90% en peso,
preferentemente de 10 a 70% en peso y en particular preferentemente
de 30 a 50% en peso. El peróxido de hidrógeno se puede utilizar en
forma de soluciones estabilizadas, disponibles en el comercio. Son
asimismo adecuadas las soluciones acuosas de peróxido de hidrógeno,
no estabilizadas tal como se obtienen en el procedimiento con
antraquinona para la producción de peróxido de hidrógeno.
La reacción se lleva a cabo preferentemente en
presencia de un disolvente con el fin de aumentar la solubilidad de
la olefina, preferentemente propeno, en la fase líquida. Como
disolventes son adecuados todos los disolventes que no se oxidan o
son oxidados solamente hasta cierto punto por el peróxido de
hidrógeno en las condiciones de reacción seleccionadas, y que se
disuelven en una cantidad mayor del 10% en peso en agua. Se
prefieren los disolventes que son completamente miscibles con agua.
Las soluciones adecuadas comprenden alcoholes tales como metanol,
etanol o terc-butanol; glicoles tales como, por
ejemplo, etilenglicol, 1,2-propanodiol ó
1,3-propanodiol; éteres cíclicos tales como, por
ejemplo, tetrahidrofurano, dioxano u óxido de propileno; éteres de
glicol tales como, por ejemplo, éter monometílico de etilenglicol,
éter monoetílico de etilenglicol, éter monobutílico de etilenglicol
o éter monometílico de propilenglicol, y cetonas tales como, por
ejemplo, acetona ó 2-butanona. El metanol en
particular es preferentemente utilizado como disolvente.
La olefina se emplea preferentemente en exceso
en relación con el peróxido de hidrógeno con el fin de conseguir un
consumo significativo de peróxido de hidrógeno, seleccionándose la
relación molar de olefina, preferentemente propeno, a peróxido de
hidrógeno en el intervalo entre 1,1 y 30. Se añade disolvente
preferentemente en una relación en peso de 0,5 a 20 en comparación
con la cantidad utilizada de peróxido de hidrógeno. La cantidad de
catalizador empleada puede variarse dentro de amplios límites y se
selecciona preferentemente de modo que un consumo de peróxido de
hidrógeno de más del 90%, preferentemente más del 95%, se consiga en
1 minuto a 5 horas en las condiciones de reacción empleadas.
Según una realización de la presente invención
las condiciones de reacción como temperatura, presión, selección de
olefinas y selección de disolvente y las cantidades relativas de los
componentes de la mezcla de reacción se seleccionan para asegurar
la presencia únicamente de una fase líquida acuosa en la que se
disuelve la olefina. También puede estar presente una fase que
contenga la olefina gaseosa adicional.
Pero es preferible realizar la epoxidación de
olefinas con peróxido de hidrógeno en una mezcla de reacción
multifase que comprende una fase acuosa, líquida, rica en peróxido
de hidrógeno que contiene un disolvente orgánico que tiene una
solubilidad en agua de al menos el 10% en peso a 25ºC y una fase
orgánica líquida, rica en olefina. De este modo se puede conseguir
una selectividad del producto aún mejor.
Como es apreciable por cualquier experto en la
materia la presencia de dos fases líquidas inmiscibles en un
sistema de reacción que comprende una olefina, un disolvente
orgánico miscible en agua y una solución de peróxido de hidrógeno
acuoso dependerá de muchos factores diferentes. El primero de todos
la presencia de una fase orgánica líquida adicional, rica en
olefinas dependerá de la temperatura y de la presión aplicada al
reactor y de la olefina seleccionada. Preferentemente la presión
aplicada es igual o superior a la presión de vapor de la olefina a
la temperatura seleccionada. Además dependerá de la selección del
disolvente orgánico. Como disolventes orgánicos adecuados son todos
los disolventes que se disuelven en una cantidad de más del 10% en
peso en agua a 25ºC. Los disolventes preferidos son los que
disuelven en una cantidad de más del 30% en peso en agua a 25ºC,
preferentemente más del 50% en peso en agua a 25ºC. Los disolventes
más preferidos son completamente miscibles en agua. En principio
todos los disolventes ejemplificados anteriormente se pueden
utilizar también en esta realización preferida con tal que se
satisfagan las condiciones que aseguran la presencia de dos fases
líquidas.
Además la presencia de una segunda fase orgánica
rica en olefinas dependerá de las cantidades relativas de olefinas,
agua y disolvente. La cantidad de disolvente se selecciona para
conseguir suficiente solubilidad de la olefina en la fase acuosa
rica en peróxido de hidrógeno con el fin de conseguir la velocidad
de reacción deseada. A una temperatura dada, la presión, las
cantidades relativas de ingredientes de olefina y disolvente se
pueden ajustar para asegurar la formación de una segunda fase
orgánica líquida. Es decir, para asegurar la formación de una
segunda fase orgánica líquida rica en olefinas la cantidad de
olefina se debe seleccionar en exceso de la cantidad soluble en la
fase acuosa a la temperatura y presión seleccionadas.
Un medio sencillo de confirmar experimentalmente
la presencia de una segunda fase orgánica líquida a las condiciones
de reacción es recogiendo una muestra de la mezcla de reacción en un
recipiente equipado con un indicador de nivel a la temperatura y
presión utilizadas en el proceso. Como alternativa, el reactor se
puede equipar con un indicador de nivel en una posición adecuada
para observar el límite de la fase directamente durante la
reacción. En el caso de un reactor de flujo continuo el indicador de
nivel se coloca preferentemente cerca de la salida del efluente del
reactor para disponer de un control óptimo de las dos fases líquidas
que están presentes durante el tiempo de residencia completo en el
interior del reactor.
De este modo una persona experta en la materia
puede comprobar sin ningún esfuerzo si al aplicar determinadas
selecciones de olefinas, disolventes y parámetros de reacción está
presente un sistema de dos fases líquidas como requiere la presente
invención y puede ajustarse mediante variación de los parámetros
como el sistema de reacción expuesto anteriormente con detalle con
el fin de crear una segunda fase orgánica líquida.
Según la realización más preferida de la
presente invención la olefina se selecciona para que sea propeno, y
se utiliza metanol como disolvente. Por ejemplo, para una mezcla de
reacción que comprende propeno, metanol y peróxido de hidrógeno
acuoso a una temperatura de reacción entre 30ºC y 80ºC, una presión
de 5 a 50 bar, la relación del caudal de propeno al caudal total en
caso de un sistema de flujo continuo se puede ajustar para que esté
comprendida en el intervalo entre 0,1 y 1, preferentemente entre 0,2
y 1 con el fin de obtener una segunda fase orgánica líquida.
Una fase gaseosa adicional que comprende vapor
de olefina y opcionalmente un gas inerte, es decir un gas que no
interfiere con la epoxidación puede estar presente adicionalmente
según la presente invención. La adición de un gas inerte es útil
para mantener una presión constante en el interior del reactor y
para eliminar el gas oxígeno formado por descomposición de una
pequeña parte del peróxido de hidrógeno cargado en el reactor.
La presente invención se explicará con más
detalle en relación con los ejemplos siguientes.
Ejemplos 1 y 2 y Ejemplos
comparativos 1 -
4
Se empleó un catalizador de silicato de titanio
en todos los ejemplos. Se moldeó el polvo de silicato de titanio
en extruidos de 2 mm utilizando un sol de sílice como aglutinante
según el ejemplo 5 en el documento EP 00 106 671.1. El
H_{2}O_{2} empleado se preparó según el procedimiento de la
antraquinona como una solución acuosa al 40% en peso.
La epoxidación se realiza de manera continua en
un tubo de reacción de 300 ml de volumen, un diámetro de 10 mm y
una longitud de 4 m. El equipo comprende además tres recipientes
para líquidos y las bombas pertinentes y un recipiente para la
separación de líquido. Los tres recipientes para líquidos
comprendían metanol, H_{2}O_{2} al 40% y propeno. Se ajustó el
H_{2}O_{2} al 40% con amoniaco hasta un pH de 4,5. La
temperatura de reacción se controla mediante un líquido de
refrigeración acuoso circulando en una camisa de refrigeración con
lo cual se controla la temperatura del líquido refrigerante
mediante un termostato. La presión del reactor era de 25 bar
absolutos. El caudal másico de las bombas de alimentación se ajustó
para producir una concentración de alimentación de propeno del
21,5% en peso, una concentración de alimentación de metanol del 57%
en peso y una concentración de alimentación de H_{2}O_{2} de
9,4% en peso.
Al ejecutar los ejemplos y los ejemplos
comparativos el modo de flujo (modo de flujo descendente (DF) o modo
de flujo ascendente (UF)) así como la temperatura de la camisa
refrigerante y el caudal másico total se variaron según se indica
en la Tabla 1. El caudal se ajustó para conseguir conversiones
comparables. La corriente del producto se analizó por cromatografía
de gases y se determinó la conversión de H_{22} por valoración. Se
calculó la selectividad del propeno como la proporción de la
cantidad de óxido de propeno en relación con la cantidad total de
óxido de propeno y de oxígeno que contienen los hidrocarburos
formados durante la reacción de epoxidación, tales como
1-metoxi-2-propanol,
2-metoxi-1-propanol
y 1,2-propanodiol.
\vskip1.000000\baselineskip
Al comparar CE1 y CE2 con CE3 y CE4 es evidente
que la selectividad del producto depende de forma acusada de la
temperatura de reacción al disminuir la selectividad con el aumento
de temperatura. Por lo tanto es importante la buena disipación de
calor y la temperatura uniforme. A este respecto un experto en la
materia preferiría el modo flujo ascendente. Sorprendentemente,
como se puede apreciar a partir de la comparación de E1 y CE2 los
resultados en el modo flujo descendente son aún mejores a la misma
temperatura de reacción.
UF = modo de flujo ascendente
DF = modo de flujo descendente
Claims (13)
1. Un procedimiento para la epoxidación
catalítica de olefinas con peróxido de hidrógeno en un sistema de
reacción de flujo continuo, en el que la mezcla de reacción se hace
pasar a través de un lecho fijo de catalizador en modo de operación
en flujo descendente en el que se utiliza un reactor de lecho fijo
que comprende medios de refrigeración, el lecho fijo de catalizador
se mantiene en un estado de lecho por goteo y el calor de reacción
se elimina, al menos parcialmente, durante el transcurso de la
reacción.
2. El procedimiento según la reivindicación 1,
en el que el reactor en lecho fijo es un reactor tubular y el medio
de refrigeración es una camisa de refrigeración.
3. El procedimiento según cualquiera de las
reivindicaciones anteriores, en el que la mezcla de reacción se
hace pasar a través del lecho del catalizador con una velocidad
superficial de 1 a 100 m/h, preferentemente de 5 a 50 m/h, lo más
preferentemente de 5 a 30 m/h.
4. El procedimiento según cualquiera de las
reivindicaciones anteriores, en el que la mezcla de reacción se
hace pasar a través del lecho del catalizador con una velocidad
espacial por hora del líquido (LHSV) de 1 a 20 h^{-1},
preferentemente de 1,3 a 15 h^{-1}.
5. El procedimiento según la reivindicación 1,
en el que estado de lecho por goteo se mantiene bajo las condiciones
de flujo siguientes:
- G/\lambda < 2000 m/h y
- L_{\psi} < 50 m/h,
en las que
- G
- es la velocidad superficial gaseosa definida como el caudal gaseoso en m^{3}/h en el sistema de reacción de flujo continuo dividido por la sección transversal del lecho catalítico en m^{2},
- L
- es la velocidad superficial del líquido definida como el caudal de líquido en m^{3}/h en el sistema de reacción de flujo continuo dividido por la sección transversal del lecho catalítico en m^{2},
y
- \rho_{G}
- es la densidad de la fase gaseosa en g/cm^{3},
- \rho_{L}
- es la densidad de la fase líquida en g/cm^{3},
- \rho_{W}
- es la densidad del agua en g/cm^{3},
- \rho_{aire}
- es la densidad del aire en g/cm^{3},
- \sigma_{W}
- es la tensión superficial del agua en din/cm,
- \sigma_{L}
- es la tensión superficial de la fase líquida en din/cm,
- \mu_{L}
- es la viscosidad de la fase líquida en centipoises,
- \mu_{W}
- es la viscosidad del agua en centipoises.
6. El procedimiento según cualquiera de las
reivindicaciones anteriores, en el que la temperatura de reacción
está comprendida entre 30 y 80ºC, preferentemente entre 40 y
60ºC.
7. El procedimiento según la reivindicación 6,
en el que se mantiene un perfil de temperaturas dentro del reactor
de modo que la temperatura media de refrigeración de los medios de
refrigeración sea al menos 40ºC y la temperatura máxima dentro del
lecho catalítico sea de 60ºC como mucho.
8. El procedimiento según cualquiera de las
reivindicaciones anteriores, en el que la presión en el interior
del reactor se mantiene entre 5 y 50 bar, preferentemente entre 15 y
30 bar.
9. El procedimiento según cualquiera de las
reivindicaciones anteriores, en el que la corriente de alimentación
general al reactor comprende una solución acuosa de peróxido de
hidrógeno, una olefina y un disolvente orgánico.
10. El procedimiento según la reivindicación 9,
en el que la reacción se realiza en una mezcla de reacción
multifase que comprende una fase acuosa, líquida, rica en peróxido
de hidrógeno que contiene un disolvente orgánico que tiene una
solubilidad en agua de al menos el 10% en peso a 25ºC y una fase
orgánica líquida, rica en olefina.
11. El procedimiento según cualquiera de las
reivindicaciones 9 y 10, en el que el disolvente orgánico es
metanol.
12. El procedimiento según cualquiera de las
reivindicaciones anteriores, en el que se utiliza como catalizador
una zeolita que contiene titanio.
13. El procedimiento según cualquiera de las
reivindicaciones anteriores, en el que la olefina es propeno.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01105247 | 2001-03-05 | ||
EP01105247A EP1247805A1 (en) | 2001-03-05 | 2001-03-05 | Process for the epoxidation of olefins |
Publications (2)
Publication Number | Publication Date |
---|---|
ES2240736T3 ES2240736T3 (es) | 2005-10-16 |
ES2240736T5 true ES2240736T5 (es) | 2009-05-01 |
Family
ID=8176670
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES02726127T Expired - Lifetime ES2240736T5 (es) | 2001-03-05 | 2002-03-04 | Procedimiento de epoxidacion de olefinas. |
Country Status (16)
Country | Link |
---|---|
EP (2) | EP1247805A1 (es) |
JP (1) | JP4320178B2 (es) |
KR (1) | KR100874603B1 (es) |
CN (1) | CN1235894C (es) |
AR (1) | AR032927A1 (es) |
AT (1) | ATE298326T1 (es) |
BR (1) | BR0207852B1 (es) |
CA (1) | CA2440098C (es) |
DE (1) | DE60204761T3 (es) |
ES (1) | ES2240736T5 (es) |
MY (1) | MY122867A (es) |
PL (1) | PL211100B1 (es) |
RU (1) | RU2291152C2 (es) |
TW (1) | TW574218B (es) |
WO (1) | WO2002085873A1 (es) |
ZA (1) | ZA200306928B (es) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1403259A1 (en) * | 2002-09-30 | 2004-03-31 | Degussa AG | Process for the epoxidation of olefins |
DE10317520A1 (de) * | 2003-04-16 | 2004-11-04 | Basf Ag | Verfahren zur Herstellung eines Alkenoxids |
WO2006108748A1 (de) | 2005-04-12 | 2006-10-19 | Evonik Degussa Gmbh | Verfahren zur herstellung von wasserstoffperoxid |
ITMI20070932A1 (it) * | 2007-05-08 | 2008-11-09 | Basf Ag | Procedimento per la preparazione di un ossido olefinico |
JP2010527352A (ja) * | 2007-05-11 | 2010-08-12 | ビリッグ,バリー,ジェイ. | 酸化オレフィンプラントにおける高選択性触媒の開始 |
RU2472786C1 (ru) * | 2011-05-13 | 2013-01-20 | Закрытое акционерное общество "Химтэк Инжиниринг" | Способ получения оксида пропилена |
US8927744B2 (en) | 2011-11-04 | 2015-01-06 | Dow Global Technologies Llc | Process and system for producing an oxirane |
RU2656608C1 (ru) | 2014-07-29 | 2018-06-06 | Эвоник Дегусса Гмбх | Способ эпоксидирования олефина |
DE102014217974B4 (de) | 2014-09-09 | 2022-07-14 | Ford Global Technologies, Llc | Antriebsrad mit Elektro-Radnabenmotor für Kraftfahrzeuge und Kraftfahrzeug |
CN107428711A (zh) | 2015-01-14 | 2017-12-01 | 赢创德固赛有限公司 | 制备环氧丙烯和烷基叔丁基醚的集成方法 |
WO2016113185A1 (en) | 2015-01-14 | 2016-07-21 | Evonik Degussa Gmbh | Integrated process for making propene oxide and an alkyl tert-butyl ether |
PT3288927T (pt) | 2015-04-28 | 2019-08-06 | Evonik Degussa Gmbh | Processo para a epoxidação de propeno |
CN106467504A (zh) * | 2015-08-20 | 2017-03-01 | 陕西煤业化工集团(上海)胜帮化工技术有限公司 | Hppo法制环氧丙烷并联反应方法 |
JP6824269B2 (ja) | 2015-11-25 | 2021-02-03 | エボニック オペレーションズ ゲーエムベーハー | プロペンおよび過酸化水素から1,2−プロパンジオールを製造するための方法 |
PT3380458T (pt) | 2015-11-26 | 2019-09-24 | Evonik Degussa Gmbh | Processo para a epoxidação de propeno |
PL3380459T3 (pl) | 2015-11-26 | 2020-06-01 | Evonik Operations Gmbh | Sposób epoksydowania olefiny |
TWI707847B (zh) | 2015-11-26 | 2020-10-21 | 德商贏創運營有限公司 | 丙烯之環氧化方法 |
KR102648943B1 (ko) * | 2015-11-26 | 2024-03-18 | 에보닉 오퍼레이션스 게엠베하 | 프로펜의 에폭시화를 위한 방법 및 반응기 |
KR102022226B1 (ko) | 2015-11-26 | 2019-09-18 | 에보닉 데구사 게엠베하 | 프로펜 옥사이드를 정제하기 위한 프로세스 |
ES2772695T3 (es) | 2015-12-02 | 2020-07-08 | Evonik Operations Gmbh | Procedimiento para la epoxidación de propeno |
KR102625924B1 (ko) | 2016-01-19 | 2024-01-16 | 에보닉 오퍼레이션스 게엠베하 | 올레핀의 에폭시화 방법 |
HUE052019T2 (hu) | 2016-03-21 | 2021-04-28 | Evonik Operations Gmbh | Eljárás propén epoxidálására |
EP3246323A1 (en) | 2016-05-17 | 2017-11-22 | Evonik Degussa GmbH | Integrated process for making propene oxide from propane |
WO2018205244A1 (en) | 2017-05-12 | 2018-11-15 | Evonik Degussa Gmbh | Process for the epoxidation of propene |
EP3406603A1 (en) | 2017-05-22 | 2018-11-28 | Evonik Degussa GmbH | Process for the epoxidation of propene |
EP3438101A1 (en) | 2017-08-01 | 2019-02-06 | Evonik Degussa GmbH | Process for the epoxidation of propene |
EP3812375A1 (en) | 2019-10-21 | 2021-04-28 | Evonik Operations GmbH | Process for the epoxidation of propene |
EP3812374A1 (en) | 2019-10-21 | 2021-04-28 | Evonik Operations GmbH | Process for the epoxidation of propene |
CN114436777B (zh) * | 2020-10-31 | 2024-06-11 | 中国石油化工股份有限公司 | 去除醇类溶剂中醛的方法 |
EP4288420A1 (en) | 2021-02-03 | 2023-12-13 | Evonik Operations GmbH | Process for the epoxidation of propene |
EP4063355A1 (en) | 2021-03-22 | 2022-09-28 | Evonik Operations GmbH | Integrated process and plant for making styrene and propene oxide |
US20240228450A1 (en) | 2021-05-10 | 2024-07-11 | Evonik Operations Gmbh | An integrated plant and an integrated process for making propene oxide |
EP4166545B1 (en) | 2021-10-14 | 2024-09-04 | Evonik Operations GmbH | Process for making propene oxide |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2137310C (en) * | 1993-12-20 | 2004-02-17 | John C. Jubin Jr. | Catalytic converter and method for highly exothermic reactions |
DE19623611A1 (de) * | 1996-06-13 | 1997-12-18 | Basf Ag | Verfahren zur Herstellung von Epoxiden aus Olefinen und Wasserstoffperoxid |
US5912367A (en) † | 1997-07-01 | 1999-06-15 | Arco Chemical Technology, L.P. | High efficiency epoxidation process |
DE19936547A1 (de) † | 1999-08-04 | 2001-02-15 | Basf Ag | Verfahren zur Umsetzung einer organischen Verbindung mit einem Hydroperoxid |
-
2001
- 2001-03-05 EP EP01105247A patent/EP1247805A1/en not_active Withdrawn
- 2001-04-03 TW TW90108013A patent/TW574218B/zh active
-
2002
- 2002-01-28 MY MYPI20020314A patent/MY122867A/en unknown
- 2002-03-01 AR ARP020100745A patent/AR032927A1/es not_active Application Discontinuation
- 2002-03-04 ES ES02726127T patent/ES2240736T5/es not_active Expired - Lifetime
- 2002-03-04 DE DE60204761T patent/DE60204761T3/de not_active Expired - Lifetime
- 2002-03-04 AT AT02726127T patent/ATE298326T1/de not_active IP Right Cessation
- 2002-03-04 WO PCT/EP2002/002286 patent/WO2002085873A1/en active IP Right Grant
- 2002-03-04 RU RU2003129066/04A patent/RU2291152C2/ru not_active IP Right Cessation
- 2002-03-04 KR KR1020037011567A patent/KR100874603B1/ko active IP Right Grant
- 2002-03-04 CN CNB02806013XA patent/CN1235894C/zh not_active Expired - Lifetime
- 2002-03-04 BR BRPI0207852-0A patent/BR0207852B1/pt not_active IP Right Cessation
- 2002-03-04 CA CA2440098A patent/CA2440098C/en not_active Expired - Fee Related
- 2002-03-04 EP EP02726127A patent/EP1373235B2/en not_active Expired - Lifetime
- 2002-03-04 JP JP2002583400A patent/JP4320178B2/ja not_active Expired - Fee Related
- 2002-03-04 PL PL362715A patent/PL211100B1/pl unknown
-
2003
- 2003-09-04 ZA ZA2003/06928A patent/ZA200306928B/en unknown
Also Published As
Publication number | Publication date |
---|---|
ZA200306928B (en) | 2005-02-23 |
DE60204761T3 (de) | 2009-07-09 |
ATE298326T1 (de) | 2005-07-15 |
RU2003129066A (ru) | 2005-04-10 |
CN1494536A (zh) | 2004-05-05 |
PL211100B1 (pl) | 2012-04-30 |
KR100874603B1 (ko) | 2008-12-19 |
JP2004526783A (ja) | 2004-09-02 |
BR0207852B1 (pt) | 2012-11-27 |
CA2440098A1 (en) | 2002-10-31 |
CA2440098C (en) | 2010-05-18 |
TW574218B (en) | 2004-02-01 |
EP1373235A1 (en) | 2004-01-02 |
EP1373235B1 (en) | 2005-06-22 |
EP1247805A1 (en) | 2002-10-09 |
DE60204761T2 (de) | 2006-05-18 |
EP1373235B2 (en) | 2008-12-17 |
CN1235894C (zh) | 2006-01-11 |
PL362715A1 (en) | 2004-11-02 |
KR20030082953A (ko) | 2003-10-23 |
BR0207852A (pt) | 2004-03-23 |
ES2240736T3 (es) | 2005-10-16 |
JP4320178B2 (ja) | 2009-08-26 |
DE60204761D1 (de) | 2005-07-28 |
WO2002085873A1 (en) | 2002-10-31 |
RU2291152C2 (ru) | 2007-01-10 |
MY122867A (en) | 2006-05-31 |
AR032927A1 (es) | 2003-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2240736T5 (es) | Procedimiento de epoxidacion de olefinas. | |
ES2375472T3 (es) | Procedimiento para la epoxidación de olefinas. | |
ES2240756T3 (es) | Procedimiento para la epoxidacion de olefinas. | |
US6596881B2 (en) | Process for the epoxidation of olefins | |
JP4301814B2 (ja) | オレフィンをエポキシ化するための方法 | |
EP1254125B1 (en) | Process for the epoxidation of olefins | |
US6610865B2 (en) | Process for the epoxidation of olefins | |
US6608219B2 (en) | Process for the epoxidation of olefins |