EP3942589B1 - Schmelzleiter und sicherung - Google Patents

Schmelzleiter und sicherung Download PDF

Info

Publication number
EP3942589B1
EP3942589B1 EP20711568.4A EP20711568A EP3942589B1 EP 3942589 B1 EP3942589 B1 EP 3942589B1 EP 20711568 A EP20711568 A EP 20711568A EP 3942589 B1 EP3942589 B1 EP 3942589B1
Authority
EP
European Patent Office
Prior art keywords
covering
fuse
wire
melting
fusible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20711568.4A
Other languages
English (en)
French (fr)
Other versions
EP3942589A1 (de
Inventor
Jens Weber
Johannes-Georg GÖDEKE
Thorsten GLINTZER
Markus LIPPOLD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siba Fuses GmbH
Original Assignee
Siba Fuses GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siba Fuses GmbH filed Critical Siba Fuses GmbH
Publication of EP3942589A1 publication Critical patent/EP3942589A1/de
Application granted granted Critical
Publication of EP3942589B1 publication Critical patent/EP3942589B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/0411Miniature fuses
    • H01H85/0415Miniature fuses cartridge type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/18Casing fillings, e.g. powder
    • H01H85/185Insulating members for supporting fusible elements inside a casing, e.g. for helically wound fusible elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member
    • H01H85/11Fusible members characterised by the shape or form of the fusible member with applied local area of a metal which, on melting, forms a eutectic with the main material of the fusible member, i.e. M-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/143Electrical contacts; Fastening fusible members to such contacts
    • H01H85/157Ferrule-end contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/06Fusible members characterised by the fusible material

Definitions

  • the present invention relates to a G-fuse with an outer fuse housing. At least one fusible conductor wound around an in particular electrically insulating winding body is arranged in the fuse housing.
  • a denser or tighter winding of the fusible conductor is necessary if low nominal currents with slow characteristics are to be protected by the fuse.
  • the production of the fusible conductor wound around the winding body is all the more complex, the tighter the windings are to be wound. Local fluctuations in the winding density or the winding spacing cannot be avoided, which has a negative effect on the fuse and load behavior and the characteristics of the switch-off behavior of the fuse.
  • fuses are used in a technically very sensitive area and in particular for (overload) protection, any fluctuations and/or alleged short circuits ("almost short circuits") must be avoided as far as possible. Accordingly, a specified winding density or a specified winding distance must not be undercut.
  • the manufacturing process means that it cannot be avoided that the winding distance is too small, at least in some areas, so that the fusible conductor can short-circuit in smaller areas. This can also be caused by the properties of the fusible conductor itself and/or slight, in particular conductive dirt between the turns of the fusible conductor can lead to a short circuit.
  • Another problem is the flux used in the solder, which is required for contacting the fuse element ends. If wires with a coating of tin or fusible conductors containing tin are used as the fusible conductor, the flux can attack the tin layer or the tin material and form solder bridges by melting during the necessary reflow process. This has a disadvantageous effect on the fuse behavior, with the values specified for the fuse, in particular the characteristic, melting time and/or other limit values, no longer being able to be complied with.
  • the DE 26 23 127 A1 discloses a G-fuse according to the preamble of claim 1 and relates to a fuse element and a fusible conductor in which a thin metal wire is helically wound in a plurality of turns in a thin core made of an electrically insulating and heat insulating thread .
  • the U.S. 2017/278663 A1 relates to a fusible conductor that can have a multilayer structure.
  • the JP 2016 038968 A relates to a fuse wire having an overcurrent cut-off function, a conductor of the wire being covered with an insulating layer.
  • the GB 227 928 A relates to an electrical fuse with a wire.
  • the JP 2014 063639 A relates to a fusible conductor for an overcurrent fuse.
  • the DE 690 26 386 T2 relates to a condition indicating fuse having a housing having at least one transparent portion with two spaced terminals on the housing for connection to an external circuit.
  • the object of the present invention is now to provide a fuse which reduces or at least substantially reduces the aforementioned problems or challenges of the prior art.
  • an electrically insulating and/or electrically non-conductive sheathing is provided which at least partially, preferably completely, surrounds the outer lateral surface of the fusible wire.
  • the fusible conductor has an electrically conductive fusible wire.
  • the electrically insulating sheathing is preferably arranged directly on the outer lateral surface of the fuse wire and in particular encloses the entire outer lateral surface of the fuse wire. Ultimately, the sheathing encases the fusible wire, so that the fusible wire acts as the core of the fusible conductor.
  • An electrically insulating and/or electrically non-conductive sheath is understood to be a sheath that is not electrically conductive and/or does not affect the electrical conduction behavior of the fuse wire. In particular, no current is conducted via the casing.
  • the coil spacing can also vary.
  • the cladding can no longer influence the electrical conductivity of the fusible wire, since the fusible wire ultimately does not have to be directly exposed to the solder and/or the flux. This also applies in particular to that part of the fusible conductor that is not to be soldered.
  • the fluxes or solders used can also be made more chemically aggressive, but in particular more process-optimized. According to the invention, the metal alloys or the metal of the fusible wire is protected from the flux by the sheathing. Accordingly, the sheathing also ensures a chemical protective layer for the fuse wire.
  • the use of the fusible conductor is provided for a G fuse—that is, for a device protection fuse.
  • Device protection fuses are in DIN series 60127, in particular DIN EN IEC 60127 (as of May 2019), with a number of DIN standards corresponding to the aforementioned series.
  • the fusible conductor according to the invention makes it possible to provide G fuses for very slow behavior, in particular for low rated currents.
  • the G-fuse is a safety fuse and an overcurrent protection device that interrupts the circuit by melting the fuse element if the current exceeds a certain value for a sufficient or definable time.
  • the term fuse is also defined in the aforementioned DIN series.
  • device protection fuses can also be referred to as GS fuses.
  • G-fuses are manufactured for rated currents of around 0.03 to 40 A with a breaking capacity of around 5 A to 300 kA, in particular around 10 A to 300 kA.
  • the length and/or width of the G-fuse is regulated depending on specific country regulations.
  • the casing is preferably metal-free—that is, the material of the casing contains at least essentially no metal or no metal alloy.
  • the casing is designed as a silicone casing and/or has silicone as the material.
  • Silicones can be referred to as poly(organo)siloxanes and in particular indicate a group of synthetic polymers in which silicon atoms are linked via oxygen atoms.
  • the silicone sheathing enables cost-effective electrical insulation of the fusible wire, which is permanently connected to the outer surface of the fusible wire.
  • the sheathing can be firmly connected, in particular directly or indirectly, to the, preferably entire, outer surface of the fusible wire, preferably in a materially bonded manner.
  • the bond between the outer lateral surface of the fusible wire and the sheathing can be brought about during the manufacture of the sheathing of the fusible wire itself or during the application of the sheathing. If the sheathing is designed as a coating and/or silicone sheathing and is applied to the outer surface of the Fusible wire is generated, preferably "automatically" results in the aforementioned composite.
  • the material of the sheathing has a proportion or a proportion by weight, in particular proportion by mass, of the total material of the fusible conductor between 0.1 and 25% by weight, preferably between 1 and 20% by weight. , more preferably between 5 to 15% by weight and in particular at least essentially between 8 to 12% by weight.
  • the aforementioned mass fraction of the material of the sheathing in the total material of the fusible conductor indicates that the sheathing ultimately has a rather small proportion of the material of the fusible conductor.
  • the fusible conductor particularly preferably consists primarily of the fusible wire, with the fusible wire having a mass fraction of the total material of the fusible conductor of between 30 and 99.9% by weight, preferably between 60 and 95% by weight.
  • the sheathing is very particularly preferably designed as a film of lacquer which has been applied around the outer surface of the fuse wire.
  • the fusible wire has a further sheathing which at least partially surrounds the fusible wire.
  • the further sheathing is arranged between the fuse wire and the sheathing.
  • the further sheathing is provided directly on the outer surface of the fuse wire and surrounds, preferably completely, the outer surface of the fuse wire.
  • the further casing can be surrounded at least in regions, preferably completely, by the electrically non-conductive or electrically insulating casing on its outer lateral surface facing away from the fusible wire.
  • the further casing is likewise designed to be electrically conductive.
  • the material of the further casing is metal, in particular a metal alloy, preferably tin and/or a tin alloy.
  • the additional casing can also preferably serve to weaken the physico-chemical processes in the event of an overload, in order in particular to enable a shutdown—also known as the M effect.
  • the constriction of the fusible wire or the fusible conductor in the region of application of the further sheathing, in particular in the area of the tin application the greatest heat generation occurs, which heats up the material of the further sheathing, in particular the tin or the tin alloy.
  • the tin becomes liquid and forms an alloy with the material of the fuse wire.
  • this alloy has a lower electrical and thermal conductivity and, in particular, a lower melting point.
  • the fusible conductor or the fusible wire becomes molten at the corresponding point below the actual melting point and separates the current path.
  • a fuse in particular a G-fuse, can thus utilize the previously described M-effect to trigger the fuse by applying the additional sheathing, which in particular has tin and/or consists of tin, to the outside of the fusible wire.
  • the sheathing also becomes molten when the melting point of the fusible wire and/or the further sheathing is exceeded.
  • the fusible wire, the sheathing and/or the further sheathing is designed in such a way that they have an at least essentially circular outer cross section.
  • the fusible wire has a circular cross section and is in particular of cylindrical design.
  • the casing and/or the further casing can be arranged, preferably directly or indirectly, adjacent to the outer lateral surface of the degree of melting and preferably have an annular cross-section and/or be designed as a hollow cylinder.
  • the aforesaid design of the fusible wire and the sheathing enables simple production and simple coating of the fusible wire with the sheathing.
  • Such a fusible wire can be wound around a winding body particularly well, in particular in different directions.
  • the shapes or the shape of the further sheathing and/or the sheathing can be designed to correspond to the external cross section of the fusible wire.
  • the shape of the additional sheathing preferably corresponds to the outer cross section of the fusible wire, with the sheathing can in turn correspond to the outer cross section of the further sheathing and/or to the outer cross section of the fusible wire.
  • the further sheathing and/or the sheathing is applied to the outer surface of the fuse wire in such a way that there is no free space, no play and/or no pores and/or no "slippage" between the fuse wire and the sheathing and/or the further sheathing ' results.
  • the fusible conductor can have a diameter of between 1 ⁇ m and 1000 ⁇ m, preferably between 10 ⁇ m and 600 ⁇ m, more preferably between 15 ⁇ m and 550 ⁇ m.
  • the aforementioned thickness or diameter of the fusible conductor is in particular designed in such a way that the switching behavior of the fuse, preferably the G fuse, can be guaranteed.
  • the fuse wire has a diameter of between 1 ⁇ m and 800 ⁇ m, preferably between 5 ⁇ m and 500 ⁇ m, more preferably between 10 ⁇ m and 400 ⁇ m.
  • the casing and/or the further casing can in particular have a layer thickness between 0.01 ⁇ m and 300 ⁇ m, more preferably between 0.1 ⁇ m and 200 ⁇ m, more preferably between 1 ⁇ m and 100 ⁇ m, more preferably between 1.5 ⁇ m and 50 ⁇ m.
  • the casing and/or the further casing has an at least essentially constant layer thickness, resulting in the ring-shaped and/or hollow-cylindrical shape of the casing and/or the further casing.
  • the material of the fusible wire can be metal, in particular a metal alloy. Copper, silver and/or a copper alloy and/or a silver alloy can be provided as the material or metal. Tin and/or a tin alloy can also be provided as the material of the fusible wire. Alternatively or additionally, a metal alloy and/or metal other than copper and/or silver can be provided as the material for the fusible wire, in particular steel, nickel, iron and/or tungsten.
  • the invention provides, in particular to ensure the M effect, that the material of the further casing, in particular the metal of the further casing, differs from the material of the fusible conductor, in particular the metal of the fusible conductor.
  • the metal alloys of the materials differ from one another. Provision is very particularly preferably that the fusible wire is surrounded by a tin or tin alloy coating, which ensures the switching behavior of the fusible conductor as described above.
  • the fuse housing is particularly preferably made for the fuse housing to be at least partially open or open at the two end faces. It is further particularly preferred that the fuse housing has an at least essentially hollow-cylindrical shape, with glass and/or ceramics in particular being able to be provided as the material for the fuse housing. At least one contact cap designed for electrical contacting can be arranged on the front side of the fuse housing—in particular for electrical contacting. The contact cap is attached or arranged in particular on the end face of the fuse housing in such a way that the openings in the fuse housing, in which in particular the fusible wire and/or the solder is arranged, are covered. An indicator can also be arranged on the front side of the fuse housing. Alternatively or additionally, it can be provided that the housing has and/or consists of a ceramic material and/or porcelain as the material.
  • the preferably cylindrical winding body can be designed as a glass fiber core and/or have and/or consist of at least one glass fiber as the material.
  • the glass fiber can in particular be designed to be electrically non-conductive or electrically insulating.
  • glass, ceramic and/or, in particular temperature-resistant, plastics can be provided as the material of the insulating fiber. Ceramic fibers can also be provided in particular for the material of the winding body.
  • the winding body can have a thickness and/or a diameter, in particular in the case of a cylindrical configuration, between 0.01 and 2 mm, preferably between 0.1 and 1 mm, more preferably between 0.2 and 0.7 mm.
  • the outer diameter of the winding body corresponds in particular to the number of turns of the fuse element for a given length of the fuse element.
  • the fusible conductor is advantageously wound around the winding body in such a way that the windings lie close together.
  • the distance between immediately adjacent turns of the fusible conductor is less than 0.5 mm, preferably less than 0.05 mm, more preferably less than 0.01 mm, more preferably less than 0.001 mm.
  • a distance of between 0.018 mm and 0.561 mm is currently provided as the smallest distance between the turns. According to the invention, this distance can be clearly undershot.
  • the fuse can have a length of between 5 and 50 mm, preferably between 6.1 and 30 mm.
  • the length of the fuse can be selected depending on the intended use and/or country-specific requirements.
  • the fuse can also have a width of between 1 and 10 mm, preferably between 2.1 and 5.8 mm.
  • the width can also be adjusted depending on the intended use.
  • a G-fuse 2 is provided as a fuse 2 in the exemplary embodiment shown here.
  • the fusible conductor 1 has an electrically conductive fusible wire 3 .
  • the fusible wire 3 can have an at least substantially circular cross-section, as is the case Figures 2 and 3 demonstrate.
  • the 2 shows that the outer jacket surface 4 of the fusible wire 3 is surrounded at least in regions, in particular completely, by an electrically insulating and/or electrically non-conductive sheathing 5 .
  • the sheathing 5 is directly adjacent to the outer lateral surface 4 of the fuse wire 3 .
  • casing 5 indirectly surrounds the outer lateral surface 4 of the fuse wire 3, with a further layer or further casing 6 being provided between the outer lateral surface 4 of the fuse wire 3 and the inside of the casing 5, which faces the fuse wire 3 .
  • the casing 5 can be in the form of a coating and/or a lacquer.
  • the coating can be formed by a solution of polymers in a solvent mixture, in particular a cresolic one.
  • the coating can have resin as the material, preferably dissolved in a solvent mixture. Additives and/or a curing catalyst can be added to the resin dissolved in the solvent mixture.
  • the casing 5 or the coating can have a plastic material, preferably polyurethane, and/or be designed as a polyimide lacquer.
  • the sheathing 5 is designed as a lacquer, with the fuse wire 3 being lacquered several times, in particular between 6 and 20 times, with the lacquer to form the sheathing 5 during the manufacture of the fuse element 1, with the lacquer subsequently baked at temperatures between 300 and 600 °C.
  • the casing 5 is designed as a silicone casing.
  • the casing 5 can have silicone and/or consist of it.
  • the casing 5 can have and/or consist of a plastic material, regardless of whether it is designed as a lacquer layer.
  • the material is very particularly preferably designed in such a way that the casing 5 is electrically insulating and/or electrically non-conductive.
  • the material of the sheathing 5 has a proportion or a proportion by mass of the total material of the fuse element 1 between 5 and 15% by weight.
  • the mass fraction of the material of the sheathing 5 in the total material or total mass fraction of the fusible conductor 1 can vary between 0.1 and 25% by weight.
  • the fusible conductor 1 has a further sheathing 6 surrounding the fusible wire 3, in particular directly, at least in certain areas.
  • the further casing 6 is arranged between the fusible wire 3 and the casing 5 .
  • the further casing 6 has a metal, in particular a metal alloy in the exemplary embodiment shown, tin or a tin alloy as the material.
  • the material, in particular the metal, of the fusible wire 3 differs from the metal of the further casing 6.
  • the materials of the fusible wire 3 and the further casing 6 are matched to one another in such a way that the M-effect described above can be ensured in the event of a trigger.
  • FIG. 12 further shows that the fuse wire 3 has a circular outer cross section, with both the sheathing 5 and the further sheathing 6 also having an at least essentially circular outer cross section.
  • the fusible wire 3 can have a cylindrical shape.
  • the further casing 6 and the casing 5 can have an annular cross-section and in particular form a hollow-cylindrical shape.
  • the inside 2 Fusible conductor 1 shown has a diameter 7 of between 15 ⁇ m and 550 ⁇ m.
  • the fusible conductor 3 in turn can have a diameter 8 of between 10 ⁇ m and 400 ⁇ m.
  • the casing 5 shown can in particular have a diameter of between 1.5 ⁇ m and 50 ⁇ m.
  • the material of the fusible conductor 3 can be metal, in particular a metal alloy.
  • the metal or material of the fusible wire 3 can be copper, silver and/or tin and/or a copper alloy, a silver alloy and/or a tin alloy.
  • the material of the additional sheathing 6 differs from the material of the fusible wire 3 in the in 3 illustrated embodiment formed differently, in particular the metal alloys of the materials differ from each other.
  • the fuse 1 shows a fuse 2, in the exemplary embodiment shown a G-fuse 2.
  • the fuse 2 has a fuse housing 11, wherein at least one fusible conductor 1 wound around an electrically insulating winding body 12 is provided according to one of the previously described embodiments.
  • the fuse housing 11 can be hollow-shaped, in particular hollow-cylindrical, and can have glass and/or ceramic (in further embodiments) as the material.
  • the 1 and 4 differ in that the distance 17 between immediately adjacent turns 16 of the fuse element 1 is formed differently. Due to the electrically insulating casing 5, the windings 16 can be wound tightly against one another, so that the distance 17 can be reduced to almost zero. However, the windings 16 can also be spaced apart, as detailed in FIG 1 is evident. Both embodiments can be implemented with the fusible conductor 1 .
  • the fuse housing 11 is at least partially open at the two end faces 13 .
  • the fusible conductor 1 can be guided through the opening.
  • the 1 and 4 show that at least one contact cap 14 designed for electrical contacting, in particular metallic, is arranged on the end face (on the end faces 13) of the fuse housing 11.
  • the contact cap 14 can close the openings of the fuse housing 11, which can be provided on the front side.
  • the winding body 12 shown can have a cylindrical shape and/or be designed as a glass fiber core.
  • the winding body 12 can have and/or consist of at least one glass fiber as the material.
  • the winding body 12 shown has a thickness or a diameter of between 0.2 and 0.7 mm.
  • the distance 17 between directly adjacent turns 16 of the fusible conductor 1 wound around the bobbin 12 can be very small.
  • the distance 17 is less than 0.05 mm, in particular less than 0.01 mm.
  • winding of the fusible conductor 1 is provided that known from the prior art distances 17 are provided, which are between 0.018 to 0.561 mm.
  • the fuse 2 can have a length of between 6.1 and 30 mm and/or greater than 30 mm, in particular between 30 mm and 60 mm.
  • the width of the fuse 2 can also be between 2.1 to 5.8 mm and/or between 5.8 to 15 mm and/or greater than 5.8 mm.
  • the distance 17 between immediately adjacent turns 16 can be reduced to almost zero or to a very small distance 17 . Accordingly, the windings 16 can directly adjoin one another, so that the sheathings 5 of windings 16 of the fuse element 1 directly adjoining one another can touch, in particular rest against one another over the entire surface.

Landscapes

  • Fuses (AREA)

Description

  • Die vorliegende Erfindung betrifft eine G-Sicherung mit einem äußeren Sicherungsgehäuse. In dem Sicherungsgehäuse ist wenigstens ein um einen, insbesondere elektrisch isolierenden, Wickelkörper gewickelter Schmelzleiter angeordnet.
  • Schmelzleiter für Schmelzsicherungen sind im Stand der Technik bekannt. Schmelzleiter werden, wie zuvor erwähnt, um einen Wickelkörper gewickelt, wobei der Wickelkörper elektrisch nicht-leitfähig bzw. elektrisch nicht-leitend ist. Die Wicklung dient letztlich dazu, die effektive Länge des Schmelzleiters zu erhöhen, ohne Vergrößerung der Länge der gesamten Sicherung. Durch die Verlängerung des Schmelzleiters kann eine träge Charakteristik und eine höhere Bemessungsspannung erreicht werden. Je dichter der Draht gewickelt wird - das heißt je mehr Windungen je Längeneinheit gewickelt werden - desto höher ist insbesondere der elektrische Widerstand des Schmelzleiters pro Längeneinheit. Ebenfalls steigt auch die Wärmebelastung pro Längeneinheit.
  • Eine dichtere bzw. engere Wicklung des Schmelzleiters ist jedenfalls dann von Nöten, wenn geringe Nennströme bei träger Charakteristik durch die Sicherung abgesichert werden sollen.
  • In der Praxis ergibt sich allerdings das Problem, dass der Windungsabstand nicht beliebig verkleinerbar ist. Letztlich ist es, um elektrische Kurzschlüsse zu vermeiden, erforderlich, den Windungsabstand auf wenigstens das 0,5 bis 1,5-fache des Durchmessers des Schmelzleiters zu beschränken. Andernfalls würde ein elektrischer Kurzschluss zwischen benachbarten Windungen nicht sicher verhindert werden können, da ein Funkenübersprung zwischen den Windungen hervorgerufen werden kann. Auch sogenannte "Fast-Kurzschlüsse" und/oder Windungsschlüsse sind möglich, wobei dies letztlich zu einem nicht-genormten bzw. nichtstandardisierten Sicherungsverhalten der Spannung bzw. des Stromes führt, da dies die Charakteristik der Sicherung verändert.
  • Darüber hinaus ist die Herstellung des um den Wickelkörper gewickelten Schmelzleiters umso aufwendiger, desto dichter die Windungen gewickelt werden sollen. Örtliche Schwankungen der Wickeldichte bzw. der Windungsabstände können nicht vermieden werden, was sich nachteilig auf das Sicherungs- und Belastungsverhalten sowie die Charakteristik des Abschaltverhaltens der Sicherung auswirkt.
  • Da Sicherungen in einem technisch sehr sensiblen Bereich und insbesondere zum (Überlast-)Schutz eingesetzt werden, müssen jegliche Schwankungen und/oder vermeintliche Kurzschlüsse ("Fast-Kurzschlüsse") möglichst vermieden werden. Demzufolge darf eine vorgegebene Wickeldichte bzw. ein vorgegebener Windungsabstand nicht unterschritten werden.
  • Es ist erforderlich, dass die Sicherung für die genormten bzw. angegebenen Werte eine entsprechende (Sicherungs-)Charakteristik aufweist. Dies ist jedenfalls dann nicht gegeben, wenn sich bei den Kontaktstellen der Windungen eine elektrische Verbindung ergeben würde, weshalb der Mindest-Windungsabstand entscheidend ist.
  • Aber selbst bei größeren Abständen kann aufgrund des Herstellungsverfahrens nicht vermieden werden, dass zumindest bereichsweise ein zu geringer Windungsabstand vorhanden ist, so dass sich der Schmelzleiter in kleineren Bereichen kurzschließen kann. Das kann zudem auch durch die Eigenschaften des Schmelzleiters selbst hervorgerufen werden und/oder leichte, insbesondere leitende Verschmutzungen zwischen den Windungen des Schmelzleiters können zum Kurzschluss führen.
  • Ein weiteres Problem ist das verwendete Flussmittel im Lot, das zur Kontaktierung der Schmelzleiterenden benötigt wird. Wenn als Schmelzleiter Drähte mit einem Zinnauftrag bzw. Zinn aufweisende Schmelzleiter verwendet werden, kann das Flussmittel die Zinnschicht bzw. das Zinnmaterial angreifen und durch Aufschmelzen beim notwendigen Reflow-Prozess Lotbrücken bilden. Dies wirkt sich nachteilig auf das Sicherungsverhalten aus, wobei die für die Sicherung angegebenen Werte, insbesondere die Charakteristik, Schmelzzeit und/oder sonstige Grenzwerte, nicht mehr eingehalten werden können.
  • Die DE 26 23 127 A1 offenbart eine G-Sicherung gemäß dem Oberbegriff des Anspruchs 1 und betrifft ein Schmelzsicherungselement und einen Schmelzleiter, bei dem ein dünner Metalldraht helixartig in einer Mehrzahl von Windungen in einen dünnen Kern gewickelt ist, der aus einem elektrisch isolierenden und wärme- bzw. hitzeisolierenden Faden besteht.
  • Die US 2017/278663 A1 betrifft einen Schmelzleiter, der mehrschichtig aufgebaut sein kann.
  • Die JP 2016 038968 A betrifft einen Schmelzdraht mit einer Überstromabschaltfunktion, wobei ein Leiter des Drahtes mit einer Isolierschicht überzogen ist.
  • Die GB 227 928 A betrifft eine elektrische Sicherung mit einem Draht.
  • Die JP 2014 063639 A betrifft einen Schmelzleiter für eine Überstromsicherung.
  • Die DE 690 26 386 T2 betrifft eine zustandsanzeigende Schmelzsicherung mit einem Gehäuse, das wenigstens einen transparenten Abschnitt aufweist, mit zwei beabstandeten Anschlüssen am Gehäuse zur Verbindung mit einem externen Stromkreis.
  • Aufgabe der vorliegenden Erfindung ist es nun, eine Sicherung bereit zu stellen, die die vorgenannten Probleme bzw. Herausforderungen des Standes der Technik reduziert bzw. zumindest im Wesentlichen verringert.
  • Die vorgenannte Aufgabe wird durch eine Sicherung gemäß Anspruch 1 gelöst. Bei der erfindungsgemäßen Sicherung ist eine zumindest bereichsweise, vorzugsweise vollständig, die äußere Mantelfläche des Schmelzdrahtes umgebende elektrisch isolierende und/oder elektrisch nicht-leitende Ummantelung vorgesehen.
  • Der Schmelzleiter weist einen elektrisch leitfähigen Schmelzdraht auf.
  • Vorzugsweise ist die elektrisch isolierende Ummantelung unmittelbar auf der äußeren Mantelfläche des Schmelzdrahtes angeordnet und umschließt insbesondere die gesamte äußere Mantelfläche des Schmelzdrahtes. Letztlich umhüllt also die Ummantelung den Schmelzdraht, so dass der Schmelzdraht als Kern des Schmelzleiters fungiert.
  • Als elektrisch isolierende und/oder elektrisch nicht-leitende Ummantelung wird eine derartige Ummantelung verstanden, die nicht elektrisch leitfähig ist und/oder die das elektrische Leitverhalten des Schmelzdrahtes nicht beeinflusst. Über die Ummantelung wird insbesondere kein Strom geleitet.
  • Durch die den Schmelzdraht umgebende Ummantelung kann insbesondere der Windungsabstand im Vergleich zu aus dem Stand der Technik bekannten (Schmelz-)Sicherungen drastisch reduziert werden, insbesondere auf nahezu 0 mm gesenkt werden. Letztlich kann die Ummantelung der einen Windung die Ummantelung der benachbarten Windung berühren. Dies ermöglicht den Einsatz von Sicherungen, die gegenüber aus dem Stand der Technik bekannten Sicherungen eine völlig neuartige Dimensionierung aufweisen. Erfindungsgemäß gelingt es, einen Schmelzleiter für eine Sicherung bereitzustellen, ohne dass die Gefahr eines elektrischen Kurzschlusses oder einer anderen Beeinträchtigung besteht.
  • Erfindungsgemäß werden die Restriktionen des Standes der Technik im Hinblick auf den Windungsabstand in vorteilhafter Weise überwunden.
  • Selbst wenn die Schmelzleiterwindungen unmittelbar bzw. sehr dicht aneinander liegen, kann ein Kurzschluss zwischen den Windungen sicher vermieden werden, da der elektrisch leitfähige Schmelzdraht letztlich von einer elektrischen Isolierung (Ummantelung) umgeben ist. Somit wird ein elektrischer Kurzschluss zwischen benachbarten Windungen des Schmelzleiters verhindert.
  • Dies löst auch das Problem des örtlich schwankenden Windungsabstandes aufgrund des Herstellungsverfahren und/oder aufgrund von Toleranzen der Wicklungsmaschine. Erfindungsgemäß kann der Windungsabstand auch variieren.
  • Darüber hinaus kann durch die Ummantelung ein weiteres Problem des Standes der Technik gelöst werden. Die in der Sicherung eingesetzten Lote können nun nicht mehr das elektrische Leitverhalten des Schmelzdrahtes beeinflussen, da der Schmelzdraht letztlich nicht unmittelbar dem Lot und/oder dem Flussmittel ausgesetzt sein muss. Dies gilt insbesondere auch für denjenigen Teil des Schmelzleiters, der nicht eingelötet werden soll. Die verwendeten Flussmittel bzw. Lote können darüber hinaus auch chemisch aggressiver, aber insbesondere prozessoptimierter, eingestellt werden. Die Metalllegierungen bzw. das Metall des Schmelzdrahtes ist erfindungsgemäß vor dem Flussmittel durch die Ummantelung geschützt. Die Ummantelung stellt demgemäß auch eine chemische Schutzschicht für den Schmelzdraht sicher.
  • Erfindungsgemäß ist der Einsatz des Schmelzleiters für eine G-Sicherung vorgesehen - das heißt für eine Gerätschutzsicherung. Geräteschutzsicherungen sind in der DIN-Reihe 60127, insbesondere die DIN EN IEC 60127 (Stand Mai 2019) genormt, wobei eine Mehrzahl von DIN-Normen zur vorgenannten Reihe korrespondieren. Durch den erfindungsgemäßen Schmelzleiter können G-Sicherungen für ein sehr träges Verhalten, insbesondere für geringe Nennströme, bereitgestellt werden.
  • Die G-Sicherung ist eine Schmelzsicherung und eine Überstromschutzeinrichtung, die durch das Abschmelzen des Schmelzleiters den Stromkreis unterbricht, wenn die Stromstärke einen bestimmten Wert während einer ausreichenden bzw. vorgebbaren Zeit überschreitet. Auch der Begriff der Schmelzsicherung ist in der vorgenannten DIN-Reihe definiert. Geräteschutzsicherungen können alternativ auch als GS-Sicherungen bezeichnet werden. G-Sicherungen werden für Nennströme von etwa 0,03 bis 40 A mit einem Abschaltvermögen von etwa 5 A bis 300 kA, insbesondere etwa 10 A bis 300 kA, gefertigt. Die Länge und/oder Breite der G-Sicherung ist in Abhängigkeit von spezifischen Ländervorgaben geregelt.
  • Vorzugsweise ist die Ummantelung metallfrei ausgebildet - das heißt, dass das Material der Ummantelung zumindest im Wesentlichen kein Metall oder keine Metalllegierung aufweist.
  • Erfindungsgemäß ist die Ummantelung als Silikonummantelung ausgebildet und/oder weist als Material Silikon auf.
  • Silikone können als Poly(organo)siloxane bezeichnet werden und geben insbesondere eine Gruppe synthetischer Polymere an, bei denen Siliciumatome über Sauerstoffatome verknüpft sind. Die Silikonummantelung ermöglicht eine kostengünstige elektrische Isolierung des Schmelzdrahtes, die insbesondere dauerfest bzw. dauerhaft mit der äußere Mantelfläche des Schmelzdrahtes verbunden ist.
  • Die Ummantelung kann, insbesondere unmittelbar oder mittelbar, fest mit der, vorzugsweise gesamten, äußeren Mantelfläche des Schmelzdrahtes verbunden sein, vorzugsweise stoffschlüssig. Insbesondere kann der Verbund zwischen der äußeren Mantelfläche des Schmelzdrahtes und der Ummantelung bei der Herstellung der Ummantelung des Schmelzdrahtes selbst bzw. beim Auftrag der Ummantelung hervorgerufen werden. Wenn die Ummantelung als Beschichtung und/oder Silikonummantelung ausgebildet ist und durch Auftrag auf der äußeren Mantelfläche des Schmelzdrahtes erzeugt wird, ergibt sich bevorzugt "automatisch" der vorgenannte Verbund.
  • Bei einer weiteren ganz besonders bevorzugten Ausführungsform ist vorgesehen, dass das Material der Ummantelung einen Anteil bzw. einen Gewichtsanteil, insbesondere Massenanteil, an dem Gesamtmaterial des Schmelzleiters zwischen 0,1 bis 25 Gew.-%, bevorzugt zwischen 1 bis 20 Gew.-%, weiter bevorzugt zwischen 5 bis 15 Gew.-% und insbesondere zumindest im Wesentlichen zwischen 8 bis 12 Gew.-%, aufweist. Der vorgenannte Massenanteil des Materials der Ummantelung an dem Gesamtmaterial des Schmelzleiters gibt an, dass die Ummantelung letztlich eher einen geringen Anteil an dem Material des Schmelzleiters aufweist. Ganz besonders bevorzugt besteht der Schmelzleiter vornehmlich aus dem Schmelzdraht, wobei der Schmelzdraht einen Massenanteil an dem Gesamtmaterial des Schmelzleiters zwischen 30 bis 99,9 Gew.-%, bevorzugt zwischen 60 bis 95 Gew.-%, aufweist. Ganz besonders bevorzugt ist die Ummantelung als Lackfilm ausgebildet, die um die äußere Mantelfläche des Schmelzdrahtes herum aufgetragen worden ist.
  • Erfindungsgemäß weist der Schmelzdraht eine den Schmelzdraht zumindest bereichsweise umgebende weitere Ummantelung auf. Die weitere Ummantelung ist zwischen dem Schmelzdraht und der Ummantelung angeordnet. Insbesondere ist die weitere Ummantelung unmittelbar an der äußeren Mantelfläche des Schmelzdrahtes vorgesehen und umgibt, vorzugsweise vollständig, die äußere Mantelfläche des Schmelzdrahtes. Dabei kann die weitere Ummantelung zumindest bereichsweise, vorzugsweise vollständig, an ihrer äußeren, dem Schmelzdraht abgewandten, Mantelfläche von der elektrisch nicht-leitenden bzw. elektrisch isolierenden Ummantelung umgeben sein. Ganz besonders bevorzugt ist die weitere Ummantelung ebenfalls elektrisch leitfähig ausgebildet.
  • Die weitere Ummantelung weist als Material Metall, insbesondere eine Metalllegierung, vorzugsweise Zinn und/oder eine Zinnlegierung, auf. Die weitere Ummantelung kann ferner bevorzugt dazu dienen, die physikalisch-chemischen Prozesse im Überlastfall zu schwächen, um so insbesondere eine Abschaltung zu ermöglichen - auch als M-Effekt bekannt.
  • Bei Überlastströmen tritt letztlich an der Engstelle des Schmelzdrahtes bzw. des Schmelzleiters im Bereich des Auftrags der weiteren Ummantelung, insbesondere im Bereich des Zinnauftrages, die größte Wärmeentwicklung auf, die das Material der weiteren Ummantelung, insbesondere das Zinn oder die Zinnlegierung, aufheizt. Beim Überschreiten der Schmelztemperatur wird das Zinn flüssig und bildet mit dem Material des Schmelzdrahtes eine Legierung. Diese Legierung hat im Vergleich zum Werkstoff bzw. Material des Schmelzdrahtes eine geringere elektrische und thermische Leitfähigkeit und insbesondere einen niedrigeren Schmelzpunkt. Infolge der sich weiter erhöhenden Wärmeentwicklung wird der Schmelzleiter bzw. der Schmelzdraht an der entsprechenden Stelle unterhalb des eigentlichen Schmelzpunkt schmelzflüssig und trennt die Strombahn auf. Dieses Phänomen ist im Jahr 1939 von Metcalf entdeckt worden, weshalb dieses auch als M-Effekt bekannt ist und bezeichnet wird. Eine Sicherung, insbesondere eine G-Sicherung, kann somit durch den Auftrag der weiteren Ummantelung, die insbesondere Zinn aufweist und/oder daraus besteht, auf die Außenseite des Schmelzdrahtes den zuvor geschilderten M-Effekt zur Auslösung des Sicherung ausnutzen.
  • Ganz besonders bevorzugt wird auch der die Ummantelung bei Überschreiten des Schmelzpunktes des Schmelzdrahtes und/oder der weiteren Ummantelung schmelzflüssig.
  • Vorzugsweise ist der Schmelzdraht, die Ummantelung und/oder die weitere Ummantelung derart ausgebildet, dass sie einen zumindest im Wesentlichen kreisförmigen Außenquerschnitt aufweisen. Ganz besonders bevorzugt weist der Schmelzdraht einen kreisförmigen Querschnitt auf und ist insbesondere zylinderförmig ausgebildet. Die Ummantelung und/oder die weitere Ummantelung kann, vorzugsweise unmittelbar oder mittelbar, angrenzend an die äußere Mantelfläche des Schmelzgrades angeordnet sein und bevorzugt einen ringförmigen Querschnitt aufweisen und/oder als Hohlzylinder ausgebildet sein. Die vorgenannte Ausbildung des Schmelzdrahtes und der Ummantelung ermöglicht eine einfache Herstellung und eine einfache Beschichtung des Schmelzdrahtes mit der Ummantelung.
  • Darüber hinaus lässt sich ein derartiger Schmelzdraht besonders gut, insbesondere in verschiedene Richtungen, um einen Wickelkörper wickeln.
  • Insbesondere können die Formen bzw. die Form der weiteren Ummantelung und/oder der Ummantelung korrespondierend zum Außenquerschnitt des Schmelzdrahtes ausgebildet sein. Vorzugsweise korrespondiert die Form der weiteren Ummantelung zum Außenquerschnitt des Schmelzdrahtes, wobei die Ummantelung wiederum zum Außenquerschnitt der weiteren Ummantelung und/oder zum Außenquerschnitt des Schmelzdrahtes korrespondieren kann. Insbesondere erfolgt der Auftrag der weiteren Ummantelung und/oder der Ummantelung auf der äußeren Mantelfläche des Schmelzdrahtes derart, dass sich zwischen dem Schmelzdraht und der Ummantelung und/oder der weiteren Ummantelung kein Freiraum, kein Spiel und/oder keine Poren und/oder kein "Schlupf' ergibt.
  • Ferner kann der Schmelzleiter einen Durchmesser zwischen 1 µm bis 1000 µm, bevorzugt zwischen 10 µm bis 600 µm, weiter bevorzugt zwischen 15 µm bis 550 µm, aufweisen. Die vorgenannte Dicke bzw. der Durchmesser des Schmelzleiters ist insbesondere derart ausgebildet, dass das Schaltverhalten der Sicherung, vorzugsweise der G-Sicherung, gewährleistet werden kann. Alternativ oder zusätzlich kann vorgesehen sein, dass der Schmelzdraht einen Durchmesser zwischen 1 µm bis 800 µm, bevorzugt zwischen 5 µm bis 500 µm, weiter bevorzugt zwischen 10 µm bis 400 µm ,aufweist.
  • Die Ummantelung und/oder die weitere Ummantelung kann insbesondere eine Schichtdicke zwischen 0,01 µm bis 300 µm, weiter bevorzugt zwischen 0,1 µm bis 200 µm, weiter bevorzugt zwischen 1 µm bis 100 µm, weiter bevorzugt weiter zwischen 1,5 µm bis 50 µm, aufweisen. Ganz besonders bevorzugt weist die Ummantelung und/oder die weitere Ummantelung eine zumindest im Wesentlichen konstante Schichtdicke auf, so dass sich insbesondere die ringförmige und/oder hohlzylindrische Form der Ummantelung und/oder der weiteren Ummantelung ergibt.
  • Der Schmelzdraht kann als Material Metall, insbesondere eine Metalllegierung, aufweisen. Als Material bzw. Metall kann Kupfer, Silber und/oder eine Kupferlegierung und/oder eine Silberlegierung vorgesehen sein. Auch Zinn und/oder eine Zinnlegierung kann als Material des Schmelzdrahtes vorgesehen sein. Alternativ oder zusätzlich kann als Material für den Schmelzdraht eine sich von Kupfer und/oder Silber unterscheidende Metalllegierung und/oder Metall vorgesehen sein, insbesondere Stahl, Nickel, Eisen und/oder Wolfram.
  • Erfindungsgemäß ist vorgesehen, insbesondere zur Sicherstellung des M-Effektes, dass sich das Material der weiteren Ummantelung, insbesondere das Metall der weiteren Ummantelung, von dem Material des Schmelzleiters, insbesondere dem Metall des Schmelzleiters, unterscheidet. Insbesondere unterscheiden sich die Metalllegierungen der Materialien voneinander. Ganz besonders bevorzugt ist vorgesehen, dass der Schmelzdraht von einer Zinn- oder Zinnlegierung-Beschichtung umgeben ist, die das zuvor geschilderte Schaltverhalten des Schmelzleiters sicherstellt.
  • Besonders bevorzugt ist bei der Sicherung vorgesehen, dass das Sicherungsgehäuse an den zwei Stirnseiten zumindest teilweise offen bzw. geöffnet ausgebildet ist. Ganz besonders bevorzugt ist weiter vorgesehen, dass das Sicherungsgehäuse eine zumindest im Wesentlichen hohlzylinderförmige Form aufweist, wobei als Material für das Sicherungsgehäuse insbesondere Glas und/oder Keramik vorgesehen sein kann. Stirnseitig kann an dem Sicherungsgehäuse - insbesondere zur elektrischen Kontaktierung - jeweils wenigstens eine zur elektrischen Kontaktierung ausgebildete Kontaktkappe angeordnet sein. Die Kontaktkappe ist insbesondere auf der Stirnseite des Sicherungsgehäuses derart aufgesteckt bzw. angeordnet, dass die Öffnungen des Sicherungsgehäuses, in der insbesondere der Schmelzdraht und/oder das Lot angeordnet ist, verdeckt sind. Auch ein Kennmelder kann stirnseitig an dem Sicherungsgehäuse angeordnet sein. Alternativ oder zusätzlich kann vorgesehen sein, dass das Gehäuse als Material ein kermisches Material und/oder Porzellan aufweist und/oder daraus besteht.
  • Darüber hinaus kann der, vorzugsweise zylinderförmige, Wickelkörper als Glasfaserseele ausgebildet sein und/oder als Material wenigstens eine Glasfaser aufweisen und/oder daraus bestehen. Die Glasfaser kann insbesondere elektrisch nicht-leitend bzw. elektrisch isolierend ausgebildet sein. Alternativ oder zusätzlich ist grundsätzlich möglich, dass als Material der isolierenden Faser Glas, Keramik und/oder, insbesondere temperaturfeste, Kunststoffe vorgesehen sind. Auch Keramikfasern können insbesondere für das Material des Wickelkörpers vorgesehen sein.
  • Der Wickelkörper kann eine Dicke und/oder einen Durchmesser, insbesondere bei einer zylinderförmigen Ausbildung, zwischen 0,01 bis 2 mm, bevorzugt zwischen 0,1 bis 1 mm, weiter bevorzugt zwischen 0,2 bis 0,7 mm, aufweisen.
  • Der Außendurchmesser des Wickelkörpers korrespondiert insbesondere zur Anzahl der Wicklungen des Schmelzleiters bei einer vorgegebenen Länge des Schmelzleiters. Je dicker der Wickelkörper ist, desto weniger Umwicklungen eines Schmelzleiters bei gleicher Schmelzleiterlänge werden hervorgerufen.
  • Vorteilhafterweise ist der Schmelzleiter derart um den Wickelkörper gewickelt, dass die Windungen dicht aneinander liegen.
  • Der Abstand unmittelbar benachbarter Windungen des Schmelzleiters ist erfindungsgemäß geringer als 0,5 mm, bevorzugt geringer als 0,05 mm, weiter bevorzugt geringer als 0,01 mm, weiter bevorzugt geringer als 0,001 mm, ausgebildet sein. Derzeit sind im Stand der Technik als geringste Abstände zwischen den Windungen ein Abstand zwischen 0,018 mm bis 0,561 mm vorgesehen. Dieser Abstand kann erfindungsgemäß deutlich unterschritten werden.
  • Die Sicherung kann eine Länge zwischen 5 bis 50 mm, bevorzugt zwischen 6,1 bis 30 mm, aufweisen. Die Länge der Sicherung kann insbesondere in Abhängigkeit des Einsatzzweckes und/oder länderspezifischer Vorgaben ausgewählt sein.
  • Die Sicherung kann ferner eine Breite zwischen 1 bis 10 mm, bevorzugt zwischen 2,1 bis 5,8 mm, aufweisen. Auch die Breite kann in Abhängigkeit des Verwendungszweckes angepasst werden.
  • Weitere Merkmale, Vorteile und Anwendungsmöglichkeiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der Zeichnung und der Zeichnung selbst. Dabei bilden alle beschriebenen und/oder bildlich dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der vorliegenden Erfindung, unabhängig von ihrer Zusammenfassung in den Ansprüchen oder deren Rückbeziehung.
  • Es zeigt:
  • Fig. 1
    eine schematische Querschnittsdarstellung einer erfindungsgemäßen Sicherung,
    Fig. 2
    eine schematische Querschnittsdarstellung eines Schmelzleiters, der kein Teil der Erfindung ist,
    Fig. 3
    eine schematische Querschnittsdarstellung einer weiteren Ausführungsform eines erfindungsgemäßen Schmelzleiters und
    Fig. 4
    eine schematische Querschnittsdarstellung einer weiteren Ausführungsform einer erfindungsgemäßen Sicherung.
  • Fig. 2 zeigt einen Schmelzleiter 1, der zur Verwendung für eine Sicherung 2 vorgesehen ist, wie dies die Fig. 1 und die Fig. 4 zeigen.
  • Als Sicherung 2 ist im hier dargestellten Ausführungsbeispiel eine G-Sicherung 2 vorgesehen.
  • Der Schmelzleiter 1 weist einen elektrisch leitfähigen Schmelzdraht 3 auf. Der Schmelzdraht 3 kann einen zumindest im Wesentlichen kreisförmigen Querschnitt aufweisen, wie dies die Fig. 2 und 3 zeigen.
  • Die Fig. 2 zeigt, dass zumindest bereichsweise, insbesondere vollständig, die äußere Mantelfläche 4 des Schmelzdrahtes 3 von einer elektrisch isolierenden und/oder elektrisch nicht-leitenden Ummantelung 5 umgeben ist. Bei der in Fig. 2 dargestellten Ausführungsform ist vorgesehen, dass die Ummantelung 5 unmittelbar an die äußere Mantelfläche 4 des Schmelzdrahtes 3 angrenzt. Dabei ist insbesondere kein Spiel und kein Schlupf bzw. zumindest im Wesentlichen kein (lichter) Abstand zwischen der äußeren Mantelfläche 4 und der Ummantelung 5 vorgesehen.
  • Fig. 3 zeigt, dass die Ummantelung 5 mittelbar die äußere Mantelfläche 4 des Schmelzdrahtes 3 umgibt, wobei zwischen der äußeren Mantelfläche 4 des Schmelzdrahtes 3 und der Innenseite der Ummantelung 5, die dem Schmelzdraht 3 zugewandt ist, eine weitere Schicht bzw. eine weitere Ummantelung 6 vorgesehen ist.
  • Die Ummantelung 5 kann als Beschichtung und/oder als Lack ausgebildet sein. Die Beschichtung kann durch eine Lösung von Polymeren in einem, insbesondere kresolischen, Lösemittelgemisch gebildet sein. Alternativ oder zusätzlich kann die Beschichtung als Material Harz, vorzugsweise in einem Lösungsmittelgemisch gelöst, aufweisen. Dem im Lösungsmittelgemisch gelösten Harz können Additive und/oder ein Härtungskatalysator zugegeben werden.
  • Des Weiteren kann die Ummantelung 5 bzw. die Beschichtung als Material einen Kunststoff, vorzugsweise Polyurethan, aufweisen und/oder als Polyimid-Lack ausgebildet sein.
  • Bei der in Fig. 2 dargestellten Ausführungsform des Schmelzleiters 1 ist vorgesehen, dass die Ummantelung 5 als Lack ausgebildet ist, wobei bei Herstellung des Schmelzleiters 1 der Schmelzdraht 3 mehrfach, insbesondere zwischen 6 bis 20 Mal, mit dem Lack zur Bildung der Ummantelung 5 lackiert worden ist, wobei der Lack anschließend bei Temperaturen zwischen 300 bis 600 °C eingebrannt worden ist.
  • Des Weiteren ist die in Fig. 2 dargestellte Ummantelung 5 metallfrei ausgebildet.
  • Nicht dargestellt ist, dass die Ummantelung 5 als Silikonummantelung ausgebildet ist. Dabei kann die Ummantelung 5 Silikon aufweisen und/oder daraus bestehen.
  • Wie zuvor erwähnt, kann die Ummantelung 5 - unabhängig von der Ausbildung als Lackschicht - ein Material aus Kunststoff aufweisen und/oder daraus bestehen. Ganz besonders bevorzugt ist das Material derart ausgebildet, dass die Ummantelung 5 elektrisch isolierend und/oder elektrisch nicht-leitend ist.
  • Darüber hinaus ist bei dem in Fig. 2 dargestellten Ausführungsbeispiel vorgesehen, dass das Material der Ummantelung 5 einen Anteil bzw. einen Massenanteil an dem gesamten Material der Schmelzleiters 1 zwischen 5 bis 15 Gew.-% aufweist. In weiteren, nicht näher dargestellten Ausführungsformen kann der Massenanteil des Materials der Ummantelung 5 an dem Gesamtmaterial bzw. Gesamtmassenanteil des Schmelzleiters 1 zwischen 0,1 bis 25 Gew.-% variieren.
  • Fig. 3 zeigt, dass der Schmelzleiter 1 eine dem Schmelzdraht 3, insbesondere unmittelbar, zumindest bereichsweise umgebende weitere Ummantelung 6 aufweist. Die weitere Ummantelung 6 ist zwischen dem Schmelzdraht 3 und der Ummantelung 5 angeordnet. Des Weiteren weist die weitere Ummantelung 6 als Material ein Metall, insbesondere eine Metalllegierung im dargestellten Ausführungsbeispiel Zinn bzw. eine Zinnlegierung, auf. Dabei unterscheidet sich das Material, insbesondere das Metall, des Schmelzdrahtes 3 von dem Metall der weiteren Ummantelung 6. Die Materialien des Schmelzdrahtes 3 und der weiteren Ummantelung 6 sind derart aufeinander abgestimmt, dass der, zuvor beschriebene, M-Effekt im Auslösefall sichergestellt werden kann.
  • Fig. 3 zeigt weiter, dass der Schmelzdraht 3 einen kreisförmigen Außenquerschnitt aufweist, wobei auch sowohl die Ummantelung 5 als auch die weitere Ummantelung 6 einen zumindest im Wesentlichen kreisförmigen Außenquerschnitt aufweisen. Dabei kann der Schmelzdraht 3 eine zylinderförmige Form aufweisen. Die weitere Ummantelung 6 und die Ummantelung 5 können einen ringförmigen Querschnitt aufweisen und insbesondere eine hohlzylindrische Form bilden.
  • Darüber hinaus zeigt Fig. 3, dass kein Freiraum zwischen den Schichten:
    Schmelzdraht 3, weitere Ummantelung 6 und Ummantelung 5 vorgesehen ist. Die vorgenannten Schichten bzw. die vorgenannten Komponenten 3, 5, 6 grenzen unmittelbar aneinander.
  • Der in Fig. 2 dargestellte Schmelzleiter 1 weist einen Durchmesser 7 zwischen 15 µm bis 550 µm auf. Der Schmelzleiter 3 wiederum kann einen Durchmesser 8 zwischen 10 µm bis 400 µm aufweisen. Die in Fig. 2 dargestellte Ummantelung 5 kann insbesondere einen Durchmesser zwischen 1,5 µm bis 50 µm aufweisen.
  • Der Schmelzleiter 3 kann als Material Metall, insbesondere eine Metalllegierung, aufweisen. Als Metall bzw. Material des Schmelzdrahtes 3 kann Kupfer, Silber und/oder Zinn und/oder eine Kupferlegierung, eine Silberlegierung und/oder eine Zinnlegierung vorgesehen sein.
  • Wie zuvor erwähnt, ist das Material der weiteren Ummantelung 6 von dem Material des Schmelzdrahtes 3 in dem in Fig. 3 dargestellten Ausführungsbeispiel unterschiedlich ausgebildet, wobei sich insbesondere die Metalllegierungen der Materialien voneinander unterscheiden.
  • Fig. 1 zeigt eine Sicherung 2, im dargestellten Ausführungsbeispiel eine G-Sicherung 2. Die Sicherung 2 weist ein Sicherungsgehäuse 11 auf, wobei in dem Sicherungsgehäuse 11 wenigstens ein um einen elektrisch isolierenden Wickelkörper 12 gewickelter Schmelzleiter 1 nach einer der zuvor beschriebenen Ausführungsformen vorgesehen ist.
  • Das Sicherungsgehäuse 11 kann hohlförmig, insbesondere hohlzylinderförmig, ausgebildet sein und als Material Glas und/oder Keramik (in weiteren Ausführungsformen) aufweisen.
  • In Fig. 4 ist eine weitere Ausführungsform der Sicherung 2 gezeigt. Die Fig. 1 und 4 unterscheiden sich dahingehend, dass der Abstand 17 zwischen unmittelbar benachbarten Windungen 16 des Schmelzleiters 1 unterschiedlich ausgebildet ist. Durch die elektrisch isolierende Ummantelung 5 können die Windungen 16 dicht aneinander gewickelt werden, so dass sich der Abstand 17 auf nahezu Null reduzieren kann. Allerdings kann auch eine Beabstandung der Windungen 16 vorgesehen sein, wie im Detail in Fig. 1 ersichtlich ist. Beide Ausführungsformen können mit dem Schmelzleiter 1 umgesetzt werden.
  • Nicht dargestellt ist, dass das Sicherungsgehäuse 11 an den zwei Stirnseiten 13 zumindest teilweise offen ausgebildet ist. Durch die Öffnung kann der Schmelzleiter 1 geführt werden.
  • Die Fig. 1 und 4 zeigen, dass stirnseitig (an den Stirnseiten 13) an dem Sicherungsgehäuse 11 jeweils wenigstens eine zur elektrischen Kontaktierung ausgebildete, insbesondere metallische, Kontaktkappe 14 angeordnet ist. Die Kontaktkappe 14 kann die Öffnungen des Sicherungsgehäuses 11, die stirnseitig vorgesehen sein können, verschließen.
  • Der in den Fig. 1 und 4 dargestellte Wickelkörper 12 kann eine zylinderförmige Form aufweisen und/oder als Glasfaserseele ausgebildet sein. Dabei kann der Wickelkörper 12 als Material wenigstens eine Glasfaser aufweisen und/oder daraus bestehen.
  • Der in Fig. 1 dargestellte Wickelkörper 12 weist eine Dicke bzw. einen Durchmesser zwischen 0,2 bis 0,7 mm auf.
  • Fig. 4 zeigt, insbesondere im Vergleich zu Fig. 1, dass der Abstand 17 unmittelbar benachbarter Windungen 16 des um den Wickelkörper 12 gewickelten Schmelzleiters 1 sehr gering ausgebildet sein kann. Im dargestellten Ausführungsbeispiel ist der Abstand 17 geringer als 0,05 mm, insbesondere geringer als 0,01 mm.
  • Bei der in Fig. 1 dargestellten Wicklung des Schmelzleiters 1 ist vorgesehen, dass die aus dem Stand der Technik bekannten Abstände 17 vorgesehen sind, die zwischen 0,018 bis 0,561 mm liegen.
  • Die Sicherung 2 kann eine Länge zwischen 6,1 bis 30 mm und/oder größer als 30 mm, insbesondere zwischen 30 mm bis 60 mm, aufweisen. Die Breite der Sicherung 2 kann ferner zwischen 2,1 bis 5,8 mm und/oder zwischen 5,8 bis 15 mm und/oder größer als 5,8 mm liegen.
  • In Fig. 4 ist im Detail dargestellt, dass der Abstand 17 unmittelbar benachbarter Windungen 16 auf nahezu Null bzw. auf einen sehr kleinen Abstand 17 reduziert werden kann. Demgemäß können die Windungen 16 unmittelbar aneinander angrenzen, so dass sich die Ummantelungen 5 unmittelbar aneinander angrenzender Windungen 16 des Schmelzleiters 1 berühren können, insbesondere vollflächig aneinander anliegen.
  • Bezugszeichenliste:
  • 1
    Schmelzleiter
    2
    Sicherung
    3
    Schmelzdraht
    4
    äußere Mantelfläche von 3
    5
    Ummantelung
    6
    weitere Ummantelung
    7
    Durchmesser von 1
    8
    Durchmesser von 3
    9
    Schichtdicke von 5
    10
    Schichtdicke von 6
    11
    Sicherungsgehäuse
    12
    Wickelkörper
    13
    Stirnseite
    14
    Kontaktkappe
    15
    Dicke von 12
    16
    Windung
    17
    Abstand

Claims (11)

  1. G-Sicherung (2) mit einem äußeren Sicherungsgehäuse (11), wobei in dem Sicherungsgehäuse (11) wenigstens ein um einen, insbesondere elektrisch isolierenden, Wickelkörper (12) gewickelter Schmelzleiter (1) angeordnet ist, wobei der Schmelzleiter (1) einen elektrisch leitfähigen Schmelzdraht (3) aufweist,
    wobei eine zumindest bereichsweise, vorzugsweise vollständig, die äußere Mantelfläche (4) des Schmelzdrahts (3) umgebende, elektrisch isolierende und/oder elektrisch nicht-leitende Ummantelung (5) des Schmelzleiters (1) vorgesehen ist,
    wobei der Abstand (17) unmittelbar benachbarter Windungen (16) des um den Wickelkörper (12) gewickelten Schmelzleiters (1) geringer als 0,5 mm, bevorzugt geringer als 0,05 mm, weiter bevorzugt geringer als 0,01 mm, weiter bevorzugt weiter geringer als 0,001 mm, ausgebildet ist,
    dadurch gekennzeichnet, dass
    die Ummantelung (5) als Silikonummantelung ausgebildet ist und/oder als Material Silikon aufweist,
    wobei der Schmelzdraht (3) eine den Schmelzdraht (3) zumindest bereichsweise umgebende weitere Ummantelung (6) aufweist, wobei die weitere Ummantelung (6) zwischen dem Schmelzdraht (3) und der Ummantelung (5) angeordnet ist, wobei die weitere Ummantelung (6) als Material Metall aufweist, und
    wobei sich das Material der weiteren Ummantelung (6) von dem Material des Schmelzdrahtes (3) unterscheidet.
  2. G-Sicherung nach Anspruch 1, dadurch gekennzeichnet, dass das Sicherungsgehäuse (11) an zwei Stirnseiten (13) zumindest teilweise offen ausgebildet ist, wobei stirnseitig an dem Sicherungsgehäuse (11) jeweils wenigstens eine zur elektrischen Kontaktierung ausgebildete Kontaktkappe (14) angeordnet ist.
  3. G-Sicherung nach Anspruch 1 oder 2, dadurch gekennzeichnet dass der, vorzugsweise zylinderförmige, Wickelkörper (12) als Glasfaserseele ausgebildet ist und/oder als Material wenigstens eine Glaserfaser aufweist und/oder daraus besteht, insbesondere wobei der Wickelkörper (12) eine Dicke (15) und/oder einen Durchmesser zwischen 0,01 bis 2 mm, bevorzugt zwischen 0,1 bis 1 mm, weiter bevorzugt zwischen 0,2 bis 0,7 mm, aufweist.
  4. G-Sicherung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ummantelung (5) als Beschichtung, vorzugsweise als Lack, ausgebildet ist, insbesondere wobei die Beschichtung durch eine Lösung von Polymeren in einem, insbesondere kresolischen, Lösemittelgemisch gebildet ist und/oder wobei die Beschichtung als Material Harz, vorzugsweise in einem Lösemittelgemisch gelöst, aufweist, vorzugsweise unter Zugabe von Additiven und/oder einem Härtungskatalysator, und/oder wobei die Beschichtung als Material einen Kunststoff, vorzugsweise Polyurethan, aufweist.
  5. G-Sicherung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ummantelung (5) metallfrei ausgebildet ist.
  6. G-Sicherung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Material der Ummantelung (5) einen Anteil an dem Gesamtmaterial des Schmelzleiters (1) zwischen 0,1 bis 25 Gew.-%, bevorzugt zwischen 1 bis 20 Gew.-%, weiter bevorzugt zwischen 5 bis 15 Gew.-%, aufweist.
  7. G-Sicherung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die weitere Ummantelung (6) als Material eine Metalllegierung, vorzugsweise Zinn und/oder eine Zinnlegierung, aufweist.
  8. G-Sicherung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schmelzdraht (3), die Ummantelung (5) und/oder die weitere Ummantelung (6) einen zumindest im Wesentlichen kreisförmigen Außenquerschnitt aufweisen.
  9. G-Sicherung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schmelzleiter (1) einen Durchmesser (7) zwischen 1 µm bis 1000 µm, bevorzugt zwischen 10 µm bis 600 µm, weiter bevorzugt zwischen 15 µm bis 550 µm, aufweist und/oder dass der Schmelzdraht (3) einen Durchmesser (8) zwischen 1 µm bis 800 µm, bevorzugt zwischen 5 µm bis 500 µm, weiter bevorzugt zwischen 10 µm bis 400 µm, aufweist und/oder dass die Ummantelung (5) und/oder die weitere Ummantelung (6) eine Schichtdicke (9, 10) zwischen 0,01 µm bis 300 µm, bevorzugt zwischen 0,1 µm bis 200 µm, weiter bevorzugt zwischen 1 µm bis 150 µm, weiter bevorzugt weiter zwischen 1,5 µm bis 50 µm, aufweist.
  10. G-Sicherung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schmelzdraht (3) als Material Metall, insbesondere eine Metalllegierung, aufweist, insbesondere wobei das Material Kupfer, Silber und/oder eine Kupferlegierung und/oder eine Silberlegierung aufweist.
  11. G-Sicherung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich die Metalllegierungen der Materialien der weiteren Ummantelung (6) und des Schmelzdrahtes (3) voneinander unterscheiden.
EP20711568.4A 2019-05-16 2020-03-12 Schmelzleiter und sicherung Active EP3942589B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102019003448 2019-05-16
DE102019004223.9A DE102019004223A1 (de) 2019-05-16 2019-06-18 Schmelzleiter und Sicherung
PCT/EP2020/056644 WO2020229017A1 (de) 2019-05-16 2020-03-12 Schmelzleiter und sicherung

Publications (2)

Publication Number Publication Date
EP3942589A1 EP3942589A1 (de) 2022-01-26
EP3942589B1 true EP3942589B1 (de) 2022-09-21

Family

ID=73019178

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20711568.4A Active EP3942589B1 (de) 2019-05-16 2020-03-12 Schmelzleiter und sicherung

Country Status (10)

Country Link
US (1) US20220216025A1 (de)
EP (1) EP3942589B1 (de)
KR (1) KR20220006533A (de)
CN (1) CN113841215A (de)
DE (1) DE102019004223A1 (de)
DK (1) DK3942589T3 (de)
ES (1) ES2932373T3 (de)
HU (1) HUE060814T2 (de)
PL (1) PL3942589T3 (de)
WO (1) WO2020229017A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69026386T2 (de) * 1989-09-26 1996-08-14 Littelfuse Bv Überlastungsanzeigevorrichtung für schmelzsicherungen
JP2014063639A (ja) * 2012-09-21 2014-04-10 Auto Network Gijutsu Kenkyusho:Kk 過電流遮断機能付き電線

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB227928A (en) * 1923-10-26 1925-01-26 Reyrolle A & Co Ltd Improvements in or relating to electric fuses
JPS5137427B1 (de) * 1971-04-30 1976-10-15
JPS5430089B2 (de) * 1972-12-26 1979-09-28
GB1545205A (en) * 1975-05-22 1979-05-02 Beswick Ltd K Electric fuse-links
JPS5227491A (en) * 1975-08-28 1977-03-01 Chisso Corp Process for preparing a vinyl chloride polymer
AT353882B (de) * 1978-02-03 1979-12-10 Wickmann Werke Ag Schmelzsicherung
DE3322883A1 (de) * 1983-06-24 1985-01-03 Siemens AG, 1000 Berlin und 8000 München Sicherungswiderstand
GB8531026D0 (en) * 1985-12-17 1986-01-29 Brush Fusegear Ltd Fuse
US4736180A (en) * 1987-07-01 1988-04-05 Littelfuse, Inc. Fuse wire assembly for electrical fuse
US5736919A (en) * 1996-02-13 1998-04-07 Cooper Industries, Inc. Spiral wound fuse having resiliently deformable silicone core
DE29615290U1 (de) * 1996-09-03 1997-03-06 ELSCHUKOM Elektroschutzkomponentenbau GmbH, 98669 Veilsdorf Schmelzleiter mit konzentrischem Aufbau für träge Sicherungen
DE19959243A1 (de) * 1999-12-08 2001-06-13 Abb Research Ltd Sicherung
EP1729317B1 (de) * 2005-06-02 2007-10-24 Wickmann-Werke GmbH Wickelschmelzleiter für ein Schmelzsicherungsbauelement mit Kunststoffversiegelung
US8937524B2 (en) * 2009-03-25 2015-01-20 Littelfuse, Inc. Solderless surface mount fuse
US9117615B2 (en) * 2010-05-17 2015-08-25 Littlefuse, Inc. Double wound fusible element and associated fuse
CN103683680B (zh) * 2012-09-03 2018-09-25 德昌电机(深圳)有限公司 电机及使用该电机的汽车冷却风扇
WO2015096853A1 (de) * 2013-12-23 2015-07-02 Schurter Ag Schmelzleiter, schmelzsicherung, verfahren zum herstellen einer schmelzsicherung, smd-sicherung und smd-schaltung
JP6252398B2 (ja) * 2014-08-06 2017-12-27 株式会社オートネットワーク技術研究所 過電流遮断機能付き電線
JP6307762B2 (ja) * 2014-09-26 2018-04-11 デクセリアルズ株式会社 電線
US20200273653A1 (en) * 2019-02-26 2020-08-27 Conquer Electronics Co., Ltd. Explosion-proof fuse
US20220181109A1 (en) * 2019-05-06 2022-06-09 Eaton Intelligent Power Limited Aluminum alloy miniature cartridge fuses

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69026386T2 (de) * 1989-09-26 1996-08-14 Littelfuse Bv Überlastungsanzeigevorrichtung für schmelzsicherungen
JP2014063639A (ja) * 2012-09-21 2014-04-10 Auto Network Gijutsu Kenkyusho:Kk 過電流遮断機能付き電線

Also Published As

Publication number Publication date
CN113841215A (zh) 2021-12-24
DE102019004223A1 (de) 2020-11-19
US20220216025A1 (en) 2022-07-07
WO2020229017A1 (de) 2020-11-19
DK3942589T3 (da) 2022-12-12
EP3942589A1 (de) 2022-01-26
HUE060814T2 (hu) 2023-04-28
PL3942589T3 (pl) 2023-01-23
KR20220006533A (ko) 2022-01-17
ES2932373T3 (es) 2023-01-18

Similar Documents

Publication Publication Date Title
DE3609455C2 (de) Sicherung für eine elektrische Schaltung
WO2008083785A1 (de) Vorrichtung mit einem sensor und koppelmitteln
DE102009017518A1 (de) Schaltungsschutzvorrichtung einschließlich Widerstand und Sicherungselement
DE102007014338A1 (de) Thermosicherung
DE102011101841A1 (de) Doppelt gewickelter Schmelzleiter und assoziierte Schmelzsicherung
EP2113927B9 (de) Halbleitendes Wickelband aus Polytetrafluorethylen
JPS6220649B2 (de)
DE10137873C1 (de) Elektrokeramisches Bauelement
DE102008036672B3 (de) Elektrische Schmelzsicherung
EP3942589B1 (de) Schmelzleiter und sicherung
EP3830858B1 (de) Schmelzleiter sowie sicherung
DE102019104883A1 (de) Elektrische Heizvorrichtung
DE3638042C2 (de) Träge elektrische Schmelzsicherung
EP1597745B1 (de) Wickelschmelzleiter mit isolierendem zwischenwickel für ein sicherungsbauelement
DE19827374C2 (de) Sicherungselement für elektrische Anlagen
DE2830963C2 (de) Bei Überlastung infolge überhöhter Temperatur und/oder überhöhtem Strom den Stromfluß unterbrechende elektrische Sicherung
EP2689448B1 (de) Überlastauslöser, insbesondere für einen leistungsschalter
DE102017116489B4 (de) Schutzvorrichtung zum Schutz eines elektrischen Verbrauchers
DE112020002298T5 (de) Stromkreis-Schutzvorrichtung mit einem PTC-Element und einer Sekundärsicherung
DE102019104884A1 (de) Elektrische Heizvorrichtung
DE10297759B4 (de) Schmelzwiderstand und Verfahren zu dessen Herstellung
EP2581916A1 (de) Zündkabel für hohe mechanische und/oder thermische Belastungen
DE1909944C3 (de) Schmelzsicherung, insbesondere für den Überlastschutz im elektrischen Schwachstrombereich
DE102016109923B4 (de) Elektrische Sicherungseinrichtung mit verbesserter Auslösecharakteristik
DE102009021546A1 (de) Elektrisches Kabel und vorkonfektioniertes elektrisches Kabel

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211018

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20220719

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020001743

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1520380

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221015

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20221208

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2932373

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20230118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220921

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221221

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220921

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220921

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220921

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220921

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230123

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E060814

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220921

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230121

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220921

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020001743

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220921

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230613

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230529

Year of fee payment: 4

Ref country code: CH

Payment date: 20230401

Year of fee payment: 4

26N No opposition filed

Effective date: 20230622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220921

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240321

Year of fee payment: 5

Ref country code: NL

Payment date: 20240320

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240229

Year of fee payment: 5

Ref country code: HU

Payment date: 20240322

Year of fee payment: 5

Ref country code: FI

Payment date: 20240320

Year of fee payment: 5

Ref country code: DE

Payment date: 20240321

Year of fee payment: 5

Ref country code: CZ

Payment date: 20240304

Year of fee payment: 5

Ref country code: GB

Payment date: 20240321

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240304

Year of fee payment: 5

Ref country code: SE

Payment date: 20240320

Year of fee payment: 5

Ref country code: PL

Payment date: 20240301

Year of fee payment: 5

Ref country code: IT

Payment date: 20240329

Year of fee payment: 5

Ref country code: FR

Payment date: 20240328

Year of fee payment: 5

Ref country code: DK

Payment date: 20240326

Year of fee payment: 5