EP3857573B1 - Corps broyant, dispositif et procédé de fabrication du corps broyant ainsi que son utilisation - Google Patents

Corps broyant, dispositif et procédé de fabrication du corps broyant ainsi que son utilisation Download PDF

Info

Publication number
EP3857573B1
EP3857573B1 EP19773020.3A EP19773020A EP3857573B1 EP 3857573 B1 EP3857573 B1 EP 3857573B1 EP 19773020 A EP19773020 A EP 19773020A EP 3857573 B1 EP3857573 B1 EP 3857573B1
Authority
EP
European Patent Office
Prior art keywords
hard
reactor
magnetic
magnetic cores
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19773020.3A
Other languages
German (de)
English (en)
Other versions
EP3857573A1 (fr
EP3857573C0 (fr
Inventor
Mathias May
Bernd Halbedel
Rolf Baudrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baudrich Rolf
HALBEDEL, BERND
May Mathias
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3857573A1 publication Critical patent/EP3857573A1/fr
Application granted granted Critical
Publication of EP3857573B1 publication Critical patent/EP3857573B1/fr
Publication of EP3857573C0 publication Critical patent/EP3857573C0/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/021Construction of PM
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/20Disintegrating members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/112Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles with a skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Definitions

  • the present invention relates to grinding media for use in an electromechanical comminution system (EMZ) and a corresponding device and a method for producing such grinding media.
  • EMF electromechanical comminution system
  • Such a crushing plant is, for example, in DE 10 2018 113 725 described.
  • Magnetic grinding media are used in DD 240 674 B1 , DE 41 13 490 A1 , EP 0510 256 B1 as well as U.S. 5,348,237 , which propose devices and methods for electromechanical comminution and/or deagglomeration or dispersion of disperse inorganic solids (silicates, oxide ceramics, pigments) or multiphase mixtures (dispersions), described as magnetic working bodies in order to generate intensive translational transverse movements and tumbling movements with electromagnetic fields of electrical excitation systems, and thus to generate sufficient mechanical stresses on the educt.
  • These working bodies are made of hard magnetic material (e.g.
  • hexaferrite are spherical or barrel-shaped with a diameter or length of 1.0 to 4.0 mm and fill the process chamber of the electromechanical comminution system at least 40 to 90% by volume. . It is to be expected that such working bodies made of hard-magnetic hexaferritic materials in electromechanical comminution systems will wear out severely, so that the product will be contaminated with the wear.
  • DE 32 33 926 A1 proposes an electromechanical comminuting, mixing or stirring device using ferromagnetic particles or bodies made of carbon steel or other materials having the necessary magnetic and/or electrical properties, suitably for fine comminution as pins of 15 mm and a diameter of 2 mm and which should have a higher magnetic conductance in the axial direction.
  • Such working bodies are not suitable for the comminution, deagglomeration and dispersing of disperse substances, pumpable multi-phase mixtures, since the magnetic properties are far too low and their movement and the stresses triggered thereby are insufficient.
  • foreign substances are introduced into the product as they wear out.
  • Patent applications are also known that describe the movement of the grinding media in mechanical mills (ball mill: PL382610A1 or. WO_2014/065680 A1 , RU 2 319 546 , mortar grinder: WO 86/01129 ) with magnet systems arranged on the outside of the grinding container and thus increase the efficiency of the grinding process (e.g. cement production: EP 2 128 107 A2 ) want to improve.
  • Grinding or working bodies made of ferromagnetic material primarily carbon steel, are used.
  • ferromagnetic material primarily carbon steel
  • heat up very strongly since eddy currents are generated in them due to the changing magnetic fields due to their high electrical conductivity. On the one hand, this reduces the efficiency of the grinding process and, on the other hand, leads to additional heating of the product.
  • off EP 0 434 985 A1 known to use secondary elements for mixing liquids or dispersing solids in liquids and/or grinding solids by means of linear motors, which are irregularly shaped on the outside to increase the mixing effect, e.g. by spikes, ribs, etc. and made of magnetizable metals (iron), a reaction metal (aluminum or copper), a compound reaction metal (iron/aluminium, iron/copper) or magnetisable plastic or magnetic rubber.
  • the components are assembled in a sandwich construction, for example by gluing.
  • such secondary elements can be encased with a non-magnetic material, eg plastic. None of the suggested Embodiments represents an EMZ grinding body and can be used as such in comminution plants (EMZ) for comminution, deagglomeration and dispersing of disperse substances, pumpable multi-phase mixtures.
  • EMZ comminution plants
  • magnetobeads magnetic working bodies
  • magnetobeads which are mainly used in carrier technology for biocatalysis, immobilization, separation and/or analysis.
  • a comprehensive overview is given in the Publication Pieters, BR; Williams, R.A.; Webb, C.: Magnetic carrier technology.
  • Magnetic polymer particles as carriers for enzymes, bacteria, cells, RNA and proteins are used in U.S. 5,814,687 called, which are produced by mixing a monomer with superparamagnetic particles and then polymerizing.
  • the patent specification DE 196 38 591 describes magnetic particles that are constructed as 50-1500 nm large monodisperse SiO2 spheres with a magnetic particle layer ⁇ 60 nm thick.
  • JP 0830 8570 it is suggested to mix porous ceramics with 0.01-100 ⁇ m fine paramagnetic particles, shape the mixture and then sinter.
  • the carriers are suitable for immobilization in the field of fermentation, biochemistry and environmental technology.
  • US2010/046323 and US2006/133954 show hard-magnetic bodies that are coated with polymers and intended for mixing liquids.
  • JP H09 325656 shows how polymer coatings are applied to toner particles using a fluidized bed process.
  • the object of the present invention is to provide grinding bodies with low grinding body wear and high product compatibility, which have appropriate magnetic and mechanical properties, and a corresponding device and a method for producing such grinding bodies.
  • a grinding body according to the invention is characterized in particular by the fact that the grinding body has a hard-magnetic core and at least one wear-resistant coating surrounding it.
  • Such coated, hard-magnetic grinding media are used in comminution plants for comminution, deagglomeration and/or dispersing, in particular of active ingredients that are required in pharmacy, biotechnology and/or the food industry.
  • the hard-magnetic cores of such grinding bodies can have a coercive field strength of at least 50 kA/m, preferably at least 70 kA/m and particularly preferably at least 100 kA/m. Furthermore, they can have a remanence of >50 mT, preferably >70 mT and particularly preferably >100 mT.
  • the wear-resistant layer is a polymer layer, for example. This has corresponding physical and/or chemical properties which are advantageous when the grinding bodies are used as mentioned above.
  • the hard-magnetic core is spherical and can be correspondingly magnetizable.
  • the coating can have a thickness of 5 ⁇ m to 500 ⁇ m and preferably from 10 ⁇ m to 300 ⁇ m.
  • the spherical shape of the hard-magnetic cores has a diameter of 0.1 mm to 10 mm.
  • the polymer layer or coating can be closed and/or at least one primer layer can be arranged between the polymer layer and the hard-magnetic core as an adhesion-promoting layer.
  • the surface of the coating can be smoothed.
  • the hard magnetic cores are first treated mechanically and/or chemically on their surface to improve the physical and/or chemical adhesiveness in order to increase the surface roughness. Then can the hard-magnetic cores are magnetized and then fed to a device according to the invention for the production of the grinding media.
  • Such a device has at least one reactor, which is divided by a gas-permeable floor into a lower, material-free area and an upper, material-carrying area.
  • the material-carrying area serves to accommodate fluidized, disperse coating material and fluidized, hard-magnetic cores. Furthermore, the material-carrying area is surrounded by a magnet system for fluidizing the hard-magnetic cores.
  • the pretreated hard-magnetic cores are fed to the reactor in which the coating material is already in dispersed form. Before being fed in and/or in the reactor, the hard-magnetic cores are heated to a temperature that is higher than a melting point of the coating material but lower than a Curie temperature of the hard-magnetic cores.
  • the hard-magnetic cores are then fluidized by the magnet system or the magnetic field generated by it, so that particles of the coating material come into contact with the surfaces of the hard-magnetic cores and melt there due to the temperature. By removing the heat of fusion, the particles of the coating material solidify. After a sufficient residence time in the reactor, the hard-magnetic bodies are preferably completely and evenly coated with the coating material.
  • the hard-magnetic cores with their coating can then be removed from the reactor as finished grinding media, cooled and optionally post-treated.
  • These grinding media are then very well suited for use in electromechanical comminution systems in the magnetized state or also demagnetized in mechanical comminution systems for comminution, deagglomeration and/or dispersing of disperse substances and/or pumpable multi-phase mixtures, also in areas of application in the field of pharmacy and the like and are characterized characterized by low material wear and high product compatibility.
  • the grinding media according to the invention are characterized in that, in the demagnetized state, they can also be used in ball mills, such as agitator ball mills or the like, for comminuting, deagglomerating and/or dispersing active substances or organic materials in general.
  • the grinding media according to the invention are also characterized by a higher density, so that a higher processing intensity is possible with the same operating parameters of ball mills.
  • the device according to the invention for producing such grinding bodies has a gas-permeable base in the corresponding reactor. Furthermore, the reactor can have a gas inlet opening below this floor. As a result, a gas flow can be introduced into the material-carrying area, which supports, for example, the fluidization of the particles of the coating material and also the fluidization of the hard-magnetic cores. However, the main fluidization of the hard-magnetic cores takes place through the magnet system surrounding the reactor.
  • At least one closable opening for feeding cores, coating material and/or for removing the finished grinding media can be formed above the base.
  • the arrangement of several openings for the separate supply of corresponding substances is also possible.
  • the magnet system which completely surrounds the reactor above the gas-permeable floor, enables corresponding fluidization of heated, magnetized, hard-magnetic cores.
  • the magnet system can have at least one coil that completely surrounds the reactor.
  • a heatable and in particular funnel-shaped container can be assigned or arranged in particular in an upper end region of the reactor, in which previously magnetized hard-magnetic cores can be arranged for heating.
  • the hard magnetic cores are heated to a temperature which is lower than a corresponding Curie temperature of the hard magnetic cores and higher than a melting temperature of the coating material.
  • Appropriate openings in the reactor have already been pointed out, with at least one lateral opening for removing coated hard-magnetic cores, i. H. the finished grinding media, can be arranged.
  • An example of a heating device is heating with microwaves, in which case a corresponding microwave antenna, which is connected to a controllable microwave generator, can be arranged in the material-carrying area.
  • a corresponding microwave antenna which is connected to a controllable microwave generator, can be arranged in the material-carrying area.
  • the reactor above the gas-permeable tray should be formed of a microwave-non-absorbent material.
  • At least one temperature sensor can preferably be provided in particular above the gas-permeable floor and in particular in the material-carrying area. This can be used to record the mean temperature in the reactor and/or the coating material and/or the hard-magnetic cores. Of course, several temperature sensors are also conceivable, which can be assigned to different areas of the reactor, for example.
  • the device according to the invention magnetizes the hard-magnetic cores and heats them to a temperature above the melting point and below the Curie temperature.
  • These magnetized and heated hard-magnetic cores are then fluidized by the corresponding magnetic field of the magnet system that changes over time and location.
  • the likewise fluidized, powdery coating material is then melted on the surfaces of the heated, hard-magnetic cores, so that a coating can form.
  • the grinding media produced in this way can be removed and cooled to room temperature.
  • a magnetic field that changes over time and location is generated in the reactor by an additional magnet system.
  • This magnet system has at least one coil and surrounds the reactor above the gas-permeable floor. Alternating currents flow through the magnet system and, for example in the middle of the gas-permeable floor, has a magnetic flux density with an effective value of at least 5 mT, with the frequencies of the alternating currents having to be adapted to the mass of the hard-magnetic cores.
  • Such a magnetic field is used, for example, to fluidize the hard-magnetic cores in the material-carrying area of the reactor.
  • the hard-magnetic cores are already completely or at least partially heated after they have been magnetized and still outside the reactor. It is also possible for the hard-magnetic cores in the reactor to be heated in the fluidized state by means of a heating device and, for example, by microwaves.
  • externally pre-coated and magnetized hard-magnetic cores that are fed into the reactor can be heated with the microwave and completely coated.
  • the removal of the finished grinding bodies from the reactor or their feeding can optionally be done manually.
  • Correspondingly finished grinding bodies can be smoothed after they have been removed from the reactor, for example by tumbling (vibratory grinding).
  • the device according to the invention for producing the grinding media is also suitable for recoating grinding media that have already been used.
  • any residual coating present on such grinding bodies can be removed and the core surfaces can also be pretreated using the methods already described (mechanical and/or chemical roughening and/or application of a primer layer). These can then be returned to the device according to the invention in the form of the remaining hard-magnetic cores.
  • the grinding media according to the invention can be used in electromechanical comminution systems for comminution, deagglomeration and/or dispersing of active ingredients which are required in pharmacy, biotechnology and/or the food industry. This also applies to ball mills, in which case the grinding media can be demagnetized beforehand.
  • the hard-magnetic cores are made of strontium hexaferrite (SrFe 12 O 19 ).
  • Other materials can be used, which in particular have coercive field strengths 21, see 2 , of, for example, >50 kA/m and remanences 22 of >50 mT.
  • Such materials are rare earth magnets from the material systems Nb-Fe-B, Pr-Fe-B or Sm-Co, AlNiCo materials and also Fe-CrCo, PtCo and MnAlC alloys.
  • the cores shown with the appropriate sizes were produced from a stable slurry containing strontium hexaferrite particles using a drop-forming process, followed by drying and sintering.
  • Other sizes of hard magnetic cores smaller than 1.0 mm or larger than 1.6 mm and other shaping processes such as pressing, briquetting, spray drying, fluidized bed granulation or simple pelleting of the starting materials with subsequent temperature treatments up to sintering are also possible.
  • Such forming processes determine the feasible sizes, shapes and strengths as well as the surface morphology of the hard magnetic cores.
  • FIG. 3a and 3b different surfaces 24 of the hard magnetic cores 6 are shown.
  • the illustrations are electron micrographs of an untreated ( Figure 3a ) and a surface-treated ( Figure 3b ) hard magnetic core with a diameter of 29.
  • the surface treatment after Figure 3b was carried out chemically using 14.8 molar phosphoric acid (H 3 PO 4 ) at 120° C. for 30 minutes. This etching resulted in an increase in the surface roughness, which enables better mechanical adhesion of further layers. Etching is also possible with other acids such as hydrochloric acid, aqua regia or the like.
  • a volume ratio of hard magnetic cores to solvent was 1:50 to 1:100 in these chemical treatments in order to avoid concentration of the solvates.
  • the surface treatment according to the invention leads to a mass loss of less than 20% by weight, so that a corresponding change in size of the hard-magnetic cores is less than 5%.
  • a primer layer can be applied, for example by silanizing the surface of the hard-magnetic cores. This allows the formation of strong bonds between the core material and the coating material.
  • organofunctional silanes are preferably used. These have a functional group -X, which connects to the polymer layer. The connection to the organic material takes place via a hydrolyzable functional group. This combines with the -OH groups, which are always found on inorganic materials. This creates covalent bonds with the inorganic substrate via a condensation reaction.
  • an appropriate -X functional group is selected. This depends on the polymer used. Possible groups are amino (-NH 2 ), sulfur (-S), glycidol (-C 3 H 6 O 2 ) and metacryloxy (-C 4 H 5 O 2 ). Aminosilanes are suitable for a polymer coating with polyamide.
  • Figure 4a and 4b show electron micrographs of surfaces 24 of an untreated ( Figure 4a ) and a silanized ( Figure 4b ) Hard magnetic core 6.
  • a 5 vol% silane-acetone solution was used used.
  • a continuous layer can be seen in the upper part of the electron micrograph 4b. On the rest of the image, this layer is covered by particles that are tightly bound to the surface.
  • Other solvents that can be used are water and ethanol.
  • the hard-magnetic cores should be washed with the solvent used after silanization, dried in air and then baked in an oven, for example at 105°C for 1 hour.
  • Figure 5a and 5b show light micrographs of cross sections of hard magnetic cores coated with a polyamide as the coating material, see coating 28. These were reproduced in a device according to the invention 7 manufactured.
  • Figure 5a is a coating of corresponding thickness 23 less than thickness 23 in Figure 5b educated.
  • coating materials that can be used are polymers that have a melting temperature below the Curie temperature of the hard magnetic cores and can harden by cooling or by reactive components.
  • the corresponding polymer powders can consist of a pure substance, mixed with additives and used as a mixture (master batches) to achieve certain properties.
  • Coating materials can be based on the following polymers: polyamide, polypropylene, polystyrene, polyether, ketone, polyurethane, epoxy resin and the like.
  • the coating materials are selected in particular according to the fact that they can be melted below the Curie temperature of the selected hard magnetic core material, are sufficiently wear-resistant after curing and are approved for the processing of corresponding products (see the preceding statements).
  • the reactor 7 shows such a device with a reactor 1, through which coated hard-magnetic cores, ie grinding bodies according to the invention, can be produced.
  • the reactor itself consists of a non-ferromagnetic material and has an upper opening 2 . Hard-magnetic cores can be supplied via the upper opening 2 .
  • the reactor 1 has a gas-permeable base 4, which has a lower material-free area 26, see also 8 , separated from a material-carrying area 27 .
  • the material-free area 26 extends from the gas-permeable floor 4 to a lower opening 3.
  • the material-carrying area 27 extends above the Gas-permeable floor 4 and is essentially limited by the height of the reactor, so that it can be larger than in the Figures 7 to 10 shown.
  • the gas-permeable base 4 also consists of a non-ferromagnetic material.
  • the embodiment after 7 suitable for a batch coating of hard magnetic cores 6.
  • the hard-magnetic cores 6 to be coated are preferably magnetized to saturation using a magnetizing device (not shown).
  • the magnetization can be done by pulse magnetization.
  • the magnetized cores are then heated, e.g. B. in an electrically heated oven, to a temperature that in the reactor 1 in contact with particles of a coating material 7 can melt them. However, the temperature is lower than a corresponding Curie temperature of the hard magnetic cores.
  • the opening 2 is used for the addition of coating material, the heated and magnetized hard magnetic cores and the removal of finished coated hard magnetic cores, i. H. the finished grinding media.
  • a gas stream can be introduced through the lower opening 3 , which gas stream is distributed uniformly over the reactor cross section from below when it passes through the gas-permeable base 4 and supports fluidization of the disperse coating material 7 .
  • a magnet system 5 Above the gas-permeable floor 4 is a magnet system 5 with two coils 30 surrounding the reactor.
  • the magnet system and its time- and location-dependent magnetic field result in a field gradient that changes over time and location, which fluidizes the heated and magnetized hard-magnetic cores 6 that are fed in via the opening 2 .
  • the disperse coating material 7 is also fluidized by the movement of the hard-magnetic cores 6, as well as by the gas flow already described above.
  • the coating material melts on contact with surfaces 24 of the heated, hard-magnetic cores.
  • the overall resulting temperature of the disperse coating material 7 determines a thickness 23 of the coating 28 on the hard magnetic cores 6 with a constant dwell time of the hard magnetic cores in the reactor 1, see also 6 .
  • the magnet system 5 after 7 has two coils 30 concentrically surrounding the reactor, through which alternating currents flow. These generate a temporally and spatially changing magnetic flux density distribution in the material-carrying area 27 of the reactor 1, preferably with an effective value of at least 5 mT on the gas-permeable floor 4.
  • the frequency of the alternating currents in the coils 30 of the magnet system 5, which determine the flux density changes over time, should not exceed a frequency at which the hard-magnetic cores 6 can no longer follow the changes in flux density due to their inertia. For example, frequencies greater than 10 Hz and less than 400 Hz should be set for cores with a size of >0.5 mm and densities of around 4 to 5 kg/dm 3 .
  • FIG. 8 shows a second embodiment of a device according to the invention or a reactor 1 according to the invention. This differs from the first embodiment 7 by heating the magnetized, hard-magnetic cores 6 to a required process temperature via a heating device 37 in the area of a funnel 9.
  • the heating device 37 can be designed to be controllable in order to achieve the corresponding temperature of the hard-magnetic cores in a reproducible manner.
  • the heating device 37 is in front of a reactor opening 32 (see also 8 ) and serves to feed the heated, magnetized, hard-magnetic cores 12 into the reactor 1.
  • the feed is carried out magnetically with another magnet system 11 operated in a pulsed manner. This enables a quasi-continuous process control of the coating.
  • Completely coated, hard-magnetic cores can be removed from the reactor 1 via an opening 13 with a rod-like holding magnet or the like when the magnet system 11 is not electrically active.
  • a further opening 14 is arranged as an exhaust gas opening opposite the opening 13 .
  • the opening 32 of the reactor, in the upper end region 31, is in the exemplary embodiment 8 via a connection 33 in a heatable funnel-shaped container 9 over.
  • the previously magnetized, hard-magnetic cores are heated by means of the heating device 37 to a temperature lower than the Curie temperature of the cores and higher than the melting point of the coating material.
  • Other heating devices are also possible, such as infrared radiators, induction heating, magnetrons or the like.
  • the magnet system 11 comprises an ironless coil which is periodically pulsed with a current.
  • Current pulse height and duration are selected in such a way that a short-term magnetic field is created which penetrates the lower area of the bed of heated, magnetized, hard-magnetic cores 12 and which cancels out the magnetic holding forces between the cores in this area.
  • a corresponding quantity of hard magnetic cores falls through the opening 32 as an exit into the reactor 1, with the cores remaining in the funnel 9 slipping down.
  • the amount of hard magnetic cores supplied can be adjusted by the current pulse height and pulse duration.
  • the corresponding finished grinding bodies are removed from the reactor 1 after a residence time required for coating the fluidized, hard-magnetic cores 6 .
  • the coating process can also be carried out periodically.
  • FIG 9 12 shows a third exemplary embodiment of the device or of the reactor 1.
  • This differs from the exemplary embodiments according to FIG 7 and 8th in that the magnetized, hard-magnetic cores are heated to the required process temperature by coupling in microwave power as a heating device 34 (see figure 10 ) by means of at least one antenna 15 directly on the reactor 1.
  • the reactor 1 thus consists of a non-microwave-absorbing material, such as Teflon, silica glass or the like, at least in the region where the microwave radiation acts.
  • the reactor 1 is surrounded by a metallic grid 18 in the region where the microwave radiation acts, so that the microwave radiation is negligible and prescribed limit values are observed ( ⁇ 50 W/m 2 at a distance of 5 cm).
  • the supplied microwave power can be controlled by measuring, fiber-optically, pyrometrically or the like, a surface temperature of the hard-magnetic cores 6 .
  • a corresponding design of a reactor 1 ensures, on the one hand, a coating of very small ( ⁇ 1 mm) hard magnetic cores 6, since such cores would cool down too quickly when heated before and during entry into the reactor 1 as a result of their low heat storage capacity, and, on the other hand, a better and reproducible coating quality for all core sizes.
  • externally pretreated, in particular precoated, non-magnetized hard magnetic cores which were precoated in a preliminary stage with a coating material/binder suspension and to which further layers were applied as solid films using known coating methods, can then be fed magnetized to the reactor. Thereafter, without further addition of disperse coating material, the layers already present in the reactor can be melted in order to improve the homogeneity and/or the surface quality.
  • the cores can also be pretreated prior to the precoating, see for example the surface treatment described above.
  • FIG. 10 represents a fourth exemplary embodiment of a device or a reactor 1 according to the invention.
  • Uncoated hard magnetic cores 6 are first magnetized, weighed and placed in the reactor 1. Then the magnet system 5 is switched on by a controller 35, which serves to move and fluidize the cores. At the same time, the microwave generator 16 for heating the hard-magnetic cores 6 is activated. This takes place via microwave antennas 15 and the delivery of corresponding microwaves. Measures the temperature sensor 17 reaching a target temperature of z. B. 176 ° C, is supplied by means of a heater 36 temperature-controlled air as a gas stream 8 for fluidization and also added the coating powder. The desired temperature is then maintained according to the temperature sensor 17, for example for 3 minutes.
  • a controller for example a programmable logic controller 19 .
  • the reactor size depends on the reactor size, the amount of hard magnetic cores filled in, the core size and the desired layer thickness.
  • the target temperature is maintained until sufficient coating material has been melted onto the magnetized, hard-magnetic cores 6 .
  • the microwave generator 16 and the heater 36 are switched off.
  • a corresponding supply of air as a gas stream 8 continues to be operated for cooling until the temperature sensor 17 falls below a corresponding setpoint value.
  • the coated hard-magnetic cores are then removed via the opening 13 (see 8 ). This is advantageously carried out with a rod which is provided at the end with a permanent magnet or an activatable electric coil.
  • the magnetic coils 30 are switched off by means of the controller 35 and the reactor 1 is completely emptied and cleaned and, if necessary, refilled.
  • Figure 11a and 11b show finished grinding media, ie coated, hard magnetic cores according to the invention.
  • the coating on the hard magnetic cores is closed. After Figure 11a the coating has a corresponding roughness.
  • a mechanical post-treatment to smooth the surfaces of the grinding media is possible. Drumming, magnetic fluidization in a reactor without coating material or targeted stressing ("grinding") in an EMZ system with an abrasive material, for example aluminum oxide, are suitable.
  • the grinding bodies 20 can also be demagnetized if necessary. This succeeds in a decaying alternating field, which is operated by a coil that is operated with a controllable alternating current source - in the simplest case a regulating transformer.
  • the alternating field must at least reach the saturation field strength of the hard-magnetic cores and then decay or be reduced to zero.
  • Another way to demagnetize is to determine the coercivity of the polarization of the hard magnetic nuclei, e.g. B. by recording the hysteresis curve with a vibration magnetometer, and then using a magnet system fed with direct current to build up an opposing field of this strength and to let it act briefly on the hard magnetic cores.
  • the hard magnetic cores must be sufficiently mechanically fixed to prevent them from moving in the direction of the magnetic field generated for demagnetization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)

Claims (15)

  1. Corps broyant (20) destiné à être utilisé dans une installation de broyage électromécanique, EMZ, pour la fragmentation, la désagrégation et/ou la dispersion de substances dispersées et/ou de mélanges multiphases pouvant être pompés, dans lequel le corps broyant (20) présente un noyau magnétique dur (6) et au moins un revêtement résistant à l'usure (28) l'entourant au moins partiellement,
    caractérisé en ce que
    le noyau magnétique dur est sphérique et présente un diamètre de 0,1 à 10 mm.
  2. Corps broyant selon la revendication 1, caractérisé en ce que le noyau magnétique dur (6) présente une intensité de champ coercitif (21) d'au moins 20 kA/m, de préférence d'au moins 40 kA/m et de manière particulièrement préférée d'au moins 50 kA/m, en particulier le noyau magnétique dur (6) présente une rémanence (22) > 20 mT, de manière préférée > 40 mT et de manière particulièrement préférée > 50 mT, et de manière préférée
    le revêtement (28) résistant à l'usure est un revêtement polymère.
  3. Corps broyant selon la revendication 1 ou 2, caractérisé en ce que le noyau magnétique dur (6) est conçu de manière sphérique et/ou peut être magnétisé, de préférence
    le revêtement (28) présente, en fonction d'une taille de noyau, en particulier d'un diamètre de noyau (29), une épaisseur de 5 µm à 500 µm et de préférence de 10 µm à 300 µm, et en particulier
    une surface (24) du noyau magnétique dur (6) est rendue rugueuse et présente en particulier une rugosité moyenne (Ra) ≥ 0,4 µm et de préférence ≥ 0,5 µm.
  4. Corps broyant selon l'une quelconque des revendications précédentes, caractérisé en ce que le revêtement (28) est fermé et entoure complètement le noyau magnétique dur et/ou au moins une couche de transmission de force (25) est agencée entre le revêtement et le noyau magnétique dur et/ou le revêtement est lissé.
  5. Dispositif de fabrication de corps broyants (20) selon l'une quelconque des revendications précédentes, lequel dispositif présente au moins un réacteur (1) qui est divisé par un fond (4) perméable aux gaz en une zone inférieure (26) sans matériau et une zone supérieure (27) de guidage de matériau, dans lequel la zone de guidage de matériau (27) est formée pour recevoir un matériau de revêtement (7) dispersé fluidisé et des noyaux magnétiques durs fluidisés (6), et est entourée dans la zone de guidage de matériau (27) par un système magnétique (5) pour une fluidisation des noyaux magnétiques durs(6), dans lequel en particulier le réacteur (1) présente une ouverture d'introduction de gaz (3) sous le fond (4), et en particulier
    au moins une ouverture (2, 13) pouvant être fermée est formée au-dessus du fond (4) pour l'introduction de noyaux (6) du matériau de revêtement (7) et/ou pour l'enlèvement de corps broyants (20) achevés.
  6. Dispositif selon la revendication 5, caractérisé en ce que le système magnétique (5) est formé d'au moins une bobine (30) qui entoure le réacteur (1) au-dessus du fond perméable aux gaz (4), en particulier
    une zone d'extrémité supérieure (31) du réacteur (1) présente un récipient (9) en particulier pouvant être chauffé et en forme d'entonnoir pour la réception de noyaux magnétiques durs magnétisés (6), auquel est associé le cas échéant un dispositif de chauffage (10), et en particulier
    le dispositif de chauffage (10) chauffe les noyaux magnétiques durs magnétisés (6) à une température inférieure à une température de Curie des noyaux magnétiques durs et supérieure à une température de fusion du matériau de revêtement (7).
  7. Dispositif selon la revendication 5 ou 6, caractérisé en ce qu'en dessous d'une sortie (32) du récipient en forme d'entonnoir (9) est disposé un système magnétique supplémentaire (11) qui est formé notamment d'au moins une bobine et entoure une liaison (33) entre le réacteur (1) et la sortie (32) du récipient en forme d'entonnoir (9).
  8. Dispositif selon l'une quelconque des revendications précédentes 5 à 7, caractérisé en ce que dans la zone d'extrémité supérieure (31) du réacteur (1) est agencée au moins une ouverture (13), en particulier latérale, pour retirer le noyau magnétique dur (6) revêtu, en particulier
    un dispositif de chauffage (36) est agencé au-dessus du fond perméable aux gaz (4) et avantageusement dans la zone de guidage de matériau (27).
  9. Dispositif selon l'une quelconque des revendications précédentes 5 à 8, caractérisé en ce que le réacteur (1) est formé d'un matériau perméable aux micro-ondes au-dessus du fond perméable aux gaz (4) et en ce qu'au moins une antenne à micro-ondes (15) est agencée dans le réacteur (1) au-dessus du fond perméable aux gaz (4), de préférence dans la zone de guidage de matériau (27) ou dans la zone d'extrémité supérieure (31), en liaison avec un générateur de micro-ondes pouvant être commandé (16) en tant que dispositif de chauffage (34), et en particulier
    au moins un capteur de température (17) destiné à détecter une température moyenne dans le réacteur et/ou le matériau de revêtement (7) et/ou le noyau magnétique dur (6) est agencé dans le réacteur (1) au-dessus du fond perméable aux gaz (4), de préférence dans la zone de guidage de matériau (27).
  10. Procédé de fabrication de corps broyants (20) selon l'une quelconque des revendications 1 à 4 avec un dispositif de fabrication de corps broyants (20) selon l'une quelconque des revendications 5 à 9,
    caractérisé par
    une magnétisation de noyaux magnétiques durs (6), puis un chauffage des noyaux magnétiques durs (6) à une température supérieure à une température de fusion d'un matériau de revêtement (7) et inférieure à une température de Curie,
    une fluidisation de noyaux magnétiques durs (6) chauffés et magnétisés au moyen d'un champ magnétique variant dans le temps et dans le lieu,
    une fusion de matériau de revêtement en poudre fluidisé (7) sur la surface des noyaux magnétiques durs (6) chauffés et magnétisés et une formation d'un revêtement résistant à l'usure (28),
    ainsi qu'une évacuation des corps broyants (20) fabriqués à partir du réacteur (1) après avoir atteint une épaisseur de couche de consigne, et un refroidissement à la température ambiante.
  11. Procédé selon la revendication 10, caractérisé par la génération du champ magnétique variant dans le temps et dans le lieu dans le réacteur (1) avec un système magnétique (5) entourant le réacteur (1) au-dessus d'un fond perméable aux gaz (4), qui est traversé par des courants alternatifs, avec une densité de flux magnétique avec une valeur efficace d'au moins 5mT dans la zone du fond perméable aux gaz (4) et une fréquence de courant alternatif de 300 Hz au maximum, dans lequel en particulier une magnétisation des noyaux magnétiques durs (6) déjà à l'extérieur du réacteur (1), de préférence par magnétisation par impulsions et/ou
    une rugosification des surfaces (24) des noyaux magnétiques durs (6) à l'extérieur du réacteur (1) est réalisée par des procédés mécaniques et/ou chimiques.
  12. Procédé selon l'une quelconque des revendications précédentes 10 ou 11, caractérisé en ce que les noyaux magnétiques durs (6) sont revêtus d'un agent adhésif (25) avant magnétisation, en particulier
    un chauffage des noyaux magnétiques durs (6) après leur magnétisation à l'extérieur du réacteur (1) et/ou
    un chauffage des noyaux magnétiques durs (6) dans le réacteur (1) pendant leur fluidisation survient en particulier au moyen de micro-ondes.
  13. Procédé selon l'une quelconque des revendications précédentes 20 à 26, caractérisé par une détection de la température dans le réacteur au moyen d'au moins un capteur de température (17) et une commande de la température moyenne dans le réacteur et/ou du matériau de revêtement et/ou des noyaux magnétiques durs (6) en fonction de la température détectée, et en particulier
    une fourniture d'une quantité correspondante de noyaux magnétiques durs magnétisés (6) dans le réacteur (1) après le prélèvement d'une quantité correspondante de corps broyants (20) dans le réacteur (1) et/ou
    une fourniture des noyaux magnétiques durs (6) dans le réacteur (1) survient au moyen d'un système magnétique (11) qui est formé d'au moins une bobine qui entoure une liaison (33) entre le réacteur (1) et un récipient (9) en forme d'entonnoir et qui est activée au moyen d'impulsions de courant, un champ magnétique étant généré par les impulsions de courant, qui réduit les forces d'attraction magnétique entre les noyaux magnétiques durs (6) magnétisés, qui se trouvent au-dessus du système magnétique (11), de telle sorte que les noyaux magnétiques durs (6) tombent dans le réacteur (1) sous l'effet de la gravité et y sont fluidisés avec le champ magnétique du système magnétique supplémentaire (5).
  14. Procédé selon l'une quelconque des revendications précédentes 10 à 13, caractérisé par un lissage des corps broyants (20) après leur retrait à partir du réacteur (1), en particulier par des tambours ou analogues, en particulier
    un tri des corps broyants (20) et/ou une nouvelle magnétisation des corps broyants (20), après leur retrait à partir du réacteur (1), et/ou
    un enlèvement d'un revêtement résiduel des corps broyants utilisés et une fourniture de ces corps broyants au réacteur pour un nouveau revêtement, ainsi que, le cas échéant,
    un prétraitement externe, en particulier une pré-revêtement de noyaux magnétiques durs non magnétisés, qui sont ensuite magnétisés et acheminés vers le réacteur, et/ou
    un pré-revêtement des noyaux magnétiques durs éventuellement prétraités au moyen d'une suspension de liant-matériau de revêtement.
  15. Utilisation du corps broyant selon l'une quelconque des revendications précédentes 1 à 4 dans une installation de broyage électromécanique, EMZ, pour la fragmentation, la désagrégation et/ou la dispersion de substances pour une utilisation dans l'industrie pharmaceutique, la biotechnologie et/ou l'industrie alimentaire, ou dans des broyeurs à boulets utilisés pour la fragmentation, la désagrégation et/ou la dispersion de substances ou de matériaux inorganiques dans l'industrie pharmaceutique, la biotechnologie et/ou l'industrie alimentaire, dans laquelle les corps broyant sont démagnétisés.
EP19773020.3A 2018-09-24 2019-09-17 Corps broyant, dispositif et procédé de fabrication du corps broyant ainsi que son utilisation Active EP3857573B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018216190.9A DE102018216190A1 (de) 2018-09-24 2018-09-24 Mahlkörper, Vorrichtung und Verfahren zur Herstellung der Mahlkörper sowie Verwendung
PCT/EP2019/074847 WO2020064430A1 (fr) 2018-09-24 2019-09-17 Corps broyant, dispositif et procédé de fabrication du corps broyant ainsi que son utilisation

Publications (3)

Publication Number Publication Date
EP3857573A1 EP3857573A1 (fr) 2021-08-04
EP3857573B1 true EP3857573B1 (fr) 2023-07-12
EP3857573C0 EP3857573C0 (fr) 2023-07-12

Family

ID=67999625

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19773020.3A Active EP3857573B1 (fr) 2018-09-24 2019-09-17 Corps broyant, dispositif et procédé de fabrication du corps broyant ainsi que son utilisation

Country Status (3)

Country Link
EP (1) EP3857573B1 (fr)
DE (1) DE102018216190A1 (fr)
WO (1) WO2020064430A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116213041A (zh) * 2021-12-02 2023-06-06 山东理工大学 用于材料制备和机械化学反应的多能场耦合反应装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1072925B (it) 1976-09-29 1985-04-13 Ind Ossidi Sinterizzati Ios S Procedimento e dispositivo per la propulsione dei corpi macinanti dei mulini particolarmente di quelli cosiddetti a palle
DE3233926A1 (de) 1981-09-14 1983-04-28 Fuji Electric Corporate Research and Development, Ltd., Yokosuka, Kanagawa Zerkleinerungs-, misch- oder ruehrvorrichtung
DE3430047A1 (de) 1984-08-16 1986-02-27 F. Kurt Retsch GmbH & Co KG, 5657 Haan Moersermuehle
DD240674B1 (de) 1985-09-06 1989-07-12 Ilmenau Tech Hochschule Einrichtung zum zerkleinern, mischen und ruehren
DE3942646A1 (de) 1989-12-22 1991-06-27 Ekato Ind Anlagen Verwalt Mischvorrichtung
DE4113490A1 (de) 1991-04-25 1992-10-29 Leipzig Lacke Gmbh Verfahren und vorrichtung zum zerkleinern, dispergieren, benetzen und mischen von pumpfaehigen, unmagnetischen mehrphasengemischen
JPH08308570A (ja) 1995-05-12 1996-11-26 Nousan Giken:Kk 微粒子磁性体固定化用生体担体の製法。
JPH09325656A (ja) * 1995-10-25 1997-12-16 Ricoh Co Ltd 画像形成装置
JP3627342B2 (ja) 1996-01-31 2005-03-09 Jsr株式会社 磁性ポリマー粒子およびその製造方法
DE19638591A1 (de) 1996-09-20 1998-04-02 Merck Patent Gmbh Kugelförmige magnetische Partikel
DE19955219B4 (de) 1998-11-21 2008-08-28 Heidrich, Jens, Dipl.-Ing. Verfahren und Vorrichtung zur Desintegration von Biomassen
WO2006068935A1 (fr) * 2004-12-21 2006-06-29 Instrumentation Laboratory Company Resuspension de particules magnetisables
RU2319546C2 (ru) 2005-11-08 2008-03-20 Институт электрофизики Уральского отделения РАН Способ магнитомеханического измельчения материалов ферромагнитными мелющими телами
WO2008098117A2 (fr) * 2007-02-08 2008-08-14 Linsheng Walter Tien Dispositifs et procédés d'agitation magnétique
PL382610A1 (pl) 2007-06-08 2008-12-22 Politechnika Częstochowska Młyn elektromagnetyczny
PL385075A1 (pl) 2008-04-29 2009-11-09 Wapeco Spółka Z Ograniczoną Odpowiedzialnością Sposób wytwarzania cementu i spoiwa hydraulicznego oraz cement i spoiwo hydrauliczne oraz sposób podnoszenia klasy cementu i zastosowanie cementu
PL401325A1 (pl) 2012-10-22 2014-04-28 Presto Spółka Z Ograniczoną Odpowiedzialnością Młyn magnetyczny

Also Published As

Publication number Publication date
DE102018216190A1 (de) 2020-03-26
EP3857573A1 (fr) 2021-08-04
WO2020064430A1 (fr) 2020-04-02
EP3857573C0 (fr) 2023-07-12

Similar Documents

Publication Publication Date Title
DE69611453T2 (de) Verfahren zur herstellung von partikel-beschichtetem festen substrat
DE69516252T2 (de) Schmiermittel enthaltende ferromagnetische Teilchen
DE2436725A1 (de) Elektrostatographische ferrittraeger
JP6947490B2 (ja) ボンド磁石用フェライト粉末とその製造方法並びにフェライト系ボンド磁石
WO2002013580A1 (fr) Mise en resonance ferromagnetique et son application pour le rechauffement de substrats remplis de particules
DE2041225B2 (de) Verfahren zur Herstellung von metallpolymeren Massen
EP3857573B1 (fr) Corps broyant, dispositif et procédé de fabrication du corps broyant ainsi que son utilisation
DE102013105075A1 (de) Harzformkörper und Verfahren zu seiner Fertigung
DE69331694T2 (de) Plasmabehandlung von polymeren pulver
DE102013205769A1 (de) Verfahren zum herstellen gesinterter magnete mit gesteuerten/r strukturen und zusammensetzungsverteilung
DE69429326T2 (de) Verfahren zum Granulieren von Pulver
Liu et al. Unique properties of lunar impact glass: Nanophase metallic Fe synthesis
US20200035393A1 (en) Method, a system and a package for producing a magnetic composite
DE69008922T2 (de) Verfahren zum Verpacken von permanentmagnetischem Pulver.
Rezel et al. The substitution of chloride ions to OH−-Ions in the akaganeite beta ferric oxyhydroxide studied by Mössbauer effect
DE2452671A1 (de) Kugelfoermige, hohlraumfreie ferritpartikelchen
WO2020200911A1 (fr) Procédé de détection et/ou d'identification de supraparticules magnétiques au moyen de spectroscopie de particules magnétiques ou d'imagerie de particules magnétiques
DE10297484T5 (de) Verfahren und Vorrichtung zur Herstellung eines granulierten Seltenerdmetall-Legierungspulvers und Verfahren zur Herstellung eines Seltenerdmetall-Legierungssinterkörpers
Mair et al. Size-uniform 200 nm particles: fabrication and application to magnetofection
CN107025973B (zh) 磁性片材
Shishkovsky et al. Layerwise laser-assisted sintering and some properties of iron oxide core/PEEK shell magnetic nanocomposites
EP3252017B1 (fr) Charge magnétique
Schlachter et al. Preparation and properties of nanostructured magnetic hollow microspheres: experiment and simulation
Vázquez-Victorio et al. Microwave absorption in nanostructured spinel ferrites
DE4129360A1 (de) Verfahren und einrichtung zur autogenen zerkleinerung von hartmagnetischen materialien

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210401

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: B02C 17/20 20060101ALI20230202BHEP

Ipc: H01F 41/02 20060101ALI20230202BHEP

Ipc: H01F 1/11 20060101ALI20230202BHEP

Ipc: H01F 1/06 20060101ALI20230202BHEP

Ipc: H01F 7/02 20060101AFI20230202BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230316

INTG Intention to grant announced

Effective date: 20230320

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAUDRICH, ROLF

Owner name: HALBEDEL, BERND

Owner name: MAY, MATHIAS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BAUDRICH, ROLF

Inventor name: HALBEDEL, BERND

Inventor name: MAY, MATHIAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019008534

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20230801

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230807

U20 Renewal fee paid [unitary effect]

Year of fee payment: 5

Effective date: 20230926

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231012

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231112

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231013

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019008534

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

26N No opposition filed

Effective date: 20240415

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20231012

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230917

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231012

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230930