EP4065360B1 - Système électrohydrostatique à capteur de pression - Google Patents

Système électrohydrostatique à capteur de pression Download PDF

Info

Publication number
EP4065360B1
EP4065360B1 EP20811548.5A EP20811548A EP4065360B1 EP 4065360 B1 EP4065360 B1 EP 4065360B1 EP 20811548 A EP20811548 A EP 20811548A EP 4065360 B1 EP4065360 B1 EP 4065360B1
Authority
EP
European Patent Office
Prior art keywords
electrohydrostatic
hydraulic
cylinder
pressure
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20811548.5A
Other languages
German (de)
English (en)
Other versions
EP4065360A1 (fr
Inventor
Sascha DANY
Sven Müller
Kohlhaas REINER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moog GmbH
Original Assignee
Moog GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moog GmbH filed Critical Moog GmbH
Publication of EP4065360A1 publication Critical patent/EP4065360A1/fr
Application granted granted Critical
Publication of EP4065360B1 publication Critical patent/EP4065360B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/16Control arrangements for fluid-driven presses
    • B30B15/18Control arrangements for fluid-driven presses controlling the reciprocating motion of the ram
    • B30B15/20Control arrangements for fluid-driven presses controlling the reciprocating motion of the ram controlling the speed of the ram, e.g. the speed of the approach, pressing or return strokes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/28Arrangements for preventing distortion of, or damage to, presses or parts thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/003Systems with load-holding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/024Pressure relief valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/18Combined units comprising both motor and pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B20/00Safety arrangements for fluid actuator systems; Applications of safety devices in fluid actuator systems; Emergency measures for fluid actuator systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20569Type of pump capable of working as pump and motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/27Directional control by means of the pressure source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30505Non-return valves, i.e. check valves
    • F15B2211/30515Load holding valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40507Flow control characterised by the type of flow control means or valve with constant throttles or orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/405Flow control characterised by the type of flow control means or valve
    • F15B2211/40576Assemblies of multiple valves
    • F15B2211/40592Assemblies of multiple valves with multiple valves in parallel flow paths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/40Flow control
    • F15B2211/415Flow control characterised by the connections of the flow control means in the circuit
    • F15B2211/41572Flow control characterised by the connections of the flow control means in the circuit being connected to a pressure source and an output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/61Secondary circuits
    • F15B2211/613Feeding circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/625Accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/665Methods of control using electronic components
    • F15B2211/6651Control of the prime mover, e.g. control of the output torque or rotational speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/85Control during special operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/875Control measures for coping with failures
    • F15B2211/8757Control measures for coping with failures using redundant components or assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B7/00Systems in which the movement produced is definitely related to the output of a volumetric pump; Telemotors
    • F15B7/005With rotary or crank input
    • F15B7/006Rotary pump input

Definitions

  • the present invention relates to an electrohydrostatic system for controlling the setup speed of a hydraulic cylinder, for example in a powder press, forging press and/or a forming press.
  • a vertical position of a plunger is detected directly by a plunger position detection device.
  • a first speed arithmetic operation section determines a first ram moving speed based on a change in the detected position.
  • a second speed arithmetic operation section determines a second slide movement speed based on a rotation speed of a servo motor determined by a servo motor rotation speed detector.
  • the constant pressure system includes a constant pressure source 15 to supply hydraulic pressure.
  • the constant pressure system also includes the Figure 3 Directional valve 18 for controlling the function of the hydraulic cylinder 10, for example the retraction and extension.
  • the safe setup speed is ensured via one or more fixed apertures 13, with or without setup valve 14, 17.
  • the fixed panels 13 bridge one or two single or redundant safety valves 16 (load holding and/or pressure build-up valves). Set are the fixed apertures 13 for the maximum pressure occurring in the system and/or the hanging load on the hydraulic cylinder.
  • a maximum pressure in the system is throttled via a fixed orifice 13 (parallel to the pressure build-up valve 16 behind the pump 15) before a pressure increase can occur due to uneven surfaces in the hydraulic cylinder.
  • several directional control valves must be bypassed.
  • the safety valve 16 which is connected between the directional control valve 18 and the pump 15, must be bypassed.
  • the safety valve 16 separates the pressure buildup of the pump 15 from the constant pressure system to prevent pressure buildup in the system.
  • a second safety valve 16 is inserted between the hanging load on the ring side or the piston side of the hydraulic cylinder 10 and the directional control valve 18. The safety valve 16 protects the hydraulic cylinder from falling due to the hanging load.
  • the first safety valve 16 for securing the hydraulic pressure in the constant pressure system is bypassed via the parallel branch with the setup valve 17 or without the setup valve 17 and the fixed orifice 13.
  • the fixed orifice 13 is designed in such a way that at a maximum pressure of the pump 15, the volume flow that runs over the fixed orifice 13 does not reach a speed higher than, for example, 10 mm/s on the hydraulic cylinder.
  • the fixed diaphragm 13 is therefore designed for the maximum pressure of the pump 15.
  • the volume flow can be provided via the setup valve 17 and the fixed orifice 13 and directed via the directional control valve 18.
  • the hanging load on the ring side or piston side of the hydraulic cylinder can move the hydraulic cylinder.
  • the hanging load and the hydraulic cylinder surface together create a certain pressure on the load side of the hydraulic cylinder.
  • the volume flow passes through the setup valve 14 and the fixed orifice 13.
  • the fixed orifice 13 is designed in such a way that with the pressure applied on the ring side due to the hanging load, the volume flow does not reach a speed higher than 10 mm/s.
  • the pump 15 which is protected via the safety valve 16 in front of the directional control valve 18, via the setup valve 17 and the fixed diaphragm 13, and the hanging load, which is via the Safety valve 16, setup valve 14 and the fixed aperture 13 are secured, the two sources that can provide energy and thus a pressure build-up for the constant pressure system.
  • the set-up speed can be secured via a “Safe Limited Speed” (SLS) function in the motor control device 20 and the drive motor of the motor pump unit 15 or, on the other hand, via a fixed aperture 13, with or without an additional set-up valve 14.
  • SLS Safe Limited Speed
  • the energy is impressed again, as already done Figure 3 shown, about two types of energy.
  • the pressure builds up via the motor pump unit 15.
  • STO Safe Torque Off
  • the engine control device cannot provide power to the engine pump unit 15 for generating hydraulic power in the hydraulic system.
  • a volume flow must be supplied to the system.
  • the volume flow can only be realized by the motor control device 20 having a function that limits the speed of the motor pump unit 15 to a predetermined value, for example to a value for a speed of 10 mm/s.
  • This function corresponds to the SLS function mentioned above.
  • the SLS function represents a special function in the engine control device 20. Rather, a safety-relevant engine control device 20 is required.
  • the SLS function is cost-intensive and requires computing capacity.
  • the engine control device can provide a certain computing power, which is limited by the installed hardware. A large part of the available computing power is reserved for the SLS function. Conversely, the necessary regulation can no longer be provided by the engine control device and additional components are necessary, which increases the complexity of the control and additional costs.
  • the second energy injection by means of the hanging load is secured in accordance with in Figure 2 protection shown.
  • the hanging load acts on the second cylinder chamber 12.
  • the protection takes place via the safety valve 16 or the safety valves 16, which accordingly shut off the hydraulic cylinder 10, so that the volume flow runs via the setup valve 14 and the fixed orifice 13.
  • the fixed aperture 13 is adjusted to the pressure of the hanging load. A possible lowering of the hydraulic cylinder over the hanging load is thus adjusted via the fixed aperture 13. Moving the hydraulic cylinder is carried out by the SLS function and via the fixed aperture 13.
  • the fixed aperture 13 no longer needs to be designed for this movement. This is only designed for movement by the hanging load.
  • a corresponding safety valve and a corresponding bypass valve with a fixed orifice would have to be provided in the branch from the pump to the piston chamber 11 of the hydraulic cylinder 10.
  • This has the technical disadvantage that it results in a large piston area, which means that the valves have to be designed correspondingly large and are therefore very expensive and the corresponding adjustment is not economically viable.
  • the fixed orifice would have to be designed in such a way that the pressure at the fixed orifice would correspond to the maximum pressure of the motor pump unit. As a rule, the motor pump unit has a pressure of 350 bar.
  • the fixed diaphragm would have to be designed for a very high pressure level and therefore for a very high energy level, with the hanging load being in a pressure range of 10 bar to 20 bar.
  • the necessary design for a higher pressure would, for example, generate extreme losses in the system and thus destroy energy.
  • the present invention has set itself the task of creating a solution that at least partially overcomes the disadvantages known in the prior art.
  • a first aspect of the present invention comprises an electrohydrostatic system according to the invention with a hydraulic cylinder according to claim 1.
  • the present invention is therefore based on the knowledge that the motor control device only requires the STO function to control the motor pump unit, which prevents the introduction of energy into the system.
  • the SLS function of the engine control device is implemented in the Inventive design of the electrohydrostatic system is no longer needed, which means that the setup speed is not detected/monitored via the engine control device.
  • the hanging load is protected by at least one safety valve and a fixed cover.
  • a pressure sensor is provided, for example on the ring side, which determines the pressure on the ring side for further processing.
  • the pressure at the fixed diaphragm is advantageously detected via the pressure sensor.
  • the hanging load is also secured via the fixed aperture, in addition to a certain pressure.
  • the minimum dimension that is secured includes the pressure (energy) impressed over the hanging load and a corresponding reserve, for example 20 bar. Accordingly, the evaluation of the pressure sensor must be set to the selected pressure. If the pressure at the fixed orifice rises above a corresponding value, this may include an increase in the speed of the hydraulic cylinder above a specified value, whereby the energy input into the motor pump unit is switched off via the STO function of the motor control device.
  • the electrohydrostatic system in particular comprises a first safety device, which is set up to receive an electrical signal corresponding to a detected fluid-hydraulic pressure from the pressure sensor and to provide a release signal for the engine control device for providing the rated current for the electric drive of the fluid-hydraulic motor pump unit.
  • the pressure can advantageously be detected via the pressure sensor.
  • the pressure sensor is monitored by the first safety device.
  • the first safety device can be designed as a safety PLC (programmable logic controller), in particular as a safety controller.
  • the pressure sensor or the value of the determined pressure is read out via the first safety device, which monitors whether the system is still in safe setup mode.
  • the motor control device can also be addressed via the safety device, in particular the STO function can be controlled.
  • the hydraulic cylinder is designed as a differential cylinder, synchronous cylinder, multi-surface cylinder or as a separated cylinder arrangement.
  • different hydraulic cylinders can be addressed accordingly by the electrohydrostatic system according to the invention.
  • the fluid-hydraulic supply device comprises a pressure accumulator, a safety valve, a fluid source, at least one check valve and a fluid reservoir.
  • the fluid for the motor pump unit is partially made available via the fluid-hydraulic supply device.
  • the accumulator represents a storage device of pressurized fluid that can be released into the system.
  • the fluid reservoir represents a tank for the auxiliary unit, from which the fluid source can also be supplied.
  • a Safe Torque Off safety function is provided via the engine control device.
  • the motor control device can be designed as a frequency converter.
  • the frequency converter can be designed as a power converter which generates an alternating voltage that can be changed in frequency and amplitude from an alternating voltage for the direct supply of the motor pump unit.
  • the Safe Torque Off (STO) function is a safety function integrated into the frequency converter drive.
  • the STO function ensures that no torque-generating energy can have an effect on a motor, especially on the motor pump unit, and that unwanted starting is prevented.
  • the STO function is a device to avoid unexpected starting according to EN 60204-1 paragraph 5.4.
  • the pulses of a drive can be safely deleted using the STO function.
  • the drive is secured and torque-free. This condition can be monitored internally.
  • the pressure sensor is designed as a pressure sensor with increased functional safety.
  • the pressure sensor with increased functional safety is a pressure sensor specially designed for use in safety circuits / safety functions as part of the functional safety of machines and systems up to PL d-Cat 3 (according to ISO 13849).
  • the pressure sensor with increased functional safety is designed with two channels, with each channel consisting of a sensor element and evaluation electronics. Due to the redundant design, the pressure sensor generates two separate, independent, pressure-proportional output signals with increased functional safety. The output signal is therefore available in redundant form. If one signal fails, a second signal is still available for processing, with the failure of one signal already initializing error handling.
  • a check of the safety function and error handling can be done by evaluating and comparing the two analog output signals in a first safety device.
  • the first safety device and the pressure sensor with increased functional safety are used to indirectly check whether the set-up speed of the hydraulic cylinder is exceeded or not. If the pressure rises above a certain value, a control signal is provided to the frequency converter via the first safety device to switch off the motor pump unit.
  • a redundant arrangement with two parallel simple pressure sensors can be provided, which reflect the requirement for a pressure sensor with increased functional safety. These therefore represent a pressure sensor arrangement with increased functional safety. Ordinary or available pressure sensors can be used as pressure sensors for the pressure sensor arrangement.
  • the resistance of the fixed diaphragm has at least one value which is determined in the hydraulic cylinder by a pressure generated by a hanging load on the hydraulic cylinder.
  • the hanging load is also secured via the fixed panel. Safe setup speed is guaranteed.
  • the fixed aperture can be designed for the pressure generated by the hanging load, plus a certain pressure.
  • the resistance of the fixed diaphragm is set to a pressure for providing a set-up speed of the hydraulic cylinder in a range of 5 to 40 mm/s, preferably 10 mm/s. This set pressure ensures that set-up speeds rated as “safe” according to standards can be achieved.
  • the pressure sensor is connected to the second cylinder chamber of the hydraulic cylinder. This arrangement may be necessary depending on the cylinder arrangement, as shown above, the maximum pressure of the individual cylinder chambers, the area ratios on the cylinders, and energy limitations in the set-up operation.
  • a fluid-hydraulic setup valve is connected in the bypass connection.
  • the setup mode can advantageously be switched on or off via this setup valve.
  • this set-up valve protects the cylinder against falling due to its own weight and attraction when the motor pump unit is switched off.
  • a pressure relief valve is connected in the bypass connection. Via the pressure relief valve in combination with a check valve the setup valve needs to be replaced.
  • the pressure relief valve can be used to set the direction of movement for which the setup speed is to be set.
  • the pressure relief valve can be used in the design as a load holding valve in order to switch off movement of the cylinder due to its own weight and the attractive force.
  • the pressure relief valve can be specifically overpressured.
  • a check valve is connected in parallel to the pressure relief valve.
  • a set-up valve can be replaced/saved using the check valve in combination with the pressure relief valve.
  • the check valve in combination with the throttle valve enables load holding and limited set-up speed while the hydraulic cylinder is being extended. While the hydraulic cylinder is retracting, the pressure relief valve is bypassed via the branch of the check valve and the limited set-up speed is also achieved.
  • the electrohydrostatic system comprises a second safety device comprising a position measuring system and/or a mechanical safety.
  • the second safety device in combination with the first safety device, forms a redundant safety device. If one of the two safety devices is defective, the remaining safety device can ensure the full security of the system.
  • the second safety device can alternatively also be designed as a second hydraulic safety valve. In particular, the second safety device can correspond to the first safety device.
  • the position measuring system can provide information about the actual speed of the hydraulic cylinder. The speed determined via the position measuring system can then be used to limit it via the motor control device and the motor pump unit.
  • the volume flow and thus the speed of the hydraulic cylinder are determined via the determined pressure in combination with the defined resistance of the fixed orifice.
  • the speed of the hydraulic cylinder is determined via the position signal, taking time into account.
  • a mechanical brake and/or a clamping device can be provided as mechanical safety.
  • the first cylinder chamber of the hydraulic cylinder is connected to the fluid-hydraulic motor pump unit and the second cylinder chamber of the hydraulic cylinder is connected to the at least one fluid-hydraulic safety valve.
  • the first cylinder chamber of the hydraulic cylinder is with the at least one fluid-hydraulic safety valve is connected and the second cylinder chamber of the hydraulic cylinder is connected to the fluid-hydraulic motor pump unit.
  • a second aspect not part of the present invention includes the use of the electrohydrostatic system according to the invention for controlling the setup speed of a hydraulic cylinder in a powder press, forging press and/or forming press.
  • Fig. 1 shows a schematic representation of an electrohydrostatic system 1 according to a first embodiment.
  • the electrohydrostatic system 1 has a hydraulic cylinder 10 with a first cylinder chamber 11 and a second cylinder chamber 12. Furthermore, the electrohydrostatic system 1 has a motor pump unit 15 for supplying pressure and a supply device 90 for supplying fluid.
  • the motor pump unit 15 is at a first connection in the in Figure 1 illustrated embodiment is connected to the first cylinder chamber 11 of the hydraulic cylinder 10 and the supply device 90 via a check valve 93.
  • the motor pump unit 15 has a connection to a safety valve 16, which is further connected to the second cylinder chamber 12 of the hydraulic cylinder 10.
  • the supply device 90 includes a safety valve 91, a fluid source 92, a check valve 93, a pressure accumulator 95 and a fluid reservoir 96.
  • the electrohydrostatic system 1 has a motor control device 20, which can be designed as a frequency converter.
  • the electrohydrostatic system 1 has a pressure sensor 60, in particular a pressure sensor with increased functional safety.
  • the pressure sensor 60 provides a pressure value determined on the fixed aperture 13 to a first safety device 30, preferably a safety PLC as a safety controller 30.
  • the first safety device 30 is electrically coupled to the engine control device 20 and configured to receive an electrical signal from the safety device 30 in response to an increased pressure corresponding to an out-of-demand setup speed.
  • the frequency converter 20 has a "Safe torque off” (STO) function for switching off the torque of the motor pump unit in order to adjust the setup speed according to the requirements.
  • STO Safety torque off
  • the present invention is characterized by the pressure sensor with increased functional safety.
  • two pressure sensors of a simple design can be used in a redundant combination, in which an evaluation of the signals provided is implemented in the same way as the pressure sensor with increased functional safety.
  • a pressure sensor of a simple design without redundant design can be used and evaluated.
  • the pressure sensor(s) 60 in the Embodiment, as well as in the alternative embodiment as shown above, can be introduced into the electrohydrostatic system 1 on the first cylinder chamber 11 and/or the second cylinder chamber 12 of the hydraulic cylinder 10.
  • the hydraulic cylinder 10 can be used as a differential cylinder, a synchronous cylinder, a multi-surface cylinder, or a separated cylinder arrangement.
  • An unintentional pressure build-up in the electrohydrostatic system 1 can be protected via the STO safety function of the frequency converter 20 and the motor pump unit 15.
  • Safety against the hanging load sinking can be ensured via one or a large number of safety-relevant valves 16.
  • the safe speed in the setup process is set via the fixed aperture 13.
  • the fixed aperture 13 represents a bypass of the safety valve 16 and is connected to the second cylinder chamber 12 of the hydraulic cylinder 10 and the motor pump unit 15 or the supply device 90.
  • the fixed aperture 13 has a connection to the pressure sensor 60 with increased functional safety.
  • the fixed aperture 13 is designed without an additional setup valve.
  • the pressure difference for which the fixed diaphragm 13 is designed is set by the pressure sensor 60 with increased functional safety as an upper limit in the setup mode. If this specified pressure value is exceeded, the first safety device 30 triggers the STO safety function of the frequency converter 20. When the STO safety function is triggered, the safe setup speed is not exceeded.
  • a safe setup speed can be achieved, even though there are pressure differences in the hydraulic chambers due to uneven surfaces or other reasons. This means that no pressure limiting device is overpressured and the maximum setup speed is limited.
  • the setup speed is determined by the speed and/or the delivery volume of the variable-speed motor pump unit 15, whereby the maximum setup speed can be freely set by the resistance and the pressure sensor 60 with increased functional safety between the pressure of the hanging load and the maximum pressure of the pressure relief valves.
  • Fig. 4 shows a schematic representation of an electrohydrostatic system 1 according to a second embodiment.
  • the electrohydrostatic system 1 around a setup valve 14 in the bypass connection of the safety valve 16 or safety valves 16 with reference to the embodiment of Fig. 1 expanded.
  • the setup valve 14 is inserted between the fixed aperture 13 and the second cylinder chamber 12 of the hydraulic cylinder 10.
  • the pressure sensor 60 with increased functionality determines the pressure at the fixed orifice 13 via the setup valve 14.
  • the setup mode can be switched on via the setup valve 14 or switch off.
  • the hydraulic cylinder can be prevented from sinking due to its own weight if the motor pump unit 15 fails.
  • Fig. 5 shows a schematic representation of an electrohydrostatic system 1 according to a third embodiment.
  • the electrohydrostatic system 1 around a pressure relief valve 70 in the bypass connection of the safety valve 16 or safety valves 16 with reference to the embodiment of Fig. 1 expanded.
  • the pressure relief valve 70 is inserted between the fixed diaphragm 13 and the second cylinder chamber 12 of the hydraulic cylinder 10.
  • the pressure sensor 60 with increased functionality determines the pressure at the fixed orifice 13 via the pressure relief valve 70.
  • the pressure relief valve 70 serves as a load holding valve to prevent the piston of the hydraulic cylinder 10 from sinking due to its own weight.
  • the pressure relief valve 70 makes it possible to set up the hydraulic cylinder 10 in the extending direction.
  • Fig. 6 shows a schematic representation of an electrohydrostatic system 1 according to a fourth embodiment.
  • the pressure relief valve 80 is inserted between the fixed diaphragm 13 and the second cylinder chamber 12 of the hydraulic cylinder 10.
  • the pressure sensor 60 with increased functionality determines the pressure at the fixed orifice 13 via the pressure relief valve 80.
  • a check valve 81 is provided in a bypass connection to the pressure relief valve 80.
  • the pressure relief valve 80 serves as a load holding valve to prevent the piston of the hydraulic cylinder 10 from sinking due to its own weight.
  • the function of the setup valve 14 is replaced by the pressure maintaining valve 80 in combination with the check valve 81.
  • the pressure relief valve 80 is adjusted to the hanging load.
  • Fig. 7 shows a schematic representation of an electrohydrostatic system 1 according to a fifth embodiment.
  • the pressure sensor 60 is connected with increased functional safety to the cylinder chamber of the hydraulic cylinder 10, which has no connection to the safety valve 16.
  • the exact position of the pressure sensor 60 with increased functionality can be selected depending on the overall system and thus the orientation and type of the hydraulic cylinder, other axes that can overpress this axis and/or the acting weight. This allows a secure setup speed to be provided efficiently and flexibly for any system.
  • Fig. 8 shows a schematic representation of an electrohydrostatic system 1 according to a sixth embodiment.
  • the electrohydrostatic system 1 additionally has a second safety device 50.
  • the second safety device 50 can include a position measuring system and/or a mechanical safety. Redundant security can be provided by the second safety device 50 in combination with the first safety device 30. A defect in one of the two safety devices 30, 50 can be compensated for by the other functioning safety device 30, 50, thereby ensuring full safety.
  • the second safety device 50 can also be designed as a second hydraulic safety valve 16.
  • the position measuring system provides information about the actual movement speed of the hydraulic cylinder 10 with increased functional safety.
  • the determined actual movement speed can be used to limit the same via the frequency converter 20 in combination with the motor pump unit 15.
  • the path signal is derived over time.
  • Mechanical safety can be set up via a mechanical brake and/or clamping device. This increases the safety of the electrohydrostatic system 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Fluid-Pressure Circuits (AREA)

Claims (15)

  1. Système électro-hydrostatique (1) comprenant :
    - un vérin hydraulique (10) comportant une première chambre de vérin (11) et une seconde chambre de vérin (12) ;
    - un appareil d'alimentation à fluide hydraulique (90) permettant de fournir un fluide hydraulique ;
    - une unité motopompe à fluide hydraulique (15), conçue pour fournir un débit volumique de fluide hydraulique pour le déplacement du vérin hydraulique (10) ;
    - un dispositif de commande de moteur (20), configuré pour fournir un courant nominal pour un entraînement électrique de l'unité motopompe à fluide hydraulique (15) ;
    - au moins une soupape de sécurité à fluide hydraulique (16), laquelle est reliée, sur un premier côté de soupape, à l'une des chambres de vérin (11, 12) du vérin hydraulique (10) et, sur un second côté de soupape, à l'unité motopompe à fluide hydraulique (15) ;
    - une liaison de contournement comportant un diaphragme fixe (13) pour le pontage de l'au moins une soupape de sécurité à fluide hydraulique (16), dans lequel la liaison de contournement est reliée au premier côté de soupape et au second côté de soupape de l'au moins une soupape de sécurité à fluide hydraulique (16) ;
    - un capteur de pression (60), lequel est relié à la seconde chambre de vérin (12) du vérin hydraulique (10) et configuré pour détecter une pression de fluide hydraulique au niveau de l'une des chambres de vérin (11, 12) et pour fournir, en fonction de la pression de fluide hydraulique détectée, un signal de libération pour le dispositif de commande de moteur (20) pour la fourniture du courant nominal pour l'entraînement électrique de l'unité motopompe à fluide hydraulique (15), caractérisé en ce que la résistance du diaphragme fixe (13) présente au moins une valeur, laquelle est déterminée dans le vérin hydraulique (10) par une pression générée par une charge suspendue sur le vérin hydraulique (10).
  2. Système électro-hydrostatique selon la revendication immédiatement précédente, dans lequel le système électro-hydrostatique (1) comprend en particulier un premier dispositif de sécurité (30), lequel est configuré pour recevoir un signal électrique correspondant à une pression de fluide hydraulique détectée en provenance du capteur de pression (60) et pour fournir un signal de libération pour le dispositif de commande de moteur (20) pour la fourniture du courant nominal pour l'entraînement électrique de l'unité motopompe à fluide hydraulique (15).
  3. Système électro-hydrostatique selon l'une des revendications précédentes 1 ou 2, dans lequel le vérin hydraulique (10) est réalisé sous la forme d'un vérin différentiel, vérin synchrone, vérin à surfaces multiples ou agencement de vérins éclaté.
  4. Système électro-hydrostatique selon l'une des revendications précédentes 1 à 3, dans lequel l'appareil d'alimentation à fluide hydraulique (90) comprend un accumulateur de pression (95) une soupape de sécurité (91), une source de fluide (92), au moins une soupape antiretour (93) et un réservoir de fluide (96).
  5. Système électro-hydrostatique selon l'une des revendications précédentes 1 à 4, dans lequel le dispositif de commande de moteur (20) fournit une fonction de sécurité Absence sûre du couple (Safe Torque Off).
  6. Système électro-hydrostatique selon l'une des revendications précédentes 1 à 5, dans lequel le capteur de pression (60) est réalisé sous la forme d'un capteur de pression à sécurité fonctionnelle accrue.
  7. Système électro-hydrostatique selon la revendication 1, dans lequel la résistance du diaphragme fixe (13) est ajustée à une pression pour la fourniture d'une vitesse de réglage du vérin hydraulique (10) dans une plage allant de 5 à 40 mm/s, de préférence de 10 mm/s.
  8. Système électro-hydrostatique selon l'une des revendications précédentes 1 à 7, dans lequel le capteur de pression (60) est relié à la seconde chambre de vérin (12) du vérin hydraulique (10).
  9. Système électro-hydrostatique selon l'une des revendications précédentes 1 à 8, dans lequel une soupape de réglage à fluide hydraulique (14) est montée dans la liaison de contournement.
  10. Système électro-hydrostatique selon l'une des revendications précédentes 1 à 7, dans lequel une soupape de limitation de pression (70, 80) est montée dans la liaison de contournement.
  11. Système électro-hydrostatique selon la revendication 10, dans lequel une soupape antiretour (81) est montée en parallèle avec la soupape de limitation de pression (70, 80).
  12. Système électro-hydrostatique selon l'une des revendications précédentes 1 à 11, dans lequel le système électro-hydrostatique comprend un second dispositif de sécurité (50) comprenant un système de mesure de déplacement et/ou une sécurité mécanique.
  13. Système électro-hydrostatique selon l'une des revendications précédentes 1 à 12, dans lequel la première chambre de vérin (11) du vérin hydraulique (10) est reliée à l'unité motopompe à fluide hydraulique (15) et la seconde chambre de vérin (12) du vérin hydraulique (10) est reliée à l'au moins une soupape de sécurité à fluide hydraulique (16).
  14. Système électro-hydrostatique selon l'une des revendications précédentes 1 à 11, dans lequel la première chambre de vérin (11) du vérin hydraulique (10) est reliée à l'au moins une soupape de sécurité à fluide hydraulique (16) et la seconde chambre de vérin (12) du vérin hydraulique (10) est reliée à l'unité motopompe à fluide hydraulique (15).
  15. Système électro-hydrostatique selon l'une des revendications précédentes 1 à 14 pour la commande de la vitesse de réglage dans une presse à poudre, une presse à forger et/ou une presse de formage.
EP20811548.5A 2019-11-26 2020-11-18 Système électrohydrostatique à capteur de pression Active EP4065360B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019131980.3A DE102019131980A1 (de) 2019-11-26 2019-11-26 Elektrohydrostatisches System mit Drucksensor
PCT/EP2020/082546 WO2021104966A1 (fr) 2019-11-26 2020-11-18 Système électrohydrostatique à capteur de pression

Publications (2)

Publication Number Publication Date
EP4065360A1 EP4065360A1 (fr) 2022-10-05
EP4065360B1 true EP4065360B1 (fr) 2023-12-20

Family

ID=73544139

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20811548.5A Active EP4065360B1 (fr) 2019-11-26 2020-11-18 Système électrohydrostatique à capteur de pression

Country Status (5)

Country Link
US (1) US20230026318A1 (fr)
EP (1) EP4065360B1 (fr)
CN (1) CN114761221A (fr)
DE (1) DE102019131980A1 (fr)
WO (1) WO2021104966A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021005824B4 (de) 2021-11-24 2023-08-10 Hydac International Gmbh Sicherheitsventilvorrichtung
DE102022111781B4 (de) * 2022-05-11 2023-11-30 Festo Se & Co. Kg Pneumatisches Aktorsystem
DE102022121962A1 (de) * 2022-08-31 2024-02-29 Bucher Hydraulics Ag Elektrisch-hydraulischer Aktor

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4066103A (en) * 1975-04-18 1978-01-03 Danfoss A/S Hydraulic regulator
DE3237103C3 (de) * 1982-10-07 1997-01-23 Wessel Hydraulik Sicherheitsventil als Lasthalteventil in der Hebezeughydraulik
DE3901475C2 (de) * 1989-01-19 1994-07-14 Danfoss As Fluidgesteuerte Servoanordnung
DE4140408A1 (de) * 1991-12-07 1993-06-09 Robert Bosch Gmbh, 7000 Stuttgart, De Elektrohydraulische steuereinrichtung
JP2809096B2 (ja) * 1994-04-25 1998-10-08 株式会社新潟鉄工所 射出成形機の油圧回路
JPH10203755A (ja) * 1997-01-17 1998-08-04 Hitachi Building Syst Co Ltd 油圧エレベータの異常診断装置
JP4292322B2 (ja) * 1998-06-24 2009-07-08 株式会社アマダ 穴明け機の油圧回路
WO2001053016A1 (fr) * 2000-01-17 2001-07-26 Amada Company, Limited Procede de controle de la vitesse du verin d'une presse a plier, presse a plier mettant en oeuvre ledit procede et procede et appareil de regulation de la position du verin de la presse a plier
JP3783582B2 (ja) * 2001-07-05 2006-06-07 ダイキン工業株式会社 液圧回路装置
US6899012B2 (en) * 2003-05-21 2005-05-31 Actuant Corporation Fluid flow control valve assembly with independent feedback pressure
US6892534B2 (en) * 2003-07-18 2005-05-17 Young & Franklin Inc. Electro-hydrostatic actuator with a failsafe system
CA2476032C (fr) * 2004-08-27 2008-11-04 Westport Research Inc. Commande hydraulique et methode d'exploitation
SE531309C2 (sv) * 2006-01-16 2009-02-17 Volvo Constr Equip Ab Styrsystem för en arbetsmaskin och förfarande för styrning av en hydraulcylinder hos en arbetsmaskin
SE529941C2 (sv) * 2006-05-19 2008-01-08 Nordhydraulic Ab Hydrauliskt system och förfarande för dämpning av svängningar hos en lastbärande kran samt dess användning
US7624671B2 (en) * 2007-02-07 2009-12-01 Sauer-Danfoss Aps Hydraulic actuator for a servomotor with an end lock function
KR102014567B1 (ko) * 2011-12-20 2019-10-21 윈드플로우 테크놀로지 리미티드 발전 시스템 및 유압 제어 시스템
US10138915B2 (en) * 2014-06-20 2018-11-27 Parker-Hannifin Corporation Method of controlling velocity of a hydraulic actuator in over-center linkage systems
CN107735530B (zh) * 2015-04-10 2020-06-05 沃尔沃建筑设备公司 用于工程机械的负荷感测液压系统及控制负荷感测液压系统的方法
US10344784B2 (en) * 2015-05-11 2019-07-09 Caterpillar Inc. Hydraulic system having regeneration and hybrid start
EP3109488B1 (fr) * 2015-06-25 2017-12-13 MOOG GmbH Entraînement hydraulique de fonctionnement sécurisé
EP3112698B1 (fr) * 2015-06-30 2019-09-04 Goodrich Actuation Systems SAS Actionneurs électro-hydrauliques
DE102016113882A1 (de) * 2016-07-27 2018-02-01 Moog Gmbh Elektro-hydrostatisches Antriebssystem
CN106640792A (zh) * 2016-12-26 2017-05-10 中国船舶重工集团公司第七〇九研究所 一种应用于单出杆液压缸压机的直驱式电液伺服系统
DE102017124948A1 (de) * 2017-10-25 2019-04-25 Wessel-Hydraulik Gmbh Hydraulische Schaltungsanordnung
CN108266413B (zh) * 2017-12-15 2021-02-12 中国航空工业集团公司金城南京机电液压工程研究中心 基于压力选择阀的非对称电静液作动器

Also Published As

Publication number Publication date
US20230026318A1 (en) 2023-01-26
EP4065360A1 (fr) 2022-10-05
WO2021104966A1 (fr) 2021-06-03
CN114761221A (zh) 2022-07-15
DE102019131980A1 (de) 2021-05-27

Similar Documents

Publication Publication Date Title
EP4065360B1 (fr) Système électrohydrostatique à capteur de pression
DE102013227065B4 (de) Hydraulisches Bremssystem mit erstem und zweitem Bremsdruckerzeuger sowie Verfahren zum Betreiben eines Bremssystems
EP2518331B1 (fr) Dispositif de soupape
EP2698545B1 (fr) Dispositif de commande de l'état de charge d'au moins un accumulateur de pression
DE2921464A1 (de) Steuersysteme
EP3277551B1 (fr) Dispositif à air comprimé pour des véhicules équipés d'une soupape à double relais
DE102016214708A1 (de) Stetigventileinheit, hydraulische Achse und Verfahren zum Betreiben einer hydraulischen Achse
EP3078477B1 (fr) Procede et appareil d'extrusion d'ebauches qui sont transformees par soufflage en corps creux en plastique
WO2011101096A1 (fr) Procédé destiné à faire fonctionner un système hydraulique ou pneumatique
EP3555475B1 (fr) Système de pompe à vide et son procédé de fonctionnement
EP3592991B1 (fr) Procédé pour la commande d'un actionneur hydraulique, dispositif de commande et commande d'actionneur
EP3472007A1 (fr) Procédé et dispositif pour faire fonctionner un système de freinage et système de freinage
WO2017220229A1 (fr) Procédé et dispositif pour faire fonctionner un système de freinage et système de freinage
EP0884486A1 (fr) Dispositif de serrage électrohydraulique
DE102014226617A1 (de) Antriebsregelvorrichtung für einen elektro-hydraulischen Antrieb
DE102016005859A1 (de) Bremsanlage für ein Kraftfahrzeug sowie Verfahren zum Betreiben einer Bremsanlage
DE1751809C3 (de) Anordnung zur elektrohydraulischen Steuerung eines hydraulischen Tandem-Stellmotors
DE102004040940A1 (de) Baugruppe für ein Fahrwerkstabilisierungssystem
EP3386838A1 (fr) Mécanisme de direction hydraulique
DE102020131046A1 (de) Hydraulisches Hubsystem
EP1264109A1 (fr) Dispositif pour commander un actionneur hydraulique
DE102019130725A1 (de) Aktuator für eine pneumatische betätigbare Antriebsvorrichtung, Verfahren zum Betreiben des Aktuators und System zum Ausgleichen von Versorgungsdruckschwankungen in dem Aktuator
DE102021005824A1 (de) Sicherheitsventilvorrichtung
DE102022208247A1 (de) Kraftübertragungseinheit und Bremssysteme, die diese verwenden
DE19758785B4 (de) Bremssystem mit einer normalen Quelle und einer Reservequelle unter Druck stehenden Bremsfluides

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20220427

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F15B 20/00 20060101ALI20230622BHEP

Ipc: F15B 7/00 20060101ALI20230622BHEP

Ipc: B30B 15/28 20060101ALI20230622BHEP

Ipc: F15B 11/00 20060101ALI20230622BHEP

Ipc: F15B 13/01 20060101ALI20230622BHEP

Ipc: B30B 15/20 20060101AFI20230622BHEP

INTG Intention to grant announced

Effective date: 20230726

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020006473

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240321

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240321

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231220