EP4263783A1 - Procédé de production d'alcools avec un support sur lequel sont immobilisés des micro-organismes - Google Patents

Procédé de production d'alcools avec un support sur lequel sont immobilisés des micro-organismes

Info

Publication number
EP4263783A1
EP4263783A1 EP21816495.2A EP21816495A EP4263783A1 EP 4263783 A1 EP4263783 A1 EP 4263783A1 EP 21816495 A EP21816495 A EP 21816495A EP 4263783 A1 EP4263783 A1 EP 4263783A1
Authority
EP
European Patent Office
Prior art keywords
support
reactor
fluid
new
regenerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21816495.2A
Other languages
German (de)
English (en)
Inventor
Jean-Christophe GABELLE
Eszter Toth
Nicolas Lopes Ferreira
Helene VELLY
Amandine GINET
Severine ARTERO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP4263783A1 publication Critical patent/EP4263783A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/065Ethanol, i.e. non-beverage with microorganisms other than yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/12Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/16Particles; Beads; Granular material; Encapsulation
    • C12M25/18Fixed or packed bed
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/145Clostridium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a process for the production of alcohols by fermentation of a sugary fluid.
  • Alcohols derived from fermentation processes are among the most promising substitutes for petrochemical derivatives.
  • ABE Acetone - Butanol - Ethanol
  • IBE Isopropanol - Butanol - Ethanol
  • IBE Isopropanol - Butanol - Ethanol
  • a continuous process with cells in suspension in a homogeneous reactor can also be envisaged. But the productivity is also quite low and can hardly be increased significantly.
  • a technical problem is the concentration of cells in the fermentation medium, mainly controlled by the dilution rate applied in the process. This cannot be raised to avoid cell washing (“wash out” according to Anglo-Saxon terminology) in the fermenter. For these reasons, in recent years, a strong interest has been shown in methods aimed at a strong retention of the microbial biomass. There are two ways: "cell immobilization” and cellular "recycling” with a retention by means of membrane filters. The present invention will mainly concern the technique of immobilizing cells.
  • the immobilized cells are typically surrounded by polysaccharides excreted by the microorganisms (EPS: “Extracellular Polymeric Substances” according to the Anglo-Saxon terminology), and present different growth and bioactivity regimes from those obtained when the cells are in suspension (see, for example, Halan B., Buehler K., Schmid A., 2012, Biofilms as living catalysts in continuous chemical syntheses, Trends in biotechnol., 30 (9), 453-465).
  • EPS Extracellular Polymeric Substances
  • the microorganisms are introduced inside a porous matrix, so as to avoid their diffusion towards the external environment, while allowing the transfer of material for carrier and nutrients, as well as reaction products.
  • supports using the encapsulation confinement technique include alginate beads (see, for example, Mollah AH, Stuckey DC, 1993, Maximizing the production of acetone-butanol in alginate bead fluidized bed reactor using Clostridium acetobutylicum, J. Chem. Tech.
  • Patent FR-3 086 670 has also proposed a process in which at least part of the bacterial biomass is fixed in the fermentation reactor by adsorption in the form of a biofilm on a porous material based on polymeric foam, polyurethane foam type.
  • This material has proven to be particularly efficient, allowing a continuous fermentation process, the foam making it possible to fix the bacteria in a sufficiently significant way, that is to say beyond the dilution rate causing cell washing.
  • This material opens a new way for the production of IBEA-type mixtures, by also giving access to a production in continuous mode by immobilization of the bacterial biomass.
  • Patent FR-3 086 553 proposes a process for cleaning this polyurethane foam, consisting in bringing the foam into contact with a fluid resulting from a fermentation must enriched with alcohol and/or acetone and/or a solution aqueous at basic pH. It is thus possible, once the polymeric foam is "worn out", in particular clogged and/or saturated with biomass, to regenerate it by cleaning in order to reuse it in a fermentation reactor with performances identical to or close to those of a new foam.
  • the invention therefore aims to improve continuous fermentation processes, of the type of those producing mixtures of ABE or IBE alcohols, in particular with a view to improving their productivity.
  • the subject of the invention is first of all a process for the production of alcohols, according to which a sugary fluid is introduced into a reaction section comprising a support on which microorganisms are immobilized, in order to produce by fermentation a wort enriched in alcohols under the action of said microorganisms, such that the method is operated continuously, and such that periodically (only) a portion of worn support is replaced by a portion of new and/or regenerated support.
  • a "worn" support is understood to mean a support whose performance is reduced compared to a new support, in particular by reaching a given clogging/saturation-threshold level, or by reaching a lifespan in production given. The medium will generally be all the more worn the more it is “old”, that is to say that it has been used for a certain time since the start at a given instant of a production campaign.
  • “regenerated” support means a worn support which has been treated/cleaned to once again achieve performance close to or identical to a “new” support.
  • new support means a support which has never been used in production, and which has therefore not yet been colonized by microorganisms.
  • the invention therefore relates to continuous fermentation processes, with a support immobilizing the microorganisms in a fermentation reactor.
  • these supports a bit like catalysts in the field of chemistry, are gradually deactivated:
  • the support is colonized with micro-organisms (bacteria) at the start, then the support is loaded with bacteria over time. This accumulation is beneficial for a certain period of time, since it increases the concentration of bacterial biomass, and it therefore increases the volume productivity of the fermentation reactor.
  • the support is largely colonized by bacteria, and clogging phenomena appear: when the support material is in the form of blocks or particles, clogging can be observed between the particles/blocks and/or within the particles/blocks themselves when their material is porous, which then causes production to drop.
  • the death of cells in the biofilm must be taken into account, the wear observed being therefore the conjunction of increasing clogging phenomena and the increasing death of bacteria over time.
  • the solution proposed by the invention is to use a support which can be replaced progressively, each time replacing a portion of the support with a new/regenerated portion.
  • the support is thus partially renewed: the portion of new or regenerated support which is introduced is gradually colonized in turn by the bacteria, and becomes progressively more effective than the worn portion which has been withdrawn.
  • the support maintains sufficient overall efficiency throughout the production campaign, with portions of support that have different “ages”. (We understand by "age” the time spent, at time t, by a portion of support in production since the beginning of a production campaign): the most worn/aged portions of the support are gradually replaced in order to replace them with new/regenerated portions, thus maintaining an average "age", average wear, globally unchanged for the support.
  • the microorganisms are, according to the invention, immobilized on the support in the form of biofilms or aggregates on/in the support, chosen preferably porous.
  • the support comprises a plurality of support portions arranged successively in a general direction of flow of the (sweet) fluid in the reaction section, and said portions have a decreasing degree of wear from upstream to downstream ( relative to this direction of flow). It is indeed the most upstream portion in relation to the flow of sugary juice which tends to be loaded first with bacteria, which will therefore wear out more than the following ones. According to the invention, this fact is therefore exploited to cause a controlled partial rejuvenation of the support.
  • the portion of worn support which is the most upstream in the support is replaced by the portion of new or regenerated support which is arranged downstream of the most downstream portion of the support.
  • the support preferably comprises blocks of porous material in bulk, which are, in the reaction zone in production, immersed in a liquid reaction medium bathing said reaction section. These blocks are preferably held in the reaction section by mechanical devices, which are mesh, such as grids, nets, plates provided with orifices, and/or in the form of deflectors.
  • the support may preferably be in a material of the foam type, either based on a polymer, of the polyurethane (PU) foam type, or based on a ceramic material.
  • PU polyurethane
  • Their behavior in a liquid (aqueous) medium will depend on their density; the type/conformation of the mechanical devices holding them in the reaction section will be chosen accordingly.
  • the reaction section comprises a reactor
  • the support comprises a plurality of layers, successively traversed by the sugary fluid, the portion of spent support and the portion of new and/or regenerated support each corresponding to a layer or a set of adjacent layers of the support.
  • the term "layers" is not to be understood in the literal sense as layers which would be perfectly delimited with respect to each other. to the others, continuous and with a planar interface, or which would be perfectly stacked: these layers of material can have irregular, non-planar interfaces, even if they share the support in portions which are approximately of the same height and/or which contain approximately the same amount of porous material. It is for the sake of clarity that the support is represented in the form of a stack of these "layers".
  • the spent support portion and the new and/or regenerated support portion each correspond to a layer of the support, the spent support portion withdrawn from the reactor being the most upstream layer of the support and the support portion new or regenerated being introduced into the reactor downstream of the most downstream layer of the support.
  • upstream and downstream are understood according to the general direction of flow of the (sweet) fluid in the reaction section, here the reactor, through the support.
  • the portion/layer of new or regenerated support is introduced in the form of blocks of bulk material, into the reactor, in solid form, in particular by pneumatic means or mechanical means such as an endless screw.
  • the portion/layer of new or regenerated support is introduced in the form of blocks of bulk material, into the reactor, a liquid phase, in particular in suspension in the sugary fluid supplying the reaction section.
  • the worn portion/layer of the support is withdrawn from the reactor in the liquid phase. It can in particular be drawn off in suspension in the liquid phase of the fermentation broth leaving the reactor.
  • the withdrawal of the portion/layer of worn substrate at one of the ends of the substrate and its replacement by a portion/layer of new/regenerated substrate at its opposite end is carried out counter- current in relation to the direction of circulation of the fluid (sweet) in the reaction section.
  • counter-current since the fluid flows from upstream to downstream, by definition according to the conventions of the present invention, in the reaction section, while we come to extract from the support by the upstream and we complete it downstream. This is the wisest mode of operation because, as explained above, it is generally the most upstream portion of the support that tends to load up the most/quickly with bacteria.
  • ends are understood to mean the ends (upstream/downstream) of the support relative to the overall direction of flow of the fluid in the reactor in operation.
  • the sugary fluid passes through the support on which the microorganisms are immobilized according to a general direction of flow in the reaction section comprising a reactor, the portion of spent support is withdrawn from the reactor, and the portion of new or regenerated support, the spent support portion being withdrawn from the reactor in the most upstream part of the support and the new or regenerated support portion being introduced into the reactor in the most downstream part of the support.
  • the portion of spent support that is preferred to be withdrawn from the reactor is the most upstream portion of the support, which is also, generally, its most worn portion. And we prefer to add the portion of new/regenerated support downstream, to take over from the less worn downstream portion: We therefore do not come to replace a portion of support at the same place, we extract a portion of support from one of its ends (the upstream end), and another is added to the other of its ends (the downstream end): We create, or at least intensify, thus creating a "gradient" of degree of aging of the support along the direction of flow of the sugary fluid passing through it, the portions/layers of support being all the more worn as they are located upstream of the support. With this periodic replacement, an “average” level of aging of the support is kept substantially constant, and it is possible to extend the durations of the production campaign and/or make the durations of the iso-duration campaign more productive.
  • This first embodiment can be implemented in two different ways, with a reactor oriented essentially along a vertical axis: - either with circulation of the sugary fluid in the reactor from top to bottom, the support extending over at least one part of the height of the useful volume of the reactor, the portion of used support being withdrawn from the reactor in the highest part of the support, and the portion of new or regenerated support being introduced into the reactor in the lowest part of the support,
  • the support extending over at least part of the height of the working volume of the reactor, the portion of spent support being withdrawn from the reactor in the lowest part of the support and the portion of new or regenerated support being introduced into the reactor in the highest part of the support.
  • the support material will preferably be of low density (PU foam) if a top-down fluid flow in the reactor is chosen, and that it will preferably be of higher density (ceramic foam) if we choose a bottom-up flow.
  • the reaction section comprises a series of n reactors fluidly connected in series to each other, and at least one spare reactor.
  • the support is then distributed between the n reactors in the form of n support portions, and a portion of the worn support is periodically replaced by a new or regenerated support portion by disconnecting a reactor belonging to the series of n reactors in series and containing the used support portion and connecting the spare reactor containing a new or regenerated support portion to the series of n-1 reactors.
  • the reactor that is disconnected is the most upstream reactor with respect to the general direction of flow of the sugary fluid through the series of n reactors, and the spare reactor that is connected is placed downstream of the reactor the further downstream in the series with respect to said direction of flow.
  • various treatments are carried out, generally including emptying, and at least one treatment operation for the spent support.
  • This treatment may consist of cleaning, of the cleaning type with a view to regenerating it, for example according to the procedure described in the aforementioned patent FR-3,086,553, or may consist of replacing it with a new support.
  • the treatment can be continued by sterilization, in order to store it as a spare reactor.
  • the reaction section comprises at least one reactor which is provided with a fluid recirculation loop, and this regardless of the embodiment of the invention (independent reactors or mounted in series).
  • the reaction section comprises at least one reactor equipped with mechanical stirring means. The recirculation loop and/or mechanical agitation ensure mixing in the reactor which is equipped with it, and homogenizes the content.
  • the portion of the worn support and the portion of new or regenerated support which replaces it preferably have the same dimensioning.
  • the overall support is thus kept at a constant size.
  • the porous support may have a certain buoyancy, in particular when it is in the form of bulk blocks of polyurethane-type polymer foam, which means that if a portion of support is drawn off at one end of the support and add another at the other end (in the case of the first embodiment in particular), with suitable methods of fixing/maintaining the support, after stabilization of the positioning of the portions, the support remains globally in the same place, at the same "height in the reactor (if we take the example of a vertically oriented reactor).
  • the periodic replacement of the portion of spent support by a portion of new and/or regenerated support can be done by withdrawing the portion of spent support from the reaction section and introducing the portion of new and/or regenerated support in the reaction section concurrently, or one after the other.
  • the portion of new and/or regenerated support is sterilized before introduction into the reaction section.
  • the periodic replacement of the portion of worn support by the portion of new or regenerated support is done with constant time intervals, or increasing, or decreasing with time, or according to time intervals controlled according to a measurement or an evaluation of the degree of wear of the support.
  • the degree of wear can be evaluated according to different indicators: in particular the measurement or evaluation of the drop in production performance, the evolution of the pH, the measurement or evaluation of the evolution of the ratio between the different fermentation products.
  • the process continues, preferably, to produce during the periodic replacement of a portion of worn support by a portion of new or regenerated support:
  • this continuous replacement is facilitated if, as already mentioned, the new support is introduced with the sugar flow supply and the worn support is withdrawn with the flow of products leaving the reactor,
  • the replacement of one reactor by another can induce a short interruption of production, the time to disconnect one reactor and reconnect the other.
  • this partial support replacement leads to a better smoothing of the production.
  • the invention in its preferred application, aims to produce a fermentation must comprising isopropanol, butanol and ethanol, the microorganisms being derived from a strain belonging to the genus Clostridium. Preferably, they are supported by a porous support of the foam type based on polymer material, such as polyurethane, or ceramic materials.
  • the method according to the present invention relates to the production of a mixture of alcohols of the ABE or IBE or IBEA type, method according to which a sugary fluid is introduced into a reaction section comprising a support made of material porous solid on which microorganisms of the genus Clostridium are immobilized, said support comprising a plurality of portions or layers of bulk porous solid material, which are arranged successively in a general direction of flow of said sugary fluid.
  • This preferred embodiment also relates to the reaction section thus equipped with a support.
  • FIG. 1 represents an example of a method according to the first embodiment of the invention.
  • Figure 2 shows a method according to another example of a method according to the first embodiment of the invention shown in Figure 1.
  • Figure 3 shows a variant of the method shown in Figure 1.
  • Figure 4 shows a variant of the method shown in Figure 1.
  • FIG. 5 represents a method according to a second embodiment of the invention, in the production phase.
  • FIG. 6 represents the method according to the second embodiment of the invention according to FIG. 5, during the phase of partial replacement of the support of the microorganisms.
  • FIGS. 1 to 4 A first embodiment is described with the aid of FIGS. 1 to 4.
  • 1 to 4 are identical except for differently configured fluid inlets/outlets.
  • These are conventional fermentation reactors, essentially cylindrical in shape oriented along a vertical axis.
  • the sugary fluid 2 comprises C5 and/or C6 sugars in the aqueous phase.
  • the fermentation must (which can also be called fermentation juice or wine or fermentation products) 3 is enriched in isopropanol, butanol, ethanol and acetone compared to the sugary fluid 2 by conversion of sugars into alcohol/solvent under the action of a microorganism deposited on the solid support 4 contained in the reactor 1.
  • This support 4 comprises a polyurethane foam, which plays the role of a moving bed in the reactor 1 in the form of blocks arranged in bulk and retained by systems of grids/nets not shown which hold them in place over a certain height in the reactor, like a fixed bed. (Alternatively, the foam blocks can be arranged in a structured fashion, not loose).
  • the microorganism colonizing the support is of the Clostridium type.
  • the fermentation step in the fermentation reactor 1 can be carried out at a temperature of between 28°C and 40°C, preferably between 30°C and 37°C, so that the fermentation must 3,3' comprises products of the IBEA type fermentation reaction, for example isopropanol, which is then evacuated from the reactor.
  • the fermentation must 3 (steps not shown) is treated, in particular with one or more successive separation-type steps: it is for example introduced into a separation unit making it possible to separate and extract the compounds of interest from the must of fermentation, the latter being evacuated to be transformed or valued as such.
  • the separation residues commonly called vinasses, are evacuated from the separation unit, they are generally composed of water as well as any liquid or solid product not converted or not extracted during the previous stages.
  • the separation unit can implement one or more distillations, and optionally a separation of solid and/or suspended matter, for example by centrifugation, decantation and/or filtration.
  • support 4 is therefore used to immobilize microorganisms (hereinafter also referred to by the terms bacteria or bacterial biomass), and to promote their growth by adsorption on solid support 4 directly in fermentation reactor 1.
  • This immobilization/adsorption step can also be carried out indirectly, in a secondary tank, not shown (optional), operating for example in “in stream” mode with respect to the fermentation reactor 1:
  • the solid support 4, once loaded with bacterial biomass is then introduced into the fermentation reactor 1.
  • the solid support 4 is partially or, preferably, totally immersed, when the reactor 1 is in operation, in particular to increase the formation of biofilms and improve the performance.
  • the solid support has a shape suitable for implementing the method of the invention, that is to say it consists of a plurality of layers stacked on top of each other along the vertical axis of the reactor, which is also the general flow axis of the fluid passing through the reactor.
  • the layers are designed to be able to be removed/added in the reactor independently of the others.
  • FIGS. 1 and 2 five layers 41 to 45 have been shown, all of the same size, in particular of the same height measured along the vertical axis, and all contiguous.
  • the invention adapting the size and the number of layers depending, in particular on the dimensioning of the reactor, and the layers can be superimposed on each other without necessarily being in contact with each other, a space that can be provided between two consecutive layers of the stack.
  • the support 4 here consists of a stack of loose foam blocks.
  • the "layers” are therefore not to be understood in the literal sense, do not have a flat interface, make it possible to "cut” the support into portions of approximately the same size, here of the same height or, which comes to the same thing, in portions containing the same quantity of foam, these portions being “stacked” along the longitudinal axis, here the vertical axis, of the reactor.
  • the foam blocks can be in the form of cubes or parallelepipeds or other elements of any three-dimensional shape.
  • the net or the container with grid-like mesh 10 can define a cylindrical type shape whose diameter is less than or substantially equal to the internal diameter of the fermentation reactor 1. More generally, the layers can have a section of the same geometric shape ( circular or not) and slightly lower than that of the reactor, whether cylindrical or not. Within each layer, the particles or blocks of foam can move, they are mobile but contained by the net/grid type container(s).
  • the layers of solid support 41 to 45 are preferably centered with respect to the internal walls of the fermentation reactor 1.
  • they do not disturb the circulation of the liquid at the inlet and at the outlet of the reactor, in particular when it is operated continuously.
  • the possible presence of insolubles such as those from major cereals does not pose a problem.
  • the flow of sugary fluid arriving via conduit 1 can also be introduced in line with the solid support layers 4, for example when the first layer or layers are flush with the surface of the reaction medium of the fermentation reactor 1.
  • the solid support is flush at the surface of the reaction medium at the inlet of the sugary fluid, the medium is locally less concentrated in alcohol and the growth of bacteria is favored.
  • the different layers 41 to 45 are represented symbolically with a shade of gray that is all the stronger as the foam they contain is worn, that is to say that the foam has a higher "age" in the campaign of reactor output.
  • the process according to the invention consists in replacing the most worn layer 41 (the most upstream) by extracting it from the reactor (arrow 5), then replacing it with a new or regenerated layer 46 (arrow 6).
  • This layer has been represented symbolically in the figure before its introduction into the reactor, insofar as preference is given to adding the support in the form of bulk foam blocks: before introduction, the support can be stored and transported to to the reactor in a container of any shape, of course).
  • the height of the support 4 in the reactor after this replacement remains unchanged.
  • layer 42 becomes the oldest/worn layer in the layer stack, and layer 46 becomes the "youngest".
  • This layer is preferably bare, it contains only polyurethane foam, and it will gradually become activated by bacterial contamination from the other layers and also develop biofilms on the surface of the foam.
  • the replacement can be done by dedicated inlets/outlets made in the side wall of the reactor:
  • a dedicated outlet can be provided, the evacuated foam then being separated from the fluid it has entrained, the fluid possibly being reinjected into the reactor.
  • pneumatic or mechanical means of the endless screw type can be used.
  • this counter-current system (between the circulation of the fluid in the reactor and the change of partial support) is very interesting because it makes it possible to maintain the productivity almost constant over time during the production campaign, and to increase the time of use of the reactor (or to keep it constant with better productivity).
  • deflectors 8 in the form of grids, perforated plates, solid plates or equivalent means, which are arranged alternately, in staircase, on the height of the support, the spacing between two successive deflectors measured according to the height of the reactor, defining the height of a support layer within the meaning of the invention.
  • mechanical means are used to identify the layers and to direct the path of the fluid through the support 4 (in particular in the case of solid, non-perforated plates).
  • the sugary fluid is introduced into the lower part of the reactor by a sugary fluid supply inlet, which is also used to periodically introduce new foam.
  • a sugary fluid supply inlet which is also used to periodically introduce new foam.
  • blocks of foam in suspension to the sugary fluid.
  • the foam is added to the sugary fluid upstream, prior to its introduction into the reactor, or the sugary fluid and the foam are jointly introduced directly into the reactor feed inlet.
  • a controlled portion of foam is withdrawn with the must 3 through the must withdrawal outlet, for example by providing the outlet with a grid sized to retain the foam blocks, grid which is removed while the spent foam is drawn off.
  • FIGS. 5 and 6 A series of three fermentation reactors 31, 32, 33 connected in series with the appropriate fluid connections are used.
  • the series of reactors can include more reactors.
  • the reactors, all identical, are of the cylindrical type and oriented vertically. Here they are all downflow.
  • the sugary fluid 2 is introduced into the upper part of the first reactor 31, the most upstream in the series of three.
  • the fermentation must 3 comes out in the lower part of the last reactor 33 of the series, the furthest downstream.
  • a fourth reactor 34 identical to the other three, is the spare, inactive reactor.
  • All four reactors are provided with a support 4 consisting of blocks of polyurethane foam as previously, held in position in each of the reactors by a container of the net or grid type(s).
  • the supports 4 of the reactors have different ages, the more they are arranged in an upstream reactor, the older/worn they are.
  • the reactor support 31 has, for example, 1500 hours of operation in production
  • the reactor support 32 has 1000 hours of operation
  • the reactor support 33 has only 500 hours of operation. Every 500 hours, we will disconnect the reactor with the most worn support, here reactor 31 therefore, from the rest of the series of reactors, and connect, downstream of the downstream reactor 33 the spare reactor 34.
  • the sugary fluid is redirected to the inlet in the upper part of the reactor 32, and the wort leaving the reactor 33 is redirected to the inlet in the upper part of the reactor 34, from which the final must emerges in the lower part.
  • the reactor 31 which has been disconnected is drained and cleaned. Its aged support 4 is replaced by a support with new and/or regenerated foam. It is then sterilized and put on hold, to constitute a spare reactor. You can always operate with a spare reactor ready, and at least one disconnected reactor being cleaned/prepared.
  • the colonization of the newly used reactor 34 is favored by the arrival of liquid heavily loaded with biomass coming from the previous reactors.
  • Each reactor can have its own recirculation loop (not shown).
  • Several series of reactors can be used in parallel, for a common collection of fermentation musts in order to pool their treatment.
  • the sweet fluid is the sweet fluid
  • the sugary fluid comprises an aqueous solution of sugars derived from C5 and/or C6 lignocellulose, and/or sugars derived from sacchariferous plants (for example glucose, fructose and sucrose), and/or sugars from starchy plants (for example dextrins, maltose and other oligomers, or even starch).
  • the aqueous solution of C5 and/or C6 sugars comes from the treatment of a renewable source.
  • the renewable source is of the lignocellulosic biomass type which may in particular comprise ligneous substrates (for example leafy and resinous trees), agricultural by-products (for example straw) or those of industrial generators of lignocellulosic waste (from food industries, paper mills).
  • the renewable source can also come from sugar plants, such as for example sugar beet and sugar cane or even starchy plants such as corn and wheat.
  • the aqueous solution of C5 and/or C6 sugars can also come from a mixture of different renewable sources.
  • the bacterial biomass is mainly adsorbed in the form of a biofilm on a support solid.
  • the bacteria are strains belonging to the species Clostridium beijerinckii and/or Clostridium acetobutylicum.
  • the bacteria used in the process can be genetically modified strains or not and naturally producing isopropanol and/or strains of Clostridium naturally producing acetone genetically modified to make them produce isopropanol. In the following examples, it is Clostridium beijerinckii DSM 6423.
  • the solid backing includes polyurethane foam.
  • Polyurethane foam is particularly advantageous because it not only gives access to the production of IBEA type mixtures, but it also gives access to the production of the continuous type by immobilization of the bacterial biomass.
  • the polyurethane foam is capable of fixing bacteria of the genus Clostridium in a sufficiently significant way (/.e., beyond the dilution rate causing the cell washing) allowing the continuous production of mixtures of the IBEA type.
  • polyurethane foam is suitable for being immobilized by immersion in a reactor.
  • a foam based on ceramic material(s) can be used.
  • the polyurethane foam has:
  • volume cavities /.e., pores or cells whose equivalent sphere diameter is between 0.1 and 5 mm, preferably between 0.25 mm and 1.1 mm, preferably between 0.55 and 0.99mm, and/or
  • 10 and 90 g/L preferably between 10 and 80 g/L, preferably between 15 and 45 g/L, such as between 20 and 45 g/L or between 25 and 45 g/L.
  • the solid support comprises a net or a container with mesh comprising cubes or parallelepipeds or other elements of any shape in 3 dimensions (polyhedrons) of large or small size (at least one dimension between 3 mm and 10 m, such as from 2 cm to 1 m), and the net or the container with mesh forming a cylinder whose diameter is less than or substantially equal to the internal diameter of the fermentation reactor 1.
  • the temperature in the reactor(s) is between 28°C and 40°C, preferably between 30°C and 37°C, in particular here 36°C
  • the pressure in the reactor(s) is substantially atmospheric pressure (plus the height of water in the reactor(s))
  • the sugary fluid concentration is between 65 and 35 g/L, preferably between 40 and 60 g/L, and in particular here 44 g/L (aqueous medium)
  • the reactor(s) are operated continuously, with imposed dilution rates
  • the targeted fermentation yield is between 0.28 and 0.34 g of IBEA product/g of sugar used, and in particular here of 0.31 g of IBEA product/g of sugar used.
  • the microorganism is Clostridium beijerinckii DSM 6423
  • the porous support 4 is PU foam in the form of small loose parallelepipeds of dimensions 20 mm x 20 mm x 7 mm. (but as indicated above, may have other dimensions, for example smaller such as: 5 mm x 5 mm x 3 mm or 10mm x 10mm x 7 mm, or larger)
  • the 8 fermentation reactors are filled with solid support 4 and each operate for a given production campaign, here of 1500 hours. Then they are all drained, cleaned, sterilized. They are then filled again with support for a new production campaign of 1500 hours.
  • the reactors are sequenced (they are made to operate in a time-shifted manner) so as to have globally continuous production downstream.
  • Buffer tanks are also provided downstream of the reactors to smooth the flow rates for the downstream section.
  • the time needed to empty/clean/sterilize/refill a reactor is 150 hours.
  • Each reactor operates for 1500 hours, according to the productivity profile described above. This profile is equivalent to a constant apparent productivity of 1.67 g/L.h over 1500 h.
  • a reactor For 150 hours plus 1500 hours, i.e. a total of 1650 hours, a reactor produces the following quantity P1 of alcohols:
  • a reactor performs for one year, i.e. 8000 hours, 8000/1650 production cycles, i.e. 4.85 cycles, and thus produces 4850 tons of alcohol.
  • This profile is equivalent to a constant apparent productivity p of 1.90 g/L.h over 5000 h.
  • a reactor operates for one year, i.e. 8000 hours, 8000/5150 or 1.56 production cycles, and thus produces 5903 tonnes of alcohol.
  • the time needed to empty/clean/sterilize/refill a reactor is 150 hours.
  • a reactor performs for one year, ie 8000 hours, 8000/1500 production cycles, ie 5.33 cycles.
  • Each of the 8 reactors R1 to R8 has a different age T according to table 1 below, "0" meaning in "cleaning” etc.:
  • Each of the 8 reactors has a different productivity p, according to Table 2 below:
  • the first mode is the most economical to implement, and the one that offers the greatest increase in production, the second mode being, for its part, a industrial implementation probably easier.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

La présente invention concerne un procédé de production d'alcools, selon lequel on introduit un fluide sucré (2) dans une section réactionnelle (1) comprenant un support (4) sur lequel sont immobilisés des micro-organismes, afin de produire par fermentation un moût (3) enrichi en alcools sous l'action desdits micro-organismes, tel que le procédé est opéré en continu, et tel qu'on remplace périodiquement une portion de support usé (41) par une portion de support neuf et/ou régénéré (46).

Description

Procédé de production d’alcools avec un support sur lequel sont immobilisés des micro-organismes
Domaine technique
La présente invention concerne un procédé de production d’alcools par fermentation d’un fluide sucré.
Technique antérieure
Afin de répondre aux enjeux de la transition énergétique, de nombreuses recherches sont menées pour développer des procédés dits « verts », permettant d’accéder à des intermédiaires chimiques d’une façon alternative au raffinage du pétrole et/ou à la pétrochimie.
Les alcools issus de procédés fermentaires (par exemple isopropanol et n-butanol) sont parmi les substituts de dérivés pétrochimiques les plus prometteurs. La fermentation ABE (Acétone - Butanol - Ethanol), réalisée par des microorganismes appartenant au genre Clostridium, est une des plus anciennes fermentations à avoir été industrialisée, et a été depuis largement étudiée. Plus récemment, la fermentation IBE (Isopropanol - Butanol - Ethanol) produisant un mélange d’isopropanol, butanol et éthanol et réalisée également par des microorganismes appartenant au genre Clostridium a fait l’objet de nombreuses études.
Concernant le mode de conduite fermentaire employé dans ce type de procédé, la production en mode discontinu (« batch » selon la terminologie anglo-saxonne) reste la méthode conventionnelle pour les fermentations ABE et IBE, malgré la faible productivité affichée pour ce type de procédé, dans l’intervalle 0, 1-0,7 g/L.h (voir, par exemple, Jones D. T., Woods D.R., 1986, Acetone- Butanol Fermentation Revisited. Microbiol. Rew., 50 (4), 484-524 ou Tableau 16.6 Lopez-contreras A. et al chapter book 16, Bioalcohol Production: Biochemical Conversion of Lignocellulosic Biomass, 2010). Mais ces productivités restent trop faibles pour envisager un procédé industriel économiquement viable.
Un procédé continu avec des cellules en suspension dans un réacteur homogène peut également être envisagé. Mais la productivité est également assez faible et peut difficilement être augmentée de façon significative. Un problème technique est la concentration des cellules dans le milieu fermentaire, principalement contrôlée par le taux de dilution appliqué dans le procédé. Celui-ci ne peut pas être élevé pour éviter le lavage cellulaire (« wash out » selon la terminologie anglo-saxonne) dans le fermenteur. Pour ces raisons, depuis quelques années, un fort intérêt est porté aux méthodes visant une forte rétention de la biomasse microbienne. Deux moyens existent : « l’immobilisation des cellules » et le « recyclage » cellulaire avec une rétention au moyen de membranes filtrantes. La présente invention s’intéressera principalement à la technique d’immobilisation des cellules.
Deux techniques d’immobilisation pour procédé continu sont connues : l’adsorption sur support solide et le confinement, les deux techniques ayant été étudiées pour la production d’ABE.
Dans le premier cas d’adsorption sur support solide, l’adsorption physique des microorganismes sur une surface solide a lieu par des forces électrostatiques, forces de van der Waals, ou par liaison covalente entre la membrane cellulaire bactérienne et le support. Comme il n’existe pas de barrière physique entre le biofilm microbien et la solution de fermentation, différents équilibres entre les taux d’adsorption, de détachement cellulaire et de recolonisation du support solide peuvent être atteints en fonction du support solide, de la mise en œuvre et des conditions opératoires. Il est à noter que les cellules immobilisées sont typiquement entourées de polysaccharides excrétés par les microorganismes (EPS: « Extracellular Polymeric Substances » selon la terminologie anglo-saxonne), et présentent des régimes de croissance et de bioactivité différents de ceux obtenus lorsque les cellules se trouvent en suspension (voir, par exemple, Halan B., Buehler K., Schmid A., 2012, Biofilms as living catalysts in continuous chemical syntheses, Trends in biotechnol., 30 (9), 453-465).
Plusieurs supports solides ont été testés et s’avèrent intéressants d’après la littérature pour la fermentation de type ABE, incluant le charbon (voir, par exemple, Qureshi N., Maddox I.S., 1987, Continuous solvent production from whey permeate using cells of Clostridium acetobutylicum immobilized by adsorption onto bonechar, Enzyme Microb. Technol., (9), 668- 371), les briques (voir, par exemple, Qureshi N., Schripsema J., Lienhardt J., Blaschek H.P., 2000, Continuous solvent production by Clostridium beijerinckii BA 101 immobilized by adsorption onto brick, World Journal of Microbiology & Biotechnology, (16), 377-382), et la pulpe papetière (voir, par exemple, Survase S. A., van Heiningen A., Granstrôm T., 2012, Continuous bio-catalytic conversion of sugar mixture to acetone-butanol-ethanol by immobilized Clostridium acetobutylicum DSM 792, Appl. Microbiol. Biotechnol., (93), 2309- 2316). Mais de tels supports solides ne sont pas synthétiques, et peuvent générer des problèmes de reproductibilité pour les procédés de fermentation.
Dans le deuxième cas, celui d’une immobilisation par confinement, de type encapsulation, les microorganismes sont introduits à l’intérieur d’une matrice poreuse, de façon à éviter leur diffusion vers le milieu extérieur, tout en permettant le transfert de matière pour le support et les nutriments, ainsi que pour les produits de réaction. Des exemples de supports utilisant la technique de confinement par encapsulation incluent les billes d’alginate (voir, par exemple, Mollah A. H., Stuckey D.C., 1993, Maximizing the production of acetone-butanol in alginate bead fluidized bed reactor using Clostridium acetobutylicum, J. Chem. Tech. Biotechnol., (56), 83-89), et de k-carrageenan (voir, par exemple, Godia F., Howard I., Scott D., Davison B.H., 1990, Use of immobilized microbial membrane fragments to remove oxygen and favor the acetone-butanol fermentation, Biotechnol. Prog., 1990, 210-213).
Il a par ailleurs été proposé dans le brevet FR-3 086 670 un procédé où l’on vient fixer dans le réacteur fermentaire au moins une partie de la biomasse bactérienne par adsorption sous forme de biofilm sur un matériau poreux à base de mousse polymérique, de type mousse de polyuréthane. Ce matériau s’est révélé particulièrement performant, en permettant un procédé fermentaire en continu, la mousse permettant de fixer les bactéries de façon suffisamment importante, c’est-à-dire au-delà du taux de dilution causant le lavage cellulaire. Ce matériau ouvre une nouvelle voie pour la production de mélanges de type IBEA, en donnant aussi accès à une production en mode continu par immobilisation de la biomasse bactérienne.
Le brevet FR-3 086 553, par ailleurs, propose un procédé de nettoyage de cette mousse de polyuréthane, consistant à mettre la mousse en contact avec un fluide issu d’un moût fermentaire enrichi en alcool et/ou acétone et/ou une solution aqueuse à pH basique. On peut ainsi, une fois la mousse polymérique « usée », notamment bouchée et/ou saturée en biomasse, la régénérer par nettoyage pour la réutiliser dans un réacteur fermentaire avec des performances identiques à ou voisines de celles d’une mousse neuve.
Cependant, les procédés de production en continu de ce type, avec immobilisation des microorganismes sur un support dans le réacteur fermentaire, restent susceptibles d’amélioration, notamment parce qu’ils nécessitent des phases transitoires, des montées en régime de l’immobilisation cellulaire sur les supports, et des phases de remplacement régulier des supports, phases longues qui pénalisent leur productivité.
L’invention a alors pour but d’améliorer les procédés fermentaires en continu, du type de ceux produisant des mélanges d’alcools ABE ou IBE, notamment en vue d’améliorer leur productivité.
Résumé de l’invention
L’invention a tout d’abord pour objet un procédé de production d’alcools, selon lequel on introduit un fluide sucré dans une section réactionnelle comprenant un support sur lequel sont immobilisés des micro-organismes, afin de produire par fermentation un moût enrichi en alcools sous l’action desdits micro-organismes, tel que le procédé est opéré en continu, et tel qu’on remplace périodiquement (seulement) une portion de support usé par une portion de support neuf et/ou régénéré. On comprend dans le cadre de l’invention par support « usé » un support dont les performances sont amoindries par rapport à un support neuf, notamment en atteignant un niveau de bouchage/saturation-seuil donné, ou en atteignant une durée de vie en production donnée. Le support sera généralement d’autant plus usé qu’il est « âgé », c’est-à-dire qu’il est utilisé depuis un certain temps depuis le démarrage à un instant donné d’une campagne de production.
On comprend dans le cadre de l’invention par support « régénéré » un support usé qui a été traité/nettoyé pour atteindre à nouveau des performances voisines de ou identiques à un support « neuf ».
On comprend dans le cadre de l’invention par support « neuf » un support qui n’a encore jamais été utilisé en production, et qui n’a donc pas encore été colonisé par les microorganismes.
L’invention concerne donc des procédés de fermentation en continu, avec un support immobilisant les micro-organismes dans un réacteur fermentaire. Comme brièvement évoqué plus haut, ces supports, un peu à la manière des catalyseurs dans le domaine de la chimie, se désactivent progressivement : On vient coloniser le support avec les micro-organismes (bactéries) au départ, puis le support se charge en bactéries au cours du temps. Cette accumulation est bénéfique pendant une certaine période de temps, puisqu’elle augmente la concentration en biomasse bactérienne, et elle augmente donc la productivité volumique du réacteur fermentaire. Mais au-delà d’une certaine période de temps, le support se trouve largement colonisé par les bactéries, et des phénomènes de bouchage apparaissent : quand le matériau support se présente sous forme de blocs ou de particules, le bouchage peut être observé entre les particules/blocs et/ou au sein même des particules/blocs quand leur matériau est poreux, ce qui fait alors chuter la production. En outre, il faut prendre en compte la mortalité des cellules dans le biofilm, l’usure observée étant donc la conjonction de phénomènes de bouchage croissants et de la mort croissante des bactéries au cours du temps.
La solution proposée par l’invention est d’utiliser un support qu’on peut remplacer progressivement, en remplaçant à chaque fois une portion du support par une portion neuve/régénérée. Le support est ainsi partiellement renouvelé : la portion de support neuf ou régénéré qu’on introduit est progressivement colonisée à son tour par les bactéries, et devient progressivement efficace, davantage que la portion usée qui a été soutirée. Avec ce système, le support maintient une efficacité globale suffisante pendant toute la campagne de production, avec des portions de support qui présentent des « âges » différents. (On comprend par « âge » le temps passé, à l’instant t, par une portion de support en production depuis le début d’une campagne de production) : on vient remplacer progressivement les portions les plus usées/âgées du support pour les remplacer par des portions neuves/régénérées, conservant ainsi un « âge » moyen, une usure moyenne, globalement inchangés pour le support.
Avantageusement, les micro-organismes sont, selon l’invention, immobilisés sur le support sous forme de biofilms ou d’agrégats sur/dans le support, choisi de préférence poreux.
Avantageusement selon l’invention, le support comporte une pluralité de portions de support disposées successivement selon un sens général d’écoulement du fluide (sucré) dans la section réactionnelle, et lesdites portions ont un degré d’usure décroissant d’amont en aval (par rapport à ce sens d’écoulement). C’est en effet la portion la plus amont par rapport au flux de jus sucré qui tend à se charger en premier en bactéries, qui va donc s’user plus que les suivantes. Selon l’invention, on exploite donc ce fait pour provoquer un rajeunissement partiel contrôlé du support.
Ainsi, de préférence, selon l’invention, on remplace la portion de support usé qui est la plus amont dans le support par la portion de support neuf ou régénéré qu’on dispose, elle, en aval de la portion la plus aval du support.
Le support comprend de préférence des blocs de matériau poreux en vrac, qui se trouvent, dans la zone réactionnelle en production, immergés dans un milieu réactionnel liquide baignant ladite section réactionnelle. Ces blocs sont maintenus de préférence dans la section réactionnelle par des dispositifs mécaniques, qui sont à mailles, tels que des grilles, filets , plaques munies d’orifices, et/ou sous forme de déflecteurs.
On comprend par « en vrac » au sens de l’invention le fait que les blocs ne sont pas agencés les uns par rapport aux autres de façon ordonnée.
Le support peut être de préférence dans un matériau de type mousse, soit à base de polymère, du type mousse en polyuréthane (PU), soit à base de matériau céramique. Leur comportement en milieu liquide (aqueux) va dépendre de leur densité, on choisira en conséquence, notamment, le type/la conformation des dispositifs mécaniques les maintenant dans la section réactionnelle.
On peut se reporter au brevet FR-3 086 670 précité pour un exemple de matériau poreux de type mousse de polyuréthane retenue par un système de filet.
Selon un premier mode de réalisation, la section réactionnelle comporte un réacteur, et le support comporte une pluralité de couches, successivement traversées par le fluide sucré, la portion de support usé et la portion de support neuf et/ou régénéré correspondant chacune à une couche ou un ensemble de couches adjacentes du support. On vient ainsi partager le support en un certain nombre de portions, sous forme d’un empilement de couches que va successivement être traversé par le fluide sucré, et on va pouvoir périodiquement remplacer une, deux, x couches de support usé par le même nombre de couches de support neuf/régénéré.
Au sens de l’invention, et tout particulièrement quand on choisit un support sous forme de blocs de matériau poreux en vrac, le terme « couches » n’est pas à comprendre au sens littéral comme des couches qui seraient parfaitement délimitées les unes par rapport aux autres, continues et avec une interface plane, ou qui seraient parfaitement empilées : ces couches de matériau peuvent avoir des interfaces irrégulières, non planes, même si elles partagent le support en portions qui sont approximativement de même hauteur et/ou qui contiennent approximativement la même quantité de matériau poreux. C’est par soucis de clarté qu’on représente le support sous forme d’un empilement de ces « couches ».
Avantageusement, dans cette configuration, la portion de support usé et la portion de support neuf et/ou régénéré correspondent chacune à une couche du support, la portion de support usé soutirée du réacteur étant la couche la plus amont du support et la portion de support neuf ou régénéré étant introduite dans le réacteur en aval de la couche la plus aval du support.
Dans tout le présent texte, on comprend les termes « amont » et « aval » en fonction du sens général d’écoulement du fluide (sucré) dans la section réactionnelle, ici le réacteur, au travers du support.
Selon une variante, la portion/couche de support neuf ou régénéré est introduite sous forme de blocs de matériau en vrac, dans le réacteur, sous forme solide, notamment par des moyens pneumatiques ou des moyens mécaniques tels une vis sans fin.
Selon une autre variante, la portion/couche de support neuf ou régénéré est introduite sous forme de blocs de matériau en vrac, dans le réacteur, une phase liquide, notamment en suspension dans le fluide sucré alimentant la section réactionnelle.
Selon une variante, la portion/couche usée du support est soutirée du réacteur en phase liquide. Elle peut notamment être soutirée en suspension dans la phase liquide du moût de fermentation sortant du réacteur.
On peut donc équiper le réacteur d’une entrée et/ou une sortie spécifiques, dédiées au remplacement du support poreux, ou plutôt exploiter les entrées/sorties existantes pour alimenter le réacteur en fluide sucré et en soutirer les produits fermentaires. A noter qu’il est avantageux de munir la sortie en produits fermentaires (le moût) d’un moyen mécanique de blocage des solides, de type grille, pour ne pas évacuer les blocs de support poreux involontairement, (moyen qui sera toujours présent quand il existe une sortie dédiée au support poreux, et qui sera amovible, pour pouvoir le retirer / le rendre inactif quand le support usé est à soutirer avec le flux de produits fermentaires, lors d’un remplacement).
Avantageusement, pour ce premier mode de réalisation, le soutirage de la portion/couche de substrat usé à l’une des extrémités du substrat et son remplacement par une portion/couche de substrat neuf/régénéré à son extrémité opposée s’effectue à contre-courant par rapport au sens de circulation du fluide (sucré) dans la section réactionnelle. On parle ici de « contre- courant » puisque le fluide s’écoule d’amont en aval, par définition selon les conventions de la présente invention, dans la section réactionnelle, alors qu’on vient soutirer du support par l’amont et on le complète par l’aval. C’est le mode de fonctionnement le plus judicieux, car, comme expliqué plus haut, c’est généralement la portion la plus amont du support qui tend à se charger le plus/le plus vite en bactéries. On comprend ici par « extrémités » les extrémités (amont/aval) du support relativement au sens d’écoulement global du fluide dans le réacteur en fonctionnement
De préférence, le fluide sucré traverse le support sur lequel les micro-organismes sont immobilisés selon un sens général d’écoulement dans la section réactionnelle comprenant un réacteur, on soutire la portion de support usé du réacteur, et on introduit en remplacement la portion de support neuf ou régénéré, la portion de support usé étant soutirée du réacteur dans la partie la plus amont du support et la portion de support neuf ou régénéré étant introduite dans le réacteur dans la partie la plus aval du support.
La portion de support usé qu’on préfère soutirer du réacteur est la portion la plus amont du support, qui est aussi, généralement, sa portion la plus usée. Et on préfère ajouter la portion de support neuf/régénéré en aval, pour prendre la suite de la portion aval la moins usée : On ne vient donc pas remplacer une portion de support au même endroit, on soutire une portion de support à une de ses extrémités (l’extrémité amont), et on en ajoute une autre à l’autre de ses extrémités (l’extrémité aval) : On crée, on intensifie tout au moins, ainsi la création d’un « gradient » de degré de vieillissement du support le long de la direction d’écoulement du fluide sucré le traversant, les portions/couches de support étant d’autant plus usés qu’elles se situent en amont du support. Avec ce remplacement périodique, on garde un niveau « moyen » de vieillissement du support substantiellement constant, et on peut prolonger les durées de campagne de production et/ou rendre plus productives les durées de campagne à iso-durée.
Ce premier mode de réalisation peut être mis en œuvre de deux façons différentes, avec un réacteur orienté essentiellement selon un axe vertical : - soit avec une circulation du fluide sucré dans le réacteur de haut en bas, le support s’étendant sur au moins une partie de la hauteur du volume utile du réacteur, la portion de support usé étant soutirée du réacteur dans la partie la plus haute du support, et la portion de support neuf ou régénéré étant introduite dans le réacteur dans la partie la plus basse du support,
- soit avec une circulation du fluide sucré dans le réacteur de bas en haut, le support s’étendant sur au moins une partie de la hauteur du volume utile du réacteur, la portion de support usé étant soutirée du réacteur dans la partie la plus basse du support et la portion de support neuf ou régénéré étant introduite dans le réacteur dans la partie la plus haute du support.
A noter que le matériau du support sera de préférence de faible densité (mousse de PU) si on choisit un écoulement de fluide du haut vers le bas dans le réacteur, et qu’il sera de préférence de densité plus élevée (mousse en céramique) si on choisit un écoulement du bas vers le haut.
On peut bien sûr opérer ainsi une pluralité de réacteurs en parallèle, et éventuellement mutualiser la collecte et le traitement des moûts fermentaires issus de chacun des réacteurs.
Selon un deuxième mode de réalisation de l’invention, la section réactionnelle comporte une série de n réacteurs connectés fluidiquement en série les uns aux autres, et au moins un réacteur de rechange. Le support est alors réparti entre les n réacteurs sous forme de n portions de support, et on remplace périodiquement une portion du support usé par une portion de support neuf ou régénéré en déconnectant un réacteur appartenant à la série de n réacteurs en série et contenant la portion de support usé et en connectant le réacteur de rechange contenant une portion de support neuf ou régénéré à la série de n-1 réacteurs.
Ici, c’est donc l’ensemble du support contenu dans un réacteur qui est la « portion » de support, et c’est un réacteur entier qu’on vient alors remplacer par un autre. Mais on garde le même principe qu’avec le premier mode de réalisation, avec des réacteurs qui vont, au fil de la campagne de production avoir des supports présentant des degrés de vieillissement différents d’un réacteur à l’autre, le réacteur le plus amont ayant le support le plus « âgé ».
De préférence, le réacteur qu’on déconnecte est le réacteur le plus amont par rapport au sens d’écoulement général du fluide sucré à travers la série des n réacteurs, et le réacteur de rechange qu’on connecte est placé en aval du réacteur le plus aval de la série par rapport audit sens d’écoulement.
Comme dans le cas du premier mode de réalisation, on a donc ici une sorte de gradient de degré de vieillissement du support, qui diminue d’un réacteur au suivant, d’amont en aval selon le sens d’écoulement du fluide (sucré). Selon ce deuxième mode de réalisation, on a donc un volant de réacteurs en mode de production, et un volant de un ou plusieurs autres réacteurs, qui comprennent le/les réacteurs qui ont été déconnectés et qui vont pouvoir être traités pour redevenir opérationnel(s) sous forme de réacteur de rechange en attente d’un remplacement.
En effet, une fois le réacteur contenant la portion de support usé déconnecté, on procède à différents traitements, dont généralement une vidange, et à au moins une opération de traitement du support usé. Ce traitement peut consister en un nettoyage, du type nettoyage en vue de le régénérer, par exemple selon le mode opératoire décrit dans le brevet FR-3 086 553 précité, ou peut consister à le remplacer par un support neuf. Puis, optionnellement, on peut poursuivre le traitement par une stérilisation, afin de le stocker en tant que réacteur de rechange.
Selon une variante optionnelle, la section réactionnelle comprend au moins un réacteur qui est muni d’une boucle de recirculation de fluide, et ceci quel que soit le mode de réalisation de l’invention (des réacteurs indépendants ou montés en série). Alternativement ou cumulativement, la section réactionnelle comprend au moins un réacteur muni de moyens d’agitation mécanique. La boucle de recirculation et/ou l’agitation mécanique assurent un brassage dans le réacteur qui en est équipé, et en homogénéise le contenu.
Quel que soit le mode de réalisation envisagé, la portion du support usé et la portion de support neuf ou régénéré qui la remplace ont de préférence le même dimensionnement. On garde ainsi au support global une taille constante. A noter que le support poreux peut présenter une certaine flottabilité, notamment quand il se trouve sous forme de blocs en vrac de mousse de polymère type polyuréthane, ce qui veut dire que si on soutire une portion de support à une extrémité du support et on en ajouter une autre à l’autre extrémité (cas du premier mode de réalisation notamment), avec des modes de fixation/maintien adaptés du support, après stabilisation des positionnements des portions, le support reste globalement à la même place, à la même « hauteur » dans le réacteur (si on prend l’exemple d’un réacteur orienté verticalement).
Quel que soit le mode de réalisation envisagé, le remplacement périodique de la portion de support usé par une portion de support neuf et/ou régénéré peut se faire par soutirage de la portion de support usé hors de la section réactionnelle et introduction de la portion de support neuf et/ou régénéré dans la section réactionnelle de façon concomitante, ou l’une après l’autre.
Préférentiellement, la portion de support neuf et /ou régénéré est stérilisée avant introduction dans la section réactionnelle. Quel que soit le mode de réalisation envisagé, le remplacement périodique de la portion de support usé par la portion de support neuf ou régénéré se fait avec des intervalles de temps constants, ou croissants, ou décroissants avec le temps, ou selon des intervalles de temps pilotés selon une mesure ou une évaluation du degré d’usure du support. Le degré d’usure peut être évalué en fonction de différents indicateurs : notamment la mesure ou l’évaluation de la baisse de performance de production, l’évolution du pH, la mesure ou l’évaluation de l’évolution du ratio entre les différents produits issus de la fermentation.
Quel que soit le mode de réalisation envisagé, le procédé continue, de préférence, à produire pendant le remplacement périodique d’une portion de support usé par une portion de support neuf ou régénéré :
- dans le premier mode de réalisation, ce remplacement en continu est facilité si, comme déjà évoqué, on introduit le support neuf avec l’alimentation en flux sucré et on soutire le support usé avec le flux de produits sortant du réacteur,
- dans le deuxième mode de réalisation, le remplacement d’un réacteur par un autre peut induire une interruption courte de production, le temps de déconnecter un réacteur et de reconnecter l’autre.
Dans un mode comme dans l’autre, ce remplacement partiel de support conduit à un meilleur lissage de la production.
L’invention, dans son application préférée, vise à produire un moût fermentaire comprenant de l’isopropanol, du butanol et de l’éthanol, les micro-organismes étant issus d’une souche appartenant au genre Clostridium. De préférence, ils sont supportés par un support poreux de type mousse à base de matériau polymère, comme le polyuréthane, ou de matériaux céramiques.
Selon un mode de réalisation préféré de l’invention, le procédé selon la présente invention concerne la production de mélange d’alcools de type ABE ou IBE ou IBEA, procédé selon lequel on introduit un fluide sucré dans une section réactionnelle comprenant un support en matériau solide poreux sur lequel sont immobilisés des micro-organismes du genre Clostridium, ledit support comportant une pluralité de portions ou couches du matériau solide poreux en vrac, qui sont disposées successivement selon un sens général d’écoulement dudit fluide sucré. Ce mode de réalisation préféré concerne aussi la section réactionnelle ainsi équipée de support.
L’invention sera décrite ci-après plus en détails à l’aide d’exemples de réalisation non limitatifs.
Liste des figures La figure 1 représente un exemple de procédé selon le premier mode de réalisation de l’invention.
La figure 2 représente un procédé selon un autre exemple de procédé selon le premier mode de réalisation de l’invention représenté à la figure 1.
La figure 3 représente une variante du procédé représenté à la figure 1.
La figure 4 représente une variante du procédé représenté à la figure 1.
La figure 5 représente un procédé selon un deuxième mode de réalisation de l’invention, en phase de production.
La figure 6 représente le procédé selon le deuxième mode de réalisation de l’invention selon la figure 5, pendant la phase de remplacement partiel du support des micro-organismes.
L’ensemble des figures est très schématique, seuls les éléments/dispositifs les plus significatifs au vu de l’invention sont représentés, et, notamment, toutes les conduites, vannes etc. ... ne sont pas représentées. L’échelle n’est pas nécessairement respectée, et les références identiques d’une figure à l’autre correspondent au même élément, au même flux etc... Tous les réacteurs utilisés sont de type cylindriques avec un axe longitudinal vertical.
Description des modes de réalisation
Le procédé de fermentation de l’invention selon un premier mode de réalisation
Un premier mode de réalisation est décrit à l’aide des figures 1 à 4. Les réacteurs 1 des figures
1 à 4 sont identiques, à part des entrées/sorties de fluide configurées différemment. Ce sont des réacteurs fermentaires conventionnels, essentiellement de forme cylindrique orientés selon un axe vertical.
Sont tout d’abord décrites les figures 1 et 2 : les réacteurs 1 sont alimentés par un fluide sucré
2 et un flux de moût fermentaire 3 en est soutiré. Dans la variante de la figure 1 , le réacteur 1 est alimenté en partie haute du réacteur, et le moût 3 est extrait en partie basse du réacteur 1 : le flux d’écoulement dans le réacteur est dit descendant (« downflow » en anglais) Dans la variante de la figure 2 c’est l’inverse, on parle alors de flux montant (« upflow » en anglais) dans le réacteur 1.
Le fluide sucré 2 comprend des sucres en C5 et/ou C6 en phase aqueuse. Le moût fermentaire (que l’on peut aussi appeler jus fermentaire ou vin ou produits fermentaires) 3, lui, est enrichi en isopropanol, butanol, éthanol et acétone par rapport au fluide sucré 2 par conversion des sucres en alcool/solvant sous l’action d’un micro-organisme déposé sur le support 4 solide contenu dans le réacteur 1. Ce support 4 comprend une mousse en polyuréthane, qui joue le rôle d’un lit mobile dans le réacteur 1 sous forme de blocs disposés en vrac et retenus par des systèmes de grilles/ de filets non représentés qui les maintiennent en place sur une certaine hauteur dans le réacteur, à la manière d’un lit fixe. (Alternativement, les blocs de mousse peuvent être disposés de façon structurée, et non en vrac). Le microorganisme colonisant le support est du type Clostridium.
L’étape de fermentation dans le réacteur fermentaire 1 peut être réalisée à une température comprise entre 28°C et 40°C, de préférence entre 30°C et 37°C, de manière à ce que le moût fermentaire 3,3’ comprenne des produits de la réaction de fermentation de type IBEA, par exemple de l’isopropanol, qui est ensuite évacué hors du réacteur.
Ensuite, le moût fermentaire 3 (étapes non représentées) est traité, notamment avec une ou plusieurs étapes successives de type séparation : il est par exemple introduit dans une unité de séparation permettant de séparer et d’extraire les composés d’intérêt du moût de fermentation, ces derniers étant évacués pour être transformés ou valorisés tels quels. Les résidus de la séparation, couramment appelés vinasses, sont évacués de l’unité de séparation, ils sont généralement composés d’eau ainsi que de tout produit liquide ou solide non converti ou non extrait lors des étapes précédentes. L’unité de séparation peut mettre en œuvre une ou plusieurs distillations, et éventuellement une séparation des matières solides et/ou en suspension par exemple par centrifugation, décantation et/ou filtration.
Revenons au réacteur 1 : le support 4 sert donc à immobiliser les micro-organismes (ci- après également désignés par les termes bactéries ou biomasse bactérienne), et à favoriser leur croissance par adsorption sur le support solide 4 directement dans le réacteur fermentaire 1. Cette étape d’immobilisation/adsorption peut aussi être réalisée indirectement, dans un réservoir secondaire non représenté (optionnel), fonctionnant par exemple en mode « in stream » par rapport au réacteur fermentaire 1 : Le support solide 4, une fois chargé de biomasse bactérienne, est alors introduit dans le réacteur fermentaire 1.
Le support solide 4 est partiellement ou, de préférence, totalement immergé, quand le réacteur 1 est en fonctionnement, pour notamment augmenter la formation des biofilms et améliorer les performances.
Le support solide a une forme adaptée pour mettre en œuvre le procédé de l’invention, c’est- à-dire qu’il est constitué d’une pluralité de couches empilées les unes sur les autres selon l’axe vertical du réacteur, qui est aussi l’axe général d’écoulement du fluide traversant le réacteur. Les couches sont conçues pour pouvoir être retirées/ajoutées dans le réacteur indépendamment des autres. Aux figures 1 et 2, on a représenté cinq couches 41 à 45, toutes de même dimensionnement, notamment de même hauteur mesurée selon l’axe vertical, et toutes contiguës. C’est un simple exemple de réalisation, l’invention adaptant la taille et le nombre de couches en fonction, notamment du dimensionnement du réacteur, et les couches peuvent être superposées les unes aux autres sans nécessairement être en contact les unes avec les autres, un espace pouvant être prévu entre deux couches consécutives de l’empilement.
Comme indiqué plus haut, le support 4 est ici constitué d’un empilement de blocs de mousse en vrac. Les « couches » ne sont donc pas à comprendre au sens littéral, n’ont pas d’interface planes, permettent de « découper » le support en portions approximativement de même dimension, ici de même hauteur ou, ce qui revient au même, en portions contenant la même quantité de mousse, ces portions étant « empilées » le long de l’axe longitudinal, ici l’axe vertical, du réacteur.
Les blocs de mousse peuvent se présenter sous la forme de cubes ou des parallélépipèdes ou autres éléments de formes quelconques à trois dimensions. Le filet ou le contenant avec maillage 10 de type grille peut définir une forme de type cylindrique dont le diamètre est inférieur ou sensiblement égal au diamètre interne du réacteur fermentaire 1. De façon plus générale, les couches peuvent avoir une section de même forme géométrique (circulaire ou non) et légèrement inférieure à celle du réacteur, qu’il soit cylindrique ou non. Au sein de chaque couche, les particules ou blocs de mousse peuvent bouger, elles sont mobiles mais contenues par le contenant de type filet/grille(s).
Les couches de support solide 41 à 45 sont de préférence centrées par rapport aux parois internes du réacteur fermentaire 1. Avantageusement, elles ne perturbent pas la circulation du liquide en entrée comme en sortie du réacteur, notamment lorsqu’il est opéré en continu. De plus, la présence éventuelle d’insolubles tels que ceux issus des grandes céréales ne pose pas de problèmes. Le flux de fluide sucré arrivant par le conduit 1 peut également être introduit au droit des couches de support solide 4, par exemple quand la ou les premières couches affleurent à la surface du milieu réactionnel du réacteur fermentaire 1. Avantageusement, lorsque le support solide affleure à la surface du milieu réactionnel au niveau de l’entrée du fluide sucré, le milieu est localement moins concentré en alcool et la croissance des bactéries est favorisée.
Les différentes couches 41 à 45 sont représentées symboliquement avec une nuance de gris d’autant plus soutenue que la mousse qu’elles contiennent est usée, c’est-à-dire que la mousse a un « âge » plus élevé dans la campagne de production du réacteur. Comme on le voit des figures 1 et 2, c’est dans la partie la plus amont du support 4 que les couches sont les plus usées/vieilles : plus la position de la couche est amont dans le support, plus elle est âgée/ usée. L’usure démarre en effet avec la colonisation du support. A force, les pores se bouchent ou les bactéries meurent et ne produisent plus ou moins, et ce phénomène est le plus fort dans la zone la plus amont, qui reçoit en premier le fluide sucré.
Le procédé selon l’invention consiste à remplacer la couche 41 la plus usée (la plus amont) en l’extrayant du réacteur (flèche 5), puis en la remplaçant par une couche 46 neuve ou régénérée (flèche 6). (On a représenté cette couche de façon symbolique à la figure avant son introduction dans le réacteur, dans la mesure où on privilégie l’ajout du support sous forme de blocs de mousse en vrac : avant introduction, le support peut être stocké et transporté jusqu’au réacteur dans un contenant de n’importe quelle forme, naturellement). Globalement, la hauteur du support 4 dans le réacteur après ce remplacement reste inchangée. Après remplacement, c’est la couche 42 qui devient la couche la plus âgée/usée de l’empilement de couches, et la couche 46 qui devient la plus « jeune ». Cette couche est de préférence nue, elle ne contient que de la mousse de polyuréthane, et elle va progressivement s’activer par contamination bactérienne depuis les autres couches et développer elle aussi des biofilms à la surface de la mousse.
Comme représenté schématiquement aux figures 1 et 2, le remplacement peut se faire par des entrées/sorties dédiées pratiquées dans la paroi latérale du réacteur : Pour soutirer la mousse usée, on peut prévoir une sortie dédiée, la mousse évacuée étant en suite séparée du fluide qu’elle a entrainée, le fluide étant éventuellement réinjecté dans le réacteur. Pour introduire la mousse neuve ou régénérée, on peut utiliser des moyens pneumatiques ou mécaniques de type vis sans fin.
On a pu vérifier qu’avec un tel remplacement partiel à des fréquences de temps adaptées selon la durée de campagne de production visée, ce système à contre- cou rant (entre la circulation du fluide dans le réacteur et le changement de support partiel) est très intéressant car il permet de maintenir la productivité quasi-constante au cours du temps pendant la campagne de production, et d’augmenter le temps d’utilisation du réacteur (ou de la garder constante avec une meilleure productivité).
Le procédé de la figure 3 est une variante du procédé de la figure 1 : toutes choses égales par ailleurs, on vient:
- d’une part, ajouter au réacteur une boucle de recirculation 7, qui permet de mieux homogénéiser le contenu du réacteur et de susciter un brassage/une circulation favorable dans le réacteur,
- d’autre part, ajouter des déflecteurs 8 sous forme de grilles, plaques perforées, plaques pleines ou moyens équivalents, qui sont disposés en alternance, en escalier, sur la hauteur du support, l’écartement entre deux déflecteurs successifs mesuré selon la hauteur du réacteur, définissant la hauteur d’une couche de support au sens de l’invention. Ici, on utilise donc des moyens mécaniques pour identifier les couches et pour conduire le cheminement du fluide au travers du support 4 (notamment dans le cas de plaques pleines, non perforées).
Le procédé de la figure 4 est une autre variante de la figure 1. Les différences d’avec la figure 1 sont les suivantes :
- d’une part, on prévoit, comme dans la variante de la figure 3, une boucle de recirculation,
- d’autre part, on n’utilise pas d’entrées/sorties dédiées pour la mousse. En effet, ici, le fluide sucré est introduit en partie basse du réacteur par une entrée d’alimentation en fluide sucré, qui est également utilisée pour introduire périodiquement de la mousse neuve. Pour se faire, on vient momentanément ajouter au fluide sucré des blocs de mousse en suspension. Soit on vient ajouter la mousse au fluide sucré en amont, préalablement à son introduction dans le réacteur, soit on introduit conjointement directement le fluide sucré et la mousse dans l’entrée d’alimentation du réacteur. Pour le soutirage de la mousse usée, en partie haute, on vient retirer une portion contrôlée de mousse avec le moût 3 par la sortie de soutirage du moût, par exemple en munissant la sortie d’une grille dimensionnée pour retenir les blocs de mousse, grille que l’on retire le temps du soutirage de la mousse usée.
Le procédé de fermentation de l’invention selon un deuxième mode de réalisation
Ce deuxième mode est illustré aux figures 5 et 6 : On utilise une série de trois réacteurs de fermentation 31 , 32, 33 montés en série avec les connexions fluidiques appropriées. Naturellement, ce n’est qu’un exemple, et la série de réacteurs peut comprendre davantage de réacteurs. Comme dans le mode de réalisation précédent, les réacteurs, tous identiques, sont de type cylindrique et orientés verticalement. Ici, ils sont tous à flux descendant. Le fluide sucré 2 est introduit en partie haute du premier réacteur 31 , le plus amont dans la série de trois. Le moût fermentaire 3 sort en partie basse du dernier réacteur 33 de la série, le plus aval. Un quatrième réacteur 34, identique aux trois autres, est le réacteur de rechange, inactif.
L’ensemble des quatre réacteurs est muni d’un support 4 constitué de blocs de mousse de polyuréthane comme précédemment, retenus en position dans chacun des réacteurs par un contenant de type filet ou grille(s). Les supports 4 des réacteurs ont des âges différents, plus ils sont disposés dans un réacteur amont, plus ils sont vieux/usés. C’est ainsi que le support du réacteur 31 a, par exemple, 1500 heures de fonctionnement en production, le support du réacteur 32 a 1000 heures de fonctionnement, et le support du réacteur 33 n’a que 500 heures de fonctionnement. Toutes les 500 heures, on va déconnecter le réacteur ayant le support le plus usé, ici le réacteur 31 donc, du reste de la série de réacteurs, et connecter, en aval du réacteur aval 33 le réacteur de rechange 34. Naturellement, on fait les modifications appropriées : le fluide sucré est redirigé vers l’entrée en partie haute du réacteur 32, et le moût sortant du réacteur 33 est redirigé vers l’entrée en partie haute du réacteur 34, d’où sort en partie basse le moût final.
Le réacteur 31 qui a été déconnecté est vidangé, nettoyé. On remplace son support 4 vieilli par un support avec de la mousse neuve et/ou régénérée. On vient ensuite le stériliser et le mettre en attente, pour constituer un réacteur de rechange. On peut fonctionner avec toujours un réacteur de rechange prêt, et au moins un réacteur déconnecté en cours de nettoyage/préparation.
La colonisation du réacteur nouvellement utilisé 34 est favorisée par l’arrivée de liquide fortement chargé en biomasse venant des réacteurs précédents. Chaque réacteur peut posséder sa propre boucle de recirculation (non représentée). Plusieurs séries de réacteurs peuvent être utilisés en parallèle, pour une collecte commune des moûts de fermentation afin de mutualiser leur traitement.
Là encore, on vérifie qu’avec ce remplacement de réacteurs, on peut augmenter les durées de campagne de production et/ou améliorer la productivité du procédé.
Description des modes de réalisation
Le fluide sucré
Selon un ou plusieurs modes de réalisation, le fluide sucré comprend une solution aqueuse de sucres issus de la lignocellulose en C5 et/ou C6, et/ou de sucres issus des plantes saccharifères (par exemple glucose, fructose et saccharose), et/ou de sucres issus des plantes amylacées (par exemple dextrines, maltose et autres oligomères, voire d’amidon). Selon un ou plusieurs modes de réalisation, la solution aqueuse de sucres en C5 et/ou C6 provient du traitement d’une source renouvelable. Selon un ou plusieurs modes de réalisation, la source renouvelable est du type biomasse lignocellulosique qui peut notamment comprendre les substrats ligneux (par exemple feuillus et résineux), les sous-produits de l’agriculture (par exemple de la paille) ou ceux des industries génératrices de déchets lignocellulosiques (provenant d’industries agroalimentaires, papeteries). La source renouvelable peut également provenir de plantes sucrières, comme par exemple la betterave sucrière et la canne à sucre ou encore les plantes amylacées comme le maïs et le blé. La solution aqueuse de sucres en C5 et/ou C6 peut également provenir d’un mélange de différentes sources renouvelables. La biomasse bactérienne est principalement adsorbée sous forme de biofilm sur un support solide. Préférablement, les bactéries sont des souches appartenant à l’espèce Clostridium beijerinckii et/ou Clostridium acetobutylicum. Les bactéries utilisées dans le procédé peuvent être des souches génétiquement modifiées ou non et naturellement productrice d’isopropanol et/ou des souches de Clostridium naturellement productrice d’acétone génétiquement modifiées pour les faire produire de l’isopropanol. Dans les exemples suivants, il s’agit de Clostridium beijerinckii DSM 6423.
Le support solide
Le support solide comprend une mousse de polyuréthane. La mousse de polyuréthane est particulièrement avantageuse car elle donne accès non seulement à la production de mélanges de type IBEA, mais elle donne aussi accès à la production de type continu par immobilisation de la biomasse bactérienne. En effet, la mousse de polyuréthane est capable de fixer les bactéries du genre Clostridium de façon suffisamment importante (/.e., au-delà du taux de dilution causant le lavage cellulaire) permettant de produire en continu des mélanges de type IBEA. De plus, la mousse de polyuréthane est adaptée pour être immobilisée par immersion dans un réacteur. Alternativement, on peut utiliser une mousse à base de matériau(x) céramique(s).
Selon un ou plusieurs modes de réalisation, la mousse de polyuréthane présente :
- des cavités volumiques (/.e., pores ou cellules) dont le diamètre de sphère équivalent est compris entre 0,1 et 5 mm, de préférence entre 0,25 mm et 1 ,1 mm, de préférence entre 0,55 et 0,99 mm, et/ou
- une densité apparente (/.e., masse sur volume apparent) mesurée dans l’air comprise entre
10 et 90 g/L, de préférence entre 10 et 80 g/L, de préférence entre 15 et 45 g/L, tel qu’entre 20 et 45 g/L ou entre 25 et 45 g/L.
11 est possible d’utiliser un support solide 4 d’un seul bloc dans le deuxième mode de réalisation illustré aux figures 5 et 6. Pour le premier mode de réalisation illustré aux figures 1 à 4, on peut utiliser des blocs (par exemple sous forme de disques) qu’on vient empiler. De préférence, cependant, le support solide comprend un filet ou un contenant avec maillage comprenant des cubes ou des parallélépipèdes ou autres éléments de formes quelconques à 3 dimensions (des polyèdres) de grande ou petite taille (au moins une dimension entre 3 mm et 10 m, tel que de 2 cm à 1 m), et le filet ou le contenant avec maillage formant un cylindre dont le diamètre est inférieur ou sensiblement égal au diamètre interne du réacteur fermentaire 1. Il se peut que des dégagements gazeux aient tendance à faire remonter le support solide 4 : au moins une plaque perforée, un simple filet ou au moins une grille peut suffire pour maintenir le support solide 4, par exemple en mouvement, dans le réacteur fermentaire 1. Les conditions opératoires préférées selon l’invention, et utilisées dans les exemples
- La température dans le(s) réacteur(s) est comprise entre 28°C et 40°C, de préférence entre 30°C et 37°C, notamment ici de 36°C
- La pression dans le(s) réacteur(s) est sensiblement la pression atmosphérique (plus la hauteur d’eau dans le(s) réacteur(s))
- La concentration en fluide sucré est comprise entre 65 et 35 g/L, de préférence entre 40 et 60 g/L, et notamment ici de 44g/L (milieu aqueux)
- Le(s) réacteur(s) sont opérés en continu, avec des taux de dilution imposés
- Le rendement de la fermentation visé est compris entre 0,28 et 0,34 g de produit IBEA/g de sucre utilisé, et notamment ici de de 0,31g de produit IBEA/g de sucre utilisé.
- Le microorganisme est Clostridium beijerinckii DSM 6423
- Le support poreux 4 est de la mousse en PU sous forme de petits parallélépipèdes en vrac de dimensions 20 mm x 20 mm x 7 mm. (mais comme indiqué plus haut, peut avoir présenter d’autres dimensions, par exemple plus petites telles que : 5 mm x 5 mm x 3 mm ou 10mm x 10mm x 7 mm, ou plus grandes)
- Pour tous les exemples qui suivent, on considère une installation de 8 réacteurs fermentaires définissant un volume utile de 400 M3 chacun.
1
Les 8 réacteurs fermentaires sont remplis de support solide 4 et fonctionnent chacun pendant une campagne de production donné, ici de 1500 heures. Puis ils sont tous vidangés, nettoyés, stérilisés. Ils sont ensuite remplis à nouveau de support pour une nouvelle campagne de production de 1500 heures.
On séquence les réacteurs (on les fait fonctionner de manière décalée dans le temps) de manière à avoir une production globalement continue en aval. On prévoit également des bacs tampon en aval des réacteurs pour lisser les débits pour la section aval.
Pour un réacteur donné on suppose suivre le profil de productivité p suivant :
- Montée en régime : de 0 à 500h, montée de 0 g/L.h à 2 g/L.h
- Production : de 0 à 1500h, productivité constante de 2 g/L.h
La durée nécessaire pour vidanger/ nettoyer/ stériliser/ re-remplir un réacteur est de 150 heures. Chaque réacteur fonctionne 1500 heures, selon le profil de productivité décrit ci- dessus. Ce profil est équivalent à une productivité apparente constante de 1 ,67 g/L.h sur 1500 h.
Pendant 150 heures plus 1500 heures, soit un total de 1650 heures, un réacteur produit la quantité P1 d’alcools suivante:
P1 = 1 ,67 *1e-6*400* 1000* 1500 = 1000 t, soit 1000 tonnes d’alcools.
Un réacteur effectue pendant une année, soit 8000 heures, 8000/1650 cycles de production, soit 4,85 cycles, et produit ainsi 4850 tonnes d’alcools.
On calcule le temps de décalage T des réacteurs, qui est égal au temps de vidange plus le temps de nettoyage plus le temps de stérilisation plus le temps de re-remplissage plus le temps de fonctionnement maximum divisé par le nombre de réacteurs -1 , soit :
T1 = (150 + 1500)/7=235,7 h
Ainsi, à chaque instant, sept réacteurs sont en fonctionnement et un est en nettoyage. On produit alors 33950 tonnes d’alcools en un an.
Il met en œuvre le premier mode de réalisation de l’invention selon la figure 1 (il s’appliquerait de façon analogue aux variantes selon l’une des figures 2 à 4). Avec cet exemple, on renouvelle en continu le support dans chacun des 8 réacteurs. Chaque réacteur peut ainsi fonctionner jusqu’à 3000 heures, voire 5000 heures, avant nettoyage.
Pour une production de 5000 heures, le profil de productivité devient :
- Montée en régime : de 0 à 500h, montée de 0 g/L.h à 2 g/L.h
- Production : de 0 à 5000 h, productivité constante de 2 g/L.h
Ce profil est équivalent à une productivité apparente p constante de 1 ,90 g/L.h sur 5000 h.
Pendant 150 heures plus 5000 heures, soit 5150 heures, un réacteur produit la quantité P2 d’alcools suivante :
P2 = 1 ,9 *1e-6*400* 1000*5000 = 3800 t, soit 3800 tonnes d’alcool
Un réacteur effectue pendant une année, soit 8000 heures, 8000/ 5150 soit 1 ,56 cycles de production, et produit ainsi 5903 tonnes d’alcools.
On peut calculer le temps de décalage T2 des réacteurs, égal au temps de vidange plus le temps de nettoyage plus le temps de stérilisation plus le temps de re-remplissage plus le temps de fonctionnement maximum) divisé par le nombre de réacteurs -1 :
T2 = (150 + 5000)/7= 735,7 h.
Ainsi, à chaque instant, sept réacteurs sont en fonctionnement et un est en nettoyage. On produit alors 41320 tonnes d’alcools en un an, soit 21 ,7 % d’augmentation de production par rapport à l’exemple 1 , ce qui est une augmentation très significative.
Il met en œuvre le deuxième mode de réalisation de l’invention illustré par les figures 5 et 6.
Pour un réacteur donné on suppose suivre le profil de productivité suivant :
- Montée en régime : de 0 à 500h, montée de 0 g/L.h à 2 g/L.h
- Production : de 0 à 1500h, productivité constante de 2 g/L.h
La durée nécessaire pour vidanger/ nettoyer/ stériliser/ re-remplir un réacteur est de 150 heures.
On calcule le temps de décalage T3 des réacteurs, égal au temps de fonctionnement maximum divisé par le nombre de réacteurs :
T3= 1500/8 =187,5 h. Un réacteur effectue pendant une année, soit 8000 heures, 8000/1500 cycles de production, soit 5,33 cycles. Chacun des 8 réacteurs R1 à R8 a un âge T différent selon le tableau 1 ci- dessous, « 0 » signifiant en « nettoyage » etc.. :
Tableau 1
Chacun des 8 réacteurs a une productivité p différente, selon le tableau 2 ci-dessous :
Tableau 2 On peut alors calculer la production P, exprimée en poids en kgs, des 8 réacteurs, selon le tableau 3 ci-dessous : (à noter que dans chaque case de ce tableau est indiquée la production pendant l’intervalle de temps considéré de 187,5 heures, et pas la production cumulée depuis le temps T = 0.) Tableau 3
On produit donc par cycle de production 6600000 kg, soit 6600 tonnes d’alcools. Avec 5,33 cycles de production par an, on produit donc 35200 tonnes/an d’alcools avec cette technologie, ce qui correspond à une augmentation de production de 3,7% par rapport aux résultats de l’exemple 1 , ce qui n’est pas négligeable.
En conclusion, avec le renouvellement partiel du support d’immobilisation en cours de production, avec des portions de support d’âges différents, on peut adopter différentes configurations d’installation, soit avec un (ou plusieurs) réacteurs à lit mobile en contre-courant (mode de réalisation 1), soit avec un enchaînement de réacteurs en lit mobile simulé (mode de réalisation 2). Que ce soit selon le 1er ou le deuxième mode de réalisation, l’invention permet d’augmenter la production, à iso-nombre de réacteurs.
Chaque configuration présente en outre des avantages qui lui sont propres : le premier mode est le plus économique à mettre en œuvre, et celui qui offre l’augmentation de production la plus importante, le deuxième mode étant, quant à lui, d’une mise en œuvre industrielle probablement plus aisée.

Claims

Revendications
1. Procédé de production d’alcools, selon lequel on introduit un fluide sucré (2) dans une section réactionnelle (1) comprenant un support (4) sur lequel sont immobilisés des microorganismes, afin de produire par fermentation un moût (3) enrichi en alcools sous l’action desdits micro-organismes, caractérisé en ce que le procédé est opéré en continu, en ce qu’on remplace périodiquement une portion de support usé (41) par une portion de support neuf et/ou régénéré (46).
2. Procédé selon la revendication précédente, caractérisé en ce que les micro-organismes sont immobilisés sous forme de biofilms ou d’agrégats sur le support (4), qui est poreux.
3. Procédé selon l’une des revendications précédentes, caractérisé en ce que le support (4) comporte une pluralité de portions de support disposées successivement selon un sens général d’écoulement du fluide sucré (2) dans la section réactionnelle (1), et en ce que lesdites portions ont un degré d’usure décroissant d’amont en aval.
4. Procédé selon la revendication précédente, caractérisé en ce qu’on remplace la portion de support usé (41) qui est la plus amont dans le support (4) par la portion de support neuf et/ou régénéré (46) qu’on dispose en aval de la portion la plus aval du support.
5. Procédé selon l’une des revendications précédentes, caractérisé en ce que le support (4) comprend des blocs de matériau solide poreux en vrac, notamment à base de mousse de polymère ou de mousse de matériau céramique, immergés dans un milieu réactionnel liquide baignant la section réactionnelle, et qui sont maintenus dans la section réactionnelle par des dispositifs mécaniques, qui sont à mailles, tels que des grilles, filets et/ou sous forme de déflecteurs (8).
6. Procédé selon l’une des revendications précédentes, caractérisé en ce que la section réactionnelle comporte un réacteur (1), et en ce que le support comporte une pluralité de couches(41 , 42, 43, 44, 45), successivement traversées par le fluide sucré (2), la portion de support usé (41) et la portion de support neuf et/ou régénéré (46) correspondant chacune à une couche du support, la portion de support usé soutirée du réacteur étant la couche la plus amont du support et la portion de support neuf ou régénéré étant introduite dans le réacteur en aval de la couche la plus aval du support.
7. Procédé selon la revendication précédente, caractérisé en ce que la portion/couche de support neuf et/ou régénéré (46) est introduite sous forme de blocs de matériau en vrac, dans le réacteur, sous forme solide, notamment par des moyens pneumatiques ou des moyens mécaniques tels une vis sans fin, ou dans une phase liquide, notamment en suspension dans le fluide sucré alimentant la section réactionnelle.
8. Procédé selon la revendication 6 ou 7, caractérisé en ce que la portion/couche usée du support (41) est soutirée du réacteur en phase liquide, notamment en suspension dans la phase liquide du moût de fermentation sortant du réacteur.
9. Procédé selon l’une des revendications 6 à 8, caractérisé en ce que le soutirage de la portion/couche de substrat usé (41) à une de ses extrémités, et son remplacement par une portion/couche de substrat neuf et/ou régénéré (46) à son extrémité opposée s’effectue à contre-courant par rapport au sens de circulation du fluide sucré (2) dans la section réactionnelle.
10. Procédé selon l’une des revendications 6 à 9, caractérisé en ce que le réacteur (1) est orienté essentiellement verticalement, avec :
- soit une circulation du fluide sucré (2) dans le réacteur de haut en bas, et le support (4) s’étendant sur au moins une partie de la hauteur du volume utile du réacteur, la portion de support usé (41) étant soutirée du réacteur dans la partie la plus haute du support, et la portion de support neuf et/ou régénéré (46) étant introduite dans le réacteur dans la partie la plus basse du support,
- soit une circulation du fluide sucré (2) dans le réacteur de bas en haut, et le support s’étendant sur au moins une partie de la hauteur du volume utile du réacteur, la portion de support usé (41) étant soutirée du réacteur dans la partie la plus basse du support et la portion de support neuf et/ou régénéré (46) étant introduite dans le réacteur dans la partie la plus haute du support.
11 . Procédé selon l’une des revendications 1 à 5, caractérisé en ce que la section réactionnelle comporte une série de n réacteurs (31, 32, 33) connectés fluidiquement en série les uns aux autres, et au moins un réacteur de rechange (34), le support (4) étant réparti entre les n réacteurs sous forme de n portions de support, et en ce qu’on remplace périodiquement une portion du support usé par une portion de support neuf ou régénéré en déconnectant un réacteur (31) appartenant à la série de n réacteurs en série et contenant la portion de support usé et en connectant le réacteur de rechange (34) contenant une portion de support neuf ou régénéré à la série de n-1 réacteurs.
12. Procédé selon la revendication précédente, caractérisé en ce que le réacteur (31) qu’on déconnecte est le réacteur le plus amont par rapport au sens d’écoulement général du fluide sucré (2) à travers la série des n réacteurs, et en ce que le réacteur de rechange (34) qu’on connecte est placé en aval du réacteur le plus aval (33) de la série par rapport audit sens d’écoulement.
13. Procédé selon l’une des revendications 11 ou 12, caractérisé en ce qu’une fois le réacteur (31) contenant la portion de support usé déconnecté, on procède à sa vidange et à au moins une opération de traitement du support usé, du type nettoyage en vue de le régénérer, ou de remplacement par un support neuf, puis optionnellement, à sa stérilisation, afin de le stocker en tant que réacteur de rechange.
14. Procédé selon l’une des revendications précédentes, caractérisé en ce que la section réactionnelle comprend au moins un réacteur (1) qui est muni d’une boucle de recirculation (7) de fluide.
15. Procédé selon l’une des revendications précédentes, caractérisé en ce que le remplacement périodique de la portion de support usé (41) par la portion de support neuf et/ou régénéré (46) se fait avec des intervalles de temps constants, ou croissants, ou décroissants avec le temps, ou selon des intervalles de temps pilotés selon une mesure ou une évaluation du degré d’usure du support.
16. Procédé selon l’une des revendications précédentes, caractérisé en ce qu’on produit un moût fermentaire comprenant de l’isopropanol, du butanol et de l’éthanol, les microorganismes étant issus d’une souche appartenant au genre Clostridium et étant supportés par le support poreux.
17. Procédé selon l’une des revendications précédentes, caractérisé en ce qu’il s’agit d’un procédé de production de mélange d’alcools de type ABE ou IBE ou IBEA, selon lequel on introduit un fluide sucré (2) dans une section réactionnelle (1) comprenant un support en matériau solide poreux (4) sur lequel sont immobilisés des micro-organismes du genre Clostridium, ledit support comportant une pluralité de portions ou couches du matériau solide poreux en vrac, qui sont disposées successivement selon un sens général d’écoulement dudit fluide sucré (2).
EP21816495.2A 2020-12-18 2021-12-02 Procédé de production d'alcools avec un support sur lequel sont immobilisés des micro-organismes Pending EP4263783A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2013608A FR3118061B1 (fr) 2020-12-18 2020-12-18 Procédé de production d’alcools avec un support sur lequel sont immobilisés des micro-organismes
PCT/EP2021/083876 WO2022128492A1 (fr) 2020-12-18 2021-12-02 Procédé de production d'alcools avec un support sur lequel sont immobilisés des micro-organismes

Publications (1)

Publication Number Publication Date
EP4263783A1 true EP4263783A1 (fr) 2023-10-25

Family

ID=74860127

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21816495.2A Pending EP4263783A1 (fr) 2020-12-18 2021-12-02 Procédé de production d'alcools avec un support sur lequel sont immobilisés des micro-organismes

Country Status (6)

Country Link
US (1) US20240060095A1 (fr)
EP (1) EP4263783A1 (fr)
CN (1) CN116601283A (fr)
CA (1) CA3198700A1 (fr)
FR (1) FR3118061B1 (fr)
WO (1) WO2022128492A1 (fr)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3205377A1 (de) * 1982-02-16 1983-08-25 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zur kompressionsregenerierung flexibler poroeser materialien
FR2550220B1 (fr) * 1983-08-01 1986-03-14 Multibio Procede et installation pour la production d'ethanol partant de substrats sucres concentres
US5079011A (en) * 1988-09-27 1992-01-07 Cultor, Ltd. Method using immobilized yeast to produce ethanol and alcoholic beverages
FR3086553B1 (fr) 2018-09-28 2020-11-13 Ifp Energies Now Procede de nettoyage d’un support solide de reacteur fermentaire comprenant une mousse de polyurethane contaminee
FR3086670B1 (fr) 2018-09-28 2024-05-31 Ifp Energies Now Procede de production d’alcools avec clostridium sur support solide

Also Published As

Publication number Publication date
FR3118061B1 (fr) 2023-07-14
CA3198700A1 (fr) 2022-06-23
CN116601283A (zh) 2023-08-15
US20240060095A1 (en) 2024-02-22
WO2022128492A1 (fr) 2022-06-23
FR3118061A1 (fr) 2022-06-24

Similar Documents

Publication Publication Date Title
EP3856916A1 (fr) Procede de production d'alcools avec clostridium sur support solide
US8377687B2 (en) System for harvesting algae in continuous fermentation
EP0640124B1 (fr) Dispositif du type reacteur a volume variable et procede de culture de material cellulaire
Liang et al. Study of sugarcane pieces as yeast supports for ethanol production from sugarcane juice and molasses
JP2012515553A (ja) セラミック薄膜フィルタを使用して微細藻類を収穫する方法
WO2003033181A1 (fr) Procede permettant d'ozoniser et de convertir des matieres organiques en produits utiles
WO2022128492A1 (fr) Procédé de production d'alcools avec un support sur lequel sont immobilisés des micro-organismes
US4351905A (en) Horizontal fermenter
Riansa-ngawong et al. Application of palm pressed fiber as a carrier for ethanol production by Candida shehatae TISTR5843
WO2009044076A2 (fr) Procede de traitement en continu de produits organiques solides et installation pour le traitement en continu de produits organiques solides
WO2017051136A1 (fr) Dispositif de production d'hydrogène
FR2692908A1 (fr) Procédé de cofermentation du glucose et du xylose en éthanol par culture mixte de microorganismes.
FR3086553A1 (fr) Procede de nettoyage d’un support solide de reacteur fermentaire comprenant une mousse de polyurethane contaminee
FR2583060A1 (fr) Production de butanol et d'acetone par fermentation avec recyclage de la biomasse par ultrafiltration
Yamamura et al. Application of 1.0-μm macroporous hollow fiber membrane for prevention of membrane fouling and enhancement of permeate flux in algae harvesting
CA3233528A1 (fr) Procede de production d'alcools par fermentation
Abimbola et al. Anaerobic digestion of whole cells and post-extracted algae residues of Scenedesmus obliquus in immobilized batch reactor
KR101807572B1 (ko) 기능성 입자를 이용한 미세조류 회수장치
ZA201006438B (en) Yeast cell immobilisation
WO2022002625A1 (fr) Valorisation de l'acetone par procede de fermentation ibe impliquant des microorganismes genetiquement modifies
FR3141461A1 (fr) Eau de trempe de maïs limpide
JPS6043956B2 (ja) アルコ−ル製造法
KR101446392B1 (ko) 세포배양을 통한 세포 및 지용성물질의 생산 방법
Abimbola et al. Anaerobic Digestion of Whole Cells and Post-Extracted Algae Residues Of S. Obliquus Using Immobilized Batch Reactor
EP0284697A1 (fr) Nouveau procédé utilisable en continu de fermentation par Saccharomyces cerevisiae d'un moût aqueux en vue de produire de l'éthanol et/ou unebiomasse de levure

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230718

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)