EP4065360B1 - Elektrohydrostatisches system mit drucksensor - Google Patents

Elektrohydrostatisches system mit drucksensor Download PDF

Info

Publication number
EP4065360B1
EP4065360B1 EP20811548.5A EP20811548A EP4065360B1 EP 4065360 B1 EP4065360 B1 EP 4065360B1 EP 20811548 A EP20811548 A EP 20811548A EP 4065360 B1 EP4065360 B1 EP 4065360B1
Authority
EP
European Patent Office
Prior art keywords
electrohydrostatic
hydraulic
cylinder
pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20811548.5A
Other languages
English (en)
French (fr)
Other versions
EP4065360A1 (de
Inventor
Sascha DANY
Sven Müller
Kohlhaas REINER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moog GmbH
Original Assignee
Moog GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moog GmbH filed Critical Moog GmbH
Publication of EP4065360A1 publication Critical patent/EP4065360A1/de
Application granted granted Critical
Publication of EP4065360B1 publication Critical patent/EP4065360B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/18Control arrangements for fluid-driven presses controlling the reciprocating motion of the ram
    • B30B15/20Control arrangements for fluid-driven presses controlling the reciprocating motion of the ram controlling the speed of the ram, e.g. the speed of the approach, pressing or return strokes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/28Arrangements for preventing distortion of, or damage to, presses or parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/003Systems with load-holding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/024Pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/18Combined units comprising both motor and pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20569Type of pump capable of working as pump and motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/27Directional control by means of the pressure source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • F15B2211/30515Load holding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40507Flow control characterised by the type of flow control means or valve with constant throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40576Assemblies of multiple valves
    • F15B2211/40592Assemblies of multiple valves with multiple valves in parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41572Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/61Secondary circuits
    • F15B2211/613Feeding circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/625Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6651Control of the prime mover, e.g. control of the output torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/85Control during special operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/875Control measures for coping with failures
    • F15B2211/8757Control measures for coping with failures using redundant components or assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/005With rotary or crank input
    • F15B7/006Rotary pump input

Definitions

  • the present invention relates to an electrohydrostatic system for controlling the setup speed of a hydraulic cylinder, for example in a powder press, forging press and/or a forming press.
  • a vertical position of a plunger is detected directly by a plunger position detection device.
  • a first speed arithmetic operation section determines a first ram moving speed based on a change in the detected position.
  • a second speed arithmetic operation section determines a second slide movement speed based on a rotation speed of a servo motor determined by a servo motor rotation speed detector.
  • the constant pressure system includes a constant pressure source 15 to supply hydraulic pressure.
  • the constant pressure system also includes the Figure 3 Directional valve 18 for controlling the function of the hydraulic cylinder 10, for example the retraction and extension.
  • the safe setup speed is ensured via one or more fixed apertures 13, with or without setup valve 14, 17.
  • the fixed panels 13 bridge one or two single or redundant safety valves 16 (load holding and/or pressure build-up valves). Set are the fixed apertures 13 for the maximum pressure occurring in the system and/or the hanging load on the hydraulic cylinder.
  • a maximum pressure in the system is throttled via a fixed orifice 13 (parallel to the pressure build-up valve 16 behind the pump 15) before a pressure increase can occur due to uneven surfaces in the hydraulic cylinder.
  • several directional control valves must be bypassed.
  • the safety valve 16 which is connected between the directional control valve 18 and the pump 15, must be bypassed.
  • the safety valve 16 separates the pressure buildup of the pump 15 from the constant pressure system to prevent pressure buildup in the system.
  • a second safety valve 16 is inserted between the hanging load on the ring side or the piston side of the hydraulic cylinder 10 and the directional control valve 18. The safety valve 16 protects the hydraulic cylinder from falling due to the hanging load.
  • the first safety valve 16 for securing the hydraulic pressure in the constant pressure system is bypassed via the parallel branch with the setup valve 17 or without the setup valve 17 and the fixed orifice 13.
  • the fixed orifice 13 is designed in such a way that at a maximum pressure of the pump 15, the volume flow that runs over the fixed orifice 13 does not reach a speed higher than, for example, 10 mm/s on the hydraulic cylinder.
  • the fixed diaphragm 13 is therefore designed for the maximum pressure of the pump 15.
  • the volume flow can be provided via the setup valve 17 and the fixed orifice 13 and directed via the directional control valve 18.
  • the hanging load on the ring side or piston side of the hydraulic cylinder can move the hydraulic cylinder.
  • the hanging load and the hydraulic cylinder surface together create a certain pressure on the load side of the hydraulic cylinder.
  • the volume flow passes through the setup valve 14 and the fixed orifice 13.
  • the fixed orifice 13 is designed in such a way that with the pressure applied on the ring side due to the hanging load, the volume flow does not reach a speed higher than 10 mm/s.
  • the pump 15 which is protected via the safety valve 16 in front of the directional control valve 18, via the setup valve 17 and the fixed diaphragm 13, and the hanging load, which is via the Safety valve 16, setup valve 14 and the fixed aperture 13 are secured, the two sources that can provide energy and thus a pressure build-up for the constant pressure system.
  • the set-up speed can be secured via a “Safe Limited Speed” (SLS) function in the motor control device 20 and the drive motor of the motor pump unit 15 or, on the other hand, via a fixed aperture 13, with or without an additional set-up valve 14.
  • SLS Safe Limited Speed
  • the energy is impressed again, as already done Figure 3 shown, about two types of energy.
  • the pressure builds up via the motor pump unit 15.
  • STO Safe Torque Off
  • the engine control device cannot provide power to the engine pump unit 15 for generating hydraulic power in the hydraulic system.
  • a volume flow must be supplied to the system.
  • the volume flow can only be realized by the motor control device 20 having a function that limits the speed of the motor pump unit 15 to a predetermined value, for example to a value for a speed of 10 mm/s.
  • This function corresponds to the SLS function mentioned above.
  • the SLS function represents a special function in the engine control device 20. Rather, a safety-relevant engine control device 20 is required.
  • the SLS function is cost-intensive and requires computing capacity.
  • the engine control device can provide a certain computing power, which is limited by the installed hardware. A large part of the available computing power is reserved for the SLS function. Conversely, the necessary regulation can no longer be provided by the engine control device and additional components are necessary, which increases the complexity of the control and additional costs.
  • the second energy injection by means of the hanging load is secured in accordance with in Figure 2 protection shown.
  • the hanging load acts on the second cylinder chamber 12.
  • the protection takes place via the safety valve 16 or the safety valves 16, which accordingly shut off the hydraulic cylinder 10, so that the volume flow runs via the setup valve 14 and the fixed orifice 13.
  • the fixed aperture 13 is adjusted to the pressure of the hanging load. A possible lowering of the hydraulic cylinder over the hanging load is thus adjusted via the fixed aperture 13. Moving the hydraulic cylinder is carried out by the SLS function and via the fixed aperture 13.
  • the fixed aperture 13 no longer needs to be designed for this movement. This is only designed for movement by the hanging load.
  • a corresponding safety valve and a corresponding bypass valve with a fixed orifice would have to be provided in the branch from the pump to the piston chamber 11 of the hydraulic cylinder 10.
  • This has the technical disadvantage that it results in a large piston area, which means that the valves have to be designed correspondingly large and are therefore very expensive and the corresponding adjustment is not economically viable.
  • the fixed orifice would have to be designed in such a way that the pressure at the fixed orifice would correspond to the maximum pressure of the motor pump unit. As a rule, the motor pump unit has a pressure of 350 bar.
  • the fixed diaphragm would have to be designed for a very high pressure level and therefore for a very high energy level, with the hanging load being in a pressure range of 10 bar to 20 bar.
  • the necessary design for a higher pressure would, for example, generate extreme losses in the system and thus destroy energy.
  • the present invention has set itself the task of creating a solution that at least partially overcomes the disadvantages known in the prior art.
  • a first aspect of the present invention comprises an electrohydrostatic system according to the invention with a hydraulic cylinder according to claim 1.
  • the present invention is therefore based on the knowledge that the motor control device only requires the STO function to control the motor pump unit, which prevents the introduction of energy into the system.
  • the SLS function of the engine control device is implemented in the Inventive design of the electrohydrostatic system is no longer needed, which means that the setup speed is not detected/monitored via the engine control device.
  • the hanging load is protected by at least one safety valve and a fixed cover.
  • a pressure sensor is provided, for example on the ring side, which determines the pressure on the ring side for further processing.
  • the pressure at the fixed diaphragm is advantageously detected via the pressure sensor.
  • the hanging load is also secured via the fixed aperture, in addition to a certain pressure.
  • the minimum dimension that is secured includes the pressure (energy) impressed over the hanging load and a corresponding reserve, for example 20 bar. Accordingly, the evaluation of the pressure sensor must be set to the selected pressure. If the pressure at the fixed orifice rises above a corresponding value, this may include an increase in the speed of the hydraulic cylinder above a specified value, whereby the energy input into the motor pump unit is switched off via the STO function of the motor control device.
  • the electrohydrostatic system in particular comprises a first safety device, which is set up to receive an electrical signal corresponding to a detected fluid-hydraulic pressure from the pressure sensor and to provide a release signal for the engine control device for providing the rated current for the electric drive of the fluid-hydraulic motor pump unit.
  • the pressure can advantageously be detected via the pressure sensor.
  • the pressure sensor is monitored by the first safety device.
  • the first safety device can be designed as a safety PLC (programmable logic controller), in particular as a safety controller.
  • the pressure sensor or the value of the determined pressure is read out via the first safety device, which monitors whether the system is still in safe setup mode.
  • the motor control device can also be addressed via the safety device, in particular the STO function can be controlled.
  • the hydraulic cylinder is designed as a differential cylinder, synchronous cylinder, multi-surface cylinder or as a separated cylinder arrangement.
  • different hydraulic cylinders can be addressed accordingly by the electrohydrostatic system according to the invention.
  • the fluid-hydraulic supply device comprises a pressure accumulator, a safety valve, a fluid source, at least one check valve and a fluid reservoir.
  • the fluid for the motor pump unit is partially made available via the fluid-hydraulic supply device.
  • the accumulator represents a storage device of pressurized fluid that can be released into the system.
  • the fluid reservoir represents a tank for the auxiliary unit, from which the fluid source can also be supplied.
  • a Safe Torque Off safety function is provided via the engine control device.
  • the motor control device can be designed as a frequency converter.
  • the frequency converter can be designed as a power converter which generates an alternating voltage that can be changed in frequency and amplitude from an alternating voltage for the direct supply of the motor pump unit.
  • the Safe Torque Off (STO) function is a safety function integrated into the frequency converter drive.
  • the STO function ensures that no torque-generating energy can have an effect on a motor, especially on the motor pump unit, and that unwanted starting is prevented.
  • the STO function is a device to avoid unexpected starting according to EN 60204-1 paragraph 5.4.
  • the pulses of a drive can be safely deleted using the STO function.
  • the drive is secured and torque-free. This condition can be monitored internally.
  • the pressure sensor is designed as a pressure sensor with increased functional safety.
  • the pressure sensor with increased functional safety is a pressure sensor specially designed for use in safety circuits / safety functions as part of the functional safety of machines and systems up to PL d-Cat 3 (according to ISO 13849).
  • the pressure sensor with increased functional safety is designed with two channels, with each channel consisting of a sensor element and evaluation electronics. Due to the redundant design, the pressure sensor generates two separate, independent, pressure-proportional output signals with increased functional safety. The output signal is therefore available in redundant form. If one signal fails, a second signal is still available for processing, with the failure of one signal already initializing error handling.
  • a check of the safety function and error handling can be done by evaluating and comparing the two analog output signals in a first safety device.
  • the first safety device and the pressure sensor with increased functional safety are used to indirectly check whether the set-up speed of the hydraulic cylinder is exceeded or not. If the pressure rises above a certain value, a control signal is provided to the frequency converter via the first safety device to switch off the motor pump unit.
  • a redundant arrangement with two parallel simple pressure sensors can be provided, which reflect the requirement for a pressure sensor with increased functional safety. These therefore represent a pressure sensor arrangement with increased functional safety. Ordinary or available pressure sensors can be used as pressure sensors for the pressure sensor arrangement.
  • the resistance of the fixed diaphragm has at least one value which is determined in the hydraulic cylinder by a pressure generated by a hanging load on the hydraulic cylinder.
  • the hanging load is also secured via the fixed panel. Safe setup speed is guaranteed.
  • the fixed aperture can be designed for the pressure generated by the hanging load, plus a certain pressure.
  • the resistance of the fixed diaphragm is set to a pressure for providing a set-up speed of the hydraulic cylinder in a range of 5 to 40 mm/s, preferably 10 mm/s. This set pressure ensures that set-up speeds rated as “safe” according to standards can be achieved.
  • the pressure sensor is connected to the second cylinder chamber of the hydraulic cylinder. This arrangement may be necessary depending on the cylinder arrangement, as shown above, the maximum pressure of the individual cylinder chambers, the area ratios on the cylinders, and energy limitations in the set-up operation.
  • a fluid-hydraulic setup valve is connected in the bypass connection.
  • the setup mode can advantageously be switched on or off via this setup valve.
  • this set-up valve protects the cylinder against falling due to its own weight and attraction when the motor pump unit is switched off.
  • a pressure relief valve is connected in the bypass connection. Via the pressure relief valve in combination with a check valve the setup valve needs to be replaced.
  • the pressure relief valve can be used to set the direction of movement for which the setup speed is to be set.
  • the pressure relief valve can be used in the design as a load holding valve in order to switch off movement of the cylinder due to its own weight and the attractive force.
  • the pressure relief valve can be specifically overpressured.
  • a check valve is connected in parallel to the pressure relief valve.
  • a set-up valve can be replaced/saved using the check valve in combination with the pressure relief valve.
  • the check valve in combination with the throttle valve enables load holding and limited set-up speed while the hydraulic cylinder is being extended. While the hydraulic cylinder is retracting, the pressure relief valve is bypassed via the branch of the check valve and the limited set-up speed is also achieved.
  • the electrohydrostatic system comprises a second safety device comprising a position measuring system and/or a mechanical safety.
  • the second safety device in combination with the first safety device, forms a redundant safety device. If one of the two safety devices is defective, the remaining safety device can ensure the full security of the system.
  • the second safety device can alternatively also be designed as a second hydraulic safety valve. In particular, the second safety device can correspond to the first safety device.
  • the position measuring system can provide information about the actual speed of the hydraulic cylinder. The speed determined via the position measuring system can then be used to limit it via the motor control device and the motor pump unit.
  • the volume flow and thus the speed of the hydraulic cylinder are determined via the determined pressure in combination with the defined resistance of the fixed orifice.
  • the speed of the hydraulic cylinder is determined via the position signal, taking time into account.
  • a mechanical brake and/or a clamping device can be provided as mechanical safety.
  • the first cylinder chamber of the hydraulic cylinder is connected to the fluid-hydraulic motor pump unit and the second cylinder chamber of the hydraulic cylinder is connected to the at least one fluid-hydraulic safety valve.
  • the first cylinder chamber of the hydraulic cylinder is with the at least one fluid-hydraulic safety valve is connected and the second cylinder chamber of the hydraulic cylinder is connected to the fluid-hydraulic motor pump unit.
  • a second aspect not part of the present invention includes the use of the electrohydrostatic system according to the invention for controlling the setup speed of a hydraulic cylinder in a powder press, forging press and/or forming press.
  • Fig. 1 shows a schematic representation of an electrohydrostatic system 1 according to a first embodiment.
  • the electrohydrostatic system 1 has a hydraulic cylinder 10 with a first cylinder chamber 11 and a second cylinder chamber 12. Furthermore, the electrohydrostatic system 1 has a motor pump unit 15 for supplying pressure and a supply device 90 for supplying fluid.
  • the motor pump unit 15 is at a first connection in the in Figure 1 illustrated embodiment is connected to the first cylinder chamber 11 of the hydraulic cylinder 10 and the supply device 90 via a check valve 93.
  • the motor pump unit 15 has a connection to a safety valve 16, which is further connected to the second cylinder chamber 12 of the hydraulic cylinder 10.
  • the supply device 90 includes a safety valve 91, a fluid source 92, a check valve 93, a pressure accumulator 95 and a fluid reservoir 96.
  • the electrohydrostatic system 1 has a motor control device 20, which can be designed as a frequency converter.
  • the electrohydrostatic system 1 has a pressure sensor 60, in particular a pressure sensor with increased functional safety.
  • the pressure sensor 60 provides a pressure value determined on the fixed aperture 13 to a first safety device 30, preferably a safety PLC as a safety controller 30.
  • the first safety device 30 is electrically coupled to the engine control device 20 and configured to receive an electrical signal from the safety device 30 in response to an increased pressure corresponding to an out-of-demand setup speed.
  • the frequency converter 20 has a "Safe torque off” (STO) function for switching off the torque of the motor pump unit in order to adjust the setup speed according to the requirements.
  • STO Safety torque off
  • the present invention is characterized by the pressure sensor with increased functional safety.
  • two pressure sensors of a simple design can be used in a redundant combination, in which an evaluation of the signals provided is implemented in the same way as the pressure sensor with increased functional safety.
  • a pressure sensor of a simple design without redundant design can be used and evaluated.
  • the pressure sensor(s) 60 in the Embodiment, as well as in the alternative embodiment as shown above, can be introduced into the electrohydrostatic system 1 on the first cylinder chamber 11 and/or the second cylinder chamber 12 of the hydraulic cylinder 10.
  • the hydraulic cylinder 10 can be used as a differential cylinder, a synchronous cylinder, a multi-surface cylinder, or a separated cylinder arrangement.
  • An unintentional pressure build-up in the electrohydrostatic system 1 can be protected via the STO safety function of the frequency converter 20 and the motor pump unit 15.
  • Safety against the hanging load sinking can be ensured via one or a large number of safety-relevant valves 16.
  • the safe speed in the setup process is set via the fixed aperture 13.
  • the fixed aperture 13 represents a bypass of the safety valve 16 and is connected to the second cylinder chamber 12 of the hydraulic cylinder 10 and the motor pump unit 15 or the supply device 90.
  • the fixed aperture 13 has a connection to the pressure sensor 60 with increased functional safety.
  • the fixed aperture 13 is designed without an additional setup valve.
  • the pressure difference for which the fixed diaphragm 13 is designed is set by the pressure sensor 60 with increased functional safety as an upper limit in the setup mode. If this specified pressure value is exceeded, the first safety device 30 triggers the STO safety function of the frequency converter 20. When the STO safety function is triggered, the safe setup speed is not exceeded.
  • a safe setup speed can be achieved, even though there are pressure differences in the hydraulic chambers due to uneven surfaces or other reasons. This means that no pressure limiting device is overpressured and the maximum setup speed is limited.
  • the setup speed is determined by the speed and/or the delivery volume of the variable-speed motor pump unit 15, whereby the maximum setup speed can be freely set by the resistance and the pressure sensor 60 with increased functional safety between the pressure of the hanging load and the maximum pressure of the pressure relief valves.
  • Fig. 4 shows a schematic representation of an electrohydrostatic system 1 according to a second embodiment.
  • the electrohydrostatic system 1 around a setup valve 14 in the bypass connection of the safety valve 16 or safety valves 16 with reference to the embodiment of Fig. 1 expanded.
  • the setup valve 14 is inserted between the fixed aperture 13 and the second cylinder chamber 12 of the hydraulic cylinder 10.
  • the pressure sensor 60 with increased functionality determines the pressure at the fixed orifice 13 via the setup valve 14.
  • the setup mode can be switched on via the setup valve 14 or switch off.
  • the hydraulic cylinder can be prevented from sinking due to its own weight if the motor pump unit 15 fails.
  • Fig. 5 shows a schematic representation of an electrohydrostatic system 1 according to a third embodiment.
  • the electrohydrostatic system 1 around a pressure relief valve 70 in the bypass connection of the safety valve 16 or safety valves 16 with reference to the embodiment of Fig. 1 expanded.
  • the pressure relief valve 70 is inserted between the fixed diaphragm 13 and the second cylinder chamber 12 of the hydraulic cylinder 10.
  • the pressure sensor 60 with increased functionality determines the pressure at the fixed orifice 13 via the pressure relief valve 70.
  • the pressure relief valve 70 serves as a load holding valve to prevent the piston of the hydraulic cylinder 10 from sinking due to its own weight.
  • the pressure relief valve 70 makes it possible to set up the hydraulic cylinder 10 in the extending direction.
  • Fig. 6 shows a schematic representation of an electrohydrostatic system 1 according to a fourth embodiment.
  • the pressure relief valve 80 is inserted between the fixed diaphragm 13 and the second cylinder chamber 12 of the hydraulic cylinder 10.
  • the pressure sensor 60 with increased functionality determines the pressure at the fixed orifice 13 via the pressure relief valve 80.
  • a check valve 81 is provided in a bypass connection to the pressure relief valve 80.
  • the pressure relief valve 80 serves as a load holding valve to prevent the piston of the hydraulic cylinder 10 from sinking due to its own weight.
  • the function of the setup valve 14 is replaced by the pressure maintaining valve 80 in combination with the check valve 81.
  • the pressure relief valve 80 is adjusted to the hanging load.
  • Fig. 7 shows a schematic representation of an electrohydrostatic system 1 according to a fifth embodiment.
  • the pressure sensor 60 is connected with increased functional safety to the cylinder chamber of the hydraulic cylinder 10, which has no connection to the safety valve 16.
  • the exact position of the pressure sensor 60 with increased functionality can be selected depending on the overall system and thus the orientation and type of the hydraulic cylinder, other axes that can overpress this axis and/or the acting weight. This allows a secure setup speed to be provided efficiently and flexibly for any system.
  • Fig. 8 shows a schematic representation of an electrohydrostatic system 1 according to a sixth embodiment.
  • the electrohydrostatic system 1 additionally has a second safety device 50.
  • the second safety device 50 can include a position measuring system and/or a mechanical safety. Redundant security can be provided by the second safety device 50 in combination with the first safety device 30. A defect in one of the two safety devices 30, 50 can be compensated for by the other functioning safety device 30, 50, thereby ensuring full safety.
  • the second safety device 50 can also be designed as a second hydraulic safety valve 16.
  • the position measuring system provides information about the actual movement speed of the hydraulic cylinder 10 with increased functional safety.
  • the determined actual movement speed can be used to limit the same via the frequency converter 20 in combination with the motor pump unit 15.
  • the path signal is derived over time.
  • Mechanical safety can be set up via a mechanical brake and/or clamping device. This increases the safety of the electrohydrostatic system 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

  • Die vorliegende Erfindung betrifft ein elektrohydrostatisches System zum Steuern der Einrichtgeschwindigkeit eines Hydraulikzylinders beispielsweise in einer Pulverpresse, Schmiedepresse und/oder einer Umformpresse.
  • Systeme zum Steuern der Einrichtgeschwindigkeit von Hydraulikzylindern in Pressen sind im Stand der Technik bekannt.
  • In US 2003/000279 A1 , das eine Vorrichtung mit den Merkmalen des Oberbegriffs des Anspruchs 1 offenbart, wird eine vertikale Position eines Stößels direkt durch eine Stößelposition-Erfassungseinrichtung erfasst. Ein arithmetischer Betriebsabschnitt für die erste Geschwindigkeit bestimmt eine erste Stößelbewegungsgeschwindigkeit auf der Grundlage einerÄnderung der erfassten Position. Gleichzeitig bestimmt ein zweiter Geschwindigkeitsarithmetik-Bedienabschnitt eine zweite Stößelbewegungsgeschwindigkeit auf der Grundlage einer Drehzahl eines Servomotors, die durch eine Servomotor-Drehzahl-Erfassungseinrichtung bestimmt wird.
  • In den Figuren 2 und 3 werden zwei im Stand der Technik bekannte Systeme zum Absichern der Einrichtgeschwindigkeit dargestellt.
  • In der Figur 3 ist ein klassisches Hydrauliksystem, insbesondere eine Konstantdrucksystem dargestellt. Das Konstantdrucksystem umfasst zur Versorgung für hydraulischen Druck eine Konstantdruckquelle 15. Weiterhin umfasst das Konstantdrucksystem der Figur 3 Wegeventil 18 zur Steuerung der Funktion des Hydraulikzylinders 10, beispielsweise das Einfahren und Ausfahren. Die sichere Einrichtgeschwindkeit wird über ein oder mehrere Festblenden 13, mit oder ohne Einrichtventil 14, 17 abgesichert. Die Festblenden 13 überbrücken ein oder zwei einfach oder redundant ausgeführte Sicherheitsventile 16 (Lasthalte- und/oder Druckaufbauventile). Eingestellt sind die Festblenden 13 für den maximalen im System auftretenden Druck und/oder auf die hängende Last am Hydraulikzylinder. Hierbei wird ein maximaler Druck im System über eine Festblende 13 (parallel zum Druckaufbauventile 16 hinter der Pumpe 15) abgedrosselt, bevor eine Druckübersetzung aufgrund von ungleichen Flächen im Hydraulikzylinder auftreten kann. Um die sichere Einrichtgeschwindigkeit in dem Konstantdrucksystem zu gewährleisten, müssen mehrere Wegeventile umgangen werden. Zunächst muss das Sicherheitsventil 16, welches zwischen dem Wegeventil 18 und der Pumpe 15 geschaltet ist umgangen werden. Das Sicherheitsventil 16 trennt den Druckaufbau der Pumpe 15 von dem Konstantdrucksystem, um einen Druckaufbau in dem System zu unterbinden. Ein zweites Sicherheitsventil 16 ist zwischen der hängenden Last auf der Ringseite oder der Kolbenseite des Hydraulikzylinders 10 und dem Wegeventil 18 eingebracht. Das Sicherheitsventil 16 sichert den Hydraulikzylinder vor dem Herunterfallen durch die hängende Last ab. Für eine Bewegung des Hydraulikzylinders ist es notwendig, diese beiden Sicherheitsventile zu überbrücken oder entsprechend zu öffnen. Bei Einrichtbetrieb und dem dafür notwendigen Überbrücken des Sicherheitsventils 16 muss die sichere Einrichtgeschwindkeit weiterhin gewährleistet werden. Dabei darf die Bewegung des Hydraulikzylinder eine Geschwindigkeit von beispielsweise 10 mm/s nicht überschreiten. Hierzu wird das erste Sicherheitsventil 16 zum Absichern des Hydraulikdrucks in dem Konstantdrucksystem über den parallelen Zweig mit dem Einrichtventil 17 oder ohne Einrichtventil 17 und der Festblende 13 umgangen. Die Festblende 13 ist derart ausgelegt, dass bei einem maximalen Druck der Pumpe 15 der Volumenstrom, welcher über die Festblende 13 verläuft, keine höhere Geschwindigkeit als beispielsweise 10 mm/s am Hydraulikzylinder erreicht. Somit ist die Festblende 13 auf den maximalen Druck der Pumpe 15 ausgelegt. Für das Verfahren des Hydraulikzylinders kann derVolumenstrom über das Einrichtventil 17 und der Festblende 13 bereitgestellt und über das Wegeventil 18 gelenkt werden.
  • In einem weiteren Fall kann die hängende Last an der Ringseite oder Kolbenseite des Hydraulikzylinders den Hydraulikzylinder bewegen. Die hängende Last und die Hydraulikzylinderfläche zusammen erzeugen einen bestimmten Druck auf der Lastseite des Hydraulikzylinders. Durch das Schließen des Sicherheitsventils 16 verläuft derVolumenstrom über das Einrichtventil 14 und die Festblende 13. Die Festblende 13 ist derart ausgebildet, dass bei dem anliegenden Druck auf der Ringseite durch die hängende Last, der Volumenstrom keine höhere Geschwindigkeit als 10 mm/s erreicht.
  • Somit sind die Pumpe 15, welche über das Sicherheitsventil 16 vor dem Wegeventil 18, über das Einrichtventil 17 und die Festblende 13 abgesichert ist und die hängende Last, welche über das Sicherheitsventil 16, Einrichtventil 14 und die Festblende 13 abgesichert ist, die zwei Quellen, die Energie und somit einen Druckaufbau für das Konstantdrucksystem bereitstellen können.
  • In dem in der Figur 2 dargestellten elektrohydrostatisches Aktuator System kann eine Absicherung der Einrichtgeschwindigkeit dahingehend über eine "Safe Limited Speed" (SLS) - Funktion in der Motorsteuervorrichtung 20 und dem Antriebsmotor der Motorpumpeneinheit 15 oder zum anderen über ein Festblende 13, mit oder ohne zusätzlichen Einrichtventil 14 eingestellt werden. In dem dargestellten elektrohydrostatischen Aktuator System erfolgt die Energieeinprägung wieder, wie bereits zu Figur 3 dargestellt, über zwei Energiearten. Über die Motorpumpeneinheit 15 erfolgt der Druckaufbau. Die Sicherheit gegen Druckaufbau im Fehlerfall durch die Pumpe 15, welche in dem Konstantdrucksystem über Sicherheitsventile und Festblenden erzielt wurde, wird in diesem System in der angeschlossenen Motorsteuervorrichtung 20 durch die Funktion "Safe Torque Off" (STO) erzielt. Durch diese Funktion kann die Motorsteuervorrichtung keine Energie für die Motorpumpeneinheit 15 zum Erzeugen von hydraulischer Leistung in dem Hydrauliksystem bereitstellen. Um den Hydraulikzylinder trotzdem Verfahren zu können, muss ein Volumenstrom dem System zugeführt werden. Der Volumenstrom kann dabei nur realisiert werden, indem die Motorsteuervorrichtung 20 eine Funktion aufweist, die die Drehzahl der Motorpumpeneinheit 15 auf einen vorgegebenen Wert begrenzt, beispielsweise auf einen Wert für eine Geschwindigkeit von 10 mm/s. Diese Funktion entspricht der o.g. SLS - Funktion. Die SLS - Funktion stellt eine Sonderfunktion in der Motorsteuervorrichtung 20 dar. Vielmehr wird eine sicherheitsrelevante Motorsteuervorrichtung 20 benötigt. Die SLS - Funktion ist kostenintensiv und beansprucht Rechenkapazität. Die Motorsteuervorrichtung kann eine bestimmte Rechenleistung zur Verfügung stellen, welche durch die verbaute Hardware begrenzt ist. Ein großer Teil der zur Verfügung stellbaren Rechenleistung wird für die SLS - Funktion reserviert. Im Umkehrschluss kann eine notwendige Regelung nicht mehr durch die Motorsteuervorrichtung bereitgestellt werden und weitere Komponenten sind notwendig, was die Komplexität der Steuerung, sowie zusätzlich die Kosten erhöht.
  • In dem weiteren Fall erfolgt für die zweite Energieeinprägung mittels der hängenden Last eine Absicherung gemäß der in Figur 2 dargestellten Absicherung. Die hängende Last wirkt hierbei auf der zweiten Zylinderkammer 12. Die Absicherung erfolgt über das Sicherheitsventil 16 oder die Sicherheitsventile 16, welche entsprechend den Hydraulikzylinder 10 absperren, womit der Volumenstrom über das Einrichtventil 14 und der Festblende 13 verläuft. Die Festblende 13 ist auf den Druck der hängenden Last eingestellt. Ein mögliches Absinken des Hydraulikzylinders über die hängende Last wird somit über die Festblende 13 eingestellt. Ein Bewegen des Hydraulikzylinders erfolgt durch die SLS - Funktion, sowie über die Festblende 13. Für diese Bewegung muss die Festblende 13 nicht mehr ausgelegt werden. Diese ist nur für die Bewegung durch die hängende Last ausgelegt.
  • Nachteilig bei den in den Figuren 2 und 3 dargestellten Systemen ist, dass in dem elektrohydrostatisches Aktuator System die SLS - Funktion notwendig ist, welche Kostenintensiv ist und die einen Großteil, der durch die Motorsteuervorrichtung zur Verfügung gestellte Rechenleistung reserviert, womit weiteren Funktionen nur begrenzt oder nicht ausgeführt werden können. Das Konzept des klassischen Hydrauliksystems kann nicht für ein elektrohydrostatisches System, wie es in der vorliegenden Erfindung vorgesehen ist eingesetzt werden, da die Energieeinprägung in das System durch die Pumpe 15 erfolgt. Um das klassische Hydrauliksystem elektrohydrostatisch auszulegen, müssten umfangreiche Änderungen vorgenommen werden, welche das System ineffizient und kostenintensiv gestalten. Für so eine Auslegung müsste beispielsweise in dem Zweig von der Pumpe zur Kolbenkammer 11 des Hydraulikzylinder 10 ein entsprechendes Sicherheitsventil und ein entsprechendes Umgehungsventil mit einer Festblende vorgesehen werden. Dies hat den technischen Nachteil, dass sich eine große Kolbenfläche ergibt, womit die Ventile entsprechend groß ausgelegt werden müssen und somit sehr teuer sind und die entsprechende Anpassung wirtschaftlich nicht rentabel ist. Die Festblende müsste derart ausgelegt werden, dass der Druck an der Festblende dem maximalen Druck der Motorpumpeneinheit entsprechen würde. In der Regel weist die Motorpumpeneinheit einen Druck von 350 bar auf. Diesbezüglich müsste die Festblende auf ein sehr hohes Druckniveau und somit auf ein sehr hohes energetisches Niveau ausgelegt werden, wobei die hängende Last in einem Druckbereich von 10 bar bis 20 bar liegt. Durch die notwendige Auslegung auf einen höheren Druck, würden beispielsweise extreme Verluste in dem System erzeugt und somit Energie vernichtet.
  • Es besteht daher ein Bedarf an einem Mechanismus zum Bereitstellen einer gesicherten Einrichtgeschwindigkeit. Ausgehend vom aufgezeigten Stand der Technik und dem sich daraus ergebenden Bedarf, hat sich die vorliegende Erfindung zur Aufgabe gestellt, eine Lösung zu schaffen, die die im Stand der Technik bekannten Nachteile zu mindestens teilweise überwindet.
  • Ein erster Aspekt der vorliegenden Erfindung umfasst ein erfindungsgemäßes elektrohydrostatisches System mit einem Hydraulikzylinder gemäß Anspruch 1.
  • Der vorliegenden Erfindung liegt somit die Kenntnis zugrunde, dass die Motorsteuervorrichtung zum Ansteuern der Motorpumpeneinheit nur die STO - Funktion benötigt, welche die Einbringung von Energie in das System verhindert. Die SLS - Funktion der Motorsteuervorrichtung wird in der erfinderischen Ausgestaltung des elektrohydrostatischen Systems nicht mehr benötigt, womit die Einrichtgeschwindigkeit auch nicht über die Motorsteuervorrichtung detektiert/überwacht wird. Zudem ist die hängende Last über wenigstens ein Sicherheitsventil und eine Festblende abgesichert. In vorteilhafter Weise ist ein Drucksensor, beispielsweise auf der Ringseite vorgesehen, welcher den Druck an der Ringseite zur weiteren Verarbeitung ermittelt. Über den Drucksensor wird in vorteilhafter Weise der Druck an der Festblende detektiert. Steigt der Druck an der Ringseite über den Druck, für den die Festblende ausgelegt an, wird ein entsprechendes Signal ausgewertet und über die Motorsteuervorrichtung erfolgt eine entsprechende Ansteuerung der Motorpumpeneinheit. Das elektrohydrostatische System kann in Folge des detektierten Druckanstiegs angehalten werden. In der erfinderischen Ausgestaltung ist somit über die Festblende auch die hängende Last abgesichert, zuzüglich zu einem bestimmten Druck. Beispielsweise umfasst das Mindestmaß, welches abgesichert ist, den Druck (Energie) der über die hängende Last eingeprägt und eine entsprechende Reserve, beispielsweise 20 bar. Dementsprechend muss die Auswertung des Drucksensors auf den gewählten Druck eingestellt sein. Steigt der Druck an der Festblende über einen entsprechenden Wert, kann das einen Anstieg der Geschwindigkeit des Hydraulikzylinders über einen festgelegten Wert beinhalten, wodurch die Energieeinbringung in die Motorpumpeneinheit über die STO - Funktion der Motorsteuervorrichtung abgeschaltet wird.
  • Weitere vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche sowie der im Folgenden beschriebenen Ausführungsbeispiele.
  • In einer Ausführungsform umfasst das elektrohydrostatische System insbesondere eine erste Sicherheitsvorrichtung, welche eingerichtet ist, ein elektrisches Signal entsprechend einem detektierten fluid hydraulischen Druck von dem Drucksensor zu empfangen und ein Freigabesignal für die Motorsteuervorrichtung zum Bereitstellen des Nennstroms für den elektrischen Antrieb der fluidhydraulischen Motorpumpeneinheit bereitzustellen. In vorteilhafter Weise kann der Druck über den Drucksensor detektiert werden. Der Drucksensor wird durch die erste Sicherheitsvorrichtung überwacht. In einer Ausführungsform kann die erste Sicherheitsvorrichtung als eine Sicherheits-SPS (speicherprogrammierbare Steuerung), insbesondere als eine Sicherheitssteuerung ausgebildet sein. Der Drucksensor bzw. der Wert des ermittelten Druckes wird über die erste Sicherheitsvorrichtung ausgelesen, welche überwacht, ob sich das System noch im sicheren Einrichtbetrieb befindet. Über die Sicherheitsvorrichtung kann ferner die Motorsteuervorrichtung angesprochen werden, insbesondere kann die STO-Funktion gesteuert werden.
  • In einer weiteren Ausführungsform ist der Hydraulikzylinder als ein Differentialzylinder, Gleichgangzylinder, Mehrflächenzylinder oder als eine aufgelöste Zylinderanordnung ausgebildet. In vorteilhafter Weise können durch das erfindungsgemäße elektrohydrostatische System unterschiedliche Hydraulikzylinder entsprechend angesprochen werden.
  • In einer weiteren Ausführungsform umfasst die fluidhydraulische Versorgungseinrichtung, einen Druckspeicher, ein Sicherheitsventil, eine Fluidquelle, wenigstens ein Rückschlagventil und eine Fluidreservoir. Über die fluidhydraulische Versorgungseinrichtung wird teilweise das Fluid für die Motorpumpeneinheit zur Verfügung gestellt. Der Druckspeicher stellt eine Speichervorrichtung von unter Druck befindlichem Fluid dar, welches in das System abgegeben werden kann. Das Fluidreservoir stellt einen Tank für des Hilfsaggregats dar, aus dem auch die Fluidquelle versorgt werden kann.
  • In einer weiteren Ausführungsform wird über die Motorsteuervorrichtung eine Safe Torque Off-Sicherheitsfunktion bereitstellt. Die Motorsteuervorrichtung kann als ein Frequenzumrichter ausgebildet sein. Der Frequenzumrichter kann als ein Stromrichter ausgebildet sein, der aus einer Wechselspannung eine in der Frequenz und Amplitude veränderbare Wechselspannung für die direkte Versorgung der Motorpumpeneinheit generiert. Die Safe Torque Off (STO) - Funktion ist eine in den Frequenzumrichter antriebsintegrierte Sicherheitsfunktion. Über die STO - Funktion wird gewährleistet, dass an einem Motor, insbesondere an der Motorpumpeneinheit keine drehmomentbildende Energie mehrwirken kann und ein ungewollter Anlauf verhindert wird. Die STO - Funktion ist eine Einrichtung zurVermeidung von unerwartetem Anlauf nach EN 60204-1 Abs. 5.4. Über die STO - Funktion können die Impulse eines Antriebes sicher gelöscht werden. Der Antrieb ist gesichert drehmomentfrei. Dieser Zustand kann intern überwacht werden.
  • In einer weiteren Ausführungsform ist der Drucksensor als ein Drucksensor mit erhöhter funktionaler Sicherheit ausgebildet. Der Drucksensor mit erhöhter funktionaler Sicherheit ist ein speziell für den Einsatz in Sicherheitskreisen / Sicherheitsfunktionen im Rahmen der funktionalen Sicherheit von Maschinen und Anlagen bis PL d-Kat 3 (gemäß ISO 13849) konzipierter Drucksensor. Der Drucksensor mit erhöhter funktionaler Sicherheit ist zweikanalig ausgelegt, wobei jeder Kanal aus einem Sensorelement und einer Auswerteelektronik besteht. Aufgrund der redundanten Auslegung erzeugt der Drucksensor mit erhöhter funktionaler Sicherheit zwei separate, voneinander unabhängige, druckproportionale Ausgangssignale. Das Ausgangssignal steht somit in redundanter Form zur Verfügung. Sollte ein Signal ausfallen, steht immer noch ein zweites Signal zur Verarbeitung zur Verfügung, wobei der Ausfall eines Signals bereits eine Fehlerbehandlung initialisiert. Eine Prüfung der Sicherheitsfunktion, sowie die Fehlerbehandlung kann durch Auswertung und Vergleich der beiden analogen Ausgangssignale in einer ersten Sicherheitsvorrichtung erfolgen. Über die erste Sicherheitsvorrichtung und über den Drucksensor mit erhöhter funktionaler Sicherheit wird indirekt geprüft, ob die Einrichtgeschwindigkeit des Hydraulikzylinders überschritten wird oder nicht. Steigt der Druck über einen bestimmten Wert, wird über die erste Sicherheitsvorrichtung eine Steuersignal an den Frequenzumrichter zum Abschalten der Motorpumpeneinheit bereitgestellt.
  • In einer alternativen Ausführungsform kann eine redundante Anordnung mit zwei parallelen einfachen Drucksensoren vorgesehen werden, welche die Anforderung an einen Drucksensor mit erhöhter funktionaler Sicherheit abbilden. Diese stellen somit eine Drucksensoranordnung mit erhöhter funktionaler Sicherheit dar. Als Drucksensoren für die Drucksensoranordnung können gewöhnliche bzw. verfügbare Drucksensoren verwendet werden.
  • Gemäß der Erfindung weist der Widerstand der Festblende wenigstens einen Wert auf, welcher in dem Hydraulikzylinder durch eine hängende Last an dem Hydraulikzylinders erzeugten Druck bestimmt wird. In der erfinderischen Ausgestaltung ist somit über die Festblende auch die hängende Last abgesichert. Die sichere Einrichtgeschwindigkeit wird gewährleistet. Die Festblende kann auf den durch die hängende Last erzeugten Druck, zuzüglich zu einem bestimmten Druck ausgelegt werden.
  • In einer weiteren Ausführungsform ist der Widerstand der Festblende auf einen Druck für das Bereitstellen einer Einrichtgeschwindigkeit des Hydraulikzylinders in einem Bereich von 5 bis 40 mm/s bevorzugt von 10 mm/s eingestellt. Durch diesen eingestellten Druck sind gemäß der Normung als "sicher" bewertete Einrichtgeschwindigkeiten gewähr leistbar.
  • In einer weiteren Ausführungsform ist der Drucksensor mit der zweiten Zylinderkammer des Hydraulikzylinders verbunden. Diese Anordnung kann je nach Zylinderanordnung, wie oben dargestellt, Maximaldruck der einzelnen Zylinderkammern, Flächenverhältnissen an den Zylindern, sowie energetischen Begrenzungen im Einrichtbetrieb notwendig sein.
  • In einer weiteren Ausführungsform ist in der Bypassverbindung ein fluidhydraulisches Einrichtventil geschaltet. In vorteilhafter Weise lässt sich über dieses Einrichtventil der Einrichtbetrieb einschalten bzw. ausschalten. Zudem sichert dieses Einrichtventil den Zylinder gegen ein Abfallen aufgrund des Eigengewichtes und der Anziehungskraft ab, wenn die Motorpumpeneinheit ausgeschaltet wird.
  • In einer weiteren Ausführungsform ist in der Bypassverbindung ein Druckbegrenzungsventil geschaltet. Über das Druckbegrenzungsventil in Kombination mit einem Rückschlagventil kann das Einrichtventil ersetzt werden. Zudem kann über das Druckbegrenzungsventil eingestellt werden, für welche Bewegungsrichtung die Einrichtgeschwindigkeit einzustellen ist. Das Druckbegrenzungsventil kann in der Ausgestaltung als ein Lasthalteventil eingesetzt werden, um eine Bewegung des Zylinders durch das Eigengewicht und die Anziehungskraft abzuschalten. In einer weiteren Ausgestaltung kann das Druckbegrenzungsventil gezielt überdrückt werden.
  • In einer weiteren Ausführungsform ist parallel zu dem Druckbegrenzungsventil ein Rückschlagventil geschaltet. Über das Rückschlagventil in Kombination mit dem Druckbegrenzungsventil kann ein Einrichtventil ersetzt/eingespart werden. Zudem ermöglicht das Rückschlagventil während des Ausfahrens des Hydraulikzylinder in Kombination mit dem Drosselventil die Lasthaltung und die begrenzte Einrichtgeschwindkeit. Während des Einfahrens des Hydraulikzylinders wird über den Zweig des Rückschlagventils das Druckbegrenzungsventil umgangen und ebenfalls die begrenzte Einrichtgeschwindigkeit erzielt.
  • In einer weiteren Ausführungsform umfasst das elektrohydrostatische System eine zweite Sicherheitsvorrichtung umfassend ein Wegemesssystem und/oder eine mechanische Sicherheit. Die zweite Sicherheitsvorrichtung bildet in Kombination mit der ersten Sicherheitsvorrichtung eine redundante Sicherheitsvorrichtung aus. Sollte eine der beiden Sicherheitsvorrichtungen einen Defekt aufweisen, kann die verbleibende Sicherheitsvorrichtung die volle Sicherheit des Systems gewährleisten. Die zweite Sicherheitsvorrichtung kann alternativ auch als ein zweites hydraulisches Sicherheitsventil ausgebildet sein. Insbesondere kann die zweite Sicherheitsvorrichtung der ersten Sicherheitsvorrichtung entsprechen. Das Wegemesssystem kann alternativ zum Drucksensor eine Information über die tatsächliche Geschwindigkeit des Hydraulikzylinder bereitstellen. Die über das Wegemesssystem ermittelte Geschwindigkeit kann dann zum Begrenzen derselben über die Motorsteuervorrichtung und die Motorpumpeneinheit verwendet werden. Bei dem Drucksensor mit erhöhter funktionaler Sicherheit wird über den ermittelten Druck in Kombination mit dem definierten Widerstand der Festblende auf den Volumenstrom und somit die Geschwindigkeit des Hydraulikzylinders ermittelt. Bei dem Wegemesssystem wird über das Wegsignal unter Berücksichtigung der Zeit die Geschwindigkeit des Hydraulikzylinders ermittelt. Als mechanische Sicherheit kann beispielsweise eine mechanische Bremse und/oder eine Klemmvorrichtung vorgesehen sein.
  • In einer weiteren Ausführungsform ist die erste Zylinderkammer des Hydraulikzylinders mit der fluid hydraulische Motorpumpeneinheit verbunden und die zweite Zylinderkammer des Hydraulikzylinders mit dem wenigstens einem fluidhydraulischen Sicherheitsventil. In einer weiteren Ausführungsform ist die erste Zylinderkammer des Hydraulikzylinders mit dem wenigstens einem fluid hydraulischen Sicherheitsventil verbunden und die zweite Zylinderkammer des Hydraulikzylinders mit der fluidhydraulische Motorpumpeneinheit. Die genaue Position zum Einbringen des Drucksensors in das System ist abhängig von der Ausgestaltung des Gesamtsystems. Insbesondere von der Ausrichtung und derArt des eingesetzten Hydraulikzylinders, sowie weiteren Achsen die die eingesetzte Achse überdrücken können und/oder die Gewichtskraft.
  • Ein zweiter Aspekt nicht Teil der vorliegenden Erfindung umfasst die Verwendung des erfindungsgemäßen elektrohydrostatischen Systems zum Steuern der Einrichtgeschwindigkeit eines Hydraulikzylinders in einer Pulverpresse, Schmiedepresse und/oder Umformpresse.
  • Die Erfindung wird nachfolgend anhand verschiedener Ausführungsformen erläutert, wobei darauf hingewiesen wird, dass durch diese Beispiele Abwandlungen beziehungsweise Ergänzungen, wie sie sich für den Fachmann unmittelbar ergeben, mit umfasst sind.
  • In den Figuren der Zeichnung sind gleiche, funktionsgleiche, und gleich wirkende Elemente, Merkmale und Komponenten - sofern nichts anderes ausgeführt ist-jeweils mit denselben Bezugszeichen versehen.
  • Dabei zeigen:
  • Fig. 1
    eine schematische Darstellung eines elektrohydrostatischen Systems gemäß einer ersten Ausführungsform;
    Fig. 2
    eine schematische Darstellung eines im Stand der Technik bekannten elektrohydrostatischen Systems;
    Fig. 3
    eine schematische Darstellung eines im Stand der Technik bekannten klassisches Hydrauliksystems;
    Fig. 4
    eine schematische Darstellung eines elektrohydrostatischen Systems gemäß einer zweiten Ausführungsform;
    Fig. 5
    eine schematische Darstellung eines elektrohydrostatischen Systems gemäß einer dritten Ausführungsform;
    Fig. 6
    eine schematische Darstellung eines elektrohydrostatischen Systems gemäß einer vierten Ausführungsform;
    Fig.7
    eine schematische Darstellung eines elektrohydrostatischen Systems gemäß einer fünften Ausführungsform;
    Fig. 8
    eine schematische Darstellung eines elektrohydrostatischen Systems gemäß einer sechsten Ausführungsform;
  • Fig. 1 zeigt eine schematische Darstellung eines elektrohydrostatischen Systems 1 gemäß einer ersten Ausführungsform. Das elektrohydrostatische System 1 weist einen Hydraulikzylinder 10 mit einer ersten Zylinderkammer 11 und einer zweiten Zylinderkammer 12 auf. Weiterhin weist das elektrohydrostatische System 1 eine Motorpumpeneinheit 15 zur Druckversorgung und eine Versorgungseinrichtung 90 zur Fluidversorgung auf. Die Motorpumpeneinheit 15 ist an einem ersten Anschluss in der in Figur 1 dargestellten Ausführungsform mit der ersten Zylinderkammer 11 des Hydraulikzylinders 10 und der Versorgungseinrichtung 90 über ein Rückschlagventil 93 verbunden. An einem zweiten Anschluss weist die Motorpumpeneinheit 15 eine Verbindung zu einem Sicherheitsventil 16 auf, das weiterhin mit der zweiten Zylinderkammer 12 des Hydraulikzylinders 10 verbunden ist. Die Versorgungseinrichtung 90 umfasst ein Sicherheitsventil 91, eine Fluidquelle 92, ein Rückschlagventil 93, einen Druckspeicher 95 und ein Fluidreservoir 96. Ferner weist das elektrohydrostatische System 1 Motorsteuervorrichtung 20 auf, welche als ein Frequenzumrichter ausgebildet sein kann. Zudem weist das elektrohydrostatische System 1 einen Drucksensor 60, insbesondere einen Drucksensor mit erhöhter funktionaler Sicherheit auf. Der Drucksensor 60 stellt einen an der Festblende 13 ermittelten Druckwert einer ersten Sicherheitsvorrichtung 30, vorzugsweise eine Sicherheits-SPS als eine Sicherheitssteuerung 30 bereit. Die erste Sicherheitsvorrichtung 30 ist mit der Motorsteuervorrichtung 20 elektrisch gekoppelt und ausgebildet ein elektrisches Signal von der Sicherheitsvorrichtung 30 als Antwort auf einen erhöhten Druck, der einer Einrichtgeschwindigkeit außerhalb der Anforderung entspricht, zu empfangen. Vorzugsweise weist der Frequenzumrichter 20 eine "Safe torque off" (STO) - Funktion für das Abschalten des Drehmomentes der Motorpumpeneinheit auf, um die Einrichtgeschwindigkeit gemäß den Anforderungen einzustellen. Die vorliegende Erfindung ist gekennzeichnet durch den Drucksensor mit erhöhterfunktionaler Sicherheit. Alternativ können zwei Drucksensoren einfacher Bauart in redundanter Kombination eingesetzt werden, bei der eine Auswertung der bereitgestellten Signale sinngemäß dem Drucksensor mit erhöhter funktionaler Sicherheit implementiert ist. Alternativ kann ein Drucksensore einfacher Bauart ohne redundante Ausführung eingesetzt und ausgewertet werden. Der/Die Drucksensoren 60 in den Ausführungsform, sowie in der alternativen Ausführungsform wie oben dargestellt, können auf der ersten Zylinderkammer 11 und/oder der zweiten Zylinderkammer 12 des Hydraulikzylinders 10 in das elektrohydrostatischen Systems 1 eingebracht werden. Der Hydraulikzylinder 10 kann als ein Differentialzylinder, als ein Gleichgangzylinder, ein Mehrflächenzylinder oder als eine aufgelöste Zylinderanordnung verwendet werden. Ein unbeabsichtigter Druckaufbau im elektrohydrostatischen System 1 kann über die STO - Sicherheitsfunktion des Frequenzumrichters 20 und der Motorpumpeneinheit 15 abgesichert werden. Die Sicherheit gegen ein Absinken der hängenden Last kann über ein oder eine Vielzahl an sicherheitsrelevanten Ventilen 16 abgesichert werden. Die Einstellung der sicheren Geschwindigkeit im Einrichtvorgang erfolgt über die Festblende 13. Die Festblende 13 stellt einen Bypass des Sicherheitsventils 16 dar und ist mit der zweiten Zylinderkammer 12 des Hydraulikzylinders 10 und der Motorpumpeneinheit 15 bzw. der Versorgungseinrichtung 90 verbunden. Weiterhin weist die Festblende 13 eine Verbindung zu dem Drucksensor 60 mit erhöhter funktionaler Sicherheit auf. In der Ausführungsform der Fig. 1 ist die Festblende 13 ohne zusätzliches Einrichtventil ausgeführt. Die Druckdifferenz, auf welche die Festblende 13 ausgelegt ist, wird durch den Drucksensor 60 mit erhöhter funktionaler Sicherheit als Obergrenze im Einrichtbetrieb festgelegt. Wird dieser festgelegt Druckwert überschritten, löst die erste Sicherheitsvorrichtung 30 die STO - Sicherheitsfunktion des Frequenzumrichters 20 aus. Durch das Auslösen der STO - Sicherheitsfunktion wird die sichere Einrichtgeschwindigkeit nicht überschritten. Mit der erfinderischen Ausgestaltung kann eine sichere Einrichtgeschwindigkeit realisiert werden, obwohl aufgrund von ungleichen Flächen oder anderen Gründen auftretende Druckunterschiede auf den Hydraulikkammern herrschen. Somit wird keine Druckbegrenzungsvorrichtung überdrückt und die maximale Einrichtgeschwindigkeit begrenzt. Die Einrichtgeschwindigkeit wird von der Drehzahl und/oder dem Fördervolumen der drehzahlvariablen Motropumpeneinheit 15 vorgegeben, wobei die maximale Einrichtgeschwindigkeit durch den Widerstand und den Drucksensor 60 mit erhöhter funktionaler Sicherheit zwischen dem Druck der hängenden Last und dem maximalen Druck der Druckbegrenzungsventile frei festgelegt werden kann.
  • Fig. 4 zeigt eine schematische Darstellung eines elektrohydrostatischen Systems 1 gemäß einer zweiten Ausführungsform. In der Ausführungsform gemäß der Fig. 4 ist das elektrohydrostatische System 1 um ein Einrichtventil 14 in der Bypassverbindung des Sicherheitsventils 16 oder der Sicherheitsventile 16 mit Bezug auf die Ausführungsform der Fig. 1 erweitert. Das Einrichtventil 14 ist zwischen der Festblende 13 und der zweiten Zylinderkammer 12 des Hydraulikzylinders 10 eingebracht. Der Drucksensor 60 mit erhöhter Funktionalität ermittelt den Druck an der Festblende 13 über das Einrichtventil 14. Über das Einrichtventil 14 lässt sich der Einrichtbetrieb einschalten bzw. ausschalten. Zudem kann ein Absacken des Hydraulikzylinders durch das eigene Gewicht bei einem Ausfall der Motorpumpeneinheit 15 unterbunden werden.
  • Fig. 5 zeigt eine schematische Darstellung eines elektrohydrostatischen Systems 1 gemäß einer dritten Ausführungsform. In der Ausführungsform gemäß der Figur 5 ist das elektrohydrostatische System 1 um ein Druckbegrenzungsventil 70 in der Bypassverbindung des Sicherheitsventils 16 oder der Sicherheitsventile 16 mit Bezug auf die Ausführungsform der Fig. 1 erweitert. Das Druckbegrenzungsventil 70 ist zwischen der Festblende 13 und der zweiten Zylinderkammer 12 des Hydraulikzylinders 10 eingebracht. Der Drucksensor 60 mit erhöhter Funktionalität ermittelt den Druck an der Festblende 13 über das Druckbegrenzungsventil 70. Das Druckbegrenzungsventil 70 dient als Lasthalteventil, um ein Absinken des Kolbens des Hydraulikzylinders 10 durch das Eigengewicht zu vermeiden. Durch das Druckbegrenzungsventil 70 ist ein Einrichten in ausfahrender Richtung des Hydraulikzylinders 10 möglich.
  • Fig. 6 zeigt eine schematische Darstellung eines elektrohydrostatischen Systems 1 gemäß einer vierten Ausführungsform. In der Ausführungsform gemäß der Figur 6 ist das elektrohydrostatische System 1 um ein Druckbegrenzungsventil 80 in der Bypassverbindung des Sicherheitsventils 16 oder der Sicherheitsventile 16 mit Bezug auf die Ausführungsform der Fig. 1 erweitert. Das Druckbegrenzungsventil 80 ist zwischen der Festblende 13 und der zweiten Zylinderkammer 12 des Hydraulikzylinders 10 eingebracht. Der Drucksensor 60 mit erhöhter Funktionalität ermittelt den Druck an der Festblende 13 über das Druckbegrenzungsventil 80. Zusätzlich ist in einer Bypassverbindung zu dem Druckbegrenzungsventil 80 ein Rückschlagventil 81 vorgesehen. Das Druckbegrenzungsventil 80 dient als Lasthalteventil, um ein Absinken des Kolbens des Hydraulikzylinders 10 durch das Eigengewicht zu vermeiden. Durch das Druckhalteventil 80 in Kombination mit dem Rückschlagventil 81 wird die Funktion des Einrichtventils 14 ersetzt. Das Druckbegrenzungsventil 80 ist auf die hängende Last eingestellt.
  • Fig. 7 zeigt eine schematische Darstellung eines elektrohydrostatischen Systems 1 gemäß einer fünften Ausführungsform. In der Ausführungsform gemäß der Figur 7 ist der Drucksensor 60 mit erhöhter funktionaler Sicherheit mit der Zylinderkammer des Hydraulikzylinders 10 verbunden, die keine Verbindung zu dem Sicherheitsventil 16 aufweist. Die genaue Position des Drucksensors 60 mit erhöhter Funktionalität kann in Abhängigkeit vom Gesamtsystem und somit der Ausrichtung und derart der Hydraulikzylinder, weitere Achsen, die diese Achse überdrücken können und/oder der einwirkenden Gewichtskraft gewählt werden. So kann effizient und auf flexible Weise eine sichere Einrichtgeschwindigkeit für jedes System bereitgestellt werden.
  • Fig. 8 zeigt eine schematische Darstellung eines elektrohydrostatischen Systems 1 gemäß einer sechsten Ausführungsform. In der Ausführungsform gemäß der Figur 8 weist das elektrohydrostatische System 1 ergänzend eine zweite Sicherheitsvorrichtung 50 auf. Die zweite Sicherheitsvorrichtung 50 kann eine Wegemesssystem und/oder eine mechanische Sicherheit umfassen. Durch die zweite Sicherheitsvorrichtung 50 kann in Kombination mit der ersten Sicherheitsvorrichtung 30 eine redundante Sicherheit bereitgestellt werden. Ein Defekt einer der beiden Sicherheitsvorrichtungen 30, 50 kann durch die andere funktionstüchtige Sicherheitsvorrichtung 30, 50 kompensiert werden, wodurch die volle Sicherheit gewährleistet ist. Alternativ kann die zweite Sicherheitsvorrichtung 50 auch als ein zweites hydraulisches Sicherheitsventil 16 ausgebildet sein. Das Wegemesssystem liefert alternativ zu dem Drucksensor 60 mit erhöhter funktionaler Sicherheit Informationen über die tatsächliche Bewegungsgeschwindigkeit des Hydraulikzylinders 10. Die ermittelte tatsächliche Bewegungsgeschwindigkeit kann zum Begrenzen derselben über den Frequenzumrichter 20 in Kombination mit der Motorpumpeneinheit 15 verwendet werden. Für das Ermitteln der tatsächlichen Bewegungsgeschwindigkeit erfolgt die Ableitung des Wegsignals über die Zeit. Die mechanische Sicherheit kann über eine mechanische Bremse und/oder Klemmvorrichtung eingerichtet werden. Dies erhöht die Sicherheit des elektrohydrostatischen Systems 1.
  • Bezugszeichenliste
  • 1
    Elektrohydrostatisches System
    10
    Hydraulikzylinder
    11
    erste Zylinderkammer
    12
    zweite Zylinderkammer
    13
    Festblende
    14
    Einrichtventil
    15
    Motorpumpeneinheit
    16
    Sicherheitsventil
    17
    Einrichtventil
    18
    Wegeventil
    20
    Motorsteuervorrichtung
    30
    erste Sicherheitsvorrichtung
    50
    zweite Sicherheitsvorrichtung
    60
    Drucksensor
    70
    Druckbegrenzungsventil
    80
    Druckbegrenzungsventil
    81
    Rückschlagventil
    90
    Versorgungseinrichtung
    91
    Sicherheitsventil
    92
    Fluidquelle
    93
    Rückschlagventil
    94
    Druckbegrenzungsventil
    95
    Druckspeicher
    96
    Fluidreservoir

Claims (15)

  1. Elektrohydrostatisches System (1) umfassend:
    - einen Hydraulikzylinder (10) mit einer ersten Zylinderkammer (11) und einerzweiten Zylinderkammer (12);
    - eine fluidhydraulische Versorgungseinrichtung (90) zum Bereitstellen eines hydraulischen Fluides;
    - eine fluidhydraulische Motorpumpeneinheit (15), eingerichtet einen fluidhydraulischen Volumenstrom zum Bewegen des Hydraulikzylinders (10) bereitzustellen;
    - eine Motorsteuervorrichtung (20), eingerichtet einen Nennstrom für einen elektrischen Antrieb der fluidhydraulischen Motorpumpeneinheit (15) bereitzustellen;
    - wenigstens ein fluidhydraulisches Sicherheitsventil (16), welches an einer ersten Ventilseite mit einer der Zylinderkammern (11, 12) des Hydraulikzylinders (10) und an einerzweiten Ventilseite mit der fluidhydraulischen Motorpumpeneinheit (15) verbunden ist;
    - eine Bypassverbindung mit einer Festblende (13) zum Überbrücken des wenigstens eines fluidhydraulischen Sicherheitsventils (16), wobei die Bypassverbindung mit der ersten Ventilseite und mit der zweiten Ventilseite des wenigstens eines fluidhydraulischen Sicherheitsventils (16) verbunden ist;
    - einen Drucksensor (60), welcher mit der zweiten Zylinderkammer (12) des Hydraulikzylinders (10) verbunden ist und eingerichtet einen fluidhydraulischen Druck an einer der Zylinderkammern (11, 12) zu detektieren und entsprechend dem detektierten fluid hydraulischen Druck ein Freigabesignal für die Motorsteuervorrichtung (20) zum Bereitstellen des Nennstroms für den elektrischen Antrieb der fluidhydraulischen Motorpumpeneinheit (15) bereitzustellen, dadurch gekennzeichnet, dass der Widerstand des Festblende (13) wenigstens einen Wert aufweist, welcher in dem Hydraulikzylinder (10) durch eine hängende Last an dem Hydraulikzylinders (10) erzeugten Druck bestimmt wird.
  2. Elektrohydrostatisches System nach dem unmittelbar vorhergehenden Anspruch, wobei das elektrohydrostatische System (1) insbesondere eine erste Sicherheitsvorrichtung (30) umfasst, welche eingerichtet ist, ein elektrisches Signal entsprechend einem detektierten fluid hydraulischen Druck von dem Drucksensor (60) zu empfangen und ein Freigabesignal für die Motorsteuervorrichtung (20) zum Bereitstellen des Nennstroms für den elektrischen Antrieb der fluidhydraulischen Motorpumpeneinheit (15) bereitzustellen.
  3. Elektrohydrostatisches System nach einem der vorhergehenden Ansprüche 1 oder 2, wobei der Hydraulikzylinder (10) als ein Differentialzylinder, Gleichgangzylinder, Mehrflächenzylinder oder eine aufgelöste Zylinderanordnung ausgebildet ist.
  4. Elektrohydrostatisches System nach einem der vorhergehenden Ansprüche 1 bis 3, wobei die fluidhydraulische Versorgungseinrichtung (90) einen Druckspeicher (95) ein Sicherheitsventil (91), eine Fluidquelle (92), wenigstens ein Rückschlagventil (93) und eine Fluidreservoir (96) umfasst.
  5. Elektrohydrostatisches System nach einem der vorhergehenden Ansprüche 1 bis 4, wobei die Motorsteuervorrichtung (20) eine Safe Torque Off - Sicherheitsfunktion bereitstellt.
  6. Elektrohydrostatisches System nach einem der vorhergehenden Ansprüche 1 bis 5, wobei der Drucksensor (60) als ein Drucksensor mit erhöhter funktionaler Sicherheit ausgebildet ist.
  7. Elektrohydrostatisches System nach Anspruch 1, wobei der Widerstand der Festblende (13) auf einen Druck für das Bereitstellen einer Einrichtgeschwindigkeit des Hydraulikzylinders (10) in einem Bereich von 5 bis 40 mm/s bevorzugt von 10 mm/s eingestellt ist.
  8. Elektrohydrostatisches System nach einem der vorhergehenden Ansprüche 1 bis 7, wobei der Drucksensor (60) mit der zweiten Zylinderkammer (12) des Hydraulikzylinders (10) verbunden ist.
  9. Elektrohydrostatisches System nach einem der vorhergehenden Ansprüche 1 bis 8, wobei in der Bypassverbindung ein fluidhydraulisches Einrichtventil (14) geschaltet ist.
  10. Elektrohydrostatisches System nach einem der vorhergehenden Ansprüche 1 bis 7, wobei in der Bypassverbindung ein Druckbegrenzungsventil (70, 80) geschaltet ist.
  11. Elektrohydrostatisches System nach Anspruch 10, wobei parallel zu dem Druckbegrenzungsventil (70, 80) ein Rückschlagventil (81) geschaltet ist.
  12. Elektrohydrostatisches System nach einem der vorhergehenden Ansprüche 1 bis 11, wobei das elektrohydrostatische System eine zweite Sicherheitsvorrichtung (50) umfassend ein Wegemesssystem und/oder eine mechanische Sicherheit umfasst.
  13. Elektrohydrostatisches System nach einem der vorhergehenden Ansprüche 1 bis 12, wobei die erste Zylinderkammer (11) des Hydraulikzylinders (10) mit der fluidhydraulische Motorpumpeneinheit (15) verbunden ist und die zweite Zylinderkammer (12) des Hydraulikzylinders (10) mit dem wenigstens einem fluidhydraulischen Sicherheitsventil (16) verbunden ist.
  14. Elektrohydrostatisches System nach einem der vorhergehenden Ansprüche 1 bis 11, wobei die erste Zylinderkammer (11) des Hydraulikzylinders (10) mit dem wenigstens einem fluidhydraulischen Sicherheitsventil (16) und die zweite Zylinderkammer (12) des Hydraulikzylinders (10) mit der fluidhydraulische Motorpumpeneinheit (15) verbunden ist.
  15. Elektrohydrostatisches System nach einem der vorhergehenden Ansprüche 1 bis 14 zum Steuern der Einrichtgeschwindigkeit in einer Pulverpresse, Schmiedepresse und/oder Umformpresse.
EP20811548.5A 2019-11-26 2020-11-18 Elektrohydrostatisches system mit drucksensor Active EP4065360B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019131980.3A DE102019131980A1 (de) 2019-11-26 2019-11-26 Elektrohydrostatisches System mit Drucksensor
PCT/EP2020/082546 WO2021104966A1 (de) 2019-11-26 2020-11-18 Elektrohydrostatisches system mit drucksensor

Publications (2)

Publication Number Publication Date
EP4065360A1 EP4065360A1 (de) 2022-10-05
EP4065360B1 true EP4065360B1 (de) 2023-12-20

Family

ID=73544139

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20811548.5A Active EP4065360B1 (de) 2019-11-26 2020-11-18 Elektrohydrostatisches system mit drucksensor

Country Status (5)

Country Link
US (1) US20230026318A1 (de)
EP (1) EP4065360B1 (de)
CN (1) CN114761221B (de)
DE (1) DE102019131980A1 (de)
WO (1) WO2021104966A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021005824B4 (de) 2021-11-24 2023-08-10 Hydac International Gmbh Sicherheitsventilvorrichtung
DE102022111781B4 (de) * 2022-05-11 2023-11-30 Festo Se & Co. Kg Pneumatisches Aktorsystem
DE102022121962A1 (de) * 2022-08-31 2024-02-29 Bucher Hydraulics Ag Elektrisch-hydraulischer Aktor

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066103A (en) * 1975-04-18 1978-01-03 Danfoss A/S Hydraulic regulator
DE3237103C3 (de) * 1982-10-07 1997-01-23 Wessel Hydraulik Sicherheitsventil als Lasthalteventil in der Hebezeughydraulik
DE3901475C2 (de) * 1989-01-19 1994-07-14 Danfoss As Fluidgesteuerte Servoanordnung
DE4140408A1 (de) * 1991-12-07 1993-06-09 Robert Bosch Gmbh, 7000 Stuttgart, De Elektrohydraulische steuereinrichtung
JP2809096B2 (ja) * 1994-04-25 1998-10-08 株式会社新潟鉄工所 射出成形機の油圧回路
JPH10203755A (ja) * 1997-01-17 1998-08-04 Hitachi Building Syst Co Ltd 油圧エレベータの異常診断装置
JP4292322B2 (ja) * 1998-06-24 2009-07-08 株式会社アマダ 穴明け機の油圧回路
WO2001053016A1 (fr) * 2000-01-17 2001-07-26 Amada Company, Limited Procede de controle de la vitesse du verin d'une presse a plier, presse a plier mettant en oeuvre ledit procede et procede et appareil de regulation de la position du verin de la presse a plier
JP3783582B2 (ja) * 2001-07-05 2006-06-07 ダイキン工業株式会社 液圧回路装置
US6899012B2 (en) * 2003-05-21 2005-05-31 Actuant Corporation Fluid flow control valve assembly with independent feedback pressure
US6892534B2 (en) * 2003-07-18 2005-05-17 Young & Franklin Inc. Electro-hydrostatic actuator with a failsafe system
CA2476032C (en) * 2004-08-27 2008-11-04 Westport Research Inc. Hydraulic drive system and method of operating a hydraulic drive system
SE531309C2 (sv) * 2006-01-16 2009-02-17 Volvo Constr Equip Ab Styrsystem för en arbetsmaskin och förfarande för styrning av en hydraulcylinder hos en arbetsmaskin
SE529941C2 (sv) * 2006-05-19 2008-01-08 Nordhydraulic Ab Hydrauliskt system och förfarande för dämpning av svängningar hos en lastbärande kran samt dess användning
US7624671B2 (en) * 2007-02-07 2009-12-01 Sauer-Danfoss Aps Hydraulic actuator for a servomotor with an end lock function
US9835140B2 (en) * 2011-12-20 2017-12-05 Windflow Technology Limited Power generating system and hydraulic control system
WO2015195246A1 (en) * 2014-06-20 2015-12-23 Parker-Hannifin Corporation Method of controlling velocity of a hydraulic actuator in over-center linkage systems
EP3280847B1 (de) * 2015-04-10 2020-10-21 Volvo Construction Equipment AB Lasterfassendes hydrauliksystem für eine arbeitsmaschine und verfahren zur steuerung eines lasterfassenden hydrauliksystems
US10344784B2 (en) * 2015-05-11 2019-07-09 Caterpillar Inc. Hydraulic system having regeneration and hybrid start
EP3109488B1 (de) * 2015-06-25 2017-12-13 MOOG GmbH Betriebssicherer hydraulischer antrieb
EP3112698B1 (de) * 2015-06-30 2019-09-04 Goodrich Actuation Systems SAS Elektrische hydrostatische aktuatoren
DE102016113882A1 (de) * 2016-07-27 2018-02-01 Moog Gmbh Elektro-hydrostatisches Antriebssystem
JP6356198B2 (ja) * 2016-10-31 2018-07-11 アイダエンジニアリング株式会社 プレス機械のダイクッション装置
CN106640792A (zh) * 2016-12-26 2017-05-10 中国船舶重工集团公司第七〇九研究所 一种应用于单出杆液压缸压机的直驱式电液伺服系统
DE102017124948A1 (de) * 2017-10-25 2019-04-25 Wessel-Hydraulik Gmbh Hydraulische Schaltungsanordnung
CN108266413B (zh) * 2017-12-15 2021-02-12 中国航空工业集团公司金城南京机电液压工程研究中心 基于压力选择阀的非对称电静液作动器

Also Published As

Publication number Publication date
CN114761221A (zh) 2022-07-15
EP4065360A1 (de) 2022-10-05
CN114761221B (zh) 2024-06-11
WO2021104966A1 (de) 2021-06-03
DE102019131980A1 (de) 2021-05-27
US20230026318A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
EP4065360B1 (de) Elektrohydrostatisches system mit drucksensor
DE102013227065B4 (de) Hydraulisches Bremssystem mit erstem und zweitem Bremsdruckerzeuger sowie Verfahren zum Betreiben eines Bremssystems
EP2518331B1 (de) Ventilvorrichtung
DE102013216477A1 (de) Bremsanlage für Kraftfahrzeuge
EP2698545B1 (de) Einrichtung zum Steuern des Ladezustandes mindestens eines Druckspeichers
DE2921464A1 (de) Steuersysteme
EP3277551B1 (de) Drucklufteinrichtung für fahrzeuge mit doppelrelaisventil
DE102016214708A1 (de) Stetigventileinheit, hydraulische Achse und Verfahren zum Betreiben einer hydraulischen Achse
EP3472007A1 (de) Verfahren und vorrichtung zum betreiben eines bremssystems, bremssystem
EP3592991B1 (de) Verfahren zum ansteuern eines hydraulischen stellantriebes, steuereinrichtung und stellantriebsteuerung
EP3078477B1 (de) Verfahren und blasformanlage zur extrusion von vorformlingen, die durch blasformen zu kunststoffhohlkörpern aufgeweitet werden
DE102004052352B3 (de) Bremskreislauf
EP2403742A1 (de) Verfahren zum betreiben eines hydraulischen oder pneumatischen systems
DE102020131046A1 (de) Hydraulisches Hubsystem
EP3555475B1 (de) Vakuumpumpsystem sowie verfahren zum betreiben eines vakuumpumpsystems
WO2017220229A1 (de) Verfahren und vorrichtung zum betreiben eines bremssystems, bremssystem
EP0884486A1 (de) Elektrohydraulische Spannvorrichtung
DE102014226617A1 (de) Antriebsregelvorrichtung für einen elektro-hydraulischen Antrieb
DE102016005859A1 (de) Bremsanlage für ein Kraftfahrzeug sowie Verfahren zum Betreiben einer Bremsanlage
DE102016002676A1 (de) Verfahren und Steuerungseinrichtung zum Steuern eines insbesondere pneumatischen Bremssystems für Fahrzeuge
DE1751809C3 (de) Anordnung zur elektrohydraulischen Steuerung eines hydraulischen Tandem-Stellmotors
DE102004040940A1 (de) Baugruppe für ein Fahrwerkstabilisierungssystem
EP3644143B1 (de) Sich selbst parametrierende peripheriebaugruppe
WO2017097610A1 (de) Hydraulische lenkeinrichtung
WO2001069093A1 (de) Einrichtung zur steuerung eines hydraulischen aktuators

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220427

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F15B 20/00 20060101ALI20230622BHEP

Ipc: F15B 7/00 20060101ALI20230622BHEP

Ipc: B30B 15/28 20060101ALI20230622BHEP

Ipc: F15B 11/00 20060101ALI20230622BHEP

Ipc: F15B 13/01 20060101ALI20230622BHEP

Ipc: B30B 15/20 20060101AFI20230622BHEP

INTG Intention to grant announced

Effective date: 20230726

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020006473

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240321

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240321

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240320

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240420