EP4189710A1 - Ensemble de montage de composant et procédé de fixation de composant - Google Patents

Ensemble de montage de composant et procédé de fixation de composant

Info

Publication number
EP4189710A1
EP4189710A1 EP21751962.8A EP21751962A EP4189710A1 EP 4189710 A1 EP4189710 A1 EP 4189710A1 EP 21751962 A EP21751962 A EP 21751962A EP 4189710 A1 EP4189710 A1 EP 4189710A1
Authority
EP
European Patent Office
Prior art keywords
component
fixing
fixing device
circuit board
printed circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP21751962.8A
Other languages
German (de)
English (en)
Inventor
Quan Liu
Yu Qiu
Ronghui Li
Jun Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo eAutomotive Shenzhen Co Ltd
Original Assignee
Valeo Siemens eAutomotive Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Siemens eAutomotive Shenzhen Co Ltd filed Critical Valeo Siemens eAutomotive Shenzhen Co Ltd
Publication of EP4189710A1 publication Critical patent/EP4189710A1/fr
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/06Mounting, supporting or suspending transformers, reactors or choke coils not being of the signal type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/263Fastening parts of the core together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/325Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by abutting or pinching, i.e. without alloying process; mechanical auxiliary parts therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/06Mounting, supporting or suspending transformers, reactors or choke coils not being of the signal type
    • H01F2027/065Mounting on printed circuit boards
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/08Magnetic details
    • H05K2201/083Magnetic materials
    • H05K2201/086Magnetic materials for inductive purposes, e.g. printed inductor with ferrite core
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09063Holes or slots in insulating substrate not used for electrical connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/1003Non-printed inductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10393Clamping a component by an element or a set of elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10598Means for fastening a component, a casing or a heat sink whereby a pressure is exerted on the component towards the PCB
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10606Permanent holder for component or auxiliary printed circuits mounted on a printed circuit board [PCB]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a component mounting assembly and a corresponding method for mounting component.
  • Magnetic core is widely used for energy transfer and filtering.
  • the magnetic core is usually made of ferrite material and can take different shapes.
  • Ferrite core is a kind of anti-interference component with rapid application development, it is cheap, easy to use, and has a significant effect on filtering high frequency noise.
  • An EI core is known in the prior art, which is applied to a motor controller of an electric vehicle, for example.
  • the EI core is mounted on a printed circuit board and consists of a E-core and an I-core which are overlaid.
  • the E-core includes a base and three legs extending perpendicularly therefrom--including two side legs and a middle leg.
  • the two side legs of the E-core are fixedly connected to the I-core, and an air gap is formed between the middle leg of the E-core and the I-core.
  • the air gap width between the middle leg of the E-core and the I-core is a key factor affecting the overall performance of the EI core.
  • the thickness of the adhesive should not be too small, due to the vibration generated by electric vehicle during driving, the adhesive needs to have enough thickness to ensure that the connection between the E-core and the I-core is sufficiently strong.
  • the thickness of the adhesive should not be too great, because the thickness of the adhesive will directly affect the width of the air gap between the middle leg of the E-core and the I-core, excessive thickness of the adhesive will cause the width of air gap to become bigger accordingly, which will in turn adversely affects the electrical performance of the EI core.
  • the use of adhesives for connection requires high technological requirements. The thickness of the adhesive depends on the pressure applied during the pressing step.
  • the pressure is too high, it will cause mechanical damage to the EI core which is relatively fragile; if the pressure is too small, it will cause the adhesive to be too thick. Due to the above-mentioned requirements and restrictions, in production practice, the failure rate of the dispensing process is even as high as 20%.
  • the present disclosure proposes a component mounting assembly and a corresponding method for fixing component, in order to at least overcome various deficiencies in the prior art.
  • a component mounting assembly which comprises:
  • first component and a second component comprising a base and at least one leg extending from the base; and a fixing device comprising a bottom and at least one first fixing tab extending perpendicularly from the bottom, the bottom and the at least one first fixing tab defining an accommodating space; wherein the first component and the second component is received in the accommodating space with one of first component and the second component being located at the bottom, the other one is arranged face to face with respect to said the one of first component and the second component and fixed to said the one via the fixing device.
  • the components can be fixed together in a simple, accurate and efficient manner. Firstly, no additional tools are needed to fix the respective components, and the first component and the second component can be fixed to each other only by snap connection of the fixing device, and the operation is convenient and simple.
  • the first component is an E-core with three legs, and/or the second component is an I-core.
  • the first component is located at the bottom of the fixing device and the second component is kept in the accommodating space fixedly by the first fixing tab and abuts against at least one leg of the first component.
  • the second component is located at the bottom of the fixing device and the first component is kept in the accommodating space fixedly by the first fixing tab and at least one leg thereof abuts against the second component.
  • one of the E-core and the I-core can be first arranged at the bottom of the accommodating space, and then the other is installed, thus there is no special requirement for the assembly sequence of the components.
  • two legs of the first component abut against the second component and a gap is left between a third leg of the first component and the second component.
  • the fixing device and method according to the present disclosure have high repeatability and low failure rate, so that the installation of the EI core can be completed in an efficient and cost-effective manner.
  • the component mounting assembly further comprises a printed circuit board, the first component and the second component are located on either side of the printed circuit board, and the printed circuit board comprises a through cutout corresponding to the at least one leg.
  • the fixing device further includes at least one second fixing tab that extends perpendicularly from the bottom and is configured to pass through the cutout from one side of the printed circuit board and fix the fixing device to the printed circuit board.
  • the fixing device and the EI core received in the fixing device can be fixed to the printed circuit board in a simple, accurate and efficient manner.
  • the fixing device includes a plurality of first fixing tabs and/or a plurality of second fixing tabs.
  • each first fixing tab includes a first hook protruding toward the accommodating space and the first hook is configured to engage with said the other one of the first component (11) and the second component (12) .
  • the second fixing tab includes a second hook protruding away from the accommodating space and the second hook is configured to engage with the printed circuit board and fix the fixing device to the printed circuit board.
  • the bottom of the fixing device is of rectangular shape and includes long and short sides
  • the first fixing tabs are distributed on the long and/or short sides of the bottom and are symmetrically arranged about a center of the bottom.
  • the second fixing tabs are distributed on the long and/or short sides of the bottom and are symmetrically arranged about the center of the bottom.
  • the fixing device includes a reinforcing rib that extends from the root of the first fixing tabs to both sides along the bottom.
  • the first fixing tab with a longer length can be strengthened to prevent the first fixing tab from being broken from the root when it is deformed.
  • the reinforcing rib includes a first reinforcing rib provided on the long side of the bottom, and the first reinforcing rib extends from the root of the first fixing tabs to both sides along the long side of the bottom.
  • the fixing device includes a second reinforcing rib provided on the short side of the bottom, the second reinforcing rib is positioned at both sides of the root of the first fixing tabs and extends along the thickness direction of the first fixing tabs.
  • the bottom of the fixing device includes a hollow portion near the first fixing tabs and/or the second fixing tabs, for enhancing the deformability of the first fixing tab and/or the second deforming tab.
  • the fixing device is made of plastic.
  • the fixing device is formed as a single piece.
  • the component mounting assembly is disconnectable.
  • the two legs of the first component and the second component are fixed with each other using glue, and/or the first component and/or the second component are fixed to the fixing device using glue.
  • a method for fixing component comprises: providing a first component and an second component, wherein the first component includes a base and at least one leg extending from the base; providing a fixing device which comprises a bottom and at least one first fixing tab extending perpendicularly from the bottom, the bottom and the at least one first fixing tab defining an accommodating space; placing one of the first component and the second component at the bottom of the accommodating space; placing the other one of the first component and the second component against said the one located at the bottom face to face such that the first fixing tab abuts said the other one to keep the first component and the second component in the accommodating space.
  • the method for fixing component includes: providing a printed circuit board comprising a through cutout corresponding the at least one leg; after placing said the one of the first component and the second component at the bottom of the fixing device, placing an assembly composed of said the one and the fixing device on one side of the printed circuit board and mounting said the other one in the accommodating space from the other side of the printed circuit board.
  • the step of placing an assembly composed of said the one and the fixing device on one side of the printed circuit board and mounting said the other one in the accommodating space from the other side of the printed circuit board comprises passing the first fixing tab of the fixing device through the cutout and passing the at least one leg of the first component through the cutout.
  • the step of placing an assembly composed of said the one and the fixing device on one side of the printed circuit board and mounting said the other one in the accommodating space from the other side of the printed circuit board comprises passing the second fixing tab of the fixing device through the cutout and fixing the fixing device to the printed circuit board by the second fixing tab, wherein the second fixing tab extends perpendicularly from the bottom.
  • the first component is an E-core with three legs and/or the second component is an I-core.
  • Fig. 1 schematically shows a printed circuit board-core assembly according to the present disclosure in a perspective view.
  • Fig. 2 separately shows the structure of the EI core in a cross-sectional view, in which the printed circuit board and the fixing device are hidden.
  • Fig. 3 separately shows the fixing device according to the present disclosure.
  • Fig. 4 further shows the printed circuit board-core assembly according to the present disclosure in a cross-sectional view.
  • Figs. 5-8 show schematic diagrams of various stages of assembling an EI core to a printed circuit board according to the present disclosure.
  • Fig. 1 shows the component mounting assembly 1 according to the present disclosure in a perspective view.
  • Fig. 2 separately shows the structure of the component mounting assembly 1 in a cross-sectional view.
  • the component mounting assembly includes a first component 11 and a second component 12.
  • the first component 11 includes a base 13 and at least one leg 15 extending from the base 13, for example, the first component 11 may be an E-core having three legs.
  • the second component 12 may be an I-core, for example.
  • the component mounting assembly 1 may be, for example, an EI core located in a motor controller of an electric vehicle.
  • the component mounting assembly 1 may further comprises a printed circuit board 2, with the first component 11 and the second component 12 located on either side of the printed circuit board 2. That is, the printed circuit board 2 carries the EI core. In Fig. 1, a part of the component mounting assembly 1 is located below the printed circuit board 2 and is not visible in the figure.
  • Fig. 2 separately shows the structure of the component mounting assembly 1 in a cross-sectional view, in which the printed circuit board 2 and the fixing device 3 are hidden.
  • the component mounting assembly 1 includes an E-core and an I-core.
  • the first component 11 i.e. the E-core in Fig. 2 includes a base 13 and three legs 15 extending from the base 13.
  • the three legs 15 extend perpendicularly from the base 13, for example.
  • the three legs 15 are respectively two side legs extending from both sides of the base 13 and a middle leg extending from the middle of the base 13, and this middle leg is called a third leg.
  • the base 13 of the first component 11 is parallel to the second component 12, the three legs 15 of the first component 11 extend towards the second component 12, and two legs of the first component 11 abuts against the second component 12, that is, as shown in the figure, the top surfaces of the two side legs 15 are engaged with the bottom surface of the second component 12, an air gap is formed between the middle leg (ie. the third leg) of the first component 11 and the bottom surface of the second component 12. Since there is difference in order of magnitude between the size of the air gap and the height of the core, the air gap is not clearly shown in Fig. 2.
  • the component mounting assembly 1 includes a fixing device 3, in Fig. 1, a part of the fixing device 3 is located under the printed circuit board 2 and is not visible in the figure.
  • the fixing device 3 separately shows the fixing device 3 according to the present disclosure.
  • the fixing device 3 includes a flat bottom 31.
  • the bottom 31 has a rectangular shape and includes long sides and short sides.
  • the fixing device 3 further includes a plurality of fixing tabs extending perpendicularly from the bottom 31, including at least one longer first fixing tab 32 and at least one shorter second fixing tab 33.
  • the fixing device 3 may include a plurality of first fixing tabs 32 and/or a plurality of second fixing tabs 33.
  • the first fixing tabs 32 are used to fix the first component 11 and the second component 12 together, and the second fixing tabs 33 are used to fix the fixing device 3 to the printed circuit board 2.
  • the bottom 31 of the fixing device 3 and the first fixing tab 32 together define a accommodating space 30 for receiving the E-core and the I-core.
  • each first fixing tab 32 includes a first hook 34 at its free end.
  • the first hook 34 protrudes toward the accommodating space 30.
  • the first hook 34 is configured to engage with the first component 11 or the second component 12 and to fix it to the other of the first component 11 and the second component 12.
  • Each second fixing tab 33 includes a second hook 35 at its free end. The second hook 35 of the second fixing tab 33, different from the first hook 34 of the first fixing tab 32, protrudes away from the accommodating space 30.
  • the second hook 35 is configured to engage with the printed circuit board 2 and fix the fixing device 3 to the printed circuit board 2.
  • first fixing tab 32 and the second fixing tab 33 are not limited to the form of the hook-shaped described previously.
  • first fixing tab 32 may be provided with a free end that can be bent freely.
  • the free end of the first fixing tab 32 may be engaged with the first component 11 or the second component 12 in the case of bending and fixed it to the other of the first component 11 and the second component 12.
  • the second fixing tab 33 may also be provided with a free end that can be bent freely.
  • the free end of the second fixing tab 33 can be engaged with the printed circuit board 2 in the case of bending, and fix the fixing device 3 to the printed circuit board 2.
  • Fig. 4 further shows the component mounting assembly according to the present disclosure in the form of a cross-sectional view.
  • the connection and/or mating relationship of the component mounting assembly 1 and the fixing device 3 in the assembled state according to the present disclosure will be described below with reference to Fig. 4.
  • first component 11 and the second component 12 may be located at the bottom 31 of the fixing device 3, and the other may be disposed face to face with respect to it and fixed to it by the fixing device 3.
  • first component 11 that is, the E-core
  • the second component 12 is fixedly held in the accommodating space 30 by the first fixing tab 32 and abuts against at least one leg 15 of the first component 11, for example, the two side legs of an E-core.
  • the first hook 34 of the first fixing tab 32 is configured to be combined with the I-core.
  • the second component 12, that is, the I-core is first mounted at the bottom 31 of the fixing device 3, and the first component 11 is fixedly held in the accommodating space 30 by a first fixing tab 32 and at least one leg thereof, for example, the two side legs of an E-core, abuts against the second component 12.
  • the first hook 34 of the first fixing tab 32 is configured to be combined with the E-core.
  • the printed circuit board 2 included in the component mounting assembly comprises a first side 21 and a second side 22 opposite to the first side 21.
  • the first side 21 is the lower side of the printed circuit board 2
  • the second side 22 is the upper side of the printed circuit board 2.
  • the printed circuit board 2 also includes at least one cutout 23 penetrating through the second side 22 and the first side 21 thereof, corresponding to the leg of the first component 11.
  • the printed circuit board 2 includes three cutouts 23 to facilitate passing the E-core 11 and a part of the fixing device 3 through the printed circuit board 2 (as best shown in Fig. 6) .
  • the first component 11 and the second component 12 are respectively positioned on two sides of the printed circuit board 2.
  • the E-core particularly its base 13, is positioned on the first side 21 of the printed circuit board 2.
  • the bottom 31 of the fixing device 3 is also positioned on the first side 21 of the printed circuit board 2.
  • the E-core is received in the accommodating space 30 of the fixing device 3 and the base 13 of the E-core is placed on the bottom 31 of the fixing device 3.
  • the three legs 15 of the E-core and the first fixing tabs 32 and the second fixing tabs 33 of the fixing device 3 pass through the three cutout 23 of the printed circuit board 2 to the second side 22 of the printed circuit board 2.
  • the second hook 35 of the second fixing tab 33 engages with the top surface of the printed circuit board 2 from the second side 22 of the printed circuit board 2, thereby fixing the fixing device 3 and the E-core to the printed circuit board 2.
  • the second component 12 (I-core) is positioned on the second side 22 of the printed circuit board 2 with its bottom surface is engaged with the side leg 15 of the E-core, and there is a gap between the third leg (middle leg) of the first component 11 and the second component 12.
  • the first hook 34 of the first fixing tab 32 is engaged with the top surface of the I-core, so that the I-core is confined in the accommodating space 30 of the fixing device 3, thereby fixing the I-core to the E-core.
  • the component mounting assembly 1 consisting of the first component 11 and the second component 12 is fixed relative to the printed circuit board 2.
  • the second component 12 (I-core) is located at the bottom 31 of the fixing device 3.
  • the I-core and the bottom of the fixing device 3 is positioned on the first side 21 of the printed circuit board 2.
  • the first component 11, such as an E-core is positioned on the other side 22 of the printed circuit board 2 with the legs facing the printed circuit board and therefore facing the second component 12 already located at the bottom 31, in order to be installed in the accommodating space 30.
  • the first fixing tab 32 and the second fixing tab 33 of the fixing device pass through the cutout 23 from the first side 21 of the printed circuit board 2, while the legs of the first component 11 pass through the cutout 23 from the second side 22 of the printed circuit board 12, and the side legs thereof abut against the second component 12.
  • the number of the first fixing tabs 32 is four, which are respectively distributed on the four sides of the bottom 31, ie. the long sides and the short sides.
  • the first fixing tabs 32 are symmetrically distributed with respect to the center of the bottom 31 of the fixing device 3.
  • each first fixing tab 32 is arranged at the center of the corresponding side.
  • the number and distribution of the first fixing tabs 32 are not limited to the situation shown in Fig. 3.
  • the number of the first fixing tabs 32 may be two, three, five, six, eight, etc.
  • the first fixing tabs 32 may be distributed only on the long side of the bottom 31 of the fixing device 3 or only on the short side of the bottom 31 of the fixing device 3.
  • the number of the second fixing tabs 33 is four, and they are distributed symmetrically with respect to the center of the bottom 31 of the fixing device 3.
  • the second fixing tabs 33 are distributed on two short sides of the bottom 31 of the fixing device 3.
  • Two second fixing tabs 33 are distributed on each short side, and the two second fixing tabs 33 are located on either side of the first fixing tabs 32 at the center of the short side.
  • the number and distribution of the second fixing tabs 33 are not limited to the situation shown in Fig. 3.
  • the number of the second fixing tabs 33 may be two, three, five, six, eight, etc.
  • the second fixing tabs 33 are only distributed on the long side of the bottom 31 of the fixing device 3.
  • the second fixing tabs 33 are distributed on both the long side and the short side of the bottom 31 of the fixing device 3.
  • the fixing device 3 may include a reinforcing rib for the first fixing tab 32 extending from the root of the first fixing tab 32 to both sides along the bottom 31.
  • the fixing device 3 may include a first reinforcing rib 36 provided on the long side of the bottom 31.
  • the first reinforcing rib 36 extends from the root of the first fixing tab 32 to both sides along the long side of the bottom 31.
  • the fixing device 3 may further include a second reinforcing rib 37 provided on the short side of the bottom 31.
  • the second reinforcing rib 37 is positioned on both sides of the root of the first fixing tab 32 and extends along a direction of thickness of the first fixing tab 32.
  • the direction of thickness refers to the direction of the first fixing tab 32 extending perpendicular to its long sides or short sides.
  • the second reinforcing ribs can also extend from the root of the first fixing tab 32 along the short side of the bottom 31 to both sides.
  • the first fixing tab 32 with a longer length can be strengthened to prevent the first fixing tab 32 from being broken from the root when it is deformed.
  • the bottom 31 of the fixing device 3 may further include a hollow portion 38.
  • a hollow portion 38 is provided at a position close to the root of the first fixing tab 32 to enhance the deformability of the first fixing tab 32.
  • a hollow portion is also provided at a position close to the root of the second fixing tab 33.
  • a hollow portion is provided only at a position close to the root of the second fixing tab 33.
  • the fixing device 3 is formed as a single piece and made of plastic.
  • the fixing device 3 may be integrally formed by, for example, injection molding process.
  • the component mounting assembly 1 is detachable.
  • the two side legs of the first component 11 and the second component 12 are fixed to each other by glue, and/or the first component 11 and/or the second component 12 are fixed to the fixing device 3 by glue.
  • Figs. 5 to 8 For the convenience of illustration and description, in Fig 6, contrary to Fig. 4, the first side 21 of the printed circuit board 2 is shown facing upwards, and the second side 22 (not shown) is facing downwards. While in Figs. 7 and 8, as in Fig. 4, the first side 21 (not shown) of the printed circuit board 2 faces downward, and the second side 22 faces upward.
  • the method for mounting component firstly includes: providing a first component 11 and an second component 12, as mentioned above, the first component 11 includes a base 13 and at least one leg 15 extending from the base 13; providing a fixing device 3 which comprises a bottom 31 and at least one first fixing tab 32 extending perpendicularly from the bottom 31, the bottom 31 and the at least one first fixing tab 32 defining an accommodating space.
  • the E-core is placed on the bottom 31, specifically, the E-core is inserted down into the accommodating space 30 of the fixing device 3 until the base 13 of the E-core is positioned on the bottom 31 of the fixing device 3. During this period, the first fixing tab 32 of the fixing device 3 is elastically deformed from its initial position away from the accommodating space 30. Once the E-core as a whole crosses the first hook 34 of the first fixing tab 32, the first fixing tab 32 moves back to its initial position.
  • the I-core is abutted against the E-core at the bottom 31 face to face, such that the first fixing tab 32 abuts against the I-core to keep the E-core and the I-core in the accommodating space 30.
  • the method for fixing component further comprises providing a printed circuit board 2, as described above, the printed circuit board 2 comprises a through cutout 23 corresponding to the leg of the first component 11.
  • the method includes: after placing the E-core at the bottom 31 of the accommodating space 30, placing the assembly formed by the E-core and the fixing device 3 on one side of the printed circuit board 2, for example the first side 21 shown in Fig. 6.
  • the leg 15 of the E-core and the first fixing tab 32 and the second fixing tab 33 of the fixing device 3 pass through the cutout 23 of the printed circuit board 2.
  • the second fixing tab 33 of the fixing device 3 elastically deforms from its initial position toward the accommodating space 30.
  • the second fixing tab 33 moves back to its original position.
  • the second hook 35 of the second fixing tab 33 bears against the second side 22 of the printed circuit board 2 (see Fig. 7) .
  • the fixing device 3 can be held on the printed circuit board 2 by a snap connection, so that the fixing device 3 and the E-core are fixed to the printed circuit board 2.
  • a second component 12 (I-core) is provided and inserted downward from the second side 22 of the printed circuit board 2 into the accommodating space 30 of the fixing device 3, and the I-core is fixed to the E-core by using the plurality of first fixing tabs 32.
  • the first fixing tab 32 is elastically deformed from its initial position. Once the I-core is located at the predetermined fastening position in the accommodating space 30, the first fixing tab 32 moves back to its initial position (see Fig. 8) .
  • the first hook 34 of the first fixing tab 32 bears against the top surface of the I-core, and the bottom surface of the I-core is in direct contact with the two side legs of the E-core.
  • the height of the first fixing tab 32 is designed such that the I-core and the E-core can be stacked tightly in the accommodating space 30, and the I-core is confined in the accommodating space 30 of the fixing device 3 through the snap connection. Thus, the I-core is reliably fixed to the E-core.
  • the second component 12, such as an I-core is now placed on the bottom 31 of the fixing device 3, that is, the I-core is inserted into the accommodating space 30 of the fixing device 3 until the base 13 of the I-core is positioned on the bottom 31 of the fixing device 3. Then, the assembly formed by the I-core and the fixing device 3 is placed on one side of the printed circuit board 2, for example, the first side 21. Then, the first fixing tab 32 and the second fixing tab 33 of the fixing device 3 pass through the cutout 23 of the printed circuit board 2 from the first side 21.
  • a first component 11 such as an E-core
  • the legs of the E-core pass through the cutout 23 of the printed circuit board 2 from the second side 22, and after being installed in place, the two side legs abut against the surface of the I-core.
  • the component mounting assembly 1 can be assembled in a simple, accurate and efficient manner. First of all, each assembly operation of the component mounting assembly 1 does not require additional tools, the first component and the second component can be fixed to each other by snap connection of the fixing device 3 only, and the two can be held at a predetermined position on the printed circuit board 2, and the operation is convenient and simple. In addition, due to the direct contact between the two side legs of the E-core and the I-core, the air gap between the E-core and the I-core can be ensured to have an accurate width, with no deviation caused by the thickness of the adhesive in the dispensing process.
  • the fixing device 3 and method according to the present disclosure have high repeatability and low failure rate, so that the installation of the component mounting assembly 1 can be completed in an efficient and cost-effective manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metallurgy (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Mounting Of Printed Circuit Boards And The Like (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Structures For Mounting Electric Components On Printed Circuit Boards (AREA)

Abstract

La présente invention concerne un ensemble de montage de composant, qui comprend : un premier composant et un second composant, le premier composant comprenant une base et au moins une patte s'étendant à partir de la base; et un dispositif de fixation comprenant un fond et au moins une première patte de fixation s'étendant perpendiculairement depuis le fond, le fond et la ou les premières pattes de fixation définissant un espace de réception; le premier composant et le second composant étant reçus dans l'espace de réception, l'un du premier composant et du second composant étant situé au niveau du fond, l'autre étant disposé face à face par rapport audit premier composant et au second composant et fixé audit élément par l'intermédiaire du dispositif de fixation. Le dispositif de fixation comprend également une seconde patte de fixation. Les première et seconde pattes de fixation peuvent passer à travers la découpe de la carte de circuit imprimé, fixant ainsi le dispositif de fixation, le premier composant et le second composant à la carte de circuit imprimé. L'invention concerne également un procédé correspondant de fixation de composant.
EP21751962.8A 2020-07-29 2021-07-28 Ensemble de montage de composant et procédé de fixation de composant Pending EP4189710A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010742411.3A CN111986867B (zh) 2020-07-29 2020-07-29 部件安装组件和部件安装方法
PCT/CN2021/108812 WO2022022545A1 (fr) 2020-07-29 2021-07-28 Ensemble de montage de composant et procédé de fixation de composant

Publications (1)

Publication Number Publication Date
EP4189710A1 true EP4189710A1 (fr) 2023-06-07

Family

ID=73444369

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21751962.8A Pending EP4189710A1 (fr) 2020-07-29 2021-07-28 Ensemble de montage de composant et procédé de fixation de composant

Country Status (3)

Country Link
EP (1) EP4189710A1 (fr)
CN (1) CN111986867B (fr)
WO (1) WO2022022545A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112216480A (zh) * 2020-09-08 2021-01-12 杭州铁城信息科技有限公司 一种变压器铁芯固定结构及其车载充电机和dc/dc转换器

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5055971A (en) * 1989-12-21 1991-10-08 At&T Bell Laboratories Magnetic component using core clip arrangement operative for facilitating pick and place surface mount
US6359542B1 (en) * 2000-08-25 2002-03-19 Motorola, Inc. Securement for transformer core utilized in a transformer power supply module and method to assemble same
JP4100036B2 (ja) * 2002-05-07 2008-06-11 株式会社村田製作所 コイル装置
JP2004040055A (ja) * 2002-07-08 2004-02-05 Murata Mfg Co Ltd 磁性部品
JP5328797B2 (ja) * 2008-09-05 2013-10-30 三菱電機株式会社 Dc/dcコンバータ用シートトランス
US7815474B1 (en) * 2009-08-28 2010-10-19 Cheng Uei Precision Industry Co., Ltd. Probe connector having a mounting platform
CN201741133U (zh) * 2010-05-25 2011-02-09 北京汇冠新技术股份有限公司 电路板固定及定位组件、触摸屏、交互式显示器及触摸系统
CN202405045U (zh) * 2012-01-04 2012-08-29 北京经纬恒润科技有限公司 电感固定装置
US9633772B2 (en) * 2013-03-14 2017-04-25 Gentex Corporation Solderable planar magnetic components
CN204045325U (zh) * 2014-07-11 2014-12-24 联合汽车电子有限公司 分离式磁元件固定结构及磁元件组件
US20210385982A1 (en) * 2017-09-29 2021-12-09 Interdigital Ce Patent Holdings Apparatus for use in electronic equipment

Also Published As

Publication number Publication date
CN111986867A (zh) 2020-11-24
CN111986867B (zh) 2022-05-17
WO2022022545A1 (fr) 2022-02-03

Similar Documents

Publication Publication Date Title
WO2022022545A1 (fr) Ensemble de montage de composant et procédé de fixation de composant
JP4943930B2 (ja) 立体回路部品の取付構造
WO2007020838A1 (fr) Relais
US5986529A (en) Electromagnetic relay
JP6449694B2 (ja) 電子制御装置
US4914411A (en) Electro-magnetic relay
JP2002334643A (ja) 電気切換え要素
JP2003134586A (ja) スピーカのコネクタ
CN110972039A (zh) 辅助支架和振动发声装置组件
JP2017112349A (ja) コイル組立体および回路構成体
US6719571B2 (en) Housing with an electrical circuit accommodated therein
CN115656602A (zh) 一种电流传感器及其制造方法
JPH10303035A (ja) 面実装コイル
JP2012186237A (ja) ソレノイド
CN221304544U (zh) 继电器
CN221437829U (zh) 一种振子与背板集成结构及汽车座椅
JP2003045594A (ja) Icソケット
CN215644988U (zh) 天线模组
JP2009049160A (ja) 電源装置
CN215644953U (zh) 天线
JPH09204506A (ja) Idタグ
JP4789053B2 (ja) インダクタンス素子の取付構造
JPS6246303Y2 (fr)
JPS6223056Y2 (fr)
JPH1145645A (ja) 電磁継電器

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20230213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)