EP4305664A1 - Procede de fabrication d'une structure semi-conductrice a base de carbure de silicium et structure composite intermediaire - Google Patents
Procede de fabrication d'une structure semi-conductrice a base de carbure de silicium et structure composite intermediaireInfo
- Publication number
- EP4305664A1 EP4305664A1 EP22712958.2A EP22712958A EP4305664A1 EP 4305664 A1 EP4305664 A1 EP 4305664A1 EP 22712958 A EP22712958 A EP 22712958A EP 4305664 A1 EP4305664 A1 EP 4305664A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- temporary substrate
- microns
- substrate
- support layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 46
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 239000004065 semiconductor Substances 0.000 title claims abstract description 35
- 239000002131 composite material Substances 0.000 title claims abstract description 29
- 229910010271 silicon carbide Inorganic materials 0.000 title claims description 15
- 239000000758 substrate Substances 0.000 claims abstract description 127
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 29
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 29
- 239000010439 graphite Substances 0.000 claims abstract description 29
- 238000000151 deposition Methods 0.000 claims abstract description 21
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 19
- 238000012546 transfer Methods 0.000 claims abstract description 19
- 230000010070 molecular adhesion Effects 0.000 claims abstract description 11
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 11
- 238000000034 method Methods 0.000 claims description 21
- 230000008021 deposition Effects 0.000 claims description 17
- 238000003486 chemical etching Methods 0.000 claims description 12
- 238000000926 separation method Methods 0.000 claims description 11
- 230000002093 peripheral effect Effects 0.000 claims description 9
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- 230000003685 thermal hair damage Effects 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 169
- 239000011241 protective layer Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 5
- 238000004377 microelectronic Methods 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- 230000004913 activation Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 238000009499 grossing Methods 0.000 description 3
- 238000002513 implantation Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- KMUONIBRACKNSN-UHFFFAOYSA-N potassium dichromate Chemical compound [K+].[K+].[O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O KMUONIBRACKNSN-UHFFFAOYSA-N 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000004630 atomic force microscopy Methods 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000000541 cathodic arc deposition Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- LIKFHECYJZWXFJ-UHFFFAOYSA-N dimethyldichlorosilane Chemical compound C[Si](C)(Cl)Cl LIKFHECYJZWXFJ-UHFFFAOYSA-N 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- -1 hydrogen ions Chemical class 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- UIUXUFNYAYAMOE-UHFFFAOYSA-N methylsilane Chemical compound [SiH3]C UIUXUFNYAYAMOE-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- VKJKEPKFPUWCAS-UHFFFAOYSA-M potassium chlorate Chemical compound [K+].[O-]Cl(=O)=O VKJKEPKFPUWCAS-UHFFFAOYSA-M 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000004621 scanning probe microscopy Methods 0.000 description 1
- 239000005049 silicon tetrachloride Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000003351 stiffener Substances 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/02—Pretreatment of the material to be coated
- C23C16/0227—Pretreatment of the material to be coated by cleaning or etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/32—Carbides
- C23C16/325—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/56—After-treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02376—Carbon, e.g. diamond-like carbon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02378—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02439—Materials
- H01L21/02441—Group 14 semiconducting materials
- H01L21/02447—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02496—Layer structure
- H01L21/02502—Layer structure consisting of two layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02436—Intermediate layers between substrates and deposited layers
- H01L21/02494—Structure
- H01L21/02513—Microstructure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02529—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/0257—Doping during depositing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6835—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/7624—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
- H01L21/76251—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
- H01L21/76254—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/67—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
- H01L2221/683—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L2221/68304—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
- H01L2221/6835—Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used as a support during build up manufacturing of active devices
Definitions
- TITLE METHOD FOR MANUFACTURING A SEMICONDUCTOR STRUCTURE BASED ON SILICON CARBIDE AND STRUCTURE
- the present invention relates to the field of semiconductor materials for microelectronic components. It relates in particular to a process for manufacturing a semiconductor structure comprising an active layer of high-quality monocrystalline silicon carbide comprising or intended to accommodate electronic components, said active layer being placed on a support layer of polysilicon carbide. -crystalline.
- the invention also relates to an intermediate composite structure obtained during said process.
- SiC silicon carbide
- Power devices and integrated power systems based on monocrystalline silicon carbide can handle much higher power density compared to their traditional silicon counterparts, and this with smaller active area dimensions.
- To further limit the dimensions of power devices on SiC it is advantageous to manufacture vertical rather than lateral components. For this, vertical electrical conduction, between an electrode arranged on the front face of the assembly of components and an electrode arranged on the rear face, must be authorized by said assembly.
- a well-known thin film transfer solution is the Smart CutTM process, based on light ion implantation and direct bonding assembly.
- Such a method makes it possible, for example, to manufacture a composite structure comprising a thin layer of monocrystalline SiC (c-SiC), taken from a donor substrate of c-SiC, in direct contact with a support substrate of polycrystalline SiC (p- SiC), and allowing vertical electrical conduction.
- the support substrate which must have a sufficient thickness to be compatible with the formation of the components, is finally thinned to obtain the set of electronic components ready to be integrated.
- Document US8436363 is also known, which describes a process for manufacturing a composite structure comprising a thin layer of c-SiC placed on a metal support substrate whose coefficient of thermal expansion is matched with that of the thin layer. This manufacturing process includes the following steps:
- the composite structure comprising the metal support substrate and the thin layer in c-SiC, and on the other hand, the rest of the donor substrate in c-SiC.
- the present invention relates to an alternative solution to those of the state of the art, and aims to remedy all or part of the aforementioned drawbacks. It relates in particular to a method for manufacturing a semiconductor structure for electronic components, advantageously vertical, produced on and/or in an active layer of high quality monocrystalline silicon carbide, which is placed on a carbide support layer. of polycrystalline silicon. The invention also relates to a composite structure obtained at an intermediate step of said manufacturing process.
- the invention relates to a method for manufacturing a semiconductor structure, comprising: a) a step of providing a temporary graphite substrate having a grain size of between 4 microns and 35 microns, a porosity of between 6 and 17%, and a coefficient of thermal expansion between 4.10-6/°C and 5.10-6/°C; b) a step of depositing, directly on a front face of the temporary substrate, a polycrystalline silicon carbide support layer having a thickness of between 10 microns and 200 microns, c) a step of transferring a useful layer in monocrystalline silicon carbide on the support layer, directly or via an intermediate layer, to form a composite structure, said transfer implementing bonding by molecular adhesion, d) a step of forming an active layer on the useful layer, e) a step of removing the temporary substrate to form the semiconductor structure, said structure including the active layer, the useful layer and the support layer.
- step b) • the deposition of step b) is also carried out on a rear face of the temporary substrate to form a second support layer, and/or on a peripheral edge of said substrate;
- step c) transfer includes: o the introduction of light species into a monocrystalline silicon carbide donor substrate, to form a buried fragile plane defining with a front face of the donor substrate, the useful layer, o the assembly of the front face of the donor substrate on the support layer, directly or via an intermediate layer, by bonding by molecular adhesion, o separation along the buried fragile plane to transfer the useful layer onto the support layer;
- the intermediate layer is formed of tungsten, silicon, silicon carbide or other conductive or semi-conductive materials
- step d) comprises epitaxial growth of at least one additional layer of doped monocrystalline silicon carbide, on the useful layer, said additional layer forming all or part of the active layer;
- the manufacturing process comprises a step d') of producing all or part of electronic components on and/or in the active layer, step d') being inserted between step d) and step e) ;
- step e) comprises mechanical dismantling by propagation of a crack in the temporary substrate following the application of a mechanical stress, the crack extending substantially parallel to the plane of the interface between the temporary substrate and the backing layer;
- step e) comprises chemical dismantling between the support layer and the temporary substrate by lateral chemical etching
- step e) comprises chemical etching of all or part of the temporary substrate; • step e) comprises disassembly by thermal damage of the graphite of the temporary substrate;
- step c) comprises the transfer of a second useful layer of monocrystalline silicon carbide onto the second support layer, directly or via a second intermediate layer, said transfer implementing bonding by molecular adhesion;
- step d) comprises the formation of a second active layer on the second useful layer
- step e) makes it possible to form a second semiconductor structure, said structure including the second active layer, the second useful layer and the second support layer;
- the temporary substrate, provided in step a) has the shape of a circular wafer and a diameter 5% to 10% larger than a targeted diameter for the semiconductor structure;
- the temporary substrate, provided in step a) has the shape of a circular wafer and a diameter slightly smaller than a target diameter for the semiconductor structure, so that the deposition of step b), also operated on a peripheral edge of the temporary substrate, makes it possible to reach said target diameter.
- the invention also relates to a composite structure comprising:
- a polycrystalline silicon carbide support layer having a thickness of between 10 microns and 200 microns, at least arranged on and in contact with a front face of the temporary substrate, a useful layer of monocrystalline silicon carbide, placed on the support layer.
- the useful layer has a thickness of between 100 nm and 1500 nm;
- the temporary substrate has a thickness of between 100 microns and 2000 microns;
- the temporary substrate has a thermal conductivity of between 70 Wm _1 .K _1 and 130 Wm _1 .K _1 ;
- the temporary substrate and the support layer have a combined thickness of between 110 microns and 500 microns, typically 350 microns +/-25 microns.
- Figure 1 shows a semiconductor structure developed according to a manufacturing method according to the invention
- FIGS. 2a, 2b, 2c, 2d, 2d′ and 2e show steps of a manufacturing method according to the invention
- FIG. 3b Figures 3a and 3b show steps of a particular embodiment of the manufacturing method according to the invention.
- FIGS. 4a to 4c present a step c) of transfer of the manufacturing process according to the invention.
- the figures are schematic representations which, for the purpose of readability, are not to scale.
- the thicknesses of the layers along the z axis are not to scale with respect to the lateral dimensions along the x and y axes; and the relative thicknesses of the layers between them are not necessarily observed in the figures.
- the present invention relates to a method of manufacturing a semiconductor structure 100 (FIG. 1).
- semiconductor structure 100 is meant at least a stack of layers 4,3,2 intended to accommodate a plurality of microelectronic components; also means the stack of layers 4,3,2 with said electronic components 40, resulting from a collective manufacture on and/or in the active layer 4 maintained in the form of a wafer by a support layer 2, and ready to undergo the singulation stages prior to packaging.
- the manufacturing method advantageously applies to vertical microelectronic components, which require vertical electrical conduction through support layer 2, which forms the mechanical support for said components 40.
- the manufacturing process firstly comprises a step a) of supplying a temporary graphite substrate 1 having a front face 1a, a rear face 1b and a peripheral edge 1c (FIG. 2a).
- the graphite substrate 1 could be produced, for example, by deposition from a plasma, ion sputtering, cathodic arc deposition, evaporation of the graphite by laser, carbonization of a resin, etc.
- the graphite of the temporary substrate 1 has an average grain size of between 4 microns and 35 microns, a porosity of between 6 and 17%, and a thermal expansion coefficient of between 4.10 6 /°C and 5.10 6 /°C (between room temperature and 1000°C). These characteristics are chosen in particular to provide an excellent seed for the deposition of a layer of polycrystalline silicon carbide (p-SiC), called support layer 2 below, and which will be described with reference to step b) of the process.
- p-SiC polycrystalline silicon carbide
- the mean size of the grains corresponds to the arithmetic mean of the sizes of the grains with a dimension greater than or equal to 100nm. These grain sizes can be measured for example by scanning microscopy (SEM) or by electron backscattered diffraction (EBSD).
- the range of mean grain sizes is defined so that it is of the same order of magnitude as the mean grain size expected for the support layer 2, in the plane of the faces 1a, 1b.
- the thermal conductivity of the support layer 2 is thus ensured, because the grains of said layer will not be too small; moreover, even if the size of the grains is caused to increase during the deposition of the support layer 2, one remains within a range of controlled sizes, due to the defined range of average sizes of graphite grains, which limits the roughness at the level of the free surface of the support layer 2 deposited.
- the porosity range is also restricted so as to control the surface roughness of the support layer 2 after its deposition (step b) later).
- the coefficient of thermal expansion is defined so as to be matched with the coefficient of thermal expansion of silicon carbide, to limit the mechanical stresses in the structure during treatments (described later in the process) involving high temperatures.
- the temporary substrate 1 is compatible with temperatures which can go up to 1400° C. when the atmosphere is controlled, that is to say without oxygen; because if exposed to air, graphite begins to burn in a low temperature range, typically 400°C - 600°C. Protected by a protective layer completely encapsulating it, the temporary graphite substrate 1 is compatible with very high temperatures, even above 1400° C.
- the manufacturing method then comprises a step b) of depositing, directly on the front face 1a of the temporary substrate 1, a support layer 2 of polycrystalline silicon carbide (p-SiC) (FIG. 2b).
- the deposition can be carried out by any known technique, in particular by chemical vapor deposition (CVD), at a temperature of the order of 1100° C. to 1400° C. Mention may be made, for example, of a thermal CVD technique such as deposition at atmospheric pressure (APCVD for "atmospheric pressure CVD) or at low pressure (LPCVD for "low pressure CVD”), the precursors possibly being chosen from methylsilane, dimethyldichlorosilane or alternatively dichlorosilane+i-butane.
- CVD chemical vapor deposition
- a plasma-assisted CVD technique (PECVD for "plasma enhanced CVD") can also be used, with for example silicon tetrachloride and methane as precursors; preferentially, the frequency of the source used to generate the electric discharge creating the plasma is of the order of 3.3 MHz, and more generally comprised between 10 kHz and 100 GHz.
- PECVD plasma-assisted CVD
- conventional cleaning sequences may be applied to the temporary substrate 1 to remove all or part of the particulate, metallic or organic contaminants potentially present on its free faces 1a, 1b.
- the p-SiC support layer 2 has a thickness of between 10 microns and 200 microns. This thickness is chosen according to the thickness specifications expected for the semiconductor structure 100.
- the temporary substrate 1 and the support substrate 2 have a total cumulative thickness of between 110 microns and 500 microns, typically 350 microns +/- 25 microns. Mention may be made of the particular example of a temporary substrate 1 of 250 microns and a support layer 2 of 100 microns, or of a temporary substrate 1 of 300 microns and a support layer 2 of 50 microns.
- Support layer 2 will have, in semiconductor structure 100, the role of mechanical substrate and will potentially have to provide vertical electrical conduction. To guarantee this last property of electrical conduction (low resistivity), the support layer 2 is advantageously n- or p-type doped according to need.
- step b) is also carried out on the rear face lb of the temporary substrate 1 to form a second support layer 2', and/or on the peripheral edge le of said substrate 1.
- the role of the second support layer 2′ (and of the p-SiC deposited on the peripheral edge le) can essentially be to protect the temporary graphite substrate 1 during the heat treatments at very high temperatures which will follow in the process ; the thickness of the second support layer 2′ and of the p-SiC deposited on the peripheral edge 1e (also called protective layer hereinafter) will then be limited, of the order of a micron or a few microns.
- the second support layer 2' can alternatively be deposited on the rear face lb of the temporary substrate 1 in order to carry out the following steps of the method at the level of the two faces la, lb of the said substrate 1 (FIG. 3a).
- the second support layer 2' then has a thickness of the same order of magnitude as the first support layer 2 placed on the side of the front face la of the temporary substrate 1.
- a surface treatment is carried out, to improve the surface roughness of the support layer 2 and/or the quality of the edges of the structure, with a view to the next stage of transfer of the useful layer 3.
- the temporary substrate 1, provided in step a), which typically has the shape of a circular wafer, has a diameter 5% to 10% larger than the target diameter for the final semiconductor structure 100. This can make it possible to limit the problems of edges during the deposition of step b) and to maximize the surface occupied by the future components 40 on the semiconductor structure 100.
- the temporary substrate 1, provided in step a) has a diameter slightly less than the target diameter for the final semiconductor structure 100 (typically less than 5% less), so that the deposit of step b), operated in this case on the peripheral edge of the temporary substrate 1, makes it possible to reach said targeted diameter.
- the manufacturing method according to the invention then comprises a step c) of transferring a useful layer 3 of monocrystalline silicon carbide (c-SiC) directly onto the support layer 2 or via an intermediate layer, to form a composite structure 10 ( Figure 2c).
- the transfer implements bonding by molecular adhesion, and consequently a bonding interface 5.
- the intermediate layer can be formed on the side of the useful layer 3 and/or on the side of the support layer 2, to promote said bonding.
- transfer step c) successively comprises:
- the light species are preferably hydrogen, helium or a co-implantation of these two species, and are implanted at a determined depth in the donor substrate 30, consistent with the thickness of the targeted useful layer 3 (figure 4a). These light species will form, around the determined depth, microcavities distributed in a thin layer parallel to the free surface 30a of the donor substrate 30, ie parallel to the plane (x,y) in the figures. This thin layer is called the buried fragile plane 31, for simplicity.
- the implantation energy of the light species is chosen so as to reach the determined depth.
- hydrogen ions will be implanted at an energy of between 10 keV and 250 keV, and at a dose of between 5 E 16/cm2 and 1 E 17/cm2, to delimit a useful layer 3 having a thickness of the order from 100 to 1500 nm.
- an additional layer may be deposited on the front face 30a of the donor substrate 30, prior to the ion implantation step.
- This additional layer can be composed of a material such as silicon oxide or silicon nitride for example. It can be kept for the next step (and form all or part of the aforementioned intermediate layer), or it can be removed.
- bonding by molecular adhesion does not require an adhesive material, bonds being established on the atomic scale between the assembled surfaces.
- the assembly step may include, prior to bringing the faces to be assembled into contact, conventional sequences of cleaning, surface activation or other surface preparations, likely to promote the quality of the bonding interface 5 ( low defectivity, high adhesion energy).
- the front face 30a of the donor substrate 30 and/or the free face of the support layer 2 may (have) optionally comprise an intermediate layer, for example metallic (tungsten, etc.) or doped semiconductor (silicon, etc. ) to promote vertical electrical conduction, or insulating (silicon oxide, silicon nitride, etc.) for applications that do not require vertical electrical conduction.
- the intermediate layer is likely to promote bonding by molecular adhesion, in particular by erasing residual roughness or surface defects present on the faces to be assembled. It may undergo planarization or smoothing treatments to achieve a roughness of less than 1 nm RMS, or even less than 0.5 nm RMS, favorable to bonding.
- the separation along the buried fragile plane 31 usually takes place by applying a heat treatment at a temperature between 800° C. and 1200° C. (FIG. 4c).
- a heat treatment at a temperature between 800° C. and 1200° C. (FIG. 4c).
- Such a heat treatment induces the development of cavities and microcracks in the buried fragile plane 31, and their pressurization by the light species present in gaseous form, until the propagation of a fracture along said fragile plane 31.
- a mechanical stress can be applied to the bonded assembly and in particular at the level of the buried fragile plane 31, so as to mechanically propagate or help propagate the fracture leading to separation.
- the composite structure 10 comprising the temporary substrate 1 in graphite, the support layer 2 in p-SiC and the useful layer 3 transferred in c-SiC, and on the other hand , the remainder 30' of the donor substrate.
- the useful layer 3 typically has a thickness of between 100 nm and 1500 nm.
- the level and the type of doping of the useful layer 3 is defined by the choice of the properties of the donor substrate 30 or can be adjusted later via known techniques for doping semiconductor layers.
- the free surface of the useful layer 3 is usually rough after separation: for example, it has a roughness of between 5 nm and 100 nm RMS (AFM, scan 20 microns ⁇ 20 microns). Cleaning and/or smoothing steps can be applied to restore a good surface finish (typically, a roughness below a few Angstroms RMS on a 20 micron x 20 micron AFM scan).
- the free surface of the useful layer 3 can remain rough, as separated, when the next step of the process tolerates this roughness.
- the separation heat treatment is carried out in a controlled atmosphere devoid of oxygen.
- a protective layer is deposited before this heat treatment, to relax the atmospheric conditions of said treatment.
- the protective layer can be formed from p-SiC as indicated with reference to the particular embodiment involving the second support layer 2', or from amorphous SiC.
- step c) can also comprise the transfer of a second useful layer 3' in c-SiC onto the second support layer 2', directly or via a second intermediate layer, involving a second bonding interface 5' (FIG. 3b).
- the manufacturing method according to the invention then comprises a step d) of forming an active layer 4 on the useful layer 3 (FIG. 2d).
- the active layer 4 is produced by epitaxial growth of at least one additional layer of doped monocrystalline silicon carbide, on the useful layer 3.
- This epitaxial growth is carried out in the conventional temperature range, namely between 1500° C. and 1900°C and forms a layer with a thickness of the order of 1 micron to a few tens of microns, depending on the electronic components targeted.
- this protective layer may for example consist of a layer of polycrystalline (second support layer 2') or amorphous silicon carbide.
- the manufacturing method according to the invention can also comprise a step d') of producing all or part of the electronic components 40 on and/or in the active layer 4 (FIG. 2d').
- the electronic components 40 can for example consist of transistors or other high voltage and/or high frequency components.
- step d) can also comprise the formation of a second active layer on the second useful layer 3'; and step d') can comprise the production of all or part of second electronic components on and/or in said second active layer.
- the manufacturing method according to the invention comprises a step e) of removing the temporary substrate 1 to form the semiconductor structure 100, said structure including the active layer 4, the useful layer 3 and the support layer 2 (FIG. 2e (i)), and potentially the electronic components 40 (FIG. 2e (ii)), if a step of has been carried out.
- variants can be implemented for this step: some variants (first and second variants described below) are based on the dismantling of said substrate 1 and therefore can potentially include its recycling for a new use; other variants (third and fourth variants) involve the partial or total removal of the temporary substrate 1.
- step e) comprises mechanical dismantling by propagation of a crack in the temporary substrate 1 following the application of a mechanical stress, the crack extending substantially parallel to the plane of the interface between the temporary substrate 1 and the support layer 2.2'.
- inserting a bevel tool opposite screw or close to said interface makes it possible to initiate and propagate an opening at this interface or in the graphite of the temporary substrate 1, until the complete separation between the semiconductor structure 100 and the temporary substrate 1.
- the protective layer present on the edges of the temporary substrate 1 is removed, to promote the initiation of the crack in the graphite.
- step e) comprises a chemical dismantling between the support layer 2,2' and the temporary substrate 1 by lateral chemical etching.
- the protective layer located on the edges 1c of the temporary substrate 1 in the composite structure 10 must be removed chemically or mechanically, to allow access to the graphite.
- Lateral chemical etching can in particular implement a solution based on nitric acid and/or sulfuric acid, for example a solution of concentrated sulfuric acid and potassium dichromate or a solution of sulfuric acid, nitrate and potassium chlorate.
- Chemical etching using an alkaline solution (of the potassium hydroxide (KOH) or sodium hydroxide (NaOH) type) can also be applied.
- care will be taken to protect the free face and the edges of the active layer 4 and of the electronic components 40 if they are present, and/or to limit the time of contact with the etching solution, to avoid damage them during this chemical dismantling.
- step e) comprises a chemical etching of all or part of the temporary substrate 1.
- the protective layer on the edges le and on the rear face lb (second support layer 2') of the temporary 1 of the composite structure 10 will have to be removed to give access to the graphite.
- Mechanical removal can typically be carried out, for example by lapping the edges and the rear face ("edge grinding” or “grinding” according to the English terminology), or chemical, depending on the nature of the protective layer.
- the chemical etching of the temporary substrate 1 could for example implement one of the solutions stated above for the second variant, taking care to protect the active layer 4 and potentially the components 40.
- step e) comprises disassembly by thermal damage of the graphite making up the temporary substrate 1.
- it is required to remove the protective layer present at least on the edges of the temporary substrate 1.
- it is also possible to remove the protective layer from this face.
- Dismantling by thermal damage can take place at a temperature between 600° C. and 1000° C., in the presence of oxygen: the graphite of the temporary substrate 1 is then burned and crumbles to leave only the semi-integrated structure intact. driver 100.
- this dismantling variant can only be applied if said components 40 are compatible with the temperature applied.
- the removal of the temporary substrate 1 can leave residues on the rear face 2b of the support layer 2. These residues are then eliminated by lapping or mechanical grinding, by mechanical-chemical polishing, by chemical etching and/or thermal damage. Mechano-chemical polishing or chemical etching techniques can also be implemented to reduce the roughness of the rear face 2b of the support layer 2, if necessary.
- step e) of removing the substrate temporary 1 also makes it possible to form a second semiconductor structure, said structure including the second active layer (and potentially electronic components), the second useful layer 3' and the second support layer 2'.
- the semiconductor structure 100 must be manipulated during and after the removal of the temporary substrate 1, and its total thickness is insufficient for its mechanical maintenance during this manipulation, it is possible to use a removable handle: the latter is arranged on the active layer 4 and temporarily secured thereto, to perform the manipulation up to the singulation step, for example.
- the semiconductor structure 100 obtained at the end of the manufacturing method according to the invention comprises an active layer 4 finalized with potentially electronic components 40, and placed on a support layer 2 having the thickness targeted for the application. No mechanical thinning involving a significant loss of material is required.
- the support layer 2 is made of p-SiC of good quality (because deposited at relatively high temperatures) but at low cost compared to a solid monocrystalline or polycrystalline SiC substrate which should have been significantly thinned before singling out the components.
- the temporary graphite substrate 1 is advantageously recovered to be recycled. If not reused, such as graphite constitutes a low-cost material, the manufacturing method according to the invention remains economically advantageous compared to a solution with a solid SiC substrate.
- the choice of the physical characteristics of the temporary graphite substrate 1 ensures the formation of a support layer 2 making it possible to obtain a composite structure 10 that is robust and of high quality, and allowing the obtaining a reliable and high-performance semiconductor structure 100.
- the performance of the components 40 comes in particular from the fact that the composite structure 10 allows treatment at very high temperatures for the formation of the active layer 4.
- the invention also relates to a composite structure 10, described above with reference to the manufacturing process, and corresponding to an intermediate structure obtained during said process (FIGS. 2c, 2d, 3b).
- the composite structure 10 comprises:
- a temporary graphite substrate 1 having a grain size of between 4 microns and 35 microns, a porosity of between 6 and 17%, and a thermal expansion coefficient of between 4.10 6 /°C and 5.10 6 /°C,
- a useful layer 3 of monocrystalline silicon carbide placed directly on the support layer 2 or via an intermediate layer.
- the useful layer 3 has a thickness of between 100 nm and 1500 nm.
- the temporary substrate 1 has a thickness between 100 microns and 2000 microns.
- support layer 2 advantageously has good electrical conductivity, i.e. between 0.015 and 0.03 ohm.cm, high thermal conductivity, i.e. greater than or equal to 200 Wm _1 .K _1 and a coefficient of thermal expansion similar to that of the useful layer 3, ie typically between 3.8 ⁇ 10 6 /°C and 4.2 ⁇ 10 6 /°C at room temperature.
- the temporary substrate 1 can advantageously have a thermal conductivity of between 70W.m _1 .K _1 and 130W.m _1 .K 1 , so as to ensure a uniform temperature on the temporary substrate 1 during the very high heat treatment steps. manufacturing process temperatures. This notably improves the uniformity of the layers deposited and the reproducibility of the physical properties of the layers and components produced.
- the composite structure 10 can be “double-sided”, that is to say comprise:
- Such a composite structure 10 allows the formation of two active layers 4, respectively on the first 3 and the second 3 'useful layer, and, at the end of the manufacturing method according to the invention, the obtaining of two semi- conductors 100, from a single temporary substrate 1.
- the invention is not limited to the embodiments and the examples described, and variant embodiments can be added thereto without departing from the scope of the invention as defined by the claims.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Recrystallisation Techniques (AREA)
- Carbon And Carbon Compounds (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
L'invention concerne un procédé de fabrication d'une structure semi-conductrice, comprenant : a) une étape de fourniture d'un substrat temporaire en graphite présentant une taille de grain comprise entre 4 microns et 35 microns, une porosité comprise entre 6 et 17%, et un coefficient de dilatation thermique compris entre 4.10-6/°C et 5.10-6/°C; b) une étape de dépôt, sur une face avant du substrat temporaire, d'une couche support en carbure de silicium poly-cristallin présentant une épaisseur comprise entre 10 microns et 200 microns, c) une étape de transfert d'une couche utile en carbure de silicium monocristallin sur la couche support, directement ou via une couche intermédiaire, pour former une structure composite, ledit transfert mettant en œuvre un collage par adhésion moléculaire, d) une étape de formation d'une couche active sur la couche utile, e) une étape de retrait du substrat temporaire pour former la structure semi-conductrice, ladite structure incluant la couche active, la couche utile et la couche support. L'invention concerne également la structure composite obtenue à une étape intermédiaire du procédé de fabrication.
Description
DESCRIPTION
TITRE : PROCEDE DE FABRICATION D'UNE STRUCTURE SEMI- CONDUCTRICE A BASE DE CARBURE DE SILICIUM ET STRUCTURE
COMPOSITE INTERMEDIAIRE
DOMAINE DE L' INVENTION
La présente invention concerne le domaine des matériaux semi- conducteurs pour composants microélectroniques. Elle concerne en particulier un procédé de fabrication d'une structure semi- conductrice comprenant une couche active en carbure de silicium monocristallin de haute qualité comprenant ou destinée à accueillir des composants électroniques, ladite couche active étant disposée sur une couche support en carbure de silicium poly-cristallin . L'invention concerne également une structure composite intermédiaire obtenue au cours dudit procédé.
ARRIERE PLAN TECHNOLOGIQUE DE L' INVENTION
L'intérêt pour le carbure de silicium (SiC) a considérablement augmenté au cours des dernières années, car ce matériau semi- conducteur peut accroître la capacité de traitement de l'énergie. Le SiC est de plus en plus largement utilisé pour la fabrication de dispositifs de puissance innovants, pour répondre aux besoins de domaines montants de l'électronique, comme notamment les véhicules électriques.
Les dispositifs de puissance et les systèmes intégrés d'alimentation basés sur du carbure de silicium monocristallin peuvent gérer une densité de puissance beaucoup plus élevée par rapport à leurs homologues traditionnels en silicium, et ce avec des dimensions de zone active inférieures. Pour limiter encore les dimensions des dispositifs de puissance sur SiC, il est
avantageux de fabriquer des composants verticaux plutôt que latéraux. Pour cela, une conduction électrique verticale, entre une électrode disposée en face avant de l'ensemble de composants et une électrode disposée en face arrière, doit être autorisée par ledit ensemble.
Les substrats massifs en SiC monocristallin destinés à l'industrie microélectronique restent néanmoins chers et difficiles à approvisionner en grande taille. De plus, lorsqu'il est élaboré sur un substrat massif, l'ensemble de composants électroniques nécessite souvent que le substrat soit aminci en face arrière, typiquement autour de 100 microns, pour diminuer la résistivité électrique verticale et/ou pour répondre à des spécifications d'encombrement et de miniaturisation.
Il est donc avantageux de recourir à des solutions de transfert de couches minces, pour élaborer des structures composites comprenant typiquement une couche mince en SiC monocristallin sur un substrat support plus bas coût, la couche mince étant utilisée pour former les composants électroniques. Une solution de transfert de couche mince bien connue est le procédé Smart Cut™, basé sur une implantation d'ions légers et sur un assemblage par collage direct. Un tel procédé permet par exemple de fabriquer une structure composite comprenant une couche mince en SiC monocristallin (c-SiC), prélevée d'un substrat donneur en c-SiC, en contact direct avec un substrat support en SiC poly- cristallin (p-SiC), et autorisant une conduction électrique verticale. Le substrat support, qui doit présenter une épaisseur suffisante pour être compatible avec la formation des composants, est finalement aminci pour obtenir l'ensemble de composants électroniques prêts à être intégrés. Même si ledit substrat support est de moindre qualité, les étapes d'amincissement et la perte de matière restent des contributeurs de coûts que l'on souhaiterait éliminer.
On connaît également le document US8436363, qui décrit un procédé de fabrication d'une structure composite comprenant une couche mince en c-SiC disposée sur un substrat support métallique dont le coefficient de dilatation thermique est apparié avec celui de la couche mince. Ce procédé de fabrication comprend les étapes suivantes :
- la formation d'un plan fragile enterré dans un substrat donneur de c-SiC, délimitant une couche mince entre ledit plan fragile enterré et une surface avant du substrat donneur, le dépôt d'une couche métallique, par exemple en tungstène ou en molybdène, sur la surface avant du substrat donneur pour former le substrat support d'une épaisseur suffisante pour remplir le rôle de raidisseur,
- la séparation le long du plan fragile enterré, pour former d'une part, la structure composite comprenant le substrat support métallique et la couche mince en c-SiC, et d'autre part, le reste du substrat donneur en c-SiC.
L'inconvénient de cette approche est qu'un substrat support métallique n'est pas toujours compatible avec les lignes de fabrication de composants électroniques. Il peut également être nécessaire d'amincir le substrat support, selon les applications.
OBJET DE L' INVENTION
La présente invention concerne une solution alternative à celles de l'état de la technique, et vise à remédier à tout ou partie des inconvénients précités. Elle concerne en particulier un procédé de fabrication d'une structure semi-conductrice pour des composants électroniques, avantageusement verticaux, élaborés sur et/ou dans une couche active en carbure de silicium monocristallin de haute qualité, laquelle est disposée sur une couche support en carbure de silicium poly-cristallin .
L'invention concerne également une structure composite obtenue à une étape intermédiaire dudit procédé de fabrication.
BREVE DESCRIPTION DE L' INVENTION
L'invention concerne un procédé de fabrication d'une structure semi-conductrice, comprenant : a) une étape de fourniture d'un substrat temporaire en graphite présentant une taille de grains comprise entre 4 microns et 35 microns, une porosité comprise entre 6 et 17%, et un coefficient de dilatation thermique compris entre 4.10-6/°C et 5.10-6/°C ; b) une étape de dépôt, directement sur une face avant du substrat temporaire, d'une couche support en carbure de silicium poly- cristallin présentant une épaisseur comprise entre 10 microns et 200 microns, c) une étape de transfert d'une couche utile en carbure de silicium monocristallin sur la couche support, directement ou via une couche intermédiaire, pour former une structure composite, ledit transfert mettant en œuvre un collage par adhésion moléculaire, d) une étape de formation d'une couche active sur la couche utile, e) une étape de retrait du substrat temporaire pour former la structure semi-conductrice, ladite structure incluant la couche active, la couche utile et la couche support.
Selon d'autres caractéristiques avantageuses et non limitatives de l'invention, prises seules ou selon toute combinaison techniquement réalisable :
• le dépôt de l'étape b) est également opéré sur une face arrière du substrat temporaire pour former une deuxième couche support, et/ou sur un bord périphérique dudit substrat ;
• l'étape c) de transfert comprend :
o l'introduction d'espèces légères dans un substrat donneur en carbure de silicium monocristallin, pour former un plan fragile enterré définissant avec une face avant du substrat donneur, la couche utile, o l'assemblage de la face avant du substrat donneur sur la couche support, directement ou via une couche intermédiaire, par collage par adhésion moléculaire, o la séparation le long du plan fragile enterré pour transférer la couche utile sur la couche support ;
• la couche intermédiaire est formée de tungstène, de silicium, de carbure de silicium ou d'autres matériaux conducteurs ou semi-conducteurs ;
• la séparation s'opère lors d'un traitement thermique à une température comprise entre 800°C et 1200°C ;
• l'étape d) comprend une croissance épitaxiale d'au moins une couche supplémentaire en carbure de silicium monocristallin dopé, sur la couche utile, ladite couche supplémentaire formant tout ou partie de la couche active ;
• le procédé de fabrication comprend une étape d') d'élaboration de tout ou partie de composants électroniques sur et/ou dans la couche active, l'étape d') étant intercalée entre l'étape d) et l'étape e) ;
• l'étape e) comprend un démontage mécanique par propagation d'une fissure dans le substrat temporaire suite à l'application d'une contrainte mécanique, la fissure s'étendant sensiblement parallèlement au plan de l'interface entre le substrat temporaire et la couche support ;
• l'étape e) comprend un démontage chimique entre la couche support et le substrat temporaire par gravure chimique latérale ;
• l'étape e) comprend une gravure chimique de tout ou partie du substrat temporaire ;
• l'étape e) comprend un démontage par endommagement thermique du graphite du substrat temporaire ;
• l'étape c) comprend le transfert d'une deuxième couche utile en carbure de silicium monocristallin sur la deuxième couche support, directement ou via une deuxième couche intermédiaire, ledit transfert mettant en œuvre un collage par adhésion moléculaire ;
• l'étape d) comprend la formation d'une deuxième couche active sur la deuxième couche utile ;
• l'étape e) permet de former une deuxième structure semi- conductrice, ladite structure incluant la deuxième couche active, la deuxième couche utile et la deuxième couche support ; le substrat temporaire, fourni à l'étape a), présente une forme de plaquette circulaire et un diamètre 5% à 10% plus large qu'un diamètre visé pour la structure semi-conductrice ;
• le substrat temporaire, fourni à l'étape a), présente une forme de plaquette circulaire et un diamètre légèrement inférieur à un diamètre visé pour la structure semi- conductrice, de sorte que le dépôt de l'étape b), également opéré sur un bord périphérique du substrat temporaire, permette d'atteindre ledit diamètre visé.
L'invention concerne également une structure composite comprenant :
- un substrat temporaire en graphite présentant une taille de grain comprise entre 4 microns et 35 microns, une porosité comprise entre 6 et 17%, et un coefficient de dilatation thermique compris entre 4.10-6/°C et 5.10-6/°C,
- une couche support en carbure de silicium poly-cristallin présentant une épaisseur comprise entre 10 microns et 200 microns, au moins disposée sur et en contact avec une face avant du substrat temporaire,
une couche utile en carbure de silicium monocristallin, disposée sur la couche support.
Selon des caractéristiques avantageuses et non limitatives de l'invention, prises seules ou selon toute combinaison techniquement réalisable :
• la couche utile présente une épaisseur comprise entre 100 nm et 1500 nm ;
• le substrat temporaire présente une épaisseur comprise entre 100 microns et 2000 microns ;
• le substrat temporaire présente une conductibilité thermique comprise entre 70 W.m_1.K_1 et 130 W.m_1.K_1 ;
• le substrat temporaire et la couche support présentent une épaisseur cumulée comprise entre 110 microns et 500 microns, typiquement 350 microns +/-25 microns.
BREVE DESCRIPTION DES FIGURES
D'autres caractéristiques et avantages de l'invention ressortiront de la description détaillée de l'invention qui va suivre en référence aux figures annexées sur lesquelles :
[Fig. 1] La figure 1 présente une structure semi-conductrice élaborée selon un procédé de fabrication conforme à l'invention ;
[Fig. 2a]
[Fig. 2b]
[Fig. 2c]
[Fig. 2d]
[Fig. 2d']
[Fig. 2e] Les figures 2a, 2b, 2c, 2d, 2d' et 2e présentent des étapes d'un procédé de fabrication conforme à l'invention ;
[Fig. 3a]
[Fig. 3b] Les figures 3a et 3b présentent des étapes d'un mode de réalisation particulier du procédé de fabrication conforme à l'invention ;
[Fig. 4a]
[Fig. 4b]
[Fig. 4c] Les figures 4a à 4c présentent une étape c) de transfert du procédé de fabrication conforme à l'invention.
Les mêmes références sur les figures pourront être utilisées pour des éléments de même type.
Les figures sont des représentations schématiques qui, dans un objectif de lisibilité, ne sont pas à l'échelle. En particulier, les épaisseurs des couches selon l'axe z ne sont pas à l'échelle par rapport aux dimensions latérales selon les axes x et y ; et les épaisseurs relatives des couches entre elles ne sont pas nécessairement respectées sur les figures.
DESCRIPTION DETAILLEE DE L' INVENTION
La présente invention concerne un procédé de fabrication d'une structure semi-conductrice 100 (figure 1). Par structure semi- conductrice 100, on entend a minima un empilement de couches 4,3,2 destiné à accueillir une pluralité de composants microélectroniques ; on entend également l'empilement de couches 4,3,2 avec lesdits composants électroniques 40, issus d'une fabrication collective sur et/ou dans la couche active 4 maintenue sous forme d'une plaquette par une couche support 2, et prêts à subir les étapes de singularisation préalables à une mise en boitier.
Le procédé de fabrication s'applique avantageusement à des composants microélectroniques verticaux, qui nécessitent une
conduction électrique verticale à travers la couche support 2, laquelle forme le support mécanique desdits composants 40.
Le procédé de fabrication comprend en premier lieu une étape a) de fourniture d'un substrat temporaire 1 en graphite présentant une face avant la, une face arrière lb et un bord périphérique le (figure 2a). Le substrat 1 en graphite pourra être élaboré, par exemple, par dépôt à partir d'un plasma, pulvérisation ionique, dépôt à l'arc cathodique, évaporation du graphite par laser, carbonisation d'une résine, etc.
Le graphite du substrat temporaire 1 présente une taille moyenne de grains comprise entre 4 microns et 35 microns, une porosité comprise entre 6 et 17%, et un coefficient de dilatation thermique compris entre 4.106/°C et 5.106/°C (entre la température ambiante et 1000°C). Ces caractéristiques sont notamment choisies pour procurer un excellent germe pour le dépôt d'une couche en carbure de silicium poly-cristallin (p-SiC), appelée couche support 2 par la suite, et qui sera décrite en référence à l'étape b) du procédé.
Notons que la taille moyenne des grains correspond à la moyenne arithmétique des tailles des grains de dimension supérieure ou égale à lOOnm. Ces tailles de grains peuvent être mesurées par exemple par microscopie à balayage (MEB) ou par diffraction d'électrons rétrodiffusés (EBSD).
En particulier, la gamme de tailles moyennes de grains est définie de manière à ce qu'elle soit du même ordre de grandeur que la taille moyenne de grains attendue pour la couche support 2, dans le plan des faces la,lb. La conductivité thermique de la couche support 2 est ainsi assurée, car les grains de ladite couche ne seront pas trop petits ; par ailleurs, même si la taille des grains est amenée à croitre durant le dépôt de la couche support 2, on reste dans une gamme de tailles maîtrisée, du fait de la gamme définie de tailles moyennes de grains du graphite, ce qui limite la rugosité au niveau de la surface libre de la couche support 2 déposée. La plage de porosité est
également restreinte de manière à maitriser la rugosité de surface de la couche support 2 après son dépôt (étape b) ultérieure). Typiquement, on pourra ainsi limiter la rugosité de surface à moins de 1 micron RMS, voire à moins de lOnm RMS, de manière à réduire les traitements de lissage après le dépôt de la couche support 2. Enfin, le coefficient de dilatation thermique est défini de manière à être apparié au coefficient de dilatation thermique du carbure de silicium, pour limiter les contraintes mécaniques dans la structure lors des traitements (décrits plus tard dans le procédé) impliquant de hautes températures.
Le substrat temporaire 1 est compatible avec des températures pouvant aller jusqu'à 1400°C lorsque l'atmosphère est contrôlée, c'est-à-dire sans oxygène ; car s'il est exposé à l'air, le graphite commence à brûler dans une gamme de faibles températures, typiquement 400°C - 600°C. Protégé par une couche de protection l'encapsulant complètement, le substrat temporaire 1 en graphite est compatible avec de très hautes températures, même au-delà de 1400°C.
Le procédé de fabrication comprend ensuite une étape b) de dépôt, directement sur la face avant la du substrat temporaire 1, d'une couche support 2 en carbure de silicium poly-cristallin (p-SiC) (figure 2b).
Le dépôt peut être réalisé par toute technique connue, notamment par dépôt chimique en phase vapeur (CVD), à une température de l'ordre de 1100°C à 1400°C. On peut citer par exemple, une technique de CVD thermique comme un dépôt à pression atmosphérique (APCVD pour « atmospheric pressure CVD) ou à basse pression (LPCVD pour « low pressure CVD »), les précurseurs pouvant être choisis parmi le methylsilane, le diméthyldichlorosilane ou encore le dichlorosilane + i-butane. Une technique de CVD assistée par plasma (PECVD pour « plasma enhanced CVD ») peut également être utilisée, avec par exemple
du tétrachlorure de silicium et du méthane comme précurseurs ; préférentiellement, la fréquence de la source utilisée pour générer la décharge électrique créant le plasma est de l'ordre de 3,3MHz, et plus généralement comprise entre 10kHz et 100GHz. Préalablement au dépôt, des séquences de nettoyages classiques pourront être appliquées au substrat temporaire 1 pour éliminer tout ou partie de contaminants particulaires, métalliques ou organiques potentiellement présents sur ses faces libres la,lb.
La couche support 2 en p-SiC présente une épaisseur comprise entre 10 microns et 200 microns. Cette épaisseur est choisie en fonction des spécifications d'épaisseur attendues pour la structure semi-conductrice 100. Avantageusement, le substrat temporaire 1 et le substrat support 2 présentent une épaisseur totale cumulée comprise entre 110 microns et 500 microns, typiquement 350 microns +/- 25 microns. On peut citer l'exemple particulier d'un substrat temporaire 1 de 250 microns et d'une couche support 2 de 100 microns, ou d'un substrat temporaire 1 de 300 microns et d'une couche support 2 de 50 microns.
La couche support 2 aura, dans la structure semi-conductrice 100, le rôle de substrat mécanique et devra potentiellement assurer une conduction électrique verticale. Pour garantir cette dernière propriété de conduction électrique (faible résistivité), la couche support 2 est avantageusement dopée de type n ou p selon le besoin.
Selon un mode avantageux de réalisation, le dépôt de l'étape b) est également opéré sur la face arrière lb du substrat temporaire 1 pour former une deuxième couche support 2', et/ou sur le bord périphérique le dudit substrat 1.
Le rôle de la deuxième couche support 2' (et du p-SiC déposé sur le bord périphérique le) peut essentiellement être de protéger le substrat temporaire 1 en graphite lors des traitements thermiques à très hautes températures qui vont suivre dans le
procédé ; l'épaisseur de la deuxième couche support 2' et du p- SiC déposé sur le bord périphérique le (également appelés couche de protection par la suite) sera alors limitée, de l'ordre du micron ou de quelques microns.
La deuxième couche support 2' peut alternativement être déposée en face arrière lb du substrat temporaire 1 dans le but d'opérer les étapes suivantes du procédé au niveau des deux faces la,lb dudit substrat 1 (figure 3a). La deuxième couche support 2' présente alors une épaisseur du même ordre de grandeur que la première couche support 2 disposée du côté de la face avant la du substrat temporaire 1.
En général, à l'issue du dépôt de la couche support 2 (et potentiellement de la deuxième couche support 2'), un traitement de surface est effectué, pour améliorer la rugosité de surface de la couche support 2 et/ou la qualité des bords de la structure, en vue de l'étape suivante de transfert de la couche utile 3.
Des techniques classiques de gravure chimique (humide ou sèche) et/ou de rectification mécanique et/ou de polissage mécano- chimique peuvent être mises en œuvre pour atteindre une rugosité de surface du p-SiC de l'ordre de 0,5 nm RMS, préférentiellement inférieure à 0,3nm RMS (mesure de rugosité par microscopie à force atomique - AFM, sur un scan de 20 microns x 20 microns par exemple). Les caractéristiques précitées du graphite formant le substrat temporaire 1 permettent néanmoins de limiter les traitements de surface à appliquer.
Selon une première variante, le substrat temporaire 1, fourni à l'étape a), qui présente typiquement une forme de plaquette circulaire, a un diamètre 5% à 10% plus large que le diamètre visé pour la structure semi-conductrice 100 finale. Cela peut permettre de limiter les problématiques de bords au cours du
dépôt de l'étape b) et de maximiser la surface occupée par les futurs composants 40 sur la structure semi-conductrice 100.
Selon une deuxième variante, le substrat temporaire 1, fourni à l'étape a), a un diamètre légèrement inférieur au diamètre visé pour la structure semi-conductrice 100 finale (typiquement inférieur de moins de 5%), de sorte que le dépôt de l'étape b), opéré dans ce cas sur le bord périphérique du substrat temporaire 1, permette d'atteindre ledit diamètre visé.
Le procédé de fabrication selon l'invention comprend ensuite une étape c) de transfert d'une couche utile 3 en carbure de silicium monocristallin (c-SiC) directement sur la couche support 2 ou via une couche intermédiaire, pour former une structure composite 10 (figure 2c). Le transfert met en œuvre un collage par adhésion moléculaire, et par conséquent une interface de collage 5. La couche intermédiaire peut être formée du côté de la couche utile 3 et/ou du côté de la couche support 2, pour favoriser ledit collage.
Avantageusement, et comme cela est connu en référence au procédé Smart Cut™, l'étape c) de transfert comprend successivement :
- l'introduction d'espèces légères dans un substrat donneur 30 en carbure de silicium monocristallin, pour former un plan fragile enterré 31, définissant avec la face avant 30a du substrat donneur 30, la couche utile 3 (figure 4a),
- l'assemblage de la face avant 30a du substrat donneur 30 sur la couche support 2, directement ou via une couche intermédiaire, par collage par adhésion moléculaire, le long d'une interface de collage 5 (figure 4b), la séparation le long du plan fragile enterré 31 pour transférer la couche utile 3 sur la couche support 2 (figure 4c).
Les espèces légères sont préférentiellement de l'hydrogène, de l'hélium ou une co-implantation de ces deux espèces, et sont implantées à une profondeur déterminée dans le substrat donneur 30, cohérente avec l'épaisseur de la couche utile 3 visée (figure 4a). Ces espèces légères vont former, autour de la profondeur déterminée, des microcavités distribuées dans une fine couche parallèle à la surface libre 30a du substrat donneur 30, soit parallèle au plan (x,y) sur les figures. On appelle cette fine couche le plan fragile enterré 31, par souci de simplification.
L'énergie d'implantation des espèces légères est choisie de manière à atteindre la profondeur déterminée. Par exemple, des ions hydrogène seront implantés à une énergie comprise entre 10 keV et 250 keV, et à une dose comprise entre 5E16/cm2 et lE17/cm2, pour délimiter une couche utile 3 présentant une épaisseur de l'ordre de 100 à 1500 nm. Notons qu'une couche additionnelle pourra être déposée sur la face avant 30a du substrat donneur 30, préalablement à l'étape d'implantation ionique. Cette couche additionnelle peut être composée par un matériau tel que l'oxyde de silicium ou le nitrure de silicium par exemple. Elle peut être conservée pour l'étape suivante (et former tout ou partie de la couche intermédiaire précitée), ou elle peut être retirée.
L'assemblage du substrat donneur 30 sur la couche support 2 s'opère au niveau de leurs faces avant respectives et forme un ensemble collé, le long de l'interface de collage 5 (figure 4b). Comme cela est bien connu en soi, le collage par adhésion moléculaire ne nécessite pas une matière adhésive, des liaisons s'établissant à l'échelle atomique entre les surfaces assemblées. Plusieurs types de collage par adhésion moléculaire existent, qui diffèrent notamment par les conditions de température, de pression, d'atmosphère ou de traitements préalables à la mise en contact des surfaces. On peut citer le
collage à température ambiante avec ou sans activation préalable par plasma des surfaces à assembler, le collage par diffusion atomique (« Atomic diffusion bonding » ou ADB selon la terminologie anglo-saxonne), le collage avec activation de surface (« Surface-activated bonding » ou SAB), etc.
L'étape d'assemblage peut comprendre, préalablement à la mise en contact des faces à assembler, des séquences classiques de nettoyages, d'activation de surface ou autres préparations de surface, susceptibles de favoriser la qualité de l'interface de collage 5 (faible défectivité, forte énergie d'adhésion).
Comme déjà évoqué, la face avant 30a du substrat donneur 30 et/ou la face libre de la couche support 2 pourra(ont) éventuellement comporter une couche intermédiaire, par exemple métallique (tungstène, etc) ou semi-conductrice dopée (silicium, etc) pour favoriser la conduction électrique verticale, ou isolante (oxyde de silicium, nitrure de silicium, ...) pour des applications ne nécessitant pas une conduction électrique verticale. La couche intermédiaire est susceptible de favoriser le collage par adhésion moléculaire, notamment en gommant une rugosité résiduelle ou des défauts de surface présents sur les faces à assembler. Elle pourra subir des traitements de planarisation ou de lissage, pour atteindre une rugosité inférieure à lnm RMS, voire inférieure à 0,5nm RMS, favorable au collage.
La séparation le long du plan fragile enterré 31 s'opère habituellement par l'application d'un traitement thermique à une température comprise entre 800°C et 1200°C (figure 4c). Un tel traitement thermique induit le développement des cavités et microfissures dans le plan fragile enterré 31, et leur mise sous pression par les espèces légères présentes sous forme gazeuse, jusqu'à la propagation d'une fracture le long dudit plan fragile 31. Alternativement ou conjointement, une sollicitation mécanique peut être appliquée à l'ensemble collé et en particulier au niveau du plan fragile enterré 31, de manière à
propager ou aider à propager mécaniquement la fracture menant à la séparation. A l'issue de cette séparation, on obtient d'une part la structure composite 10 comprenant le substrat temporaire 1 en graphite, la couche support 2 en p-SiC et la couche utile 3 transférée en c-SiC, et d'autre part, le reste 30' du substrat donneur. La couche utile 3 présente typiquement une épaisseur comprise entre lOOnm et 1500nm. Le niveau et le type de dopage de la couche utile 3 est défini par le choix des propriétés du substrat donneur 30 ou peut être ajusté ultérieurement via les techniques connues de dopage de couches semi-conductrices.
La surface libre de la couche utile 3 est habituellement rugueuse après séparation : par exemple, elle présente une rugosité comprise entre 5nm et lOOnm RMS (AFM, scan 20 microns x 20 microns). Des étapes de nettoyage et/ou de lissage peuvent être appliquées pour restaurer un bon état de surface (typiquement, une rugosité inférieure à quelques angstrôms RMS sur un scan de 20 microns x 20 microns par AFM).
Alternativement, la surface libre de la couche utile 3 peut rester rugueuse, telle que séparée, lorsque l'étape suivante du procédé tolère cette rugosité.
Si les bords le et la face arrière lb du substrat temporaire 1 ne sont pas couverts par une couche de protection, le traitement thermique de séparation est réalisé dans une atmosphère contrôlée dépourvue d'oxygène.
Avantageusement, une couche de protection est déposée avant ce traitement thermique, pour relaxer les conditions d'atmosphère dudit traitement. La couche de protection peut être formée en p- SiC comme indiqué en référence au mode de réalisation particulier impliquant la deuxième couche support 2', ou en SiC amorphe.
Dans le mode de réalisation particulier mettant en œuvre une deuxième couche support 2', l'étape c) peut comprendre également le transfert d'une deuxième couche utile 3' en c-SiC sur la
deuxième couche support 2', directement ou via une deuxième couche intermédiaire, en impliquant une deuxième interface de collage 5' (figure 3b).
Le procédé de fabrication selon l'invention comprend ensuite une étape d) de formation d'une couche active 4 sur la couche utile 3 (figure 2d).
Avantageusement, la couche active 4 est élaborée par croissance épitaxiale d'au moins une couche supplémentaire en carbure de silicium monocristallin dopé, sur la couche utile 3. Cette croissance épitaxiale est réalisée dans la gamme de températures classiques, à savoir entre 1500°C et 1900°C et forme une couche d'une épaisseur de l'ordre de 1 micron à quelques dizaines de microns, selon les composants électroniques visés.
La présence d'une couche de protection sur les bords le et la face arrière lb du substrat temporaire 1 en graphite, dans la structure composite 10 est requise pour que les traitements à très hautes températures précités n'endommagent pas le graphite. Comme évoqué précédemment, cette couche de protection pourra par exemple consister en une couche en carbure de silicium poly- cristallin (deuxième couche support 2') ou amorphe.
Le procédé de fabrication selon l'invention peut en outre comprendre une étape d') d'élaboration de tout ou partie de composants électroniques 40 sur et/ou dans la couche active 4 (figure 2d'). Les composants électroniques 40 peuvent par exemple consister en des transistors ou autres composants à haute tension et/ou à haute fréquence.
Pour leur fabrication sur et/ou dans la couche active 4, des étapes classiques de nettoyage, dépôt, lithographie, implantation, gravure, planarisation et traitement thermique sont effectuées. En particulier, parmi les traitements
thermiques évoqués, certains visent à activer des dopants introduits localement dans la couche active 4 (ou la couche utile 3), et sont typiquement réalisés à une température supérieure ou égale à 1600°C.
Notons que dans le mode de réalisation particulier mettant en œuvre une deuxième couche support 2' en face arrière du substrat temporaire 1, l'étape d) peut également comprendre la formation d'une deuxième couche active sur la deuxième couche utile 3' ; et l'étape d') peut comprendre l'élaboration de tout ou partie de deuxièmes composants électroniques sur et/ou dans ladite deuxième couche active.
Enfin, le procédé de fabrication selon l'invention comprend une étape e) de retrait du substrat temporaire 1 pour former la structure semi-conductrice 100, ladite structure incluant la couche active 4, la couche utile 3 et la couche support 2 (figure 2e (i)), et potentiellement les composants électroniques 40 (figure 2e (ii)), si une étape d' a été réalisée.
Plusieurs variantes peuvent être implémentées pour cette étape : certaines variantes (première et deuxième variantes décrites ci- après) sont basées sur le démontage dudit substrat 1 et donc peuvent potentiellement inclure son recyclage pour une nouvelle utilisation ; d'autres variantes (troisième et quatrième variantes) impliquent l'élimination partielle ou totale du substrat temporaire 1.
Selon une première variante, l'étape e) comprend un démontage mécanique par propagation d'une fissure dans le substrat temporaire 1 suite à l'application d'une contrainte mécanique, la fissure s'étendant sensiblement parallèlement au plan de l'interface entre le substrat temporaire 1 et la couche support 2,2'. Par exemple, l'insertion d'un outil en biseau en vis-à-
vis ou à proximité de ladite interface permet d'amorcer et de propager une ouverture au niveau de cette interface ou dans le graphite du substrat temporaire 1, jusqu'à la complète séparation entre la structure semi-conductrice 100 et le substrat temporaire 1. Avantageusement, la couche protectrice présente sur les bords le du substrat temporaire 1 est retirée, pour favoriser l'amorce de la fissure dans le graphite.
Selon une deuxième variante, l'étape e) comprend un démontage chimique entre la couche support 2,2' et le substrat temporaire 1 par gravure chimique latérale. La couche de protection se trouvant sur les bords le du substrat temporaire 1 dans la structure composite 10 doit être retirée chimiquement ou mécaniquement, pour permettre l'accès au graphite. La gravure chimique latérale peut notamment mettre en œuvre une solution à base d'acide nitrique et/ou d'acide sulfurique, par exemple une solution d'acide sulfurique concentré et de dichromate de potassium ou une solution d'acide sulfurique, d'acide nitrique et de chlorate de potassium. Une gravure chimique mettant en œuvre une solution alcaline (de type hydroxyde de potassium (KOH) ou hydroxyde de sodium (NaOH)) peut également être appliquée. Bien sûr, on prendra soin de protéger la face libre et les bords de la couche active 4 et des composants électroniques 40 s'ils sont présents, et/ou de limiter le temps de mise en contact avec la solution de gravure, pour éviter de les endommager au cours de ce démontage chimique.
Selon une troisième variante, l'étape e) comprend une gravure chimique de tout ou partie du substrat temporaire 1. Comme évoqué précédemment, la couche de protection sur les bords le et sur la face arrière lb (deuxième couche support 2') du substrat temporaire 1 de la structure composite 10 devra être retirée pour donner accès au graphite. On pourra typiquement opérer un retrait mécanique, par exemple par rodage des bords et de la
face arrière (« edge grinding » ou « grinding » selon la terminologie anglo-saxonne), ou chimique, selon la nature de la couche de protection. La gravure chimique du substrat temporaire 1 pourra par exemple mettre en œuvre une des solutions énoncées ci-dessus pour la deuxième variante, en prenant soin de protéger la couche active 4 et potentiellement les composants 40.
Selon une quatrième variante, l'étape e) comprend un démontage par endommagement thermique du graphite composant le substrat temporaire 1. Ici encore, il est requis de retirer la couche de protection présente au moins sur les bords du substrat temporaire 1. Lorsqu'il n'y a pas de deuxième couche utile 3' en face arrière de la structure composite 10, on pourra également retirer la couche de protection de cette face.
Le démontage par endommagement thermique peut s'opérer à une température comprise entre 600°C et 1000°C, en présence d'oxygène : le graphite du substrat temporaire 1 est alors brûlé et s'effrite pour ne laisser intègre que la structure semi- conductrice 100.
Bien sûr, dans le cas où les composants électroniques 40 ont été élaborés lors de l'étape d', cette variante de démontage ne peut être appliquée que si lesdits composants 40 sont compatibles avec la température appliquée.
Notons que les variantes précitées pourront éventuellement être combinées entre elles, selon toute combinaison techniquement réalisable.
Quelle que soit la variante mise en œuvre, le retrait du substrat temporaire 1 peut laisser des résidus sur la face arrière 2b de la couche support 2. Ces résidus sont alors éliminés par rodage ou rectification mécanique, par polissage mécano-chimique, par gravure chimique et/ou par endommagement thermique. Les techniques de polissage mécano-chimique ou de gravure chimique
peuvent également être mises en œuvre pour réduire la rugosité de la face arrière 2b de la couche support 2, si nécessaire.
Dans le mode de réalisation particulier précédemment évoqué, pour lequel une deuxième couche support 2', une deuxième couche utile 3' et une deuxième couche active sont disposées sur la face arrière lb du substrat temporaire 1, l'étape e) de retrait du substrat temporaire 1 permet également de former une deuxième structure semi-conductrice, ladite structure incluant la deuxième couche active (et potentiellement des composants électroniques), la deuxième couche utile 3' et la deuxième couche support 2'.
Si la structure semi-conductrice 100 doit être manipulée pendant et après le retrait du substrat temporaire 1, et que son épaisseur totale est insuffisante pour son maintien mécanique lors de cette manipulation, il est envisageable d'utiliser une poignée démontable : cette dernière est disposée sur la couche active 4 et temporairement solidaire de celle-ci, pour effectuer la manipulation jusqu'à l'étape de singularisation par exemple.
La structure semi-conductrice 100 obtenue à l'issue du procédé de fabrication selon l'invention comprend une couche active 4 finalisée avec potentiellement des composants électroniques 40, et disposée sur une couche support 2 présentant l'épaisseur visée pour l'application. Aucun amincissement mécanique impliquant une perte importante de matière n'est requis. La couche support 2 est en p-SiC de bonne qualité (car déposée à relativement hautes températures) mais à faible coût comparé à un substrat massif de SiC monocristallin ou poly-cristallin qui aurait dû être aminci significativement avant singularisation des composants. Le substrat temporaire 1 en graphite est avantageusement récupéré pour être recyclé. S'il n'est pas réutilisé, comme le graphite
constitue un matériau à faible coût, le procédé de fabrication selon l'invention demeure économiquement avantageux vis-à-vis d'une solution avec un substrat massif en SiC. Le choix des caractéristiques physiques du substrat temporaire 1 en graphite (taille de grain, porosité, coefficient de dilatation thermique) assure la formation d'une couche support 2 permettant l'obtention d'une structure composite 10 robuste et de qualité, et permettant l'obtention d'une structure semi-conductrice 100 fiable et performante. La performance des composants 40 vient notamment du fait que la structure composite 10 autorise des traitements à très hautes températures pour la formation de la couche active 4.
L'invention concerne également une structure composite 10, décrite précédemment en référence au procédé de fabrication, et correspondant à une structure intermédiaire obtenue au cours dudit procédé (figures 2c, 2d, 3b).
La structure composite 10 comprend :
- un substrat temporaire 1 en graphite présentant une taille de grain comprise entre 4 microns et 35 microns, une porosité comprise entre 6 et 17%, et un coefficient de dilatation thermique compris entre 4.106/°C et 5.106/°C,
- une couche support 2 en carbure de silicium poly-cristallin présentant une épaisseur comprise entre 10 microns et 200 microns, au moins disposée sur et en contact avec une face avant la du substrat temporaire 1,
- une couche utile 3 en carbure de silicium monocristallin, disposée directement sur la couche support 2 ou via une couche intermédiaire .
Préférentiellement, la couche utile 3 présente une épaisseur comprise entre 100 nm et 1500 nm. Le substrat temporaire 1
présente une épaisseur comprise entre 100 microns et 2000 microns.
Pour les applications pour composants microélectroniques verticaux, la couche support 2 présente avantageusement une bonne conductivité électrique, soit entre 0,015 et 0,03 ohm.cm, une haute conductivité thermique, soit supérieure ou égale à 200 W.m_1.K_1 et un coefficient de dilatation thermique similaire à celui de la couche utile 3, soit typiquement entre 3,8.106/°C et 4,2.106/°C à température ambiante.
Le substrat temporaire 1 peut avantageusement présenter une conductibilité thermique comprise entre 70W.m_1.K_1 et 130W.m_1.K 1, de manière à assurer une température homogène sur le substrat temporaire 1 au cours des étapes de traitements thermiques à très hautes températures du procédé de fabrication. Cela améliore notamment l'uniformité des couches déposées et la reproductibilité des propriétés physiques des couches et composants élaborés.
Enfin, comme cela a été décrit en référence au procédé de fabrication selon l'invention, la structure composite 10 peut être « double face », c'est-à-dire comporter :
- une deuxième couche support 2' en carbure de silicium poly- cristallin présentant une épaisseur comprise entre 10 microns et 200 microns, disposée sur le substrat temporaire 1, une deuxième couche utile 3' en carbure de silicium monocristallin, disposée sur la deuxième couche support 2' (figure 3b).
Une telle structure composite 10 autorise la formation de deux couches actives 4, respectivement sur la première 3 et la deuxième 3' couche utile, et, à l'issue du procédé de fabrication selon l'invention, l'obtention de deux structures semi- conductrices 100, à partir d'un seul substrat temporaire 1.
Bien entendu, l'invention n'est pas limitée aux modes de réalisation et aux exemples décrits, et on peut y apporter des variantes de réalisation sans sortir du cadre de l'invention tel que défini par les revendications.
Claims
1. Procédé de fabrication d'une structure semi-conductrice (100), comprenant: a) une étape de fourniture d'un substrat temporaire (1) en graphite présentant une taille de grains comprise entre 4 microns et 35 microns, une porosité comprise entre 6 et 17%, et un coefficient de dilatation thermique compris entre 4.106/ °C et 5.106/°C ; b) une étape de dépôt, directement sur une face avant (la) du substrat temporaire (1), d'une couche support (2) en carbure de silicium poly-cristallin présentant une épaisseur comprise entre 10 microns et 200 microns, c) une étape de transfert d'une couche utile (3) en carbure de silicium monocristallin sur la couche support (2), directement ou via une couche intermédiaire, pour former une structure composite (10), ledit transfert mettant en œuvre un collage par adhésion moléculaire, d) une étape de formation d'une couche active (4) sur la couche utile (3), e) une étape de retrait du substrat temporaire (1) pour former la structure semi-conductrice (100), ladite structure incluant la couche active (4), la couche utile (3) et la couche support (2).
2. Procédé de fabrication selon la revendication précédente, dans lequel le dépôt de l'étape b) est également opéré :
- sur une face arrière (lb) du substrat temporaire (1) pour former une deuxième couche support (2'), et/ou
- sur un bord périphérique (le) dudit substrat (1).
3. Procédé de fabrication selon l'une des revendications précédentes, dans lequel l'étape c) de transfert comprend : - l'introduction d'espèces légères dans un substrat donneur
(30) en carbure de silicium monocristallin, pour former un plan fragile (31) enterré définissant avec une face avant (30a) du substrat donneur (30), la couche utile (3),
- l'assemblage de la face avant (30a) du substrat donneur (30) sur la couche support (2), directement ou via une couche intermédiaire, par collage par adhésion moléculaire,
- la séparation le long du plan fragile (31) enterré pour transférer la couche utile (3) sur la couche support (2).
4. Procédé de fabrication selon la revendication précédente, dans lequel la couche intermédiaire est formée de tungstène, de silicium, de carbure de silicium ou d'autres matériaux conducteurs ou semi-conducteurs.
5. Procédé de fabrication selon l'une des revendications précédentes, dans lequel l'étape d) comprend une croissance épitaxiale d'au moins une couche supplémentaire en carbure de silicium monocristallin dopé, sur la couche utile (3), ladite couche supplémentaire formant tout ou partie de la couche active (4).
6. Procédé de fabrication selon l'une des revendications précédentes, comprenant une étape d') d'élaboration de tout ou partie de composants électroniques (40) sur et/ou dans la couche active (4), l'étape d') étant intercalée entre l'étape d) et l'étape e).
7. Procédé de fabrication selon l'une des revendications précédentes, dans lequel :
- l'étape e) comprend un démontage mécanique par propagation d'une fissure dans le substrat temporaire (1) suite à l'application d'une contrainte mécanique, la fissure s'étendant sensiblement parallèlement au plan de l'interface entre le substrat temporaire (1) et la couche
support (2), et/ou
- l'étape e) comprend un démontage chimique entre la couche support (2) et le substrat temporaire (1) par gravure chimique latérale, et/ou
- l'étape e) comprend une gravure chimique de tout ou partie du substrat temporaire (1), et/ou l'étape e) comprend un démontage par endommagement thermique du graphite du substrat temporaire (1).
8. Procédé de fabrication selon la revendication 2, dans lequel :
- l'étape c) comprend le transfert d'une deuxième couche utile (3') en carbure de silicium monocristallin sur la deuxième couche support (2'), directement ou via une deuxième couche intermédiaire, ledit transfert mettant en œuvre un collage par adhésion moléculaire,
- l'étape d) comprend la formation d'une deuxième couche active sur la deuxième couche utile (3'),
- l'étape e) permet de former une deuxième structure semi- conductrice (100), ladite structure incluant la deuxième couche active, la deuxième couche utile (3') et la deuxième couche support (2').
9. Procédé de fabrication selon l'une des revendications précédentes, dans lequel le substrat temporaire (1), fourni à l'étape a), présente une forme de plaquette circulaire et un diamètre 5% à 10% plus large qu'un diamètre visé pour la structure semi-conductrice (100).
10. Procédé de fabrication selon l'une des revendications 1 à 8, dans lequel le substrat temporaire (1), fourni à l'étape a), présente une forme de plaquette circulaire et un diamètre légèrement inférieur à un diamètre visé pour la structure semi-conductrice (100), de sorte que le dépôt de
l'étape b), également opéré sur un bord périphérique (le) du substrat temporaire (1), permette d'atteindre ledit diamètre visé.
11. Structure composite (10) comprenant :
- un substrat temporaire (1) en graphite présentant une taille de grain comprise entre 4 microns et 35 microns, une porosité comprise entre 6 et 17%, et un coefficient de dilatation thermique compris entre 4.106/°C et 5.106/°C,
- une couche support (2) en carbure de silicium poly- cristallin présentant une épaisseur comprise entre 10 microns et 200 microns, au moins disposée sur et en contact avec une face avant du substrat temporaire (1), une couche utile (3) en carbure de silicium monocristallin, disposée sur la couche support (2).
12. Structure composite selon la revendication précédente, dans laquelle la couche utile (3) présente une épaisseur comprise entre 100 nm et 1500 nm.
13. Structure composite selon l'une des deux revendications précédentes, dans laquelle le substrat temporaire (1) présente une épaisseur comprise entre 100 microns et 2000 microns.
14. Structure composite selon l'une des trois revendications précédentes, dans laquelle le substrat temporaire (1) présente une conductibilité thermique comprise entre 70 W.m_1.K_1 et 130 W.m_1.K_1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR2102306A FR3120736B1 (fr) | 2021-03-09 | 2021-03-09 | Procede de fabrication d’une structure semi-conductrice a base de carbure de silicium et structure composite intermediaire |
PCT/FR2022/050379 WO2022189732A1 (fr) | 2021-03-09 | 2022-03-03 | Procede de fabrication d'une structure semi-conductrice a base de carbure de silicium et structure composite intermediaire |
Publications (1)
Publication Number | Publication Date |
---|---|
EP4305664A1 true EP4305664A1 (fr) | 2024-01-17 |
Family
ID=75439061
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP22712958.2A Pending EP4305664A1 (fr) | 2021-03-09 | 2022-03-03 | Procede de fabrication d'une structure semi-conductrice a base de carbure de silicium et structure composite intermediaire |
Country Status (8)
Country | Link |
---|---|
US (1) | US20240170284A1 (fr) |
EP (1) | EP4305664A1 (fr) |
JP (1) | JP2024509678A (fr) |
KR (1) | KR20230153478A (fr) |
CN (1) | CN117083705A (fr) |
FR (1) | FR3120736B1 (fr) |
TW (1) | TW202301554A (fr) |
WO (1) | WO2022189732A1 (fr) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8436363B2 (en) | 2011-02-03 | 2013-05-07 | Soitec | Metallic carrier for layer transfer and methods for forming the same |
US9349804B2 (en) * | 2013-02-12 | 2016-05-24 | Infineon Technologies Ag | Composite wafer for bonding and encapsulating an SiC-based functional layer |
JP6371143B2 (ja) * | 2014-07-08 | 2018-08-08 | イビデン株式会社 | SiCウェハの製造方法、SiC半導体の製造方法及び黒鉛炭化珪素複合基板 |
DE102016105610B4 (de) * | 2016-03-24 | 2020-10-08 | Infineon Technologies Ag | Halbleiterbauelement mit einer Graphenschicht und ein Verfahren zu dessen Herstellung |
EP3514130A1 (fr) * | 2018-01-18 | 2019-07-24 | Heraeus GMSI LLC | Procédé de fabrication d'un corps revêtu de carbure de silicium |
-
2021
- 2021-03-09 FR FR2102306A patent/FR3120736B1/fr active Active
-
2022
- 2022-03-01 TW TW111107422A patent/TW202301554A/zh unknown
- 2022-03-03 CN CN202280020271.6A patent/CN117083705A/zh active Pending
- 2022-03-03 KR KR1020237034319A patent/KR20230153478A/ko unknown
- 2022-03-03 JP JP2023545282A patent/JP2024509678A/ja active Pending
- 2022-03-03 EP EP22712958.2A patent/EP4305664A1/fr active Pending
- 2022-03-03 WO PCT/FR2022/050379 patent/WO2022189732A1/fr active Application Filing
- 2022-03-03 US US18/550,044 patent/US20240170284A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
FR3120736A1 (fr) | 2022-09-16 |
WO2022189732A1 (fr) | 2022-09-15 |
JP2024509678A (ja) | 2024-03-05 |
US20240170284A1 (en) | 2024-05-23 |
CN117083705A (zh) | 2023-11-17 |
FR3120736B1 (fr) | 2024-10-04 |
TW202301554A (zh) | 2023-01-01 |
KR20230153478A (ko) | 2023-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3646374B1 (fr) | Procédé de transfert d'une couche mince sur un substrat support présentant des coefficients de dilatation thermique différents | |
FR3094573A1 (fr) | Procede de preparation d’une couche mince de materiau ferroelectrique | |
EP4128329B1 (fr) | Procede de fabrication d'une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic | |
FR2978605A1 (fr) | Procede de fabrication d'une structure semi-conductrice comprenant une couche fonctionnalisee sur un substrat support | |
WO2021191511A1 (fr) | Procede de fabrication d'une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic | |
WO2004112125A1 (fr) | Procede d'obtention d'une couche tres mince par amincissement par auto-portage provoque | |
WO2022189733A1 (fr) | Procede de fabrication d'une structure semi-conductrice a base de carbure de silicium et structure composite intermediaire | |
EP4162522B1 (fr) | Substrat temporaire demontable compatible avec de tres hautes temperatures et procede de transfert d'une couche utile a partir dudit substrat | |
WO2023084164A1 (fr) | Procede de preparation d'une couche mince en materiau ferroelectrique | |
WO2023047035A1 (fr) | Procede de fabrication d'un substrat support en carbure de silicium poly-cristallin | |
WO2022189732A1 (fr) | Procede de fabrication d'une structure semi-conductrice a base de carbure de silicium et structure composite intermediaire | |
EP4085478B1 (fr) | Procede de fabrication d'une structure composite comprenant une couche mince monocristalline sur un substrat support | |
EP3753047B1 (fr) | Structure démontable et procédé de démontage utilisant ladite structure | |
WO2023057699A1 (fr) | Structure composite comprenant une couche utile en sic monocristallin sur un substrat support en sic poly-cristallin et procede de fabrication de ladite structure | |
WO2021191527A1 (fr) | Procede de fabrication d'une structure empilee | |
EP4315396A1 (fr) | Procede de fabrication d'une structure composite comprenant une couche mince en semi-conducteur monocristallin sur un substrat support | |
EP4091197A1 (fr) | Procédé de fabrication d'un capteur d'image | |
WO2023057700A1 (fr) | Procede de fabrication d'une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic poly-cristallin | |
WO2022117930A2 (fr) | Substrat donneur pour le transfert d'une couche mince et procede de transfert associe | |
WO2023052704A1 (fr) | Procédé de fabrication d'une structure composite comprenant une couche mince en sic monocristallin sur un substrat support en sic polycristallin | |
FR2929444A1 (fr) | Procede de fabrication d'une structure micro-electronique du type a semi-conducteur sur isolant et a motifs differencies, et structure ainsi obtenue. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20230818 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) |