EP3994393B1 - Rostblock für einen verbrennungsrost - Google Patents

Rostblock für einen verbrennungsrost Download PDF

Info

Publication number
EP3994393B1
EP3994393B1 EP20716792.5A EP20716792A EP3994393B1 EP 3994393 B1 EP3994393 B1 EP 3994393B1 EP 20716792 A EP20716792 A EP 20716792A EP 3994393 B1 EP3994393 B1 EP 3994393B1
Authority
EP
European Patent Office
Prior art keywords
air supply
grate
block
supply ducts
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20716792.5A
Other languages
English (en)
French (fr)
Other versions
EP3994393A1 (de
EP3994393C0 (de
Inventor
Maurice Henri Waldner
Werner Brennwald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Innova AG
Original Assignee
Hitachi Zosen Innova AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Innova AG filed Critical Hitachi Zosen Innova AG
Publication of EP3994393A1 publication Critical patent/EP3994393A1/de
Application granted granted Critical
Publication of EP3994393B1 publication Critical patent/EP3994393B1/de
Publication of EP3994393C0 publication Critical patent/EP3994393C0/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H17/00Details of grates
    • F23H17/12Fire-bars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G5/00Incineration of waste; Incinerator constructions; Details, accessories or control therefor
    • F23G5/002Incineration of waste; Incinerator constructions; Details, accessories or control therefor characterised by their grates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23HGRATES; CLEANING OR RAKING GRATES
    • F23H3/00Grates with hollow bars
    • F23H3/02Grates with hollow bars internally cooled

Definitions

  • the invention relates to a grate block for a combustion grate according to the preamble of claim 1.
  • the invention further relates to a combustion grate comprising at least one such grate block.
  • the invention also relates to the use of said incineration grate for the incineration of waste and a waste incineration plant comprising such an incineration grate.
  • Combustion grates for the large-scale incineration of waste have been known to those skilled in the art for a long time.
  • Such incineration grates may be in the form of shear incineration grates, which include moving parts capable of performing stoking.
  • the material to be burned is conveyed from an inlet-side end of the combustion grate to its outlet-side end and is burned in the process.
  • appropriate air ducts are provided which pass through the incineration grate and via which the air, also called primary air, is introduced.
  • a frequently used incineration grate is the so-called stepped grate. This comprises grate blocks arranged next to one another, each forming a row of grate blocks. The rows of grate blocks are arranged one above the other in a stair-like manner corresponding thrust movement is moved on this support surface.
  • the grate blocks are rotated by about 180° in relation to the feed grates, viewed in the transport direction of the fuel. Therefore, in the case of reverse thrust grates, the front end of the grate block, viewed in the thrust direction, rests on a bearing surface of the previous grate block in each case. In contrast to push-feed grates, the direction of push in reverse-feed grates is opposite to the transport direction resulting from the inclination of the push-back grate.
  • WO 2016/198119 Trained as a step grate combustion grate and a grate block for such a combustion grate is about in WO 2016/198119 described which relates to an air-cooled grate block.
  • the in WO 2016/198119 A1 describes a grate block designed as a cast part block body having an upper wall forming a support surface for the waste to be treated and a front wall forming a pushing surface.
  • a foot is formed which is intended to rest slidably on the bearing surface of an adjacent grate block in the direction of thrust, while air supply openings for introducing air are arranged in the front wall.
  • the grate block includes a top wall having a bearing surface parallel to a longitudinal axis of the grate block A22706WOEP/27.07.2022 forms along which the material to be burned is to be conveyed. Viewed in a thrust direction, the foremost end of the bearing surface forms an edge over which the bearing surface slopes into a thrust surface formed by a front wall.
  • the front wall has first air supply openings, which are formed by first air supply channels running at right angles to the thrust surface, viewed in longitudinal section, for supplying air to the combustion grate.
  • the upper wall has further air supply ducts, aligned obliquely to the direction of the first air supply ducts, for cooling the upper wall.
  • U.S. 1,409,205 discloses a grate block for an incineration grate.
  • the grate block includes an air duct running parallel to a longitudinal axis of the grate block, the air inlet opening and air outlet opening of which are arranged on an underside of the grate block.
  • the grate block includes a front wall in which a plurality of air outlet ducts are provided in fluid communication with the air duct, and a top wall defining a bearing surface parallel to the longitudinal axis.
  • the top wall is impermeable to air and therefore has no air channels.
  • the abrasion is particularly high in the area of the foremost end of the support surface, where the material to be burned is thrown from the support surface of the grate block via a corresponding discharge edge onto the support surface of the subsequent grate block. This can in particular also lead to erosion of the air supply openings arranged under the edge, which can negatively affect the controlled air supply to the combustion bed lying on the combustion grate.
  • grate blocks are exposed to very high thermal loads, mainly because of the high temperatures during combustion or in the combustion chamber. During normal operation of the combustion grate, this thermal load is particularly high in the area of the supporting surface, although the combustion material lying on the grate block has an insulating effect to a certain degree.
  • the problem to be solved according to the invention is therefore to provide a grate block as mentioned at the outset, which has a long service life and in which the erosion of the bearing surface, in particular the erosion of the foremost end of the grate block, is minimized.
  • the present invention thus relates to a grate block for a combustion grate, in which successive grate blocks are arranged in steps one above the other and are designed in such a way that the material to be burned is shifted and conveyed during combustion by means of thrust movements performed relative to one another, i.e. by means of relative movements between the grate blocks.
  • combustion grates are also referred to as stepped grates.
  • the grate block comprises a block body, preferably designed as a cast part.
  • the block body is designed essentially in the form of an elongate cuboid with a longitudinal axis L.
  • the block body comprises an upper wall, which forms a support surface running parallel to the longitudinal axis L, along which the material to be burned is to be conveyed and which defines a side of the material to be burned of the upper wall.
  • the foremost end of the bearing surface forms an edge over which the bearing surface falls into a thrust surface formed by a front wall.
  • the rim thus forms a transition between the top wall and the front wall.
  • the side of the top wall remote from the bearing surface and the side of the front wall remote from the thrust surface define a cooling air side of the block body.
  • the pushing direction S describes the direction in which the material to be burned is pushed by the pushing surface of the grate block.
  • the thrust direction S is parallel to the longitudinal axis L.
  • the transport direction T denotes the direction of movement of the material to be burned from an inlet to an outlet of the combustion grate.
  • the transport direction T results mainly from the inclination of the combustion grate.
  • the front wall has first air supply openings, which are formed by first air supply channels running at right angles or at an angle to the thrust surface, viewed in longitudinal section, for supplying air to the combustion grate.
  • air includes the so-called primary air, which is supplied to the incineration grate or the combustion bed on the incineration grate.
  • the primary air primarily contributes to the combustion of the fuel, but also to the cooling of the grate blocks of the combustion grate.
  • the front wall is designed in its lowest part in the form of a foot intended to rest on the bearing surface of an adjacent grate block in the direction of thrust.
  • the first air supply channels run at an angle ⁇ to the area of the thrust surface directly adjacent to the respective first air supply openings, ⁇ being in a range from 90° to 135°, preferably from 95° to 125°, particularly preferably from 100° to 120°, and most preferably from 105° to 115°.
  • the angle ⁇ is measured counterclockwise between the longitudinal axis of the respective first air supply ducts and the thrust surface. This ensures optimum air supply to the incineration grate or to the combustion bed on the incineration grate, which contributes to a very high degree of combustion of the material to be burned.
  • the section of the first air supply ducts that is relevant for determining the angle ⁇ is the section directly in front of it the exit of the respective first air supply duct from the front wall.
  • the foot thus rests on the grate block following in the transport direction T of the material to be burned or on its contact surface.
  • the grate block according to the invention is intended for a reverse thrust grate; In this case, the foot rests on the preceding grate block in the transport direction T of the material to be burned, or on its contact surface.
  • At least the lower bearing edge of the thrust surface is arranged in a plane E running essentially at right angles to the longitudinal axis L. It is conceivable in this regard that a surface arranged in the lowermost area of the front wall, the lower end of which is formed by the lower support edge, is arranged in the plane E. However, it is also conceivable that only the line described by the lower bearing edge is arranged in plane E.
  • further air supply ducts are formed in the upper wall and in the front wall and are aligned obliquely to the direction of the first air supply ducts for cooling the upper wall and the front wall, with the further air supply ducts forming further air supply openings in the upper wall, i.e. in the support surface, and in the front wall, i.e. in the thrust surface.
  • the top wall and the front wall are thickened in the area where they meet, viewed in longitudinal section, as a wall thickening.
  • the wall thickening is formed in such a way that the edge, viewed in the thrust direction S, is offset forward with respect to the plane E.
  • that area of the thrust surface in which the first air supply openings and optionally further air supply openings are arranged is arranged in a plane which is set back along the longitudinal axis L and, viewed in the thrust direction S, with respect to the edge. Since the rim, viewed along the longitudinal axis L and in the direction of thrust S, is offset in relation to the plane E, the first air supply openings and optionally the further air supply openings, which are formed below the rim, are at least partially protected. This arrangement has the additional advantage that the air can escape more easily through the first air supply openings and the further air supply openings. Better cooling of the front wall is thus achieved.
  • the wall thickening viewed in longitudinal section, is arched, for example in the form of a bulge.
  • the curved design of the wall thickening ensures that the material to be burned over the grate block can be transported unhindered, ie without being blocked by angular bumps.
  • top or front wall thickening of the top or front wall is to be understood in such a way that the top or front wall has a thicker wall in the area in which it is thickened than in the area directly surrounding the thickening.
  • the thickened wall is able to absorb additional heat during operation of the grate block due to the additional amount of material forming the thickened wall.
  • the thickened wall consequently enables the grate block to have a longer service life, because the thickened upper or front wall resists erosion longer.
  • the erosion of the wall thickening can increase due to the strong thermal load.
  • a further optimization of the grate block consists in optimizing the cooling of the wall thickening.
  • the further air supply channels are arranged in the thickened wall, i.e. they run through the thickened wall. This arrangement of the further air supply ducts and the corresponding further air supply openings ensures better cooling of the wall thickening by air and thus reduces its erosion.
  • the further air supply ducts only in the top wall, ie above the edge of the top wall. Since the erosion by abrasion takes place mainly on the bearing surface, the thickening of the wall is advantageously formed predominantly on the top wall in that area where the top wall and the front wall meet. So this allows Arrangement of the other air supply channels an optimized cooling of the wall thickening.
  • the further air supply ducts run at an angle ⁇ to the longitudinal axis L of the block body, viewed in longitudinal section, the angle ⁇ being from 10° to 60°.
  • the angle ⁇ is measured counterclockwise with respect to the longitudinal axis L. Due to the fact that the further air supply channels run obliquely to the longitudinal axis L of the block body, they are longer than if they ran parallel to the longitudinal axis L. Consequently, the air flowing through the further air supply ducts can bring about efficient cooling.
  • the angle ⁇ is preferably from 15° to 50°. In this case, the angle ⁇ is selected in such a way that the slag resulting from the combustion of the material to be burned falls off through the other air supply ducts and causes blockages as little as possible. This ensures reliable cooling of the grate block.
  • a first group of the additional air supply channels is formed in a first plane running at a first angle ⁇ 1 to the bearing surface of the block body. Furthermore, a second group of the further air supply channels is formed in a second plane running at a second angle ⁇ 2 to the bearing surface of the block body.
  • the first angle ⁇ 1 is from 10° to 35°, preferably from 10° to 20°
  • the second angle ⁇ 2 is from 35° to 60°, preferably from 40° to 50°.
  • the further air supply ducts of the first group and the further air supply ducts of the second group are designed parallel to one another.
  • the further air supply ducts of the first group and the further air supply ducts of the second group are preferably formed parallel to a longitudinal sectional plane P which includes the longitudinal axis L and is perpendicular to the support surface.
  • the further air supply ducts in the first level and/or in the second level are distributed at equal distances from one another over the width of the grate block. This ensures that the air flowing through the additional air supply ducts brings about a homogeneous cooling around these planes.
  • the distribution of the stresses caused by the heat distribution in the operation of the grate block is also distributed homogeneously in the first and the second level and the formation of cracks in the grate block across its width is minimized. This leads to a longer service life of the grate block.
  • a further air supply duct possibly a further air supply duct from the first group and a further air supply duct from the second group, and a first air supply duct are arranged in the same plane, which runs parallel to the longitudinal sectional plane P.
  • This arrangement of the first and further air supply ducts ensures that the stresses during operation of the grate block, in Viewed longitudinally, are also distributed homogeneously. Thus, the formation of cracks can be minimized.
  • the additional air supply ducts are distributed symmetrically to a longitudinal plane of symmetry of the grate block running at right angles to the support surface. This arrangement has the further advantage that the production of the further air supply channels is simplified.
  • the number of air supply ducts and additional air supply ducts is calculated in proportion to the width of the grate block and the size of the wall thickening in order to achieve optimized cooling of the grate block.
  • the further air supply ducts have a constant cross-sectional area essentially over their length, which is in particular 40 mm 2 to 100 mm 2 .
  • the diameter is selected in such a way that the slag resulting from the combustion of the material to be burned falls through the other air supply ducts and causes a blockage as little as possible. Reliable cooling of the grate block can thus be guaranteed.
  • the cross-sectional area is preferably 80 mm2 in order to achieve an optimal result.
  • the further air supply ducts are designed to widen continuously over their length from the firing side to the cooling air side, the cross-sectional area of the further air supply ducts on the firing material side and the cross-sectional area of the further air supply ducts on the cooling air side being in a ratio of 1:1.2 to 1:2.5, preferably 1:2.25.
  • the cross-sectional area of the other air supply channels on the firing side is in the support surface or in the Measured thrust area and corresponds to the cross-sectional area of the other air supply openings defined above.
  • the cross-sectional area of the further air supply ducts is measured at their end lying on the cooling air side.
  • This design of the additional air supply ducts enables the combustion residues that have entered the additional air supply ducts to be removed easily.
  • the combustion residues are pushed further in the direction of the cooling air side into the further air supply ducts by the material to be burned on the grate block and are released because of the widening of the further air supply ducts. A blockage of the air supply can thus be avoided.
  • the present invention also relates to a combustion grate comprising at least one of the grate blocks described above.
  • the grate block 10 comprises a block body 12 designed as a cast part, which is essentially in the form of an elongate cuboid with a longitudinal axis L.
  • the block body 12 comprises an upper wall 14 which forms a support surface 16 running parallel to the longitudinal axis L, along which the material to be burned is to be conveyed and which defines a side of the material to be burned of the top wall 14 .
  • the foremost end of the bearing surface 16 viewed in the thrust direction S forms an edge 19 over which the bearing surface 16 falls into a thrust surface 22 formed by a front wall 20 .
  • the side of the top wall 14 facing away from the bearing surface and the side of the front wall 20 facing away from the thrust surface 22 define a cooling air side of the block body 12.
  • the bearing surface has a first bearing surface area 16a and a second bearing surface area 16b, but the first bearing surface area 16a is offset upwards relative to the second bearing surface area 16b and is connected to it via a beveled transition 17.
  • the block body 12 On the side opposite the front wall 20, the block body 12 has a rear wall 24 which is equipped with at least one hook 26 with which the grate block 10 can be hung in a block holding tube.
  • a central web 29 is also arranged on the underside of the grate block 10 facing away from the bearing surface 16 .
  • the grate block 10 is delimited laterally by a side wall 28a, 28b extending in the longitudinal direction L.
  • the grate block 10 rests on a grate block that follows in the thrust direction S.
  • the lowest portion of the front wall is 20 in Form of a block 34, which is intended to rest on the bearing surface of an adjacent grate block in the thrust direction S.
  • the lowermost region, including a lower bearing edge 23 of the thrust surface formed therethrough, is arranged in a plane E running essentially at right angles to the longitudinal axis L.
  • the grate block 10 is thickened in the area where the top wall 14 and the front wall 20 meet.
  • the wall thickening 40 is arched on the combustion material side of the upper wall 14 when viewed in longitudinal section.
  • the edge 19 formed by the wall thickening 40 is in the embodiment shown along the longitudinal axis L and viewed in the thrust direction S with respect to the plane E offset forward, the distance D between the edge 19 and the plane E being approximately 25 mm.
  • the second bearing surface area 16b initially runs essentially in one plane and then descends in a curved area, viewed in the thrust direction S, extending to the foremost end of the bearing surface 16 .
  • the edge 19 formed by the foremost end of the bearing surface 16 is presently located below the plane of the second bearing surface region 16b. Above the edge 19 begins the thrust surface 22, which first runs set back with respect to the edge 19 and then extends into the plane E.
  • the front wall 20 has two first air supply openings 25 which are each formed by a first air supply channel 27 running through the front wall 20 are.
  • the first air supply channels 27 open into an undercut of the front wall 20 formed by the wall thickening 40 and the plane E.
  • the first air supply openings 25 are located in 1 below the wall thickening 40 and are not visible. Primary air is supplied to the combustion grate or the combustion bed on the combustion grate through the first air supply ducts 27 .
  • first air supply openings 25 are set back along the longitudinal axis L and viewed in the thrust direction S with respect to the edge 19, in the specific embodiment shown by a distance d of approximately 12 mm.
  • the first air supply ducts 27, viewed in longitudinal section, run at an angle ⁇ of approximately 110° to the thrust surface 22 in the area directly adjacent to the respective air supply opening.
  • the grate block 12 comprises further air supply ducts 38 for cooling the upper wall 14, which run through the upper wall 14, are arranged in the wall thickening 40 and are aligned obliquely to the direction of the first air supply ducts 27, with the further air supply ducts 38 forming further air supply openings 35 in the wall thickening 40.
  • a first group of two further air supply channels 38 is formed in a first plane G1 running at a first angle ⁇ 1 to the support surface 16 . Furthermore, a second group of two further air supply channels 38 is formed in a second plane G2 running at a second angle ⁇ 2 to the support surface 16 .
  • the first angle ⁇ 1 is 15° and the second angle ⁇ 2 is 45°. of clarity because of this, the angles ⁇ 1 and ⁇ 2 are in 2 shown with respect to the longitudinal axis L, which runs parallel to the bearing surface 16 .
  • the two first air supply ducts 27 and the two groups of two further air supply ducts 38 are shown, each distributed in pairs symmetrically to a longitudinal plane of symmetry P of the grate block 12 running at right angles to the support surface.
  • the two first air supply ducts 27 and the two groups of two further air supply ducts 38 are designed to widen continuously, so that combustion residues that have entered the first or the further air supply ducts 27 or 38 can be discharged more easily and a blockage of the air supply can thus be avoided.
  • the diameter of the first and the further air supply channels 27 and 38 is 15 mm at the end facing the interior of the grate block 10 and 10 mm at the other end.
  • the grate blocks 10 are moved relative to each other by means of the block support tubes.
  • the block holding tubes are either attached to stationary brackets or to brackets that are arranged in a moving grate carriage. It is driven by hydraulic cylinders, which move the grate wagons back and forth on rollers on corresponding running surfaces.
  • the resulting relative movement causes the foot 34 of a first grate block 10 to move forward and backward over the support surface 16 of the following grate block 10 pushed back, the material to be burned being conveyed over the support surface 16 before it is thrown over the edge 19 onto the support surface 16 of the following grate block 10 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Incineration Of Waste (AREA)

Description

  • Die Erfindung betrifft einen Rostblock für einen Verbrennungsrost gemäss dem Oberbegriff des Anspruchs 1. Die Erfindung betrifft weiter einen Verbrennungsrost umfassend mindestens einen solchen Rostblock. Die Erfindung betrifft ferner die Verwendung des besagten Verbrennungsrosts für die Verbrennung von Abfall sowie eine Abfallverbrennungsanlage umfassend einen solchen Verbrennungsrost.
  • Verbrennungsroste für die grosstechnische Verbrennung von Abfall sind dem Fachmann seit langer Zeit bekannt. Solche Verbrennungsroste können etwa in Form von Schubverbrennungsrosten vorliegen, welche bewegliche Teile einschliessen, die geeignet sind, Schürhübe auszuführen. Dabei wird das Brenngut von einem einlassseitigen Ende des Verbrennungsrosts zu seinem auslassseitigen Ende hin gefördert und währenddessen verbrannt. Um den Verbrennungsrost mit dem für die Verbrennung erforderlichen Sauerstoff zu versorgen, sind entsprechende, durch den Verbrennungsrost hindurchführende Luftzuführungen vorgesehen, über die die Luft, auch Primärluft genannt, eingeführt wird.
  • Ein häufig verwendeter Verbrennungsrost stellt der sogenannte Treppenrost dar. Dieser umfasst nebeneinander angeordnete, jeweils eine Rostblockreihe bildende Rostblöcke. Die Rostblockreihen sind dabei treppenartig übereinander angeordnet, wobei bei sogenannten Vorschubrosten das in Schubrichtung betrachtet vordere Ende eines Rostblocks auf einer Auflagefläche des in Transportrichtung benachbarten Rostblocks aufliegt und bei entsprechender Schubbewegung auf dieser Auflagefläche bewegt wird.
  • Bei sogenannten Rückschubrosten sind die Rostblöcke gegenüber Vorschubrosten in Transportrichtung des Brennguts betrachtet um etwa 180° gedreht angeordnet. Daher liegt bei Rückschubrosten das in Schubrichtung betrachtet vordere Ende des Rostblocks auf einer Auflagefläche des jeweils vorherigen Rostblocks auf. Im Gegensatz zu Vorschubrosten ist bei Rückschubrosten die Schubrichtung somit der sich durch die Neigung des Rückschubrostes ergebenden Transportrichtung entgegengesetzt.
  • Ein als Treppenrost ausgebildeter Verbrennungsrost und ein Rostblock für einen solchen Verbrennungsrost wird etwa in der WO 2016/198119 beschrieben, welche sich auf einen luftgekühlten Rostblock bezieht. Konkret umfasst der in WO 2016/198119 A1 beschriebene Rostblock einen als Gussteil ausgebildeten Blockkörper, der eine eine Auflagefläche für den zu behandelnden Abfall bildende obere Wand und eine eine Schubfläche bildende vordere Wand aufweist. Im unteren Bereich der vorderen Wand ist ein Fuss ausgebildet, der dazu bestimmt ist, auf der Auflagefläche eines in Schubrichtung benachbarten Rostblocks verschiebbar aufzuliegen, während in der vorderen Wand Luftzufuhröffnungen zum Einbringen von Luft angeordnet sind.
  • DE 195 02 261 A1 offenbart einen gattungsgemäßen Rostblock für einen Verbrennungsrost, in dem aufeinanderfolgende Rostblöcke treppenartig übereinander angeordnet sind. Der Rostblock umfasst eine obere Wand, die eine parallel zu einer Längsachse des Rostblocks verlaufende Auflagefläche A22706WOEP/27.07.2022 bildet, entlang welcher das Brenngut gefördert werden soll. In einer Schubrichtung betrachtet bildet das vorderste Ende der Auflagefläche einen Rand, über den die Auflagefläche in eine von einer vorderen Wand gebildete Schubfläche abfällt. Die vordere Wand weist erste Luftzufuhröffnungen auf, welche durch im Längsschnitt betrachtet rechtwinklig zur Schubfläche verlaufende, erste Luftzufuhrkanäle zur Zufuhr von Luft auf den Verbrennungsrost gebildet sind. Die obere Wand weist schräg zur Richtung der ersten Luftzufuhrkanäle ausgerichtete, weitere Luftzufuhrkanäle zur Kühlung der oberen Wand auf.
  • US 1,409,205 offenbart einen Rostblock für einen Verbrennungsrost. Der Rostblock umfasst einen parallel zu einer Längsachse des Rostblocks verlaufenden Luftkanal, dessen Lufteinlassöffnung und Luftauslassöffnung auf einer Unterseite des Rostblocks angeordnet sind. Der Rostblock umfasst eine vordere Wand, in der mehrere in Fluidverbindung mit dem Luftkanal stehende Luftauslasskanäle vorgesehen sind, und eine obere Wand, die eine parallel zur Längsachse verlaufende Auflagefläche bildet. Die obere Wand ist luftundurchlässig und weist somit keine Luftkanäle auf.
  • Durch das über die Rostblöcke geförderte Brenngut sind diese im Allgemeinen einem relativ hohen Verschleiss ausgesetzt. Der Abrieb ist dabei gerade im Bereich des vordersten Endes der Auflagefläche besonders hoch, wo das Brenngut von der Auflagefläche des Rostblocks über eine entsprechende Abwurfkante auf die Auflagefläche des nachfolgenden Rostblocks abgeworfen wird. Dies kann insbesondere auch zu einer Erosion der unter dem Rand angeordneten Luftzufuhröffnungen führen, was die kontrollierte Luftzufuhr zu dem auf dem Verbrennungsrost liegenden Brennbett negativ beeinträchtigen kann.
  • Rostblöcke sind ferner einer sehr starken thermischen Belastung ausgesetzt, vor allem wegen der hohen Temperaturen bei der Verbrennung bzw. im Feuerraum. Im Normalbetrieb des Verbrennungsrosts wird diese thermische Belastung insbesondere im Bereich der Auflagefläche hoch, obwohl das auf dem Rostblock liegende Verbrennungsgut bis zu einem gewissen Grad isolierend wirkt.
  • Sehr hohe Belastungen treten dann auf, wenn das Brenngut ungleichmässig auf dem Verbrennungsrost verteilt ist und nur eine dünne Isolierschicht bildet, oder wenn diese Isolierschicht gänzlich fehlt. Die thermische Belastung fördert die Erosion durch Abrieb und an der Auflagefläche stattfindende chemische Reaktionen, welche die Auflagefläche weiter beschädigen. Dies führt letztendlich zu einer Reduktion der Lebensdauer des Rostblocks.
  • Die erfindungsgemäss zu lösende Aufgabe liegt somit darin, einen eingangs genannten Rostblock zur Verfügung zu stellen, welcher über eine lange Lebensdauer verfügt und in welchem die Erosion der Auflagefläche, insbesondere die Erosion des vordersten Endes des Rostblocks, minimiert ist.
  • Diese Aufgabe wird durch den im unabhängigen Anspruch 1 definierten Rostblock gelöst.
  • Bevorzugte Ausführungsformen des erfindungsgemässen Rostblocks sind in den abhängigen Ansprüchen wiedergegeben.
  • Gemäss Anspruch 1 betrifft die vorliegende Erfindung somit einen Rostblock für einen Verbrennungsrost, in dem aufeinanderfolgende Rostblöcke treppenartig übereinander angeordnet sind und derart ausgestaltet sind, mittels relativ zueinander ausgeführter Schubbewegungen, d.h. mittels relativer Bewegungen zwischen den Rostblöcken, das Brenngut während der Verbrennung umzuschichten und zu fördern. Solche Verbrennungsroste werden wie eingangs erwähnt auch als Treppenroste bezeichnet.
  • Ferner umfasst der Rostblock einen vorzugsweise als Gussteil ausgebildeten Blockkörper. In der Regel ist der Blockkörper im Wesentlichen in Form eines länglichen Quaders mit einer Längsachse L ausgebildet.
  • Der Blockkörper umfasst eine obere Wand, die eine parallel zur Längsachse L verlaufende Auflagefläche bildet, entlang welcher das Brenngut gefördert werden soll und welche eine Brenngutseite der oberen Wand definiert.
  • In einer Schubrichtung S betrachtet bildet das vorderste Ende der Auflagefläche einen Rand, über den die Auflagefläche in eine von einer vorderen Wand gebildete Schubfläche abfällt. Der Rand bildet somit einen Übergang zwischen der oberen Wand und der vorderen Wand.
  • Die der Auflagefläche abgewandte Seite der oberen Wand und die der Schubfläche abgewandte Seite der vorderen Wand definieren eine Kühlluftseite des Blockkörpers.
  • Die Schubrichtung S bezeichnet die Richtung, in welche das Brenngut von der Schubfläche des Rostblocks geschoben wird. In der Regel ist die Schubrichtung S parallel zur Längsachse L.
  • Die Transportrichtung T bezeichnet die Bewegungsrichtung des Brennguts von einem Einlass bis zu einem Auslass des Verbrennungsrosts hin. Die Transportrichtung T ergibt sich hauptsächlich durch die Neigung des Verbrennungsrosts.
  • Die vordere Wand weist erste Luftzufuhröffnungen auf, welche durch im Längsschnitt betrachtet rechtwinklig oder schräg zur Schubfläche verlaufende, erste Luftzufuhrkanäle zur Zufuhr von Luft auf den Verbrennungsrost gebildet sind.
  • Nachstehend umfasst der Begriff "Luft" die sogenannte Primärluft, welche dem Verbrennungsrost bzw. dem Brennbett auf dem Verbrennungsrost zugeführt wird. Die Primärluft trägt in erster Linie zum Ausbrand des Brennguts aber auch gleichzeitig zur Kühlung der Rostblöcke des Verbrennungsrosts bei.
  • Ferner ist die vordere Wand in ihrem untersten Bereich in Form eines Fusses ausgebildet, welcher dazu bestimmt ist, auf der Auflagefläche eines in Schubrichtung benachbarten Rostblocks aufzuliegen.
  • Gemäss einer bevorzugten Ausführungsform verlaufen die ersten Luftzufuhrkanäle, im Längsschnitt betrachtet, in einem Winkel α zu dem unmittelbar an die jeweilige erste Luftzufuhröffnungen angrenzenden Bereich der Schubfläche, wobei α in einem Bereich von 90° bis 135°, bevorzugt von 95° bis 125°, besonders bevorzugt von 100° bis 120°, und am meisten bevorzugt von 105° bis 115° liegt. Der Winkel α ist zwischen der Längsachse der jeweiligen ersten Luftzufuhrkanäle und der Schubfläche in Gegenuhrzeigersinn gemessen. Dadurch wird eine optimale Luftzuführung zum Verbrennungsrost bzw. zum Brennbett auf dem Verbrennungsrost erhalten, was zu einem sehr hohen Ausbrand des Brennguts beiträgt. Der für die Bestimmung des Winkels α relevante Abschnitt der ersten Luftzufuhrkanäle ist dabei der Abschnitt unmittelbar vor dem Austritt des jeweiligen ersten Luftzufuhrkanals aus der vorderen Wand.
  • In einer bevorzugten Ausführungsform, in welcher der erfindungsgemässe Rostblock für einen Vorschubrost bestimmt ist, liegt der Fuss somit auf dem in Transportrichtung T des Brennguts nachfolgenden Rostblock bzw. dessen Auflagefläche auf. Denkbar ist aber auch, dass der erfindungsgemässe Rostblock für einen Rückschubrost bestimmt ist; in diesem Fall liegt der Fuss auf dem in Transportrichtung T des Brennguts vorhergehenden Rostblock bzw. dessen Auflagefläche auf.
  • Mindestens die untere Auflagekante der Schubfläche ist in einer im Wesentlichen rechtwinklig zur Längsachse L verlaufenden Ebene E angeordnet. Denkbar ist diesbezüglich, dass eine im untersten Bereich der vorderen Wand angeordnete Fläche, deren unteres Ende durch die untere Auflagekante gebildet wird, in der Ebene E angeordnet ist. Es ist jedoch auch denkbar, dass lediglich die durch die untere Auflagekante beschriebene Linie in der Ebene E angeordnet ist.
  • Erfindungsgemäss sind in die obere Wand und in die vordere Wand hindurchverlaufende, schräg zur Richtung der ersten Luftzufuhrkanäle ausgerichtete, weitere Luftzufuhrkanäle zur Kühlung der oberen Wand und der vorderen Wand ausgebildet, wobei die weiteren Luftzufuhrkanäle weitere Luftzufuhröffnungen in der oberen Wand, d.h. in der Auflagefläche, und in der vorderen Wand, d.h. in der Schubfläche, bilden. Dadurch kann gewährleistet werden, dass die Verteilung der Luft zur Kühlung der oberen Wand und der vorderen Wand optimiert wird. Folglich wird die Wärme besser abgeführt, sodass die obere Wand und die vordere Wand einer verminderten Erosion ausgesetzt sind.
  • In einer bevorzugten Ausführungsform sind die obere Wand und die vordere Wand in demjenigen Bereich, in dem sie aufeinandertreffen, im Längsschnitt betrachtet als eine Wandverdickung verdickt ausgebildet. Durch die Wandverdickung in demjenigen Bereich des Rostblocks, welcher einem besonders starken Verschleiss ausgesetzt ist, kann eine Erhöhung der Lebensdauer des Rostblocks erreicht werden, da ein wesentlich stärkerer Abrieb toleriert werden kann.
  • In einer besonders bevorzugten Ausführungsform ist die Wandverdickung, im Längsschnitt betrachtet, derart ausgebildet, dass der Rand, in Schubrichtung S betrachtet, bezüglich der Ebene E vorversetzt ist. Mit anderen Worten ist derjenige Bereich der Schubfläche, in dem die ersten Luftzufuhröffnungen und gegebenenfalls weitere Luftzufuhröffnungen angeordnet sind, in einer Ebene angeordnet, die entlang der Längsachse L und, in Schubrichtung S betrachtet, bezüglich des Rands zurückversetzt ist. Da der Rand, entlang der Längsachse L und in Schubrichtung S betrachtet, bezüglich der Ebene E vorversetzt ist, sind die ersten Luftzufuhröffnungen und gegebenenfalls die weiteren Luftzufuhröffnungen, welche unterhalb des Rands ausgebildet sind, zumindest teilweise geschützt. Diese Anordnung weist den zusätzlichen Vorteil auf, dass die Luft leichter durch die ersten Luftzufuhröffnungen und die weiteren Luftzufuhröffnungen austreten kann. Somit wird eine bessere Kühlung der vorderen Wand erreicht.
  • In einer bevorzugten Ausführungsform ist die Wandverdickung im Längsschnitt betrachtet gewölbt ausgebildet, bspw. in Form eines Wulsts. Durch die gewölbte Ausbildung der Wandverdickung wird sichergestellt, dass das Brenngut über den Rostblock ungehindert, d.h. ohne Blockade durch eckige Unebenheiten, transportiert werden kann.
  • Der Begriff Verdickung der oberen bzw. vorderen Wand ist so zu verstehen, dass die obere bzw. vordere Wand in dem Bereich, in dem sie verdickt ausgebildet sind, eine dickere Wandstärke als in dem direkt umgebenden Bereich der Verdickung aufweisen.
  • Die Wandverdickung ist im Betrieb des Rostblocks aufgrund der die Wandverdickung bildende zusätzliche Materialmenge in der Lage, zusätzliche Wärme aufzunehmen. Einerseits ermöglicht folglich die Wandverdickung eine längere Standzeit des Rostblocks, weil die verdickte obere bzw. vordere Wand der Erosion länger widersteht. Anderseits kann aber die Erosion der Wandverdickung wegen der starken thermischen Belastung zunehmen. Eine weitere Optimierung des Rostblocks besteht somit darin, die Kühlung der Wandverdickung zu optimieren.
  • In einer bevorzugten Ausführungsform sind die weiteren Luftzufuhrkanäle in der Wandverdickung angeordnet, d.h. dass sie durch die Wandverdickung hindurchlaufen. Durch diese Anordnung der weiteren Luftzufuhrkanäle und der entsprechenden weiteren Luftzufuhröffnungen wird eine bessere Kühlung der Wandverdickung durch Luft gewährleistet und deren Erosion somit reduziert.
  • Es ist jedoch auch möglich, die weiteren Luftzufuhrkanäle nur in der oberen Wand anzuordnen, d.h. oberhalb des Rands der oberen Wand. Da die Erosion durch Abrieb hauptsächlich an der Auflagefläche stattfindet, ist überwiegend die Wandverdickung vorteilhafterweise an der oberen Wand in demjenigen Bereich ausgebildet, in dem die obere Wand und die vordere Wand aufeinandertreffen. Somit erlaubt diese Anordnung der weiteren Luftzufuhrkanäle eine optimierte Kühlung der Wandverdickung.
  • In einer bevorzugten Ausführungsform verlaufen die weiteren Luftzufuhrkanäle, im Längsschnitt betrachtet, in einem Winkel β zur Längsachse L des Blockkörpers, wobei der Winkel β von 10° bis 60° beträgt. Dabei wird der Winkel β im Gegenuhrzeigersinn bezüglich der Längsachse L gemessen. Dadurch, dass die weiteren Luftzufuhrkanäle schräg zur Längsachse L des Blockkörpers verlaufen, sind sie länger als wenn sie parallel zur Längsachse L verlaufen würden. Folglich kann die durch die weiteren Luftzufuhrkanäle strömende Luft eine effiziente Kühlung bewirken.
  • Bevorzugt beträgt der Winkel β von 15° bis 50°. Dabei ist der Winkel β derart gewählt, dass die durch die Verbrennung des Brennguts resultierende Schlacke so wenig wie möglich durch die weiteren Luftzufuhrkanäle abfällt und Blockade verursacht. Somit ist eine zuverlässige Kühlung des Rostblocks gewährleistet.
  • In einer bevorzugten Ausführungsform ist eine erste Gruppe der weiteren Luftzufuhrkanäle in einer in einem ersten Winkel β1 zur Auflagefläche des Blockkörpers verlaufenden ersten Ebene ausgebildet. Ferner ist eine zweite Gruppe der weiteren Luftzufuhrkanäle in einer in einem zweiten Winkel β2 zur Auflagefläche des Blockkörpers verlaufenden zweiten Ebene ausgebildet. Dabei beträgt der erste Winkel β1 von 10° bis 35°, bevorzugt von 10° bis 20°, und der zweite Winkel β2 von 35° bis 60°, bevorzugt von 40° bis 50°. Eine Aufteilung der weiteren Luftzufuhrkanäle in Gruppen und deren Verteilung in Ebenen stellt sicher, dass die durch die weiteren Luftzufuhrkanäle strömende Luft eine effizient verteilte Kühlung um diese Ebenen bewirkt.
  • Dadurch kann die Standzeit des Rostblocks verlängert werden.
  • In einer bevorzugten Ausführungsform sind die weiteren Luftzufuhrkanäle der ersten Gruppe und die weiteren Luftzufuhrkanäle der zweiten Gruppe parallel zueinander ausgebildet. Vorzugsweise sind die weiteren Luftzufuhrkanäle der ersten Gruppe und die weiteren Luftzufuhrkanäle der zweiten Gruppe parallel zu einer rechtwinklig zur Auflagefläche, die Längsachse L umfassenden Längsschnittebene P ausgebildet. Diese Anordnung weist den zusätzlichen Vorteil auf, dass die Herstellung der weiteren Luftzufuhrkanäle vereinfacht ist.
  • In einer bevorzugten Ausführungsform sind die weiteren Luftzufuhrkanäle in der ersten Ebene und/oder in der zweiten Ebene über die Breite des Rostblocks gleichmäßig voneinander beabstandet verteilt. Dadurch wird sichergestellt, dass die durch die weiteren Luftzufuhrkanäle strömende Luft eine homogene Kühlung um diese Ebenen bewirkt. Somit ist die Verteilung der durch die Wärmeverteilung verursachten Spannungen im Betrieb des Rostblocks ebenfalls homogen in der ersten und der zweiten Ebene verteilt und wird die Bildung von Rissen in den Rostblock über dessen Breite minimiert. Dies führt zu einer Verlängerung der Standzeit des Rostblocks.
  • In einer bevorzugten Ausführungsform ist jeweils ein weiterer Luftzufuhrkanal, ggf. ein weiterer Luftzufuhrkanal der ersten Gruppe und ein weiterer Luftzufuhrkanal der zweiten Gruppe, und ein erster Luftzufuhrkanal in einer gleichen Ebene angeordnet, welche parallel zur Längsschnittebene P verläuft. Diese Anordnung der ersten und der weiteren Luftzufuhrkanäle stellt sicher, dass die Spannungen im Betrieb des Rostblocks, in Längsschnitt betrachtet, ebenfalls homogen verteilt sind. Somit kann die Bildung von Rissen minimiert werden.
  • In einer bevorzugten Ausführungsform sind die weiteren Luftzufuhrkanäle symmetrisch zu einer rechtwinklig zur Auflagefläche verlaufenden Längssymmetrieebene des Rostblocks verteilt. Diese Anordnung weist den weiteren Vorteil auf, dass die Herstellung der weiteren Luftzufuhrkanäle vereinfacht ist.
  • Die Anzahl der Luftzufuhrkanäle und der weiteren Luftzufuhrkanäle wird proportional zur Breite des Rostblocks und zur Grösse der Wandverdickung gerechnet, um eine optimierte Kühlung des Rostblocks zu erreichen.
  • In einer bevorzugten Ausführungsform weisen die weiteren Luftzufuhrkanäle im Wesentlichen über ihre Länge eine konstante Querschnittfläche auf, welche insbesondere 40 mm2 bis 100 mm2 beträgt. Dabei ist der Durchmesser derart gewählt, dass die durch die Verbrennung des Brennguts resultierende Schlacke so wenig wie möglich durch die weiteren Luftzufuhrkanäle abfällt und eine Blockade verursacht. Somit kann eine zuverlässige Kühlung des Rostblocks gewährleistet werden. Vorzugsweise beträgt die Querschnittfläche 80 mm2, um ein optimales Resultat zu erreichen.
  • In einer bevorzugten Ausführungsform sind die weiteren Luftzufuhrkanäle über ihre Länge von der Brenngutseite zur Kühlluftseite kontinuierlich aufweitend ausgebildet, wobei die Querschnittfläche der weiteren Luftzufuhrkanäle auf der Brenngutseite und die Querschnittfläche der weiteren Luftzufuhrkanäle auf der Kühlluftseite in einem Verhältnis von 1 : 1.2 bis 1 : 2.5, bevorzugt 1 : 2.25 steht. Die Querschnittfläche der weiteren Luftzufuhrkanäle auf der Brenngutseite ist in der Auflagefläche bzw. in der Schubfläche gemessen und entspricht der Querschnittfläche der oben definierten weiteren Luftzufuhröffnungen. Die Querschnittfläche der weiteren Luftzufuhrkanäle ist auf deren auf der Kühlluftseite liegenden Ende gemessen. Diese Ausbildung der weiteren Luftzufuhrkanäle ermöglicht eine einfache Abführung der in die weiteren Luftzufuhrkanäle eingetretenen Verbrennungsreste. Die Verbrennungsreste werden nämlich durch das sich auf dem Rostblock befindende Brenngut weiter in Richtung Kühlluftseite in die weiteren Luftzufuhrkanäle hineingedrückt und wegen der Aufweitung der weiteren Luftzufuhrkanäle freigegeben. Somit kann eine Blockade der Luftzufuhr vermieden werden.
  • Gemäss einem weiteren Aspekt betrifft die vorliegende Erfindung zudem einen Verbrennungsrost umfassend mindestens einen der oben beschriebenen Rostblöcke.
  • Des Weiteren betrifft die vorliegende Erfindung die Verwendung eines oben beschriebenen Verbrennungsrosts für die Verbrennung von Abfall sowie eine Abfallverbrennungsanlage umfassend einen solchen Verbrennungsrost. Die Erfindung wird anhand der anliegenden Figuren illustriert. Von diesen zeigt:
  • Fig. 1
    einen erfindungsgemässen Rostblock in einer perspektivischen Ansicht; und
    Fig. 2
    einen Ausschnitt des Rostblocks gemäss Fig. 1 im Längsschnitt durch die in Fig. 1 dargestellte Schnittebene II-II; und
    Fig. 3
    einen Ausschnitt des Rostblocks gemäss Fig. 1 im Querschnitt durch die in Fig. 2 dargestellte Schnittebene III-III.
  • Wie aus der Fig. 1 ersichtlich ist, umfasst der Rostblock 10 einen als Gussteil ausgebildeten Blockkörper 12, welcher im Wesentlichen in Form eines länglichen Quaders mit einer Längsachse L ausgebildet ist.
  • Der Blockkörper 12 umfasst eine obere Wand 14, die eine parallel zur Längsachse L verlaufende Auflagefläche 16 bildet, entlang welcher das Brenngut gefördert werden soll und welche eine Brenngutseite der oberen Wand 14 definiert. Das in Schubrichtung S betrachtet vorderste Ende der Auflagefläche 16 bildet einen Rand 19, über den die Auflagefläche 16 in eine von einer vorderen Wand 20 gebildete Schubfläche 22 abfällt. Die der Auflagefläche abgewandte Seite der oberen Wand 14 und die der Schubfläche 22 abgewandte Seite der vorderen Wand 20 definiert eine Kühlluftseite des Blockkörpers 12.
  • In der gezeigten Ausführungsformen weist die Auflagefläche einen ersten Auflageflächenbereich 16a und einen zweiten Auflageflächenbereich 16b auf, wobei aber der erste Auflageflächenbereich 16a gegenüber dem zweiten Auflageflächenbereich 16b nach oben versetzt angeordnet und über einer abgeschrägten Übergang 17 mit diesem verbunden ist.
  • Auf der der vorderen Wand 20 gegenüberliegenden Seite weist der Blockkörper 12 eine hintere Wand 24 auf, welche mit mindestens einem Haken 26 ausgestattet ist, mit welchem der Rostblock 10 in ein Blockhalterohr eingehängt werden kann. Auf der der Auflagefläche 16 abgewandten Unterseite des Rostblocks 10 ist zudem ein Mittelsteg 29 angeordnet.
  • Seitlich ist der Rostblock 10 jeweils durch eine sich in Längsrichtung L erstreckende Seitenwand 28a, 28b begrenzt.
  • Innerhalb des Verbrennungsrosts liegt der Rostblock 10 auf einem in Schubrichtung S nachfolgenden Rostblock auf. Hierzu ist der unterste Bereich der vorderen Wand 20 in Form eines Blocks 34 ausgebildet, welcher dazu bestimmt ist, auf der Auflagefläche eines in Schubrichtung S benachbarten Rostblocks aufzuliegen. Der unterste Bereich einschliesslich einer durch diesen ausgebildeten unteren Auflagekante 23 der Schubfläche ist in einer im Wesentlichen rechtwinklig zur Längsachse L verlaufenden Ebene E angeordnet.
  • Ferner ist der Rostblock 10 in demjenigen Bereich, in dem die obere Wand 14 und die vordere Wand 20 aufeinandertreffen, verdickt ausgebildet. Konkret ist die Wandverdickung 40 im Längsschnitt betrachtet auf der Brenngutseite der oberen Wand 14 gewölbt ausgebildet.
  • Der durch die Wandverdickung 40 gebildete Rand 19 ist in der gezeigten Ausführungsform entlang der Längsachse L und in Schubrichtung S betrachtet bezüglich der Ebene E vorversetzt, wobei der Abstand D zwischen dem Rand 19 und der Ebene E ca. 25 mm beträgt.
  • Somit verläuft der zweite Auflageflächenbereich 16b in der gezeigten Ausführungsform zuerst im Wesentlichen in einer Ebene und anschliessend abfallend in einem, in Schubrichtung S betrachtet, sich bis zum vordersten Ende der Auflagefläche 16 erstreckenden, gewölbten Bereich.
  • Der durch das vorderste Ende der Auflagefläche 16 gebildete Rand 19 befindet sich vorliegend unterhalb der Ebene des zweiten Auflageflächenbereichs 16b. Über den Rand 19 beginnt die Schubfläche 22, welche bezüglich des Rands 19 zuerst zurückversetzt verläuft und sich anschliessend in die Ebene E erstreckt.
  • Wie aus der Fig. 2 und 3 ersichtlich ist, weist die vordere Wand 20 zwei erste Luftzufuhröffnungen 25 auf, welche jeweils durch einen durch die vordere Wand 20 hindurchverlaufenden ersten Luftzufuhrkanal 27 gebildet sind. Vorliegend münden die ersten Luftzufuhrkanäle 27 in einen durch die Wandverdickung 40 und die Ebene E gebildeten Hinterschnitt der vorderen Wand 20. Die ersten Luftzufuhröffnungen 25 befinden sich in Fig. 1 unterhalb der Wandverdickung 40 und sind nicht sichtbar. Durch die ersten Luftzufuhrkanäle 27 wird Primärluft dem Verbrennungsrost bzw. dem Brennbett auf dem Verbrennungsrost zugeführt.
  • Zudem sind die ersten Luftzufuhröffnungen 25 entlang der Längsachse L und in Schubrichtung S betrachtet bezüglich des Rands 19 zurückversetzt, in der konkret gezeigten Ausführungsform um einen Abstand d von ca. 12 mm.
  • In dem in Fig. 2 dargestellten Rostblock verlaufen die ersten Luftzufuhrkanäle 27 im Längsschnitt betrachtet in einem Winkel α von ca. 110° zur Schubfläche 22 in ihrem unmittelbar an die jeweilige Luftzufuhröffnung angrenzenden Bereich.
  • Ferner umfasst der Rostblock 12 in die obere Wand 14 hindurchverlaufende, in der Wandverdickung 40 angeordnete, schräg zur Richtung der ersten Luftzufuhrkanäle 27 ausgerichtete weitere Luftzufuhrkanäle 38 zur Kühlung der oberen Wand 14, wobei die weiteren Luftzufuhrkanäle 38 weitere Luftzufuhröffnungen 35 in der Wandverdickung 40 bilden.
  • In der gezeigten Ausführungsform ist eine erste Gruppe von zwei weiteren Luftzufuhrkanälen 38 in einer in einem ersten Winkel β1 zur Auflagefläche 16 verlaufenden ersten Ebene G1 ausgebildet. Ferner ist eine zweite Gruppe von zwei weiteren Luftzufuhrkanälen 38 in einer in einem zweiten Winkel β2 zur Auflagefläche 16 verlaufenden zweiten Ebene G2 ausgebildet. Dabei beträgt der erste Winkel β1 15° und der zweite Winkel β2 45°. Der Klarheit halber sind die Winkel β1 und β2 in Fig. 2 bezüglich der Längsachse L dargestellt, welcher parallel zur Auflagefläche 16 verläuft.
  • Wie in Fig. 3 dargestellt sind die zwei ersten Luftzufuhrkanälen 27 und die zwei Gruppen von zwei weiteren Luftzufuhrkanälen 38 jeweils paarweise symmetrisch zu einer rechtwinklig zur Auflagefläche verlaufenden Längssymmetrieebene P des Rostblocks 12 verteilt.
  • Ferner sind die zwei ersten Luftzufuhrkanälen 27 und die zwei Gruppen von zwei weiteren Luftzufuhrkanälen 38, in Richtung zum Inneren des Rostblocks 12 gesehen, sich kontinuierlich aufweitend ausgebildet, sodass in die ersten oder in die weiteren Luftzufuhrkanäle 27 bzw. 38 eingetretene Verbrennungsreste einfacher abgeführt werden können und somit eine Blockade der Luftzufuhr vermieden werden kann. Dabei beträgt der Durchmesser der ersten und der weiteren Luftzufuhrkanäle 27 bzw. 38 an deren dem Inneren des Rostblocks 10 zugewandten Ende 15 mm und an deren anderen Ende 10 mm.
  • Im Betrieb werden die Rostblöcke 10 mittels der Blockhalterohre relativ zueinander bewegt. Je nachdem, ob die Blockhalterohre einem stationären oder einem beweglichen Rostblock zugeordnet sind, sind die Blockhalterohre entweder an ortsfesten Konsolen befestigt oder an Konsolen, die in einem beweglichen Rostwagen angeordnet sind. Der Antrieb erfolgt mittels Hydraulikzylinder, welche die Rostwagen über Rollen auf entsprechenden Laufflächen vor- und zurückbewegen.
  • Durch die dadurch erhaltene Relativbewegung wird der Fuss 34 eines ersten Rostblocks 10 über die Auflagefläche 16 des jeweils nachfolgenden Rostblocks 10 vorwärts- und zurückgeschoben, wobei das Brenngut über die Auflagefläche 16 gefördert wird, bevor es über den Rand 19 auf die Auflagefläche 16 des nachfolgenden Rostblocks 10 abgeworfen wird.
  • Bezugszeichenliste
    • Rostblock 10
    • Blockkörper 12
    • obere Wand 14
    • Auflagefläche 16
    • Auflageflächenbereich 16a, 16b
    • Übergang 17
    • Rand 19
    • vordere Wand 20
    • Schubfläche 22
    • untere Auflagekante 23
    • hintere Wand 24
    • erste Luftzufuhröffnung 25
    • Haken 26
    • erster Luftzufuhrkanal 27
    • Seitenwand 28a, 28b
    • Mittelsteg 29
    • Block 34
    • Weitere Luftzufuhröffnung 35
    • Weiterer Luftzufuhrkanal 38
    • Wandverdickung 40
    • Längsachse L
    • Schubrichtung S
    • Ebene E
    • Längsschnittebene P
    • Abstand d, um den die Luftzufuhröffnungen entlang der Längsachse L und in Schubrichtung S betrachtet bezüglich des Rands zurückversetzt sind
    • Abstand D, um den der Rand entlang der Längsachse L und in Schubrichtung S betrachtet bezüglich der Ebene E vorversetzt ist
    • Winkel α
    • Winkel β1, β2

Claims (13)

  1. Rostblock (10) für einen Verbrennungsrost, in dem aufeinanderfolgende Rostblöcke treppenartig übereinander angeordnet sind und derart ausgestaltet sind, mittels relativ zueinander ausgeführter Schubbewegungen das Brenngut während der Verbrennung umzuschichten und zu fördern, wobei der Rostblock (10) einen eine obere Wand (14) aufweisenden, eine Längsachse L definierenden Blockkörper (12) umfasst, wobei die obere Wand (14) eine Auflagefläche (16) bildet, entlang welcher das Brenngut gefördert werden soll und deren, in einer im Wesentlichen parallel zur Längsachse L ausgerichteten Schubrichtung S betrachtet, vorderstes Ende einen Rand (19) bildet, über den die Auflagefläche (16) in eine von einer vorderen Wand (20) gebildete Schubfläche (22) abfällt, die vordere Wand (20) erste Luftzufuhröffnungen (25) aufweist, welche jeweils durch einen im Längsschnitt betrachtet rechtwinklig oder schräg zur Schubfläche (22) verlaufenden, ersten Luftzufuhrkanal (27) zur Zufuhr von Luft auf den Verbrennungsrost gebildet sind, und eine in einer im Wesentlichen rechtwinklig zur Längsachse L verlaufenden Ebene E angeordnete, untere Auflagekante (23) aufweist, welche dazu bestimmt ist, mit der Auflagefläche eines in Schubrichtung S benachbarten Rostblocks in Kontakt zu kommen, wobei der Rostblock (10) in die obere Wand (V) hindurchverlaufende, schräg zur Richtung der ersten Luftzufuhrkanäle ausgerichtete, weitere Luftzufuhrkanäle (71) zur Kühlung der oberen Wand, aufweist, gekennzeichnet durch in die vordere Wand (20) hindurchverlaufende, schräg zur Richtung der ersten Luftzufuhrkanäle ausgerichtete, weitere Luftzufuhrkanäle (38) zur Kühlung der vorderen Wand (20).
  2. Rostblock gemäss Anspruch 1, dadurch gekennzeichnet, dass die obere Wand (14) und die vordere Wand (20) in demjenigen Bereich, in dem sie aufeinandertreffen, im Längsschnitt betrachtet als eine Wandverdickung (40) verdickt ausgebildet sind und dass der Rand (19), in Schubrichtung S betrachtet, bezüglich der Ebene E vorversetzt ist.
  3. Rostblock gemäss Anspruch 2, dadurch gekennzeichnet, dass die weiteren Luftzufuhrkanäle (38) in der Wandverdickung (40) angeordnet sind.
  4. Rostblock gemäss einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die weiteren Luftzufuhrkanäle (38), im Längsschnitt betrachtet, in einem Winkel β zur Längsachse L des Blockkörpers verlaufen, wobei β von 10° bis 60°, bevorzugt von 15° bis 50° beträgt.
  5. Rostblock gemäss einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine erste Gruppe der weiteren Luftzufuhrkanäle (38) in einer in einem ersten Winkel β1 zur Auflagefläche des Blockkörpers verlaufenden ersten Ebene und eine zweite Gruppe der weiteren Luftzufuhrkanäle (38) in einer in einem zweiten Winkel β2 zur Auflagefläche des Blockkörpers verlaufenden zweiten Ebene ausgebildet sind, wobei β1 von 10° bis 35°, bevorzugt von 10° bis 20°, und β2 von 35° bis 60°, bevorzugt von 40° bis 50°, beträgt.
  6. Rostblock gemäss Anspruch 5, dadurch gekennzeichnet, dass die weiteren Luftzufuhrkanäle (38) der ersten Gruppe parallel zueinander, vorzugsweise parallel zu einer rechtwinklig zur Auflagefläche (16) Längsschnittebene P, und die weiteren Luftzufuhrkanäle (38) der zweiten Gruppe parallel zueinander, vorzugsweise parallel zur Längsschnittebene P ausgebildet sind.
  7. Rostblock gemäss Anspruch 5 oder 6, dadurch gekennzeichnet, dass die weiteren Luftzufuhrkanäle (38) in der ersten Ebene und/oder in der zweiten Ebene über die Breite des Rostblocks wenigstens annähernd gleichmäßig voneinander beabstandet verteilt sind.
  8. Rostblock gemäss einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die weiteren Luftzufuhrkanäle (38) symmetrisch zu einer rechtwinklig zur Auflagefläche (16) verlaufenden Längssymmetrieebene des Rostblocks (10) verteilt sind.
  9. Rostblock gemäss einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die weiteren Luftzufuhrkanäle (38) im Wesentlichen über ihre Länge eine konstante Querschnittfläche aufweisen, welche 40 mm2 bis 100 mm2, vorzugsweise 80 mm2 beträgt.
  10. Rostblock gemäss einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die weiteren Luftzufuhrkanäle (38) über ihre Länge von der Brenngutseite zur Kühlluftseite kontinuierlich aufweitend ausgebildet sind, wobei die Querschnittfläche der weiteren Luftzufuhrkanäle (38) auf der Brenngutseite und die Querschnittfläche der weiteren Luftzufuhrkanäle auf der Kühlluftseite in einem Verhältnis von 1 : 1.2 bis 1 : 2.5, bevorzugt 1 : 2.25 steht.
  11. Verbrennungsrost umfassend mindestens einen Rostblock (10) gemäss einem der Ansprüche 1 bis 10.
  12. Verwendung eines Verbrennungsrosts gemäss Anspruch 11 für die Verbrennung von Abfall.
  13. Abfallverbrennungsanlage umfassend einen Verbrennungsrost gemäss Anspruch 11.
EP20716792.5A 2019-07-05 2020-04-06 Rostblock für einen verbrennungsrost Active EP3994393B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19184559 2019-07-05
PCT/EP2020/059704 WO2021004664A1 (de) 2019-07-05 2020-04-06 Rostblock für einen verbrennungsrost

Publications (3)

Publication Number Publication Date
EP3994393A1 EP3994393A1 (de) 2022-05-11
EP3994393B1 true EP3994393B1 (de) 2023-07-26
EP3994393C0 EP3994393C0 (de) 2023-07-26

Family

ID=67184816

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20716792.5A Active EP3994393B1 (de) 2019-07-05 2020-04-06 Rostblock für einen verbrennungsrost

Country Status (10)

Country Link
US (1) US20220260252A1 (de)
EP (1) EP3994393B1 (de)
JP (1) JP2022538488A (de)
KR (1) KR20220025090A (de)
CN (1) CN114144618B (de)
AU (1) AU2020310397A1 (de)
BR (1) BR112021025942A2 (de)
CA (1) CA3147854A1 (de)
MX (1) MX2022000025A (de)
WO (1) WO2021004664A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102625230B1 (ko) * 2023-01-27 2024-01-16 에이치엘에코텍 주식회사 화격자 블록, 스토커식 화격장치, 스토커식 소각로 및 폐기물 소각 시스템

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1409205A (en) * 1918-07-15 1922-03-14 Combustion Eng Corp Furnace grate bar
FR2233564A1 (en) * 1973-06-18 1975-01-10 Dupeux Ets M Waste incinerator with inclined grate - overlapping plates forming the grates are pivoted simultaneously
US4876972A (en) * 1987-01-21 1989-10-31 Louis Mrklas Grate bar element for a sliding grate furnace for garbage incineration
DE4026587C1 (de) * 1990-08-23 1991-10-17 Evt Energie- Und Verfahrenstechnik Gmbh, 7000 Stuttgart, De
DE29501162U1 (de) * 1994-01-27 1995-05-04 Wärmetechnik Dr. Pauli GmbH, 82131 Gauting Verbrennungsrost zum Verbrennen von festen Brennstoffen wie Müll, insbesondere zur Verbesserung des Ausbrandes
KR100226989B1 (ko) * 1996-11-27 1999-10-15 장병주 스토커식 소각로의 화격자 마모 방지 시스템
DE102004034322B4 (de) * 2004-07-15 2006-09-28 Lurgi Lentjes Ag Rostplatte
CN101398180A (zh) * 2008-10-22 2009-04-01 西安交通大学 一种鳞片式垃圾焚烧滚筒炉排
DE102011085137A1 (de) * 2011-10-24 2013-04-25 Dieffenbacher GmbH Maschinen- und Anlagenbau Verbrennungsrost bestehend aus Roststäben und Verfahren zur Montage- und Demontage von Roststäben in und aus einem Verbrennungsrost
JP2014066414A (ja) * 2012-09-25 2014-04-17 Iwasaki:Kk 火格子およびそれを用いた焼却炉
CN104296148B (zh) * 2014-10-17 2016-08-31 安徽盛燃焚烧炉科技有限公司 固定炉排焚烧炉
CN204213937U (zh) * 2014-10-17 2015-03-18 安徽盛燃焚烧炉科技有限公司 固定炉排焚烧炉
PL3798515T3 (pl) * 2015-06-12 2024-02-19 Hitachi Zosen Inova Ag Blok rusztowy do rusztu do spalania
CN108506938B (zh) * 2017-04-28 2019-11-29 上海明华电力科技有限公司 一种燃煤锅炉分级焚烧含生物质的废弃物的方法和系统
CN107906519A (zh) * 2017-10-27 2018-04-13 王志斌 固定炉排焚烧炉
DE102020003114A1 (de) * 2020-05-25 2021-11-25 Martin GmbH für Umwelt- und Energietechnik Roststab, Roststabanordnung und Verfahren zum Betreiben einer Roststabanordnung

Also Published As

Publication number Publication date
BR112021025942A2 (pt) 2022-02-22
WO2021004664A1 (de) 2021-01-14
EP3994393A1 (de) 2022-05-11
US20220260252A1 (en) 2022-08-18
KR20220025090A (ko) 2022-03-03
CA3147854A1 (en) 2021-01-14
JP2022538488A (ja) 2022-09-02
CN114144618A (zh) 2022-03-04
MX2022000025A (es) 2022-05-18
EP3994393C0 (de) 2023-07-26
CN114144618B (zh) 2024-03-08
AU2020310397A1 (en) 2021-12-23

Similar Documents

Publication Publication Date Title
EP1992897B1 (de) Verfahren und Einrichtung zum Kühlen einer auf einem Förderrost liegenden Schüttgutschicht
AT392150B (de) Rostblock eines rostbelages zu einem verbrennungs-rost fuer muellverbrennung
EP0811818B1 (de) Rostplatte sowie Verfahren zur Herstellung einer Rostplatte
EP2588767B1 (de) Kippsegmentlager
DD232539B5 (de) Rostbodenelement zum Aufbau einer Rostflaeche
EP0954722B1 (de) Mit wasser gekühlter verbrennungsrost
EP3994393B1 (de) Rostblock für einen verbrennungsrost
EP2487414A1 (de) Roststab
EP0157920B1 (de) Rostwalze für den Walzenrost z.B. einer Müllverbrennungsanlage oder dergleichen
EP3798515B1 (de) Rostblock für einen verbrennungsrost
EP2184540B1 (de) Luftgekühlter Rostblock
CH693802A5 (de) Verfahren zur Kuehlung von Roststaeben fuer Verbren nungsrost und Roststab respektive Rost hierfuer.
EP3967927B1 (de) Wassergekühlter rostblock für eine verbrennungsanlage
DE10331635A1 (de) Gekühlte Schaufel für eine Gasturbine
EP3967926B1 (de) Rostblock mit ansteigender nase
DE3618606C2 (de) Walzenrost sowie Roststab für einen Walzenrost
EP3994392B1 (de) Rostblock für einen verbrennungsrost
EP1532396B1 (de) Rostelement für einen rost einer abfallverbrennungsanlage
EP1191282B1 (de) Gekühlter Rostblock
EP1373817B1 (de) Kühlrost für einen schüttgutkühler
EP4361500A1 (de) Rostbahnbegrenzungselement für einen verbrennungsrost
DE19860553C2 (de) Flüssigkeitsgekühlter Verbrennungsrost
EP0606551B2 (de) Walzenrost zum Betrieb eines Verbrennungskessels
WO2016119069A1 (de) Lufteinspeisevorrichtung für einen verbrennungsofen
DE2919207A1 (de) Ofen zum erhitzen durchlaufender, zylindrischer teile

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211230

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230223

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020004382

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20230726

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230817

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231026

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020004382

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230726

U20 Renewal fee paid [unitary effect]

Year of fee payment: 5

Effective date: 20240411

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20240429

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240419

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240501

Year of fee payment: 5