EP3857573B1 - Grinding media, device and method for producing said grinding media and use thereof - Google Patents

Grinding media, device and method for producing said grinding media and use thereof Download PDF

Info

Publication number
EP3857573B1
EP3857573B1 EP19773020.3A EP19773020A EP3857573B1 EP 3857573 B1 EP3857573 B1 EP 3857573B1 EP 19773020 A EP19773020 A EP 19773020A EP 3857573 B1 EP3857573 B1 EP 3857573B1
Authority
EP
European Patent Office
Prior art keywords
hard
reactor
magnetic
magnetic cores
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19773020.3A
Other languages
German (de)
French (fr)
Other versions
EP3857573A1 (en
EP3857573C0 (en
Inventor
Mathias May
Bernd Halbedel
Rolf Baudrich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baudrich Rolf
HALBEDEL, BERND
May Mathias
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3857573A1 publication Critical patent/EP3857573A1/en
Application granted granted Critical
Publication of EP3857573B1 publication Critical patent/EP3857573B1/en
Publication of EP3857573C0 publication Critical patent/EP3857573C0/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • H01F7/0205Magnetic circuits with PM in general
    • H01F7/021Construction of PM
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • B02C17/18Details
    • B02C17/20Disintegrating members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/061Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/112Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles with a skin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/026Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets protecting methods against environmental influences, e.g. oxygen, by surface treatment

Definitions

  • the present invention relates to grinding media for use in an electromechanical comminution system (EMZ) and a corresponding device and a method for producing such grinding media.
  • EMF electromechanical comminution system
  • Such a crushing plant is, for example, in DE 10 2018 113 725 described.
  • Magnetic grinding media are used in DD 240 674 B1 , DE 41 13 490 A1 , EP 0510 256 B1 as well as U.S. 5,348,237 , which propose devices and methods for electromechanical comminution and/or deagglomeration or dispersion of disperse inorganic solids (silicates, oxide ceramics, pigments) or multiphase mixtures (dispersions), described as magnetic working bodies in order to generate intensive translational transverse movements and tumbling movements with electromagnetic fields of electrical excitation systems, and thus to generate sufficient mechanical stresses on the educt.
  • These working bodies are made of hard magnetic material (e.g.
  • hexaferrite are spherical or barrel-shaped with a diameter or length of 1.0 to 4.0 mm and fill the process chamber of the electromechanical comminution system at least 40 to 90% by volume. . It is to be expected that such working bodies made of hard-magnetic hexaferritic materials in electromechanical comminution systems will wear out severely, so that the product will be contaminated with the wear.
  • DE 32 33 926 A1 proposes an electromechanical comminuting, mixing or stirring device using ferromagnetic particles or bodies made of carbon steel or other materials having the necessary magnetic and/or electrical properties, suitably for fine comminution as pins of 15 mm and a diameter of 2 mm and which should have a higher magnetic conductance in the axial direction.
  • Such working bodies are not suitable for the comminution, deagglomeration and dispersing of disperse substances, pumpable multi-phase mixtures, since the magnetic properties are far too low and their movement and the stresses triggered thereby are insufficient.
  • foreign substances are introduced into the product as they wear out.
  • Patent applications are also known that describe the movement of the grinding media in mechanical mills (ball mill: PL382610A1 or. WO_2014/065680 A1 , RU 2 319 546 , mortar grinder: WO 86/01129 ) with magnet systems arranged on the outside of the grinding container and thus increase the efficiency of the grinding process (e.g. cement production: EP 2 128 107 A2 ) want to improve.
  • Grinding or working bodies made of ferromagnetic material primarily carbon steel, are used.
  • ferromagnetic material primarily carbon steel
  • heat up very strongly since eddy currents are generated in them due to the changing magnetic fields due to their high electrical conductivity. On the one hand, this reduces the efficiency of the grinding process and, on the other hand, leads to additional heating of the product.
  • off EP 0 434 985 A1 known to use secondary elements for mixing liquids or dispersing solids in liquids and/or grinding solids by means of linear motors, which are irregularly shaped on the outside to increase the mixing effect, e.g. by spikes, ribs, etc. and made of magnetizable metals (iron), a reaction metal (aluminum or copper), a compound reaction metal (iron/aluminium, iron/copper) or magnetisable plastic or magnetic rubber.
  • the components are assembled in a sandwich construction, for example by gluing.
  • such secondary elements can be encased with a non-magnetic material, eg plastic. None of the suggested Embodiments represents an EMZ grinding body and can be used as such in comminution plants (EMZ) for comminution, deagglomeration and dispersing of disperse substances, pumpable multi-phase mixtures.
  • EMZ comminution plants
  • magnetobeads magnetic working bodies
  • magnetobeads which are mainly used in carrier technology for biocatalysis, immobilization, separation and/or analysis.
  • a comprehensive overview is given in the Publication Pieters, BR; Williams, R.A.; Webb, C.: Magnetic carrier technology.
  • Magnetic polymer particles as carriers for enzymes, bacteria, cells, RNA and proteins are used in U.S. 5,814,687 called, which are produced by mixing a monomer with superparamagnetic particles and then polymerizing.
  • the patent specification DE 196 38 591 describes magnetic particles that are constructed as 50-1500 nm large monodisperse SiO2 spheres with a magnetic particle layer ⁇ 60 nm thick.
  • JP 0830 8570 it is suggested to mix porous ceramics with 0.01-100 ⁇ m fine paramagnetic particles, shape the mixture and then sinter.
  • the carriers are suitable for immobilization in the field of fermentation, biochemistry and environmental technology.
  • US2010/046323 and US2006/133954 show hard-magnetic bodies that are coated with polymers and intended for mixing liquids.
  • JP H09 325656 shows how polymer coatings are applied to toner particles using a fluidized bed process.
  • the object of the present invention is to provide grinding bodies with low grinding body wear and high product compatibility, which have appropriate magnetic and mechanical properties, and a corresponding device and a method for producing such grinding bodies.
  • a grinding body according to the invention is characterized in particular by the fact that the grinding body has a hard-magnetic core and at least one wear-resistant coating surrounding it.
  • Such coated, hard-magnetic grinding media are used in comminution plants for comminution, deagglomeration and/or dispersing, in particular of active ingredients that are required in pharmacy, biotechnology and/or the food industry.
  • the hard-magnetic cores of such grinding bodies can have a coercive field strength of at least 50 kA/m, preferably at least 70 kA/m and particularly preferably at least 100 kA/m. Furthermore, they can have a remanence of >50 mT, preferably >70 mT and particularly preferably >100 mT.
  • the wear-resistant layer is a polymer layer, for example. This has corresponding physical and/or chemical properties which are advantageous when the grinding bodies are used as mentioned above.
  • the hard-magnetic core is spherical and can be correspondingly magnetizable.
  • the coating can have a thickness of 5 ⁇ m to 500 ⁇ m and preferably from 10 ⁇ m to 300 ⁇ m.
  • the spherical shape of the hard-magnetic cores has a diameter of 0.1 mm to 10 mm.
  • the polymer layer or coating can be closed and/or at least one primer layer can be arranged between the polymer layer and the hard-magnetic core as an adhesion-promoting layer.
  • the surface of the coating can be smoothed.
  • the hard magnetic cores are first treated mechanically and/or chemically on their surface to improve the physical and/or chemical adhesiveness in order to increase the surface roughness. Then can the hard-magnetic cores are magnetized and then fed to a device according to the invention for the production of the grinding media.
  • Such a device has at least one reactor, which is divided by a gas-permeable floor into a lower, material-free area and an upper, material-carrying area.
  • the material-carrying area serves to accommodate fluidized, disperse coating material and fluidized, hard-magnetic cores. Furthermore, the material-carrying area is surrounded by a magnet system for fluidizing the hard-magnetic cores.
  • the pretreated hard-magnetic cores are fed to the reactor in which the coating material is already in dispersed form. Before being fed in and/or in the reactor, the hard-magnetic cores are heated to a temperature that is higher than a melting point of the coating material but lower than a Curie temperature of the hard-magnetic cores.
  • the hard-magnetic cores are then fluidized by the magnet system or the magnetic field generated by it, so that particles of the coating material come into contact with the surfaces of the hard-magnetic cores and melt there due to the temperature. By removing the heat of fusion, the particles of the coating material solidify. After a sufficient residence time in the reactor, the hard-magnetic bodies are preferably completely and evenly coated with the coating material.
  • the hard-magnetic cores with their coating can then be removed from the reactor as finished grinding media, cooled and optionally post-treated.
  • These grinding media are then very well suited for use in electromechanical comminution systems in the magnetized state or also demagnetized in mechanical comminution systems for comminution, deagglomeration and/or dispersing of disperse substances and/or pumpable multi-phase mixtures, also in areas of application in the field of pharmacy and the like and are characterized characterized by low material wear and high product compatibility.
  • the grinding media according to the invention are characterized in that, in the demagnetized state, they can also be used in ball mills, such as agitator ball mills or the like, for comminuting, deagglomerating and/or dispersing active substances or organic materials in general.
  • the grinding media according to the invention are also characterized by a higher density, so that a higher processing intensity is possible with the same operating parameters of ball mills.
  • the device according to the invention for producing such grinding bodies has a gas-permeable base in the corresponding reactor. Furthermore, the reactor can have a gas inlet opening below this floor. As a result, a gas flow can be introduced into the material-carrying area, which supports, for example, the fluidization of the particles of the coating material and also the fluidization of the hard-magnetic cores. However, the main fluidization of the hard-magnetic cores takes place through the magnet system surrounding the reactor.
  • At least one closable opening for feeding cores, coating material and/or for removing the finished grinding media can be formed above the base.
  • the arrangement of several openings for the separate supply of corresponding substances is also possible.
  • the magnet system which completely surrounds the reactor above the gas-permeable floor, enables corresponding fluidization of heated, magnetized, hard-magnetic cores.
  • the magnet system can have at least one coil that completely surrounds the reactor.
  • a heatable and in particular funnel-shaped container can be assigned or arranged in particular in an upper end region of the reactor, in which previously magnetized hard-magnetic cores can be arranged for heating.
  • the hard magnetic cores are heated to a temperature which is lower than a corresponding Curie temperature of the hard magnetic cores and higher than a melting temperature of the coating material.
  • Appropriate openings in the reactor have already been pointed out, with at least one lateral opening for removing coated hard-magnetic cores, i. H. the finished grinding media, can be arranged.
  • An example of a heating device is heating with microwaves, in which case a corresponding microwave antenna, which is connected to a controllable microwave generator, can be arranged in the material-carrying area.
  • a corresponding microwave antenna which is connected to a controllable microwave generator, can be arranged in the material-carrying area.
  • the reactor above the gas-permeable tray should be formed of a microwave-non-absorbent material.
  • At least one temperature sensor can preferably be provided in particular above the gas-permeable floor and in particular in the material-carrying area. This can be used to record the mean temperature in the reactor and/or the coating material and/or the hard-magnetic cores. Of course, several temperature sensors are also conceivable, which can be assigned to different areas of the reactor, for example.
  • the device according to the invention magnetizes the hard-magnetic cores and heats them to a temperature above the melting point and below the Curie temperature.
  • These magnetized and heated hard-magnetic cores are then fluidized by the corresponding magnetic field of the magnet system that changes over time and location.
  • the likewise fluidized, powdery coating material is then melted on the surfaces of the heated, hard-magnetic cores, so that a coating can form.
  • the grinding media produced in this way can be removed and cooled to room temperature.
  • a magnetic field that changes over time and location is generated in the reactor by an additional magnet system.
  • This magnet system has at least one coil and surrounds the reactor above the gas-permeable floor. Alternating currents flow through the magnet system and, for example in the middle of the gas-permeable floor, has a magnetic flux density with an effective value of at least 5 mT, with the frequencies of the alternating currents having to be adapted to the mass of the hard-magnetic cores.
  • Such a magnetic field is used, for example, to fluidize the hard-magnetic cores in the material-carrying area of the reactor.
  • the hard-magnetic cores are already completely or at least partially heated after they have been magnetized and still outside the reactor. It is also possible for the hard-magnetic cores in the reactor to be heated in the fluidized state by means of a heating device and, for example, by microwaves.
  • externally pre-coated and magnetized hard-magnetic cores that are fed into the reactor can be heated with the microwave and completely coated.
  • the removal of the finished grinding bodies from the reactor or their feeding can optionally be done manually.
  • Correspondingly finished grinding bodies can be smoothed after they have been removed from the reactor, for example by tumbling (vibratory grinding).
  • the device according to the invention for producing the grinding media is also suitable for recoating grinding media that have already been used.
  • any residual coating present on such grinding bodies can be removed and the core surfaces can also be pretreated using the methods already described (mechanical and/or chemical roughening and/or application of a primer layer). These can then be returned to the device according to the invention in the form of the remaining hard-magnetic cores.
  • the grinding media according to the invention can be used in electromechanical comminution systems for comminution, deagglomeration and/or dispersing of active ingredients which are required in pharmacy, biotechnology and/or the food industry. This also applies to ball mills, in which case the grinding media can be demagnetized beforehand.
  • the hard-magnetic cores are made of strontium hexaferrite (SrFe 12 O 19 ).
  • Other materials can be used, which in particular have coercive field strengths 21, see 2 , of, for example, >50 kA/m and remanences 22 of >50 mT.
  • Such materials are rare earth magnets from the material systems Nb-Fe-B, Pr-Fe-B or Sm-Co, AlNiCo materials and also Fe-CrCo, PtCo and MnAlC alloys.
  • the cores shown with the appropriate sizes were produced from a stable slurry containing strontium hexaferrite particles using a drop-forming process, followed by drying and sintering.
  • Other sizes of hard magnetic cores smaller than 1.0 mm or larger than 1.6 mm and other shaping processes such as pressing, briquetting, spray drying, fluidized bed granulation or simple pelleting of the starting materials with subsequent temperature treatments up to sintering are also possible.
  • Such forming processes determine the feasible sizes, shapes and strengths as well as the surface morphology of the hard magnetic cores.
  • FIG. 3a and 3b different surfaces 24 of the hard magnetic cores 6 are shown.
  • the illustrations are electron micrographs of an untreated ( Figure 3a ) and a surface-treated ( Figure 3b ) hard magnetic core with a diameter of 29.
  • the surface treatment after Figure 3b was carried out chemically using 14.8 molar phosphoric acid (H 3 PO 4 ) at 120° C. for 30 minutes. This etching resulted in an increase in the surface roughness, which enables better mechanical adhesion of further layers. Etching is also possible with other acids such as hydrochloric acid, aqua regia or the like.
  • a volume ratio of hard magnetic cores to solvent was 1:50 to 1:100 in these chemical treatments in order to avoid concentration of the solvates.
  • the surface treatment according to the invention leads to a mass loss of less than 20% by weight, so that a corresponding change in size of the hard-magnetic cores is less than 5%.
  • a primer layer can be applied, for example by silanizing the surface of the hard-magnetic cores. This allows the formation of strong bonds between the core material and the coating material.
  • organofunctional silanes are preferably used. These have a functional group -X, which connects to the polymer layer. The connection to the organic material takes place via a hydrolyzable functional group. This combines with the -OH groups, which are always found on inorganic materials. This creates covalent bonds with the inorganic substrate via a condensation reaction.
  • an appropriate -X functional group is selected. This depends on the polymer used. Possible groups are amino (-NH 2 ), sulfur (-S), glycidol (-C 3 H 6 O 2 ) and metacryloxy (-C 4 H 5 O 2 ). Aminosilanes are suitable for a polymer coating with polyamide.
  • Figure 4a and 4b show electron micrographs of surfaces 24 of an untreated ( Figure 4a ) and a silanized ( Figure 4b ) Hard magnetic core 6.
  • a 5 vol% silane-acetone solution was used used.
  • a continuous layer can be seen in the upper part of the electron micrograph 4b. On the rest of the image, this layer is covered by particles that are tightly bound to the surface.
  • Other solvents that can be used are water and ethanol.
  • the hard-magnetic cores should be washed with the solvent used after silanization, dried in air and then baked in an oven, for example at 105°C for 1 hour.
  • Figure 5a and 5b show light micrographs of cross sections of hard magnetic cores coated with a polyamide as the coating material, see coating 28. These were reproduced in a device according to the invention 7 manufactured.
  • Figure 5a is a coating of corresponding thickness 23 less than thickness 23 in Figure 5b educated.
  • coating materials that can be used are polymers that have a melting temperature below the Curie temperature of the hard magnetic cores and can harden by cooling or by reactive components.
  • the corresponding polymer powders can consist of a pure substance, mixed with additives and used as a mixture (master batches) to achieve certain properties.
  • Coating materials can be based on the following polymers: polyamide, polypropylene, polystyrene, polyether, ketone, polyurethane, epoxy resin and the like.
  • the coating materials are selected in particular according to the fact that they can be melted below the Curie temperature of the selected hard magnetic core material, are sufficiently wear-resistant after curing and are approved for the processing of corresponding products (see the preceding statements).
  • the reactor 7 shows such a device with a reactor 1, through which coated hard-magnetic cores, ie grinding bodies according to the invention, can be produced.
  • the reactor itself consists of a non-ferromagnetic material and has an upper opening 2 . Hard-magnetic cores can be supplied via the upper opening 2 .
  • the reactor 1 has a gas-permeable base 4, which has a lower material-free area 26, see also 8 , separated from a material-carrying area 27 .
  • the material-free area 26 extends from the gas-permeable floor 4 to a lower opening 3.
  • the material-carrying area 27 extends above the Gas-permeable floor 4 and is essentially limited by the height of the reactor, so that it can be larger than in the Figures 7 to 10 shown.
  • the gas-permeable base 4 also consists of a non-ferromagnetic material.
  • the embodiment after 7 suitable for a batch coating of hard magnetic cores 6.
  • the hard-magnetic cores 6 to be coated are preferably magnetized to saturation using a magnetizing device (not shown).
  • the magnetization can be done by pulse magnetization.
  • the magnetized cores are then heated, e.g. B. in an electrically heated oven, to a temperature that in the reactor 1 in contact with particles of a coating material 7 can melt them. However, the temperature is lower than a corresponding Curie temperature of the hard magnetic cores.
  • the opening 2 is used for the addition of coating material, the heated and magnetized hard magnetic cores and the removal of finished coated hard magnetic cores, i. H. the finished grinding media.
  • a gas stream can be introduced through the lower opening 3 , which gas stream is distributed uniformly over the reactor cross section from below when it passes through the gas-permeable base 4 and supports fluidization of the disperse coating material 7 .
  • a magnet system 5 Above the gas-permeable floor 4 is a magnet system 5 with two coils 30 surrounding the reactor.
  • the magnet system and its time- and location-dependent magnetic field result in a field gradient that changes over time and location, which fluidizes the heated and magnetized hard-magnetic cores 6 that are fed in via the opening 2 .
  • the disperse coating material 7 is also fluidized by the movement of the hard-magnetic cores 6, as well as by the gas flow already described above.
  • the coating material melts on contact with surfaces 24 of the heated, hard-magnetic cores.
  • the overall resulting temperature of the disperse coating material 7 determines a thickness 23 of the coating 28 on the hard magnetic cores 6 with a constant dwell time of the hard magnetic cores in the reactor 1, see also 6 .
  • the magnet system 5 after 7 has two coils 30 concentrically surrounding the reactor, through which alternating currents flow. These generate a temporally and spatially changing magnetic flux density distribution in the material-carrying area 27 of the reactor 1, preferably with an effective value of at least 5 mT on the gas-permeable floor 4.
  • the frequency of the alternating currents in the coils 30 of the magnet system 5, which determine the flux density changes over time, should not exceed a frequency at which the hard-magnetic cores 6 can no longer follow the changes in flux density due to their inertia. For example, frequencies greater than 10 Hz and less than 400 Hz should be set for cores with a size of >0.5 mm and densities of around 4 to 5 kg/dm 3 .
  • FIG. 8 shows a second embodiment of a device according to the invention or a reactor 1 according to the invention. This differs from the first embodiment 7 by heating the magnetized, hard-magnetic cores 6 to a required process temperature via a heating device 37 in the area of a funnel 9.
  • the heating device 37 can be designed to be controllable in order to achieve the corresponding temperature of the hard-magnetic cores in a reproducible manner.
  • the heating device 37 is in front of a reactor opening 32 (see also 8 ) and serves to feed the heated, magnetized, hard-magnetic cores 12 into the reactor 1.
  • the feed is carried out magnetically with another magnet system 11 operated in a pulsed manner. This enables a quasi-continuous process control of the coating.
  • Completely coated, hard-magnetic cores can be removed from the reactor 1 via an opening 13 with a rod-like holding magnet or the like when the magnet system 11 is not electrically active.
  • a further opening 14 is arranged as an exhaust gas opening opposite the opening 13 .
  • the opening 32 of the reactor, in the upper end region 31, is in the exemplary embodiment 8 via a connection 33 in a heatable funnel-shaped container 9 over.
  • the previously magnetized, hard-magnetic cores are heated by means of the heating device 37 to a temperature lower than the Curie temperature of the cores and higher than the melting point of the coating material.
  • Other heating devices are also possible, such as infrared radiators, induction heating, magnetrons or the like.
  • the magnet system 11 comprises an ironless coil which is periodically pulsed with a current.
  • Current pulse height and duration are selected in such a way that a short-term magnetic field is created which penetrates the lower area of the bed of heated, magnetized, hard-magnetic cores 12 and which cancels out the magnetic holding forces between the cores in this area.
  • a corresponding quantity of hard magnetic cores falls through the opening 32 as an exit into the reactor 1, with the cores remaining in the funnel 9 slipping down.
  • the amount of hard magnetic cores supplied can be adjusted by the current pulse height and pulse duration.
  • the corresponding finished grinding bodies are removed from the reactor 1 after a residence time required for coating the fluidized, hard-magnetic cores 6 .
  • the coating process can also be carried out periodically.
  • FIG 9 12 shows a third exemplary embodiment of the device or of the reactor 1.
  • This differs from the exemplary embodiments according to FIG 7 and 8th in that the magnetized, hard-magnetic cores are heated to the required process temperature by coupling in microwave power as a heating device 34 (see figure 10 ) by means of at least one antenna 15 directly on the reactor 1.
  • the reactor 1 thus consists of a non-microwave-absorbing material, such as Teflon, silica glass or the like, at least in the region where the microwave radiation acts.
  • the reactor 1 is surrounded by a metallic grid 18 in the region where the microwave radiation acts, so that the microwave radiation is negligible and prescribed limit values are observed ( ⁇ 50 W/m 2 at a distance of 5 cm).
  • the supplied microwave power can be controlled by measuring, fiber-optically, pyrometrically or the like, a surface temperature of the hard-magnetic cores 6 .
  • a corresponding design of a reactor 1 ensures, on the one hand, a coating of very small ( ⁇ 1 mm) hard magnetic cores 6, since such cores would cool down too quickly when heated before and during entry into the reactor 1 as a result of their low heat storage capacity, and, on the other hand, a better and reproducible coating quality for all core sizes.
  • externally pretreated, in particular precoated, non-magnetized hard magnetic cores which were precoated in a preliminary stage with a coating material/binder suspension and to which further layers were applied as solid films using known coating methods, can then be fed magnetized to the reactor. Thereafter, without further addition of disperse coating material, the layers already present in the reactor can be melted in order to improve the homogeneity and/or the surface quality.
  • the cores can also be pretreated prior to the precoating, see for example the surface treatment described above.
  • FIG. 10 represents a fourth exemplary embodiment of a device or a reactor 1 according to the invention.
  • Uncoated hard magnetic cores 6 are first magnetized, weighed and placed in the reactor 1. Then the magnet system 5 is switched on by a controller 35, which serves to move and fluidize the cores. At the same time, the microwave generator 16 for heating the hard-magnetic cores 6 is activated. This takes place via microwave antennas 15 and the delivery of corresponding microwaves. Measures the temperature sensor 17 reaching a target temperature of z. B. 176 ° C, is supplied by means of a heater 36 temperature-controlled air as a gas stream 8 for fluidization and also added the coating powder. The desired temperature is then maintained according to the temperature sensor 17, for example for 3 minutes.
  • a controller for example a programmable logic controller 19 .
  • the reactor size depends on the reactor size, the amount of hard magnetic cores filled in, the core size and the desired layer thickness.
  • the target temperature is maintained until sufficient coating material has been melted onto the magnetized, hard-magnetic cores 6 .
  • the microwave generator 16 and the heater 36 are switched off.
  • a corresponding supply of air as a gas stream 8 continues to be operated for cooling until the temperature sensor 17 falls below a corresponding setpoint value.
  • the coated hard-magnetic cores are then removed via the opening 13 (see 8 ). This is advantageously carried out with a rod which is provided at the end with a permanent magnet or an activatable electric coil.
  • the magnetic coils 30 are switched off by means of the controller 35 and the reactor 1 is completely emptied and cleaned and, if necessary, refilled.
  • Figure 11a and 11b show finished grinding media, ie coated, hard magnetic cores according to the invention.
  • the coating on the hard magnetic cores is closed. After Figure 11a the coating has a corresponding roughness.
  • a mechanical post-treatment to smooth the surfaces of the grinding media is possible. Drumming, magnetic fluidization in a reactor without coating material or targeted stressing ("grinding") in an EMZ system with an abrasive material, for example aluminum oxide, are suitable.
  • the grinding bodies 20 can also be demagnetized if necessary. This succeeds in a decaying alternating field, which is operated by a coil that is operated with a controllable alternating current source - in the simplest case a regulating transformer.
  • the alternating field must at least reach the saturation field strength of the hard-magnetic cores and then decay or be reduced to zero.
  • Another way to demagnetize is to determine the coercivity of the polarization of the hard magnetic nuclei, e.g. B. by recording the hysteresis curve with a vibration magnetometer, and then using a magnet system fed with direct current to build up an opposing field of this strength and to let it act briefly on the hard magnetic cores.
  • the hard magnetic cores must be sufficiently mechanically fixed to prevent them from moving in the direction of the magnetic field generated for demagnetization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Dermatology (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Food Science & Technology (AREA)
  • Hard Magnetic Materials (AREA)

Description

Die vorliegende Erfindung betrifft Mahlkörper zur Verwendung in einer elektromechanischen Zerkleinerungsanlage (EMZ) sowie eine entsprechende Vorrichtung und ein Verfahren zur Herstellung solcher Mahlkörper.The present invention relates to grinding media for use in an electromechanical comminution system (EMZ) and a corresponding device and a method for producing such grinding media.

In einer solchen Zerkleinerungsanlage erfolgt eine Zerkleinerung, Deagglomeration und/oder Dispergierung von dispersen Stoffen und/oder pumpfähigen Mehrphasengemischen. Eine solche Zerkleinerungsanlage ist beispielsweise in der DE 10 2018 113 725 beschrieben.In such a comminution plant, comminution, deagglomeration and/or dispersing of disperse substances and/or pumpable multiphase mixtures takes place. Such a crushing plant is, for example, in DE 10 2018 113 725 described.

Magnetische Mahlkörper werden in DD 240 674 B1 , DE 41 13 490 A1 , EP 0510 256 B1 sowie US 5 348 237 , die Vorrichtungen und Methoden zur elektromechanischen Zerkleinerung und/ oder Deagglomeration bzw. Dispergierung von dispersen anorganischen Feststoffen (Silikate, Oxidkeramiken, Pigmente) oder Mehrphasengemischen (Dispersionen) vorschlagen, als magnetische Arbeitskörper beschrieben, um damit intensive translatorische Querbewegungen und Taumelbewegungen mit elektromagnetischen Feldern, generiert von elektrischen Erregersystemen, und somit hinreichende mechanische Beanspruchungen auf das Edukt, zu erzeugen. Diese Arbeitskörper sind aus hartmagnetischen Material (z.B. Hexaferrite), besitzen eine kugel- oder tonnenförmige Gestalt mit einem Durchmesser bzw. einer Länge von 1,0 bis 4,0 mm und füllen die Prozesskammer der elektromechanischen Zerkleinerungsanlage zu mindestens 40 bis zu 90 Vol-%. Es ist zu erwarten, dass solche Arbeitskörper aus hartmagnetischen hexaferritischen Materialien in elektromechanischen Zerkleinerungsanlagen stark verschleißen, sodass das Produkt mit dem Verschleiß kontaminiert wird.Magnetic grinding media are used in DD 240 674 B1 , DE 41 13 490 A1 , EP 0510 256 B1 as well as U.S. 5,348,237 , which propose devices and methods for electromechanical comminution and/or deagglomeration or dispersion of disperse inorganic solids (silicates, oxide ceramics, pigments) or multiphase mixtures (dispersions), described as magnetic working bodies in order to generate intensive translational transverse movements and tumbling movements with electromagnetic fields of electrical excitation systems, and thus to generate sufficient mechanical stresses on the educt. These working bodies are made of hard magnetic material (e.g. hexaferrite), are spherical or barrel-shaped with a diameter or length of 1.0 to 4.0 mm and fill the process chamber of the electromechanical comminution system at least 40 to 90% by volume. . It is to be expected that such working bodies made of hard-magnetic hexaferritic materials in electromechanical comminution systems will wear out severely, so that the product will be contaminated with the wear.

In DE 32 33 926 A1 wird eine elektromechanische Zerkleinerungs-, Misch- oder Rührvorrichtung vorgeschlagen, die dafür ferromagnetische Teilchen oder Körper benutzt, die aus Kohlenstoffstahl oder anderen Materialien bestehen, die die erforderlichen magnetischen und/ oder elektrischer Eigenschaften besitzen, zweckmäßig für die Feinzerkleinerung als Stifte mit einer Länge von 15 mm und einem Durchmesser von 2 mm auszuführen sind und die einen höheren magnetischen Leitwert in axialer Richtung aufweisen sollten. Solche Arbeitskörper sind nicht für die Zerkleinerung, Deagglomeration und Dispergierung von dispersen Stoffen, pumpfähigen Mehrphasengemischen geeignet, da die magnetischen Eigenschaften viel zu gering und deshalb ihre Bewegung und die damit ausgelösten Beanspruchungen unzureichend sind. Zudem werden mit ihrem Verschleiß Fremdstoffe ins Produkt eingetragen.In DE 32 33 926 A1 proposes an electromechanical comminuting, mixing or stirring device using ferromagnetic particles or bodies made of carbon steel or other materials having the necessary magnetic and/or electrical properties, suitably for fine comminution as pins of 15 mm and a diameter of 2 mm and which should have a higher magnetic conductance in the axial direction. Such working bodies are not suitable for the comminution, deagglomeration and dispersing of disperse substances, pumpable multi-phase mixtures, since the magnetic properties are far too low and their movement and the stresses triggered thereby are insufficient. In addition, foreign substances are introduced into the product as they wear out.

In DE 27 12 620 A1 werden vielfach magnetisch polarisierte Arbeitskörper vorgeschlagen, um eine zusätzliche Verungleichmäßigung der Arbeitskörperbewegung zu erreichen. Eine mehr-polige Magnetisierung ist jedoch sehr aufwendig und technisch nur an großen Arbeitskörpern (> 5 mm) realisierbar. Dann ist aber aufgrund des großen Lückenvolumens zwischen den Arbeitskörpern keine Feinzerkleinerung bzw. Deagglomeration und Dispergierung von Dispersionen möglich.In DE 27 12 620 A1 are often proposed magnetically polarized working body to achieve an additional non-uniformity of the working body movement. However, multi-pole magnetization is very complex and technically feasible only on large working bodies (> 5 mm). But then, due to the large gap volume between the working bodies, no fine comminution or deagglomeration and dispersing of dispersions is possible.

In DE 198 55 219 B1 wird zur Unterstützung der desintegrierenden Wirkung von niederfrequenten elektromagnetischen Feldern bei Biomassen der Einsatz von aufmagnetisierten, hartmagnetischen, inerten Arbeitskörpern, die aus einem Hartferrit bestehen und sphärisch ausgebildet sind, vorgeschlagen. Hartferrite sind zwar in Säuren und Laugen weitestgehend beständig, besitzen aber unzureichende mechanische Festigkeiten. Insbesondere die Bruchzähigkeit ist zu gering. Deshalb ist davon auszugehen, dass diese Arbeitskörper verschleißen, das Produkt kontaminieren, sowie bereits nach kurzen Betriebszeiten ersetzt werden müssen.In DE 198 55 219 B1 to support the disintegrating effect of low-frequency electromagnetic fields in biomass, the use of magnetized, hard-magnetic, inert working bodies, which consist of hard ferrite and are spherical, is proposed. Although hard ferrites are largely resistant to acids and alkalis, they have insufficient mechanical strength. In particular, the fracture toughness is too low. It can therefore be assumed that these working elements will wear out, contaminate the product and have to be replaced after only a short period of operation.

Weiterhin sind Patentanmeldungen bekannt, die die Mahlkörperbewegung mechanischer Mühlen (Kugelmühle: PL 382610 A1 bzw. WO_2014/065680 A1 , RU 2 319 546 , Mörsermühle: WO 86/01129 ) mit von außen auf den Mahlbehälter angeordneten Magnetsystemen elektromagnetisch unterstützen und damit die Effizienz des Mahlprozesses (z.B. Zementherstellung: EP 2 128 107 A2 ) verbessern wollen. Dabei werden Mahl- bzw. Arbeitskörper aus ferromagnetischem Material, vorrangig Kohlenstoffstähle, benutzt. Neben den geringen magnetischen Eigenschaften erwärmen sich solche Materialien sehr stark, da in ihnen infolge ihrer hohen elektrischen Leitfähigkeit Wirbelströme durch die sich ändernden Magnetfelder entstehen. Das senkt einerseits die Effizienz des Mahlprozesses und führt andererseits zu einer zusätzlichen Erwärmung des Produktes.Patent applications are also known that describe the movement of the grinding media in mechanical mills (ball mill: PL382610A1 or. WO_2014/065680 A1 , RU 2 319 546 , mortar grinder: WO 86/01129 ) with magnet systems arranged on the outside of the grinding container and thus increase the efficiency of the grinding process (e.g. cement production: EP 2 128 107 A2 ) want to improve. Grinding or working bodies made of ferromagnetic material, primarily carbon steel, are used. In addition to the low magnetic properties, such materials heat up very strongly, since eddy currents are generated in them due to the changing magnetic fields due to their high electrical conductivity. On the one hand, this reduces the efficiency of the grinding process and, on the other hand, leads to additional heating of the product.

Ebenso ist aus EP 0 434 985 A1 bekannt, zum Mischen von Flüssigkeiten oder Dispergieren von Feststoffen in Flüssigkeiten und/ oder Mahlen von Feststoffen mittels Linearmotoren Sekundärelemente zu verwenden, die zur Erhöhung der Mischwirkung außen unregelmäßig geformt sind z.B. durch Zacken, Rippen o.ä. und aus magnetisierbaren Metallen (Eisen), einem Reaktionsmetall (Aluminium oder Kupfer), einem Verbund-Reaktionsmetall (Eisen/ Aluminium, Eisen/ Kupfer) oder magnetisierbaren Kunststoff oder Magnetgummi bestehen. Die Bestandteile werden in Sandwich-Bauweise, z.B. durch Kleben, zusammengefügt. Zusätzlich können solche Sekundärelemente mit einem unmagnetischen Material, z.B. Kunststoff, umhüllt werden. Keine der vorgeschlagenen Ausführungsformen stellt einen EMZ-Mahlkörper dar und kann als solcher in Zerkleinerungsanlagen (EMZ) zur Zerkleinerung, Deagglomeration und Dispergierung von dispersen Stoffen, pumpfähigen Mehrphasengemischen verwendet werden.Likewise is off EP 0 434 985 A1 known to use secondary elements for mixing liquids or dispersing solids in liquids and/or grinding solids by means of linear motors, which are irregularly shaped on the outside to increase the mixing effect, e.g. by spikes, ribs, etc. and made of magnetizable metals (iron), a reaction metal (aluminum or copper), a compound reaction metal (iron/aluminium, iron/copper) or magnetisable plastic or magnetic rubber. The components are assembled in a sandwich construction, for example by gluing. In addition, such secondary elements can be encased with a non-magnetic material, eg plastic. None of the suggested Embodiments represents an EMZ grinding body and can be used as such in comminution plants (EMZ) for comminution, deagglomeration and dispersing of disperse substances, pumpable multi-phase mixtures.

Darüber hinaus sind magnetische Arbeitskörper - sogenannte Magnetobeads - bekannt, die hauptsächlich in der Carrier-Technologie zur Biokatalyse, Immobilisierung, Separation und/ oder Analyse anwendet werden. Eine umfassende Übersicht dazu wird in der Veröffentlichung Pieters, B. R.; Williams, R. A.; Webb, C.: Magnetic carrier technology. In: Williams, R. A. (Ed.): Colloid and Surface Engineering: Applications in the Process Industries. Butterworth Heinemann, Oxford 1992, S. 249-286 gegeben. Diese bekannten Magnetobeads in Form von Partikeln oder Kugeln sind ausschließlich aus Magnetit bzw. gemischt mit einem Polymer (=Komposit) und haben je nach Anwendung Abmessungen im Bereich von 0,2-150 µm. Sie sind damit immer weichmagnetisch und somit nicht für die elektromechanische Zerkleinerung, Deagglomeration und Dispergierung von dispersen Stoffen, pumpfähigen Mehrphasengemischen geeignet.In addition, magnetic working bodies—so-called magnetobeads—are known, which are mainly used in carrier technology for biocatalysis, immobilization, separation and/or analysis. A comprehensive overview is given in the Publication Pieters, BR; Williams, R.A.; Webb, C.: Magnetic carrier technology. In: Williams, RA (Ed.): Colloid and Surface Engineering: Applications in the Process Industries. Butterworth Heinemann, Oxford 1992, pp. 249-286 given. These known magnetobeads in the form of particles or spheres are made exclusively of magnetite or mixed with a polymer (=composite) and have dimensions in the range of 0.2-150 μm, depending on the application. They are therefore always soft-magnetic and therefore not suitable for the electromechanical comminution, deagglomeration and dispersing of disperse substances, pumpable multi-phase mixtures.

Magnetische Polymerpartikel als Carrier für Enzyme, Bakterien, Zellen, RNS und Proteine werden in US 5 814 687 genannt, die mittels Mischen eines Monomers mit superparamagnetischen Teilchen und anschließendem Polymerisieren erzeugt werden.Magnetic polymer particles as carriers for enzymes, bacteria, cells, RNA and proteins are used in U.S. 5,814,687 called, which are produced by mixing a monomer with superparamagnetic particles and then polymerizing.

Die Patentschrift DE 196 38 591 beschreibt Magnetpartikel, die als 50-1500 nm große monodisperse SiO2-Kugeln mit einer Magnetpartikelschicht von < 60 nm Dicke aufgebaut sind.The patent specification DE 196 38 591 describes magnetic particles that are constructed as 50-1500 nm large monodisperse SiO2 spheres with a magnetic particle layer < 60 nm thick.

In JP 0830 8570 wird vorgeschlagen, poröse Keramik mit 0,01-100 µm feinen paramagnetischen Partikeln zu mischen, die Mischung zu formen und dann zu sintern. Die Träger sind für die Immobilisierung auf dem Gebiet der Fermentation, Biochemie und Umwelttechnik geeignet.In JP 0830 8570 it is suggested to mix porous ceramics with 0.01-100 µm fine paramagnetic particles, shape the mixture and then sinter. The carriers are suitable for immobilization in the field of fermentation, biochemistry and environmental technology.

US 2010/046323 und US 2006/133954 zeigen hartmagnetische Körper, die mit Polymeren beschichtet und zum Durchmischen von Flüssigkeiten bestimmt sind. US2010/046323 and US2006/133954 show hard-magnetic bodies that are coated with polymers and intended for mixing liquids.

JP H09 325656 zeigt, wie mit einem Wirbelschichtverfahren Polymerbeschichtungen auf Toner-Partikeln aufgebracht wird. JP H09 325656 shows how polymer coatings are applied to toner particles using a fluidized bed process.

Der folgenden Erfindung liegt die Aufgabe zugrunde, Mahlkörper mit geringem Mahlkörperverschleiß und großer Produktverträglichkeit bereitzustellen, die entsprechende magnetische und mechanische Eigenschaften aufweisen sowie eine entsprechende Vorrichtung und ein Verfahren zur Herstellung solcher Mahlkörper.The object of the present invention is to provide grinding bodies with low grinding body wear and high product compatibility, which have appropriate magnetic and mechanical properties, and a corresponding device and a method for producing such grinding bodies.

Diese Aufgabe wird durch die unabhängigen Patentansprüche gelöst.This object is solved by the independent patent claims.

Ein erfindungsgemäßer Mahlkörper zeichnet sich insbesondere dadurch aus, dass der Mahlkörper einen hartmagnetischen Kern und wenigstens eine diesen umgebende, verschleißfeste Beschichtung aufweist. Solche beschichteten, hartmagnetischen Mahlkörper sind in Zerkleinerungsanlagen zur Zerkleinerung, Deagglomeration und/oder Dispergierung insbesondere von Wirkstoffen einsetzbar, die in der Pharmazie, Biotechnologie und/oder Lebensmittelindustrie benötigt werden.A grinding body according to the invention is characterized in particular by the fact that the grinding body has a hard-magnetic core and at least one wear-resistant coating surrounding it. Such coated, hard-magnetic grinding media are used in comminution plants for comminution, deagglomeration and/or dispersing, in particular of active ingredients that are required in pharmacy, biotechnology and/or the food industry.

Es wurden beispielsweise Versuche in der EMZ nach DE 10 2018 113 725 durchgeführt, bei der entsprechende beschichtete hartmagnetische Kerne nach 10 Minuten im Batchbetrieb keinen gravimetrisch nachweisbarer Masseverlust aufwiesen.There were, for example, attempts in the EMZ after DE 10 2018 113 725 carried out in which the corresponding coated hard magnetic cores showed no gravimetrically detectable loss of mass after 10 minutes in batch operation.

Bei unbeschichteten Mahlkörpern wurde unter gleichen Bedingungen allerdings ein relativer Masseverlust von 1 bis 10 wt-% festgestellt. Solche Mahlkörper führen zu höheren Betriebskosten aufgrund des Verschleißes und sind mit Produkten der Pharmazie, Biotechnologie und/oder Lebensmittelindustrie nicht produktverträglich und folglich in entsprechenden Zerkleinerungsanlagen nicht erlaubt.In the case of uncoated grinding media, however, a relative loss in mass of 1 to 10% by weight was determined under the same conditions. Such grinding media lead to higher operating costs due to wear and tear and are not product-compatible with products from the pharmaceutical, biotechnology and/or food industry and are therefore not permitted in corresponding comminution plants.

Die hartmagnetischen Kerne solcher Mahlkörper können eine Koerzitivfeldstärke von mindestens 50 kA/m, vorzugsweise mindestens 70 kA/m und insbesondere bevorzugt von mindestens 100 kA/m aufweisen. Weiterhin können sie eine Remanenz von > 50 mT, bevorzugt > 70 mT und insbesondere bevorzugt von > 100 mT aufweisen.The hard-magnetic cores of such grinding bodies can have a coercive field strength of at least 50 kA/m, preferably at least 70 kA/m and particularly preferably at least 100 kA/m. Furthermore, they can have a remanence of >50 mT, preferably >70 mT and particularly preferably >100 mT.

Die verschleißfeste Schicht ist beispielsweise eine Polymerschicht. Diese weist entsprechende physikalische und/oder chemische Eigenschaften auf, die bei dem oben genannten Einsatz der Mahlkörper von Vorteil ist.The wear-resistant layer is a polymer layer, for example. This has corresponding physical and/or chemical properties which are advantageous when the grinding bodies are used as mentioned above.

Der hartmagnetische Kern ist sphärisch ausgebildet und kann entsprechend magnetisierbar sein.The hard-magnetic core is spherical and can be correspondingly magnetizable.

Weiterhin kann die Beschichtung in Abhängigkeit von einer Kerngröße, insbesondere Kerndurchmesser, eine Dicke von 5 µm bis 500 µm und bevorzugt von 10 µm bis 300 µm aufweisen. Die sphärische Gestalt der hartmagnetischen Kerne hat dabei einen Durchmesser von 0,1 mm bis 10 mm.Furthermore, depending on a core size, in particular core diameter, the coating can have a thickness of 5 μm to 500 μm and preferably from 10 μm to 300 μm. The spherical shape of the hard-magnetic cores has a diameter of 0.1 mm to 10 mm.

In der Regel kann die Polymerschicht bzw. Beschichtung geschlossen sein und/oder zwischen Polymerschicht und hartmagnetischem Kern kann wenigstens eine Primerschicht als haftvermittelnde Schicht angeordnet sein. Außerdem kann die Oberfläche der Beschichtung geglättet sein. Bei der Herstellung der Mahlkörper werden zunächst die hartmagnetischen Kerne auf ihrer Oberfläche zur Verbesserung der physikalischen und/oder chemischen Haftfähigkeit mechanisch und/oder chemisch behandelt, um die Oberflächenrauheit zu vergrößern. Anschließend können die hartmagnetischen Kerne magnetisiert und dann einer erfindungsgemäßen Vorrichtung zur Herstellung der Mahlkörper zugeführt werden.As a rule, the polymer layer or coating can be closed and/or at least one primer layer can be arranged between the polymer layer and the hard-magnetic core as an adhesion-promoting layer. In addition, the surface of the coating can be smoothed. In the production of the grinding media, the hard magnetic cores are first treated mechanically and/or chemically on their surface to improve the physical and/or chemical adhesiveness in order to increase the surface roughness. Then can the hard-magnetic cores are magnetized and then fed to a device according to the invention for the production of the grinding media.

Eine solche Vorrichtung weist wenigstens einen Reaktor auf, der durch einen gasdurchlässigen Boden in einen unteren, materialfreien Bereich und einen oberen, materialführenden Bereich unterteilt ist. Der materialführende Bereich dient zur Aufnahme von fluidisiertem, dispersem Beschichtungsmaterial und fluidisierten, hartmagnetischen Kernen. Weiterhin ist der materialführende Bereich von einem Magnetsystem zur Fluidisierung der hartmagnetischen Kerne umgeben.Such a device has at least one reactor, which is divided by a gas-permeable floor into a lower, material-free area and an upper, material-carrying area. The material-carrying area serves to accommodate fluidized, disperse coating material and fluidized, hard-magnetic cores. Furthermore, the material-carrying area is surrounded by a magnet system for fluidizing the hard-magnetic cores.

Dabei werden die vorbehandelten hartmagnetischen Kerne, siehe die obigen Ausführungen, dem Reaktor zugeführt, in dem sich bereits das Beschichtungsmaterial in disperser Form befindet. Die hartmagnetischen Kerne werden vor Zuführung und/oder im Reaktor auf eine Temperatur größer als eine Schmelztemperatur des Beschichtungsmaterials, aber kleiner als eine Curie-Temperatur der hartmagnetischen Kerne aufgeheizt.In this case, the pretreated hard-magnetic cores, see the above statements, are fed to the reactor in which the coating material is already in dispersed form. Before being fed in and/or in the reactor, the hard-magnetic cores are heated to a temperature that is higher than a melting point of the coating material but lower than a Curie temperature of the hard-magnetic cores.

In dem materialführenden Bereich des Reaktors werden die hartmagnetischen Kerne dann von dem Magnetsystem bzw. dem von diesem erzeugten Magnetfeld fluidisiert, so dass Partikel des Beschichtungsmaterials in Kontakt mit den Oberflächen der hartmagnetischen Kerne treten und dort aufgrund der Temperatur aufschmelzen. Durch Entzug der Schmelzwärme erstarren die Partikel des Beschichtungsmaterials. Nach einer hinreichenden Verweilzeit im Reaktor sind die hartmagnetischen Körper vorzugweise vollständig und gleichmäßig mit dem Beschichtungsmaterial beschichtet.In the material-carrying area of the reactor, the hard-magnetic cores are then fluidized by the magnet system or the magnetic field generated by it, so that particles of the coating material come into contact with the surfaces of the hard-magnetic cores and melt there due to the temperature. By removing the heat of fusion, the particles of the coating material solidify. After a sufficient residence time in the reactor, the hard-magnetic bodies are preferably completely and evenly coated with the coating material.

Anschließend können die hartmagnetischen Kerne mit ihrer Beschichtung als fertiggestellte Mahlkörper aus dem Reaktor abgeführt, abgekühlt und ggf. nachbehandelt werden. Diese Mahlkörper sind dann zur Verwendung in elektromechanischen Zerkleinerungsanlagen in magnetisiertem Zustand oder auch entmagnetisiert in mechanischen Zerkleinerungsanlagen zur Zerkleinerung, Deagglomeration und/oder Dispergierung von dispersen Stoffen und/oder pumpfähigen Mehrphasengemischen auch bei Anwendungsgebieten aus dem Gebiet der Pharmazie und dergleichen sehr gut geeignet und zeichnen sich durch geringen Materialverschleiß und hohe Produktverträglichkeit aus.The hard-magnetic cores with their coating can then be removed from the reactor as finished grinding media, cooled and optionally post-treated. These grinding media are then very well suited for use in electromechanical comminution systems in the magnetized state or also demagnetized in mechanical comminution systems for comminution, deagglomeration and/or dispersing of disperse substances and/or pumpable multi-phase mixtures, also in areas of application in the field of pharmacy and the like and are characterized characterized by low material wear and high product compatibility.

Weiterhin zeichnen sich die erfindungsgemäßen Mahlkörper dadurch aus, dass sie im entmagnetisierten Zustand auch in Kugelmühlen, wie beispielweise Rührwerks-Kugelmühlen oder dergleichen, zur Zerkleinerung, Deagglomeration und/oder Dispergierung von Wirkstoffen bzw. allgemein organischen Materialien einsetzbar sind.Furthermore, the grinding media according to the invention are characterized in that, in the demagnetized state, they can also be used in ball mills, such as agitator ball mills or the like, for comminuting, deagglomerating and/or dispersing active substances or organic materials in general.

Gegenüber bekannten Mahlkörpern zeichnen sich die erfindungsgemäßen Mahlkörper weiterhin durch eine höhere Dichte aus, so dass bei gleichen Betriebsparametern von Kugelmühlen eine höhere Bearbeitungsintensität möglich ist.Compared to known grinding media, the grinding media according to the invention are also characterized by a higher density, so that a higher processing intensity is possible with the same operating parameters of ball mills.

Die erfindungsgemäße Vorrichtung zur Herstellung solcher Mahlkörper weist im entsprechenden Reaktor einen gasdurchlässigen Boden auf. Weiterhin kann der Reaktor unterhalb dieses Bodens eine Gaseinleitöffnung aufweisen. Dadurch ist ein Gasstrom in den materialführenden Bereich einleitbar, der beispielsweise die Fluidisierung der Partikel des Beschichtungsmaterials sowie auch eine Fluidisierung der hartmagnetischen Kerne unterstützt. Die hauptsächliche Fluidisierung der hartmagnetischen Kerne erfolgt allerdings durch das den Reaktor umgebende Magnetsystem.The device according to the invention for producing such grinding bodies has a gas-permeable base in the corresponding reactor. Furthermore, the reactor can have a gas inlet opening below this floor. As a result, a gas flow can be introduced into the material-carrying area, which supports, for example, the fluidization of the particles of the coating material and also the fluidization of the hard-magnetic cores. However, the main fluidization of the hard-magnetic cores takes place through the magnet system surrounding the reactor.

Um dem Reaktor auf einfache Art Material zuzuführen bzw. entnehmen zu können, kann oberhalb des Bodens zumindest eine verschließbare Öffnung zur Zufuhr von Kernen, von Beschichtungsmaterial und/oder zur Entnahme der fertiggestellten Mahlkörper ausgebildet sein. Natürlich ist auch die Anordnung von mehreren Öffnungen zur getrennten Zufuhr entsprechender Stoffe möglich.In order to be able to feed or remove material from the reactor in a simple manner, at least one closable opening for feeding cores, coating material and/or for removing the finished grinding media can be formed above the base. Of course, the arrangement of several openings for the separate supply of corresponding substances is also possible.

Es wurde bereits darauf hingewiesen, dass das den Reaktor oberhalb des gasdurchlässigen Bodens vollständig umgebende Magnetsystem eine entsprechende Fluidisierung von erhitzten, magnetisierten hartmagnetischen Kernen ermöglicht. Dazu kann das Magnetsystem wenigstens eine Spule aufweisen, die den Reaktor vollständig umgibt.It has already been pointed out that the magnet system, which completely surrounds the reactor above the gas-permeable floor, enables corresponding fluidization of heated, magnetized, hard-magnetic cores. For this purpose, the magnet system can have at least one coil that completely surrounds the reactor.

Um die hartmagnetischen Kerne ausreichend erwärmen zu können, kann insbesondere einem oberen Endbereich des Reaktors ein beheizbarer und insbesondere trichterförmiger Behälter zugeordnet oder dort angeordnet sein, in dem zuvor magnetisierte hartmagnetische Kerne zum Aufheizen anordenbar sind. Ein Heizen der hartmagnetischen Kerne erfolgt auf eine Temperatur, die kleiner als eine entsprechende Curie-Temperatur der hartmagnetischen Kerne und größer als eine Schmelztemperatur des Beschichtungsmaterials ist.In order to be able to heat the hard-magnetic cores sufficiently, a heatable and in particular funnel-shaped container can be assigned or arranged in particular in an upper end region of the reactor, in which previously magnetized hard-magnetic cores can be arranged for heating. The hard magnetic cores are heated to a temperature which is lower than a corresponding Curie temperature of the hard magnetic cores and higher than a melting temperature of the coating material.

Es besteht weiterhin die Möglichkeit, im Bereich einer Verbindung zwischen Reaktor und dem trichterförmigen Behälter ein weiteres Magnetsystem anzuordnen. Dies wird vorzugsweise periodisch impulsartig mit einem Strom betrieben. Stromimpulshöhe und -dauer können so gewählt werden, dass kurzzeitig zumindest in einem unteren Bereich des trichterförmigen Behälters angeordnete hartmagnetische Kerne so beeinflusst werden, dass deren gegenseitige magnetische Anziehung aufgehoben und somit in Folge der magnetischen Zugkraft durch dieses weitere Magnetsystem und der Schwerkraft eine bestimmte Menge von Kernen in den materialführenden Bereich des Reaktors fällt. Die zugeführte Menge der hartmagnetischen Kerne kann durch Stromimpulshöhe und Impulsdauer einstellbar sein.There is also the possibility of arranging another magnet system in the area of a connection between the reactor and the funnel-shaped container. This is preferably operated periodically in pulses with a current. Current pulse height and duration can be selected in such a way that hard magnetic cores arranged at least in a lower area of the funnel-shaped container are briefly influenced in such a way that their mutual magnetic attraction is canceled and thus, as a result of the magnetic pulling force through this additional magnet system and gravity, a certain amount of Cores in the material-carrying area of the reactor falls. The amount of hard-magnetic cores supplied can be adjusted by current pulse height and pulse duration.

Es wurde bereits auf entsprechende Öffnungen im Reaktor hingewiesen, wobei vorzugsweise im oberen Endbereich des Reaktors wenigstens eine seitliche Öffnung zur Entnahme beschichteter hartmagnetischer Kerne, d. h. der fertiggestellten Mahlkörper, angeordnet sein kann.Appropriate openings in the reactor have already been pointed out, with at least one lateral opening for removing coated hard-magnetic cores, i. H. the finished grinding media, can be arranged.

Es besteht die Möglichkeit, dass bereits vorgeheizte und magnetisierte hartmagnetische Kerne dem Reaktor zugeführt werden. In diesem Zusammenhang kann es sich allerdings als vorteilhaft erweisen, wenn im materialführenden Bereich eine weitere Heizeinrichtung angeordnet ist. Durch diese kann das Beschichtungsmaterial erwärmt werden, wobei allerdings auch Wärmeverluste oder eine direkte Erwärmung der fluidisierten, hartmagnetischen Kerne kompensiert bzw. erfolgen kann.It is possible that already preheated and magnetized hard magnetic cores are fed into the reactor. In this context, however, it can prove to be advantageous if a further heating device is arranged in the material-carrying area. The coating material can be heated by this, although heat losses or direct heating of the fluidized, hard-magnetic cores can also be compensated or ensued.

Ein Beispiel für eine Heizeinrichtung ist ein Aufheizen mit Mikrowellen, wobei eine entsprechende Mikrowellenantenne, die mit einem steuerbaren Mikrowellengenerator verbunden ist, im materialführenden Bereich angeordnet sein kann. In diesem Zusammenhang sollte der Reaktor oberhalb des gasdurchlässigen Bodens aus einem mikrowellen-nichtabsorbierenden Material gebildet sein.An example of a heating device is heating with microwaves, in which case a corresponding microwave antenna, which is connected to a controllable microwave generator, can be arranged in the material-carrying area. In this connection, the reactor above the gas-permeable tray should be formed of a microwave-non-absorbent material.

Bevorzugt kann insbesondere oberhalb des gasdurchlässigen Bodens und insbesondere im materialführenden Bereich wenigstens ein Temperatursensor vorgesehen sein. Dieser kann zur Erfassung der mittleren Temperatur im Reaktor und/oder des Beschichtungsmaterials und/oder der hartmagnetischen Kerne dienen. Es sind natürlich auch mehrere Temperatursensoren denkbar, die beispielsweise unterschiedlichen Bereichen des Reaktors zugeordnet sein können.At least one temperature sensor can preferably be provided in particular above the gas-permeable floor and in particular in the material-carrying area. This can be used to record the mean temperature in the reactor and/or the coating material and/or the hard-magnetic cores. Of course, several temperature sensors are also conceivable, which can be assigned to different areas of the reactor, for example.

Verfahrensmäßig ist darauf zu achten, dass durch die erfindungsgemäße Vorrichtung beispielsweise ein Magnetisieren der hartmagnetischen Kerne und ein Erwärmen auf eine Temperatur oberhalb der Schmelztemperatur und unterhalb der Curie-Temperatur erfolgt. Diese magnetisierten und erwärmten hartmagnetischen Kerne werden dann durch das entsprechende, sich zeitlich und örtlich ändernde Magnetfeld des Magnetsystems fluidisiert. Anschließend erfolgt ein Aufschmelzen des ebenfalls fluidisierten, pulvrigen Beschichtungsmaterials auf Oberflächen der erwärmten hartmagnetischen Kerne, so dass sich eine Beschichtung bilden kann.In terms of the method, it must be ensured that the device according to the invention, for example, magnetizes the hard-magnetic cores and heats them to a temperature above the melting point and below the Curie temperature. These magnetized and heated hard-magnetic cores are then fluidized by the corresponding magnetic field of the magnet system that changes over time and location. The likewise fluidized, powdery coating material is then melted on the surfaces of the heated, hard-magnetic cores, so that a coating can form.

Wenn sich eine, vorzugsweise geschlossene, Beschichtung gebildet hat und zusätzlich eine gewisse Sollschichtdicke erreicht ist, können die auf diese Weise hergestellten Mahlkörper abgeführt und auf Raumtemperatur abgekühlt werden.When a preferably closed coating has formed and a certain target layer thickness has also been reached, the grinding media produced in this way can be removed and cooled to room temperature.

In dem Reaktor wird durch ein weiteres Magnetsystem ein sich zeitlich und örtlich änderndes Magnetfeld erzeugt. Dieses Magnetsystem weist wenigstens eine Spule auf und umgibt den Reaktor oberhalb des gasdurchlässigen Bodens. Das Magnetsystem wird von Wechselströmen durchflossen und weist beispielsweise in der Mitte des gasdurchlässigen Bodens eine magnetische Flussdichte mit einem Effektivwert von mindestens 5 mT auf, wobei die Frequenzen der Wechselströme der Masse der hartmagnetischen Kerne anzupassen ist. Ein solches Magnetfeld dient beispielsweise zur Fluidisierung der hartmagnetischen Kerne in dem materialführenden Bereich des Reaktors.A magnetic field that changes over time and location is generated in the reactor by an additional magnet system. This magnet system has at least one coil and surrounds the reactor above the gas-permeable floor. Alternating currents flow through the magnet system and, for example in the middle of the gas-permeable floor, has a magnetic flux density with an effective value of at least 5 mT, with the frequencies of the alternating currents having to be adapted to the mass of the hard-magnetic cores. Such a magnetic field is used, for example, to fluidize the hard-magnetic cores in the material-carrying area of the reactor.

Um eine ausreichende Magnetisierung der hartmagnetischen Kerne bereits vor Zufuhr zum Reaktor zu erreichen, kann bereits außerhalb des Reaktors, vorzugsweise durch Impulsmagnetisierung, eine entsprechende Magnetisierung erfolgen. Vor einer solchen Magnetisierung außerhalb des Reaktors kann es sich als günstig erweisen, wenn Oberflächen der Kerne durch mechanische und/oder chemische Methoden aufgeraut werden. Dies verbessert die Haftung des Beschichtungsmaterials.In order to achieve sufficient magnetization of the hard-magnetic cores before they are fed into the reactor, appropriate magnetization can take place outside the reactor, preferably by pulse magnetization. Before such a magnetization outside of the reactor, it can prove advantageous if the surfaces of the cores are roughened by mechanical and/or chemical methods. This improves the adhesion of the coating material.

Erfindungsgemäß besteht weiterhin die Möglichkeit, dass eine vollständige oder zumindest teilweise Erwärmung der hartmagnetischen Kerne bereits nach ihrer Magnetisierung und noch außerhalb des Reaktors erfolgt. Ebenfalls besteht die Möglichkeit, dass die hartmagnetischen Kerne im Reaktor auch bereits im fluidisierten Zustand mittels einer Heizeinrichtung und beispielsweise durch Mikrowellen erhitzt werden.According to the invention, there is also the possibility that the hard-magnetic cores are already completely or at least partially heated after they have been magnetized and still outside the reactor. It is also possible for the hard-magnetic cores in the reactor to be heated in the fluidized state by means of a heating device and, for example, by microwaves.

Um die Haftung weiter zu verbessern, besteht außerdem die Möglichkeit, dass die hartmagnetischen Kerne mit einem Haftvermittler beschichtet werden. Dies kann vor der Magnetisierung erfolgen.In order to further improve adhesion, there is also the option of coating the hard-magnetic cores with an adhesion promoter. This can be done before magnetization.

Weiterhin können extern vorbeschichtete und magnetisierte hartmagnetische Kerne, die dem Reaktor zugeführt werden mit der Mikrowelle aufgeheizt und vollständig beschichtet werden.Furthermore, externally pre-coated and magnetized hard-magnetic cores that are fed into the reactor can be heated with the microwave and completely coated.

Erfindungsgemäß besteht weiterhin die Möglichkeit, entsprechend fertiggestellte Mahlkörper aus dem Reaktor zu entnehmen und im Wesentlichen gleichzeitig eine äquivalente Menge magnetisierter hartmagnetischer Kerne dem Reaktor neu zuzuführen. Dadurch kann im Wesentlichen immer eine gleiche Menge von solchen Kernen zur weiteren Behandlung im Reaktor bevorratet werden.According to the invention, there is also the possibility of removing correspondingly finished grinding media from the reactor and essentially simultaneously feeding an equivalent amount of magnetized hard-magnetic cores back into the reactor. As a result, essentially the same quantity of such cores can always be stored for further treatment in the reactor.

Die Entnahme der fertiggestellten Mahlkörper aus dem Reaktor bzw. auch deren Zufuhr kann ggf. manuell erfolgen. Entsprechend fertiggestellte Mahlkörper können nach ihrer Entnahme aus dem Reaktor geglättet werden, beispielsweise durch Trommeln (Gleitschleifen).The removal of the finished grinding bodies from the reactor or their feeding can optionally be done manually. Correspondingly finished grinding bodies can be smoothed after they have been removed from the reactor, for example by tumbling (vibratory grinding).

Weiterhin besteht die Möglichkeit, die Mahlkörper ggf. nach Größe zu sortieren und, bei Erfordernis, neu zu magnetisieren.It is also possible to sort the grinding media by size and, if necessary, to re-magnetise them.

Die erfindungsgemäße Vorrichtung zur Herstellung der Mahlkörper ist ebenfalls dazu geeignet, bereits benutzte Mahlkörper neu zu beschichten. Dazu kann bei solchen Mahlkörpern ggf. eine vorhandene Restbeschichtung entfernt werden und auch die Kernoberflächen mit den bereits beschriebenen Methoden (mechanische und/ oder chemische Aufrauhung und/ oder Aufbringen einer Primerschicht) vorbehandelt werden. Diese können dann in Form der verbleibenden hartmagnetischen Kerne der erfindungsgemäßen Vorrichtung wieder zugeführt werden.The device according to the invention for producing the grinding media is also suitable for recoating grinding media that have already been used. For this purpose, any residual coating present on such grinding bodies can be removed and the core surfaces can also be pretreated using the methods already described (mechanical and/or chemical roughening and/or application of a primer layer). These can then be returned to the device according to the invention in the form of the remaining hard-magnetic cores.

Es wurde bereits darauf hingewiesen, dass die erfindungsgemäßen Mahlkörper zur Verwendung in elektromechanischen Zerkleinerungsanlagen zur Zerkleinerung, Deagglomeration und/oder Dispergierung von Wirkstoffen verwendet werden können, die in der Pharmazie, Biotechnologie und/oder Lebensmittelindustrie benötigt werden. Dies gilt ebenfalls für Kugelmühlen, wobei in diesem Fall die Mahlkörper vorher entmagnetisiert werden können.It has already been pointed out that the grinding media according to the invention can be used in electromechanical comminution systems for comminution, deagglomeration and/or dispersing of active ingredients which are required in pharmacy, biotechnology and/or the food industry. This also applies to ball mills, in which case the grinding media can be demagnetized beforehand.

Im Folgenden werden vorteilhafte Ausführungsbeispiele der Erfindung anhand der beigefügten Figuren näher erläutert. Es zeigen

Figur 1:
eine Anzahl von hartmagnetischen Kernen;
Figur 2:
für ausgewählte hartmagnetische Kerne ermittelte Hysteresekurven;
Figur 3a:
einen unbehandelten hartmagnetischen Kern;
Figur 3b:
einen oberflächenbehandelten hartmagnetischen Kern;
Figur 4a:
eine elektronenmikroskopische Aufnahme einer Oberfläche eines unbehandelten hartmagnetischen Kerns;
Figur 4b:
eine behandelte Oberfläche eines hartmagnetischen Kerns analog zu Fig. 4a;
Figur 5a:
eine lichtmikroskopische Aufnahme eines Querschliffs eines beschichteten hartmagnetischen Kerns;
Figur 5b:
eine Aufnahme analog zu Fig. 5a mit anderer Schichtdicke der Beschichtung;
Figur 6:
ein Diagramm zur Darstellung unterschiedlicher Schichtdicken in Abhängigkeit von der Temperatur des fluidisierten Beschichtungsmaterials;
Figur 7:
ein erstes Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung;
Figur 8:
ein zweites Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung;
Figur 9:
ein drittes Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung;
Figur 10:
ein viertes Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung;
Figur 11a:
einen Mahlkörper mit Beschichtung; und
Figur 11b:
einen Mahlkörper analog zu Fig. 11a nach Glätten der Oberfläche.
Advantageous exemplary embodiments of the invention are explained in more detail below with reference to the attached figures. Show it
Figure 1:
a number of hard magnetic cores;
Figure 2:
hysteresis curves determined for selected hard magnetic cores;
Figure 3a:
an untreated hard magnetic core;
Figure 3b:
a surface-treated hard magnetic core;
Figure 4a:
an electron micrograph of a surface of an untreated hard magnetic core;
Figure 4b:
a treated surface of a hard magnetic core analogous to Figure 4a ;
Figure 5a:
an optical micrograph of a cross section of a coated hard magnetic core;
Figure 5b:
a recording analogous to Figure 5a with a different layer thickness of the coating;
Figure 6:
a diagram showing different layer thicknesses as a function of the temperature of the fluidized coating material;
Figure 7:
a first embodiment of a device according to the invention;
Figure 8:
a second embodiment of a device according to the invention;
Figure 9:
a third embodiment of a device according to the invention;
Figure 10:
a fourth embodiment of a device according to the invention;
Figure 11a:
a grinding media with a coating; and
Figure 11b:
a grinding media analogous to Figure 11a after smoothing the surface.

Fig. 1 zeigt eine Anzahl hartmagnetischer Kerne 6, die beim dargestellten Ausführungsbeispiel kugelförmig bzw. sphärisch ausgebildet sind und einen Durchmesser von 1 - 1,6 mm aufweisen. Andere Durchmesser sind ebenfalls einsetzbar. Bei dem dargestellten Ausführungsbeispiel bestehen die hartmagnetischen Kerne aus Strontium-Hexaferrit (SrFe12O19). Es sind andere Materialien verwendbar, die insbesondere Koerzitivfeldstärken 21, siehe Fig. 2, von beispielsweise > 50 kA/m und Remanenzen 22 von > 50 mT aufweisen. Solche Materialien sind Seltene-Erden-Magnete aus den Stoffsystemen Nb-Fe-B, Pr-Fe-B oder Sm-Co, AlNiCo-Werkstoffe und auch Fe-CrCo-, PtCo- und MnAlC-Legierungen. 1 shows a number of hard-magnetic cores 6, which in the illustrated embodiment are ball-shaped or spherical and have a diameter of 1-1.6 mm. Other diameters can also be used. In the illustrated embodiment, the hard-magnetic cores are made of strontium hexaferrite (SrFe 12 O 19 ). Other materials can be used, which in particular have coercive field strengths 21, see 2 , of, for example, >50 kA/m and remanences 22 of >50 mT. Such materials are rare earth magnets from the material systems Nb-Fe-B, Pr-Fe-B or Sm-Co, AlNiCo materials and also Fe-CrCo, PtCo and MnAlC alloys.

Die in Fig. 1 dargestellten Kerne mit entsprechenden Größen wurden mittels eines Vertropfungsverfahrens aus einem stabilen Slurry, der Strontium-Hexaferrit-Partikel enthält, mit anschließender Trocknung und Sinterung hergestellt. Andere Größen von hartmagnetischen Kernen kleiner als 1,0 mm oder größer als 1,6 mm und andere Formgebungsverfahren wie Pressen, Brikettierung, Sprühtrocknung, Wirbel- oder Fließbettgranulation oder einfache Pelletierung der Ausgangsstoffe mit anschließenden Temperaturbehandlungen bis zur Sinterung sind ebenfalls möglich. Solche Formgebungsverfahren bestimmen die machbaren Größen, Formen und Festigkeiten sowie die Oberflächenmorphologie der hartmagnetischen Kerne.In the 1 The cores shown with the appropriate sizes were produced from a stable slurry containing strontium hexaferrite particles using a drop-forming process, followed by drying and sintering. Other sizes of hard magnetic cores smaller than 1.0 mm or larger than 1.6 mm and other shaping processes such as pressing, briquetting, spray drying, fluidized bed granulation or simple pelleting of the starting materials with subsequent temperature treatments up to sintering are also possible. Such forming processes determine the feasible sizes, shapes and strengths as well as the surface morphology of the hard magnetic cores.

Fig. 2 stellt ein Diagramm dar, mit durch ein Probenvibrationsmagnetometer ermittelten Hysteresekurven für verschiedene ausgewählt hartmagnetische Kerne aus insgesamt drei Chargen. Diese sind aus Strontium-Hexaferrit hergestellt. Die entsprechende Koerzitivfeldstärke 21 und die magnetische Polarisation bzw. Remanenz 22 der hartmagnetischen Kerne ist entnehmbar. Dazu sei angemerkt, dass die Remanenz 22 der magnetischen Polarisation bei H=0 entspricht. In diesem Fall betragen die magnetischen Kennwerte Koerzitivfeldstärke 270 - 340 kA/m und Remanenz 162 - 200 mT. Diese liegen in dem erfindungsgemäß bevorzugten Bereich. 2 shows a diagram with hysteresis curves determined by a sample vibration magnetometer for various selected hard magnetic cores from a total of three batches. These are made of strontium hexaferrite. The corresponding coercivity 21 and the magnetic polarization or remanence 22 of the hard-magnetic cores can be seen. In addition note that the remanence 22 corresponds to the magnetic polarization at H=0. In this case, the magnetic characteristics are coercivity 270 - 340 kA/m and remanence 162 - 200 mT. These are in the range preferred according to the invention.

In den Fig. 3a und 3b sind verschiedene Oberflächen 24 der hartmagnetischen Kerne 6 dargestellt. Die Darstellungen sind elektronenmikroskopische Aufnahmen eines unbehandelten (Fig. 3a) und eines oberflächenbehandelten (Fig. 3b) hartmagnetischen Kerns mit Durchmesser 29. Die Oberflächenbehandlung nach Fig. 3b erfolgte chemisch mittels einer 14,8-molaren Phosphorsäure (H3PO4) bei 120°C für 30 Minuten. Durch dieses Ätzen erfolgte einer Erhöhung der Oberflächenrauigkeit, die eine bessere mechanische Haftung weiterer Schichten ermöglicht. Ätzungen sind auch mit anderen Säuren, wie Salzsäure, Königswasser oder dergleichen möglich. Ein Volumenverhältnis von hartmagnetischen Kernen zu Solvent betrug bei diesen chemischen Behandlungen 1:50 bis 1:100, um eine Aufkonzentration der Solvate zu vermeiden.In the Figure 3a and 3b different surfaces 24 of the hard magnetic cores 6 are shown. The illustrations are electron micrographs of an untreated ( Figure 3a ) and a surface-treated ( Figure 3b ) hard magnetic core with a diameter of 29. The surface treatment after Figure 3b was carried out chemically using 14.8 molar phosphoric acid (H 3 PO 4 ) at 120° C. for 30 minutes. This etching resulted in an increase in the surface roughness, which enables better mechanical adhesion of further layers. Etching is also possible with other acids such as hydrochloric acid, aqua regia or the like. A volume ratio of hard magnetic cores to solvent was 1:50 to 1:100 in these chemical treatments in order to avoid concentration of the solvates.

Anstelle einer chemischen Oberflächenbehandlung ist auch eine mechanische Aufrauung, beispielsweise durch Schleifen, Sandstrahlen oder dergleichen, möglich.Instead of chemical surface treatment, mechanical roughening, for example by grinding, sandblasting or the like, is also possible.

Die Oberflächenbehandlung gemäß Erfindung führt zu einem Masseverlust geringer als 20 wt-%, so dass eine entsprechende Größenänderung der hartmagnetischen Kerne weniger als 5 % beträgt.The surface treatment according to the invention leads to a mass loss of less than 20% by weight, so that a corresponding change in size of the hard-magnetic cores is less than 5%.

Um die Haftfestigkeit weiterhin zu verbessern, kann eine Primerschicht aufgetragen werden, beispielsweise durch eine Silanisierung der Oberfläche der hartmagnetischen Kerne. Dies erlaubt die Ausbildung starker Bindungen zwischen Kernmaterial und Beschichtungsmaterial.In order to further improve the adhesive strength, a primer layer can be applied, for example by silanizing the surface of the hard-magnetic cores. This allows the formation of strong bonds between the core material and the coating material.

Erfolgt die Beschichtung mit einem Polymer, werden vorzugsweise organofunktionelle Silane verwendet. Diese besitzen eine funktionelle Gruppe -X, welche sich mit der Polymerschicht verbindet. Die Anbindung an das organische Material erfolgt über eine hydrolisierbare funktionelle Gruppe. Diese verbindet sich mit den -OH-Gruppen, die sich grundsätzlich auf anorganischen Werkstoffen befinden. Dadurch entstehen kovalente Bindungen mit dem anorganischen Substrat über eine Kondensationsreaktion. Bei der Auswahl des organofunktionellen Silans wird eine passende funktionelle Gruppe -X ausgewählt. Diese ist abhängig von dem verwendeten Polymer. Möglich Gruppen sind Amino (-NH2), Schwefel (-S), Glycidol (-C3H6O2) und Metacryloxi (-C4H5O2). Bei einer Polymerbeschichtung mit Polyamid sind Aminosilane geeignet.If the coating takes place with a polymer, organofunctional silanes are preferably used. These have a functional group -X, which connects to the polymer layer. The connection to the organic material takes place via a hydrolyzable functional group. This combines with the -OH groups, which are always found on inorganic materials. This creates covalent bonds with the inorganic substrate via a condensation reaction. In selecting the organofunctional silane, an appropriate -X functional group is selected. This depends on the polymer used. Possible groups are amino (-NH 2 ), sulfur (-S), glycidol (-C 3 H 6 O 2 ) and metacryloxy (-C 4 H 5 O 2 ). Aminosilanes are suitable for a polymer coating with polyamide.

Fig. 4a und 4b zeigen elektronenmikroskopische Aufnahmen von Oberflächen 24 eines unbehandelten (Fig. 4a) und eines silanisierten (Fig. 4b) hartmagnetischen Kerns 6. Es wurde eine 5-Vol-%-Silan-Aceton-Lösung verwendet. Im oberen Teil der elektronenmikroskopischen Aufnahme 4b ist eine durchgehende Schicht erkennbar. Auf dem Rest der Aufnahme ist diese Schicht durch Partikel bedeckt, die fest an die Oberfläche gebunden sind. Weitere verwendbare Lösungsmittel sind Wasser und Ethanol. In der Regel sind die hartmagnetischen Kerne nach der Silanisierung mit dem verwendeten Lösungsmittel zu waschen, an Luft zu trocknen und abschließend in einem Ofen, beispielsweise für 1h bei 105°C, zu backen. Figure 4a and 4b show electron micrographs of surfaces 24 of an untreated ( Figure 4a ) and a silanized ( Figure 4b ) Hard magnetic core 6. A 5 vol% silane-acetone solution was used used. A continuous layer can be seen in the upper part of the electron micrograph 4b. On the rest of the image, this layer is covered by particles that are tightly bound to the surface. Other solvents that can be used are water and ethanol. As a rule, the hard-magnetic cores should be washed with the solvent used after silanization, dried in air and then baked in an oven, for example at 105°C for 1 hour.

Fig. 5a und 5b zeigen lichtmikroskopische Aufnahmen von Querschnitten von mit einem Polyamid als Beschichtungsmaterial beschichteten hartmagnetischen Kernen, siehe Beschichtung 28. Diese wurden in einer erfindungsgemäßen Vorrichtung nach Fig. 7 hergestellt. In Fig. 5a ist eine Beschichtung mit einer entsprechenden Dicke 23 geringer als eine Dicke 23 in Fig. 5b ausgebildet. Figure 5a and 5b show light micrographs of cross sections of hard magnetic cores coated with a polyamide as the coating material, see coating 28. These were reproduced in a device according to the invention 7 manufactured. In Figure 5a is a coating of corresponding thickness 23 less than thickness 23 in Figure 5b educated.

Nach Fig. 6 ergeben sich unterschiedliche Schichtdicken, beispielsweise in Abhängigkeit einer Pulvertemperatur des Beschichtungsmaterials, siehe Fig. 7 - 10.After 6 different layer thicknesses result, for example depending on a powder temperature of the coating material, see Figures 7 - 10 .

Weitere verwendbare Beschichtungsmaterialien sind Polymere, die eine Schmelztemperatur unter der Curie-Temperatur der hartmagnetischen Kerne besitzen und durch Abkühlen oder durch reaktive Bestandteile aushärten können. Die entsprechenden Polymerpulver können aus einem reinen Stoff bestehen, mit Zusatzstoffen versetzt und zur Erzielung bestimmter Eigenschaften als Mischung (Master-Batches) verwendet werden. Beschichtungsmaterialien können auf Basis folgender Polymere hergestellt sein: Polyamid, Polypropylen, Polystyrol, Polyäther, Keton, Polyurethan, Epoxyharz und dergleichen. Die Beschichtungsmaterialien werden insbesondere danach ausgewählt, dass diese unterhalb der Curie-Temperatur des gewählten hartmagnetischen Kernmaterials aufschmelzbar sind, nach Aushärten ausreichend verschleißfest und für die Aufbereitung entsprechender Produkte (siehe die vorangehenden Ausführungen) zugelassen sind.Other coating materials that can be used are polymers that have a melting temperature below the Curie temperature of the hard magnetic cores and can harden by cooling or by reactive components. The corresponding polymer powders can consist of a pure substance, mixed with additives and used as a mixture (master batches) to achieve certain properties. Coating materials can be based on the following polymers: polyamide, polypropylene, polystyrene, polyether, ketone, polyurethane, epoxy resin and the like. The coating materials are selected in particular according to the fact that they can be melted below the Curie temperature of the selected hard magnetic core material, are sufficiently wear-resistant after curing and are approved for the processing of corresponding products (see the preceding statements).

In den Fig. 7 bis 10 sind unterschiedliche Ausführungsbeispiele einer entsprechenden Vorrichtung zur Herstellung erfindungsgemäßer Mahlkörper dargestellt. Gleiche Bezugszeichen kennzeichnen gleiche Teile und werden teilweise nur im Zusammenhang mit einer Figur erläutert.In the Figures 7 to 10 different exemplary embodiments of a corresponding device for the production of grinding media according to the invention are shown. The same reference symbols identify the same parts and some of them are only explained in connection with one figure.

Fig. 7 zeigt eine solche Vorrichtung mit einem Reaktor 1, durch die beschichtete hartmagnetische Kerne, d. h. erfindungsgemäße Mahlkörper, herstellbar sind. Der Reaktor selbst besteht aus einem nicht ferromagnetischen Material und weist eine obere Öffnung 2 auf. Über die obere Öffnung 2 sind hartmagnetische Kerne zuführbar. Weiterhin weist der Reaktor 1 einen gasdurchlässigen Boden 4, der einen unteren materialfreien Bereich 26, siehe auch Fig. 8, von einem materialführenden Bereich 27 trennt. Der materialfreie Bereich 26 erstreckt sich vom gasdurchlässigen Boden 4 bis zu einer unteren Öffnung 3. Der materialführende Bereich 27 erstreckt sich oberhalb des gasdurchlässigen Bodens 4 und ist im Wesentlichen durch die Höhe des Reaktors begrenzt, so dass er größer sein kann, als in den Fig. 7 bis 10 dargestellt. Der gasdurchlässige Boden 4 besteht ebenfalls aus einem nichtferromagnetischen Material. 7 shows such a device with a reactor 1, through which coated hard-magnetic cores, ie grinding bodies according to the invention, can be produced. The reactor itself consists of a non-ferromagnetic material and has an upper opening 2 . Hard-magnetic cores can be supplied via the upper opening 2 . Furthermore, the reactor 1 has a gas-permeable base 4, which has a lower material-free area 26, see also 8 , separated from a material-carrying area 27 . The material-free area 26 extends from the gas-permeable floor 4 to a lower opening 3. The material-carrying area 27 extends above the Gas-permeable floor 4 and is essentially limited by the height of the reactor, so that it can be larger than in the Figures 7 to 10 shown. The gas-permeable base 4 also consists of a non-ferromagnetic material.

Das Ausführungsbeispiel nach Fig. 7 eignet sich für eine batchweise Beschichtung von hartmagnetischen Kernen 6.The embodiment after 7 suitable for a batch coating of hard magnetic cores 6.

Die zu beschichtenden hartmagnetischen Kerne 6 werden mit einer Magnetisierungsvorrichtung (nicht dargestellt) vorzugsweise bis zur Sättigung magnetisiert. Die Magnetisierung kann durch Impulsmagnetisierung erfolgen. Anschließend erfolgt eine Erwärmung der magnetisierten Kerne, z. B. in einem elektrisch beheizten Ofen, auf eine Temperatur, die im Reaktor 1 bei Kontakt mit Partikeln eines Beschichtungsmaterials 7 diese aufschmelzen lässt. Allerdings ist die Temperatur geringer als eine entsprechende Curie-Temperatur der hartmagnetischen Kerne.The hard-magnetic cores 6 to be coated are preferably magnetized to saturation using a magnetizing device (not shown). The magnetization can be done by pulse magnetization. The magnetized cores are then heated, e.g. B. in an electrically heated oven, to a temperature that in the reactor 1 in contact with particles of a coating material 7 can melt them. However, the temperature is lower than a corresponding Curie temperature of the hard magnetic cores.

Die Öffnung 2 dient der Zugabe von Beschichtungsmaterial, der erhitzten und magnetisierten hartmagnetischen Kerne sowie auch der Entnahme fertig beschichteter hartmagnetischer Kerne, d. h. der fertiggestellten Mahlkörper.The opening 2 is used for the addition of coating material, the heated and magnetized hard magnetic cores and the removal of finished coated hard magnetic cores, i. H. the finished grinding media.

Durch die untere Öffnung 3 kann ein Gasstrom eingeleitet werden, der bei Durchtritt durch den gasdurchlässigen Boden 4 von unten gleichmäßig über den Reaktorquerschnitt verteilt wird und eine Fluidisierung des dispersen Beschichtungsmaterials 7 unterstützt.A gas stream can be introduced through the lower opening 3 , which gas stream is distributed uniformly over the reactor cross section from below when it passes through the gas-permeable base 4 and supports fluidization of the disperse coating material 7 .

Das Beschichtungsmaterial ist beispielsweise Polyamidpulver mit einer Partikelgröße von d50 = 50µm und einer Schmelztemperatur von 176°C.The coating material is, for example, polyamide powder with a particle size of d 50 =50 μm and a melting point of 176.degree.

Oberhalb des gasdurchlässigen Bodens 4 befindet sich ein Magnetsystem 5 mit zwei Spulen 30, die den Reaktor umgeben. Durch das Magnetsystem und dessen zeit- und ortsabhängiges Magnetfeld ergibt sich ein sich zeitlich und örtlich ändernder Feldgradient, der die über die Öffnung 2 zugeführten, erhitzten und magnetisierten hartmagnetischen Kerne 6 fluidisiert.Above the gas-permeable floor 4 is a magnet system 5 with two coils 30 surrounding the reactor. The magnet system and its time- and location-dependent magnetic field result in a field gradient that changes over time and location, which fluidizes the heated and magnetized hard-magnetic cores 6 that are fed in via the opening 2 .

Das disperse Beschichtungsmaterial 7 wird durch die Bewegung der hartmagnetischen Kerne 6 ebenfalls fluidisiert, wie auch durch den bereits oben beschriebenen Gasstrom. Bei Kontakt mit Oberflächen 24 der erwärmten hartmagnetischen Kerne schmilzt das Beschichtungsmaterial auf.The disperse coating material 7 is also fluidized by the movement of the hard-magnetic cores 6, as well as by the gas flow already described above. The coating material melts on contact with surfaces 24 of the heated, hard-magnetic cores.

Es besteht weiterhin die Möglichkeit, das Beschichtungsmaterial zusätzlich zu erwärmen, indem beispielsweise ein über die Öffnung 3 zugeführte Gasstrom 8 und/oder in dem entsprechenden Bereich eine weitere Heizung 10 (siehe Fig. 7) und/oder das disperse Beschichtungsmaterial direkt, beispielsweise mit einem Infrarotstrahler (in Figur 7-10 nicht dargestellt) erwärmt wird.There is also the possibility of additionally heating the coating material, for example by using a gas stream 8 fed in via the opening 3 and/or a further heater 10 in the corresponding area (see Fig 7 ) and/or the disperse coating material directly, for example with an infrared radiator (in Figure 7-10 not shown) is heated.

Die sich insgesamt ergebende Temperatur des dispersen Beschichtungsmaterials 7 bestimmt bei konstanter Verweilzeit der hartmagnetischen Kerne im Reaktor 1 eine Dicke 23 der Beschichtung 28 auf den hartmagnetischen Kernen 6, siehe auch Fig. 6.The overall resulting temperature of the disperse coating material 7 determines a thickness 23 of the coating 28 on the hard magnetic cores 6 with a constant dwell time of the hard magnetic cores in the reactor 1, see also 6 .

Das Magnetsystem 5 nach Fig. 7 weist zwei den Reaktor konzentrisch umgebende Spulen 30 auf, die von Wechselströmen durchflossen werden. Diese erzeugen in dem materialführenden Bereich 27 des Reaktors 1 eine sich zeitlich und örtlich ändernde magnetische Flussdichteverteilung mit vorzugsweise einem Effektivwert von mindestens 5 mT am gasdurchlässigen Boden 4. Die Frequenz der Wechselströme in den Spulen 30 des Magnetsystems 5, die die zeitlichen Flussdichteänderungen bestimmen, sollten eine Frequenz nicht überschreiten, bei der die hartmagnetischen Kerne 6 in Folge ihrer Massenträgheit den Flussdichteänderungen nicht mehr folgen können. Beispielsweise sind für Kerne mit einer Größe von > 0,5 mm und Dichten um 4 bis 5 kg/dm3 Frequenzen größer 10 Hz und kleiner 400 Hz einzustellen.The magnet system 5 after 7 has two coils 30 concentrically surrounding the reactor, through which alternating currents flow. These generate a temporally and spatially changing magnetic flux density distribution in the material-carrying area 27 of the reactor 1, preferably with an effective value of at least 5 mT on the gas-permeable floor 4. The frequency of the alternating currents in the coils 30 of the magnet system 5, which determine the flux density changes over time, should not exceed a frequency at which the hard-magnetic cores 6 can no longer follow the changes in flux density due to their inertia. For example, frequencies greater than 10 Hz and less than 400 Hz should be set for cores with a size of >0.5 mm and densities of around 4 to 5 kg/dm 3 .

Bei den Spulen 30 des Magnetsystems 5 ist darauf zu achten, dass diese hinsichtlich Anzahl, Anordnung, Windungszahl und Ausführung durch Querschnittsform und Größe des Reaktors und der zur Fluidisierung der hartmagnetischen Kerne 6 erforderlichen Verteilung des magnetischen Vektorgradienten bestimmt sind. Für zylindrische Reaktoren sind beispielsweise solenoidale Spulensysteme einsetzbar. Es hat sich in diesem Zusammenhang als vorteilhaft erwiesen, wenn die Spulen scheibenartig ausgebildet sind.In the case of the coils 30 of the magnet system 5, care must be taken to ensure that their number, arrangement, number of turns and design are determined by the cross-sectional shape and size of the reactor and the distribution of the magnetic vector gradient required for fluidizing the hard-magnetic cores 6. For example, solenoidal coil systems can be used for cylindrical reactors. In this context, it has proven to be advantageous if the coils are designed in the manner of disks.

Fig. 8 zeigt ein zweites Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung bzw. eines erfindungsgemäßen Reaktors 1. Dieser unterscheidet sich von dem ersten Ausführungsbeispiel nach Fig. 7 durch eine Erwärmung der magnetisierten, hartmagnetischen Kerne 6 auf eine erforderliche Prozesstemperatur über eine Heizeinrichtung 37 im Bereich eines Trichters 9. Die Heizeinrichtung 37 kann regelbar ausgeführt sein, um die entsprechende Temperatur der hartmagnetischen Kerne reproduzierbar zu erreichen. 8 shows a second embodiment of a device according to the invention or a reactor 1 according to the invention. This differs from the first embodiment 7 by heating the magnetized, hard-magnetic cores 6 to a required process temperature via a heating device 37 in the area of a funnel 9. The heating device 37 can be designed to be controllable in order to achieve the corresponding temperature of the hard-magnetic cores in a reproducible manner.

Die Heizeinrichtung 37 ist vor einer Reaktoröffnung 32 (siehe auch Fig. 8) angeordnet und dient der Zufuhr der erhitzten, magnetisierten hartmagnetischen Kerne 12 in den Reaktor 1. Die Zufuhr erfolgt magnetisch mit einem weiteren, impulsartig betrieben Magnetsystem 11. Dadurch ist eine quasi kontinuierliche Prozessführung der Beschichtung möglich. Fertig beschichtete hartmagnetische Kerne können in elektrisch nicht aktiven Zeiten des Magnetsystems 11 über eine Öffnung 13 mit einem stabartigen Haftmagneten oder dergleichen aus dem Reaktor 1 entnommen werden.The heating device 37 is in front of a reactor opening 32 (see also 8 ) and serves to feed the heated, magnetized, hard-magnetic cores 12 into the reactor 1. The feed is carried out magnetically with another magnet system 11 operated in a pulsed manner. This enables a quasi-continuous process control of the coating. Completely coated, hard-magnetic cores can be removed from the reactor 1 via an opening 13 with a rod-like holding magnet or the like when the magnet system 11 is not electrically active.

Gegenüberliegend zur Öffnung 13 ist eine weitere Öffnung 14 als Abgasöffnung angeordnet.A further opening 14 is arranged as an exhaust gas opening opposite the opening 13 .

Die Öffnung 32 des Reaktors, in dessen oberem Endbereich 31, geht in dem Ausführungsbeispiel nach Fig. 8 über eine Verbindung 33 in einen beheizbaren trichterförmigen Behälter 9 über. In diesem werden die zuvor magnetisierten hartmagnetischen Kerne mittels der Heizeinrichtung 37 auf eine Temperatur geringer als die Curie-Temperatur der Kerne und größer als die Schmelztemperatur des Beschichtungsmaterials aufgeheizt. Es sind auch andere Heizeinrichtungen möglich, wie beispielsweise Infrarotstrahler, Induktionsheizung, Magnetron oder dergleichen.The opening 32 of the reactor, in the upper end region 31, is in the exemplary embodiment 8 via a connection 33 in a heatable funnel-shaped container 9 over. In this, the previously magnetized, hard-magnetic cores are heated by means of the heating device 37 to a temperature lower than the Curie temperature of the cores and higher than the melting point of the coating material. Other heating devices are also possible, such as infrared radiators, induction heating, magnetrons or the like.

Das Magnetsystem 11 umfasst eine eisenlose Spule, die periodisch impulsartig mit einem Strom betrieben wird. Stromimpulshöhe und -dauer werden so gewählt, dass kurzzeitig ein den unteren Bereich der Schüttung der erhitzten magnetisierten hartmagnetischen Kerne 12 durchdringendes Magnetfeld entsteht, das in diesem Bereich magnetische Haltekräfte zwischen den Kernen aufhebt. In Folge der magnetischen Zugkraft des Magnetsystems 11 sowie der Schwerkraft fällt eine entsprechende Menge von hartmagnetischen Kernen über die Öffnung 32 als Ausgang in den Reaktor 1 ein, wobei im Trichter 9 verbliebene Kerne nachrutschen. Die zugeführte Menge der hartmagnetischen Kerne ist durch die Stromimpulshöhe und Impulsdauer einstellbar.The magnet system 11 comprises an ironless coil which is periodically pulsed with a current. Current pulse height and duration are selected in such a way that a short-term magnetic field is created which penetrates the lower area of the bed of heated, magnetized, hard-magnetic cores 12 and which cancels out the magnetic holding forces between the cores in this area. As a result of the magnetic pulling force of the magnet system 11 and the force of gravity, a corresponding quantity of hard magnetic cores falls through the opening 32 as an exit into the reactor 1, with the cores remaining in the funnel 9 slipping down. The amount of hard magnetic cores supplied can be adjusted by the current pulse height and pulse duration.

Bei allen Ausführungsbeispielen der erfindungsgemäßen Vorrichtung werden die entsprechenden fertiggestellten Mahlkörper nach einer zur Beschichtung der fluidisierten hartmagnetischen Kerne 6 erforderlichen Verweilzeit aus dem Reaktor 1 abgeführt. Der Beschichtungsvorgang kann auch periodisch durchgeführt werden.In all exemplary embodiments of the device according to the invention, the corresponding finished grinding bodies are removed from the reactor 1 after a residence time required for coating the fluidized, hard-magnetic cores 6 . The coating process can also be carried out periodically.

Fig. 9 zeigt ein drittes Ausführungsbeispiel der Vorrichtung bzw. des Reaktors 1. Diese unterscheidet sich von den Ausführungsbeispielen nach Fig. 7 und 8 dadurch, dass eine Erwärmung der magnetisierten hartmagnetischen Kerne auf die erforderliche Prozesstemperatur über eine Einkopplung von Mikrowellenleistung als Heizeinrichtung 34 ( siehe Figur 10) mittels mindestens einer Antenne 15 direkt am Reaktor 1 erfolgt. Der Reaktor 1 besteht also zumindest in dem Bereich der Einwirkung der Mikrowellenstrahlung aus einem nicht mikrowellenabsorbierenden Material, wie beispielsweise Teflon, Kieselglas oder dergleichen. Weiterhin ist der Reaktor 1 im Bereich der Einwirkung der Mikrowellenstrahlung mit einem metallischen Gitter 18 umgeben, so dass die Mikrowellenabstrahlung vernachlässigbar gering ist und vorgeschriebene Grenzwerte eingehalten werden (< 50 W/m2 in 5 cm Abstand). 9 12 shows a third exemplary embodiment of the device or of the reactor 1. This differs from the exemplary embodiments according to FIG 7 and 8th in that the magnetized, hard-magnetic cores are heated to the required process temperature by coupling in microwave power as a heating device 34 (see figure 10 ) by means of at least one antenna 15 directly on the reactor 1. The reactor 1 thus consists of a non-microwave-absorbing material, such as Teflon, silica glass or the like, at least in the region where the microwave radiation acts. Furthermore, the reactor 1 is surrounded by a metallic grid 18 in the region where the microwave radiation acts, so that the microwave radiation is negligible and prescribed limit values are observed (<50 W/m 2 at a distance of 5 cm).

Zur Mikrowellenerzeugung ist ein wassergekühlter Mikrowellengenerator 16 auf Halbleiterbasis mit einer je nach Prozessbehältergröße und deren Befüllung steuerbaren Leistung bis zu 1000 W bei 2,45 GHz einsetzbar.A water-cooled microwave generator 16 based on semiconductors with a power of up to 1000 W at 2.45 GHz, which can be controlled depending on the size of the process container and how it is filled, can be used to generate microwaves.

Die zugeführte Mikrowellenleistung ist über eine Messung, faseroptisch, pyrometrisch oder dergleichen, einer Oberflächentemperatur der hartmagnetischen Kerne 6 steuerbar.The supplied microwave power can be controlled by measuring, fiber-optically, pyrometrically or the like, a surface temperature of the hard-magnetic cores 6 .

Eine entsprechende Ausgestaltung eines Reaktors 1 gewährleistet einerseits eine Beschichtung sehr kleiner (< 1 mm) hartmagnetischer Kerne 6, da solche bei Erhitzen vor und während des Eintritts in den Reaktor 1 in Folge ihrer geringen Wärmespeicherfähigkeit zu schnell abkühlen würden und andererseits eine bessere und reproduzierbare Beschichtungsqualität für alle Kerngrößen. Weiterhin können extern vorbehandelte, insbesondere vorbeschichtete nicht magnetisierte hartmagnetische Kerne, die in einer Vorstufe mit einer Beschichtungsstoff-Bindemittel-Suspension vorbeschichtet und auf die mittels bekannter Beschichtungsverfahren weitere Schichten als feste Filme aufgebracht wurden, anschließend magnetisiert dem Reaktor zugeführt werden. Danach können ohne weitere Zugabe von dispersem Beschichtungsmaterial im Reaktor die bereits vorhandenen Schichten zwecks Verbesserung der Homogenität und/oder der Oberflächenqualität aufgeschmolzen werden. Die Kerne können auch vor der Vorbeschichtung ggf. bereits vorbehandelt sein, siehe beispielsweise die vorangehend beschriebene Oberflächenbehandlung.A corresponding design of a reactor 1 ensures, on the one hand, a coating of very small (<1 mm) hard magnetic cores 6, since such cores would cool down too quickly when heated before and during entry into the reactor 1 as a result of their low heat storage capacity, and, on the other hand, a better and reproducible coating quality for all core sizes. Furthermore, externally pretreated, in particular precoated, non-magnetized hard magnetic cores, which were precoated in a preliminary stage with a coating material/binder suspension and to which further layers were applied as solid films using known coating methods, can then be fed magnetized to the reactor. Thereafter, without further addition of disperse coating material, the layers already present in the reactor can be melted in order to improve the homogeneity and/or the surface quality. The cores can also be pretreated prior to the precoating, see for example the surface treatment described above.

Fig. 10 stellt ein viertes Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung bzw. eines Reaktors 1 dar. 10 represents a fourth exemplary embodiment of a device or a reactor 1 according to the invention.

Der Ablauf der Beschichtungsvorgangs wird mittels Schrittkette in einer Steuerung, beispielsweise eines Programmable Logic Controllers 19, gesteuert. Unbeschichtete hartmagnetische Kerne 6 werden zuerst magnetisiert, abgewogen und in den Reaktor 1 gegeben. Dann wird das Magnetsystem 5 durch eine Steuerung 35 eingeschaltet, welches zur Bewegung und Fluidisierung der Kerne dient. Gleichzeitig wird der Mikrowellengenerator 16 zur Beheizung der hartmagnetischen Kerne 6 aktiviert. Dies erfolgt über Mikrowellenantennen 15 und Abgabe entsprechender Mikrowellen. Misst der Temperatursensor 17 das Erreichen einer Solltemperatur von z. B. 176°C, wird mittels einer Heizung 36 temperierte Luft als Gasstrom 8 zur Fluidisierung zugeführt und auch das Beschichtungspulver zugegeben. Anschließend erfolgt ein Halten der Solltemperatur gemäß Temperatursensor 17, beispielsweise für 3 min. Diese Zeit ist allerdings abhängig von der Reaktorgröße, der Einfüllmenge an hartmagnetischen Kernen, Kerngröße und angestrebter Schichtdicke. Die Solltemperatur wird so lange aufrechterhalten, bis ausreichend Beschichtungsmaterial auf die magnetisierten hartmagnetischen Kerne 6 aufgeschmolzen wurde. Nach Ablauf der entsprechenden Haltezeit werden der Mikrowellengenerator 16 sowie die Heizung 36 ausgeschaltet. Eine entsprechende Luftzufuhr als Gasstrom 8 wird zur Abkühlung weiter betrieben, bis ein entsprechender Sollwert bei dem Temperatursensor 17 unterschritten ist. Anschließend erfolgt eine Entnahme der beschichteten hartmagnetischen Kerne über die Öffnung 13 (siehe Fig. 8). Dies erfolgt vorteilhafterweise mit einem Stab, der am Ende mit einem Permanentmagneten oder einer aktivierbaren elektrischen Spule versehen ist. Danach werden die Magnetspulen 30 mittels Steuerung 35 ausgeschaltet und es erfolgt die vollständige Leerung und Reinigung des Reaktors 1 sowie ggf. eine Neubeschickung.The course of the coating process is controlled by means of a sequence of steps in a controller, for example a programmable logic controller 19 . Uncoated hard magnetic cores 6 are first magnetized, weighed and placed in the reactor 1. Then the magnet system 5 is switched on by a controller 35, which serves to move and fluidize the cores. At the same time, the microwave generator 16 for heating the hard-magnetic cores 6 is activated. This takes place via microwave antennas 15 and the delivery of corresponding microwaves. Measures the temperature sensor 17 reaching a target temperature of z. B. 176 ° C, is supplied by means of a heater 36 temperature-controlled air as a gas stream 8 for fluidization and also added the coating powder. The desired temperature is then maintained according to the temperature sensor 17, for example for 3 minutes. However, this time depends on the reactor size, the amount of hard magnetic cores filled in, the core size and the desired layer thickness. The target temperature is maintained until sufficient coating material has been melted onto the magnetized, hard-magnetic cores 6 . After the corresponding holding time has elapsed, the microwave generator 16 and the heater 36 are switched off. A corresponding supply of air as a gas stream 8 continues to be operated for cooling until the temperature sensor 17 falls below a corresponding setpoint value. The coated hard-magnetic cores are then removed via the opening 13 (see 8 ). This is advantageously carried out with a rod which is provided at the end with a permanent magnet or an activatable electric coil. Thereafter, the magnetic coils 30 are switched off by means of the controller 35 and the reactor 1 is completely emptied and cleaned and, if necessary, refilled.

Fig. 11a und 11b zeigen fertiggestellte Mahlkörper, d. h. beschichtete, hartmagnetische Kerne gemäß Erfindung. Die Beschichtung auf den hartmagnetischen Kernen ist geschlossen. Nach Fig. 11a weist die Beschichtung eine entsprechende Rauigkeit auf. Eine mechanische Nachbehandlung zum Glätten der Oberflächen der Mahlkörper ist möglich. Geeignet ist ein Trommeln, das magnetische Fluidisieren in einem Reaktor ohne Beschichtungsmaterial oder ein gezieltes Beanspruchen ("Abschleifen") in einer EMZ-Anlage mit einem abrasiven Material, beispielsweise Aluminiumoxid. Figure 11a and 11b show finished grinding media, ie coated, hard magnetic cores according to the invention. The coating on the hard magnetic cores is closed. After Figure 11a the coating has a corresponding roughness. A mechanical post-treatment to smooth the surfaces of the grinding media is possible. Drumming, magnetic fluidization in a reactor without coating material or targeted stressing ("grinding") in an EMZ system with an abrasive material, for example aluminum oxide, are suitable.

Fig. 11 zeigt einen solchen beschichteten hartmagnetischen Kern nach einem einstündigen Trommeln in Wasser. 11 shows such a coated hard magnetic core after tumbling in water for one hour.

Es wurde bereits darauf hingewiesen, dass die Mahlkörper 20 auch ggf. entmagnetisiert werden können. Dies gelingt in einem abklingenden Wechselfeld, das von einer Spule, die mit einer steuerbaren Wechselstromquelle - im einfachsten Fall ein Regeltrafo - betrieben wird. Das Wechselfeld muss mindestens die Sättigungsfeldstärke der hartmagnetischen Kerne erreichen und dann auf Null abklingen bzw. reduziert werden.It has already been pointed out that the grinding bodies 20 can also be demagnetized if necessary. This succeeds in a decaying alternating field, which is operated by a coil that is operated with a controllable alternating current source - in the simplest case a regulating transformer. The alternating field must at least reach the saturation field strength of the hard-magnetic cores and then decay or be reduced to zero.

Eine andere Möglichkeit zur Entmagnetisierung besteht darin, die Koerzitivfeldstärke der Polarisation der hartmagnetischen Kerne zu bestimmen, z. B. durch Aufnahme der Hysteresekurve mit einem Vibrationsmagnetometer, und dann mit einem mit Gleichstrom gespeisten Magnetsystem ein Gegenfeld dieser Stärke aufzubauen und auf die hartmagnetischen Kerne kurzzeitig einwirken zu lassen.Another way to demagnetize is to determine the coercivity of the polarization of the hard magnetic nuclei, e.g. B. by recording the hysteresis curve with a vibration magnetometer, and then using a magnet system fed with direct current to build up an opposing field of this strength and to let it act briefly on the hard magnetic cores.

In beiden Fällen müssen die hartmagnetischen Kerne ausreichend mechanisch fixiert sein, wodurch deren Bewegung in Richtung des zur Entmagnetisierung generierten Magnetfeldes verhindert wird.In both cases, the hard magnetic cores must be sufficiently mechanically fixed to prevent them from moving in the direction of the magnetic field generated for demagnetization.

Claims (15)

  1. A grinding body (20) suitable for an electromechanical comminution plant for comminution, deagglomeration and/or dispersion of disperse materials and/or pumpable multiphase mixtures,
    wherein the grinding body (20) includes a hard-magnetic core (6) and at least one wear-resistant coating (28) at least partially surrounding the same, characterized in that the hard-magnetic core is spherical and has a diameter of 0.1 - 10 mm.
  2. The grinding body according to claim 1, characterized in that the hard-magnetic core (6) has a coercive field strength (21) of at least 20 kA/m, preferably at least 40 kA/m and more preferably at least 50 kA/m,
    in particular the hard-magnetic core (6) has a remanence (22) of more than 20 mT, preferably more than 40 mT, and more preferably more than 50 mT, and
    preferably the wear-resistant coating (28) is a polymer coating.
  3. The grinding body according to the preceding claims 1 or 2, characterized in that the hard-magnetic core (6) is spherically shaped and/or magnetizable,
    preferably, depending on the size of the core, in particular the diameter (29) of the core, the coating (28) has a thickness from 5 µm to 500 µm and preferably from 10 µm to 300 µm, and
    in particular a surface (24) of the hard-magnetic core (6) is roughened and in particular has an arithmetic average roughness (Ra) of 0.4 µm or more and preferably of 0.5 µm or more.
  4. The grinding body according to any one of the preceding claims, characterized in that the coating (28) is closed and completely surrounds the hard-magnetic core and/or at least one force-transmitting layer (25) is arranged between the coating and the hard-magnetic core and/or the coating is smoothed.
  5. An apparatus for producing grinding bodies (20) according to any one of the preceding claims comprising at least one reactor (1) divided into a lower region (26) devoid of material and an upper region (27) carrying material by means of a gas-permeable bottom (4) wherein the region (27) carrying material is configured for receiving fluidized disperse coating material (7) and fluidized hard-magnetic cores (6), and is surrounded by a magnetic system (5) for fluidizing the hard-magnetic cores (6) in the region (27) carrying material, wherein, in particular, the reactor (1) includes a gas inlet opening (3) underneath the bottom (4), and
    in particular above the bottom (4), at least one closable opening (2, 13) is formed for supplying cores (6) of the coating material (7) and/or for removing finished grinding bodies (20).
  6. The apparatus according to claim 5, characterized in that the magnetic system (5) is made up of at least one coil (30) surrounding the reactor (1) above the gas permeable bottom (4),
    in particular, an upper end region (31) of the reactor (1) includes a container (9), in particular a heatable and funnel-shaped container for receiving magnetized hard-magnetic cores (6), with which a heating device (10) may be associated, and
    in particular, the heating device (10) heats the magnetized hard-magnetic cores (6) to a temperature lower than a Curie temperature of the hard-magnetic cores and higher than a melting temperature of the coating material (7).
  7. The apparatus according to claims 5 or 6, characterized in that below an outlet (32) of the funnel-shaped container (9) another magnetic system (11) is located, which is made up of at least one coil and surrounds a connection (33) between the reactor (1) and the outlet (32) of the funnel-shaped container (9).
  8. The apparatus according to any one of the preceding claims 5 to 7, characterized in that at least one opening (13), in particular a lateral opening, for removing coated hard-magnetic cores (6) is arranged in the upper end region (31) of the reactor (1),
    in particular, a heating device (36) is arranged above the gas-permeable bottom (4) and advantageously in the region (27) carrying material.
  9. The apparatus according to any one of the preceding claims 5 to 8, characterized in that the reactor (1) consists of a microwave-permeable material above the gas-permeable bottom (4) and at least one microwave antenna (15) is arranged in the reactor (1) above the gas-permeable bottom (4), preferably in the region (27) carrying material or in the upper end region (31), in conjunction with a controllable microwave generator (16) as a heating device (34), and
    in particular at least one temperature sensor (17) is arranged in the reactor (1) above the gas-permeable bottom (4), preferably in the region (27) carrying material, for detecting an average temperature in the reactor and/or of the coating material (7) and/or of the hard-magnetic cores (6).
  10. A method for producing grinding bodies (20) according to any one of claims 1 to 4, comprising an apparatus for producing grinding bodies (20) according to any one of claims 5 to 9,
    characterized by
    magnetizing hard-magnetic cores (6) and subsequently heating the magnetized hard-magnetic cores (6) to a temperature above a melting temperature of a coating material (7) and below a Curie temperature,
    fluidizing the heated, magnetized hard-magnetic cores (6) by means of a magnetic field varying in time and space,
    melting fluidized powdered coating material (7) onto surfaces of the heated magnetized hard-magnetic cores (6) and forming a wear-resistant coating (28) and
    subsequently discharging the finished grinding bodies (20) from the reactor (1) after reaching a target layer thickness and cooling to ambient temperature.
  11. The method according to claim 10, characterized by generating the temporally and spatially varying magnetic field in the reactor (1) by means of a magnetic system (5) which encloses the reactor (1) above a gas-permeable bottom (4) and through which alternating currents flow, with a magnetic flux density with an effective value of at least 5mT in the region of the gas-permeable bottom (4) and an alternating current frequency of at most 300 Hz, wherein in particular a magnetization of the hard-magnetic cores (6) occurs even on the outside of the reactor (1), preferably by means of pulse magnetization and/or
    roughening of surfaces (24) of the hard-magnetic cores (6) outside the reactor (1) by means of mechanical and/or chemical processes.
  12. The method according to any one of the preceding claims 10 or 11, characterized in that the hard-magnetic cores (6) are coated with an adhesion promoter (25) before being magnetized,
    in particular heating of the hard-magnetic cores (6) after their magnetization outside the reactor (1) and/or
    heating of the hard-magnetic cores (6) in the reactor (1), in particular by means of microwaves, take place during fluidization thereof.
  13. The method according to any one of the preceding claims 20 to 26, characterized by detecting the temperature in the reactor by means of at least one temperature sensor (17) and controlling the average temperature in the reactor and/or of the coating material and/or of the hard-magnetic cores (6) as a function of the detected temperature, and
    in particular, supplying a respective amount of magnetized hard-magnetic cores (6) to the reactor (1) after removal of a corresponding amount of grinding bodies (20) from the reactor (1) and/or
    supplying the hard-magnetic cores (6) to the reactor (1) is effected by means of a magnetic system (11) which is made up of at least one coil surrounding a connection (33) between the reactor (1) and a funnel-shaped container (9) and is activated by means of current pulses, a magnetic field being generated by the current pulses, which reduces magnetic attraction between the magnetized hard-magnetic cores (6) located above the magnetic system (11) in such a way that the hard-magnetic cores (6) fall into the reactor (1) by gravity and are fluidized therein with the magnetic field of the further magnetic system (5).
  14. The method according to any one of the preceding claims 10 to 13, characterized by smoothing the grinding bodies (20) after removing them from the reactor (1), in particular by tumbling or the like,
    in particular by sorting the grinding bodies (20) and/or re-magnetizing the grinding bodies (20) after removing them from the reactor (1), and/or
    removing a residual coating from used grinding bodies and feeding said grinding bodies to the reactor for recoating, and
    if necessary, performing an external pre-treatment, in particular precoating of non-magnetized hard-magnetic cores, which are subsequently magnetized and fed to the reactor, and/or
    pre-coating the pre-treated hard-magnetic cores, if any, by means of a suspension consisting of coating material and binding agent.
  15. Use of the grinding bodies according to any one of the preceding claims 1 to 4 in an electromechanical comminution plant for comminution, deagglomeration and/or dispersion of active ingredients for use in the pharmaceutical, biotechnology and/or food industries, or
    in ball mills for comminution, deagglomeration and/or dispersion of active ingredients or inorganic materials for use in the pharmaceutical, biotechnology and/or food industries, wherein the grinding bodies are demagnetized.
EP19773020.3A 2018-09-24 2019-09-17 Grinding media, device and method for producing said grinding media and use thereof Active EP3857573B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018216190.9A DE102018216190A1 (en) 2018-09-24 2018-09-24 Grinding media, device and method for producing the grinding media and use
PCT/EP2019/074847 WO2020064430A1 (en) 2018-09-24 2019-09-17 Grinding media, device and method for producing said grinding media and use thereof

Publications (3)

Publication Number Publication Date
EP3857573A1 EP3857573A1 (en) 2021-08-04
EP3857573B1 true EP3857573B1 (en) 2023-07-12
EP3857573C0 EP3857573C0 (en) 2023-07-12

Family

ID=67999625

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19773020.3A Active EP3857573B1 (en) 2018-09-24 2019-09-17 Grinding media, device and method for producing said grinding media and use thereof

Country Status (3)

Country Link
EP (1) EP3857573B1 (en)
DE (1) DE102018216190A1 (en)
WO (1) WO2020064430A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116213041A (en) * 2021-12-02 2023-06-06 山东理工大学 Multi-energy field coupling reaction device for material preparation and mechanochemical reaction

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1072925B (en) 1976-09-29 1985-04-13 Ind Ossidi Sinterizzati Ios S PROCEDURE AND DEVICE FOR THE PROPULSION OF THE GRINDING BODIES OF THE MILLS, PARTICULARLY OF THE SO-CALLED BALLS
DE3233926A1 (en) 1981-09-14 1983-04-28 Fuji Electric Corporate Research and Development, Ltd., Yokosuka, Kanagawa Comminuting, mixing or stirring device
DE3430047A1 (en) 1984-08-16 1986-02-27 F. Kurt Retsch GmbH & Co KG, 5657 Haan MOERSERMUEHLE
DD240674B1 (en) 1985-09-06 1989-07-12 Ilmenau Tech Hochschule DEVICE FOR CRUSHING, MIXING AND GRINDING
DE3942646A1 (en) 1989-12-22 1991-06-27 Ekato Ind Anlagen Verwalt MIXING DEVICE
DE4113490A1 (en) 1991-04-25 1992-10-29 Leipzig Lacke Gmbh METHOD AND DEVICE FOR CRUSHING, DISPERSING, WETING AND MIXING PUMPABLE, UNMAGNETIC MULTI-PHASE MIXTURES
JPH08308570A (en) 1995-05-12 1996-11-26 Nousan Giken:Kk Production of organism carrier for immobilizing fine particle of magnetic material
JPH09325656A (en) * 1995-10-25 1997-12-16 Ricoh Co Ltd Image forming device
JP3627342B2 (en) 1996-01-31 2005-03-09 Jsr株式会社 Magnetic polymer particles and method for producing the same
DE19638591A1 (en) 1996-09-20 1998-04-02 Merck Patent Gmbh Spherical magnetic particles
DE19955219B4 (en) 1998-11-21 2008-08-28 Heidrich, Jens, Dipl.-Ing. Method and apparatus for disintegrating biomass
WO2006068935A1 (en) * 2004-12-21 2006-06-29 Instrumentation Laboratory Company Resuspension of magnetizable particles
RU2319546C2 (en) 2005-11-08 2008-03-20 Институт электрофизики Уральского отделения РАН Method for magnetomechanical grinding of materials using ferromagnetic milling bodies
US20100046323A1 (en) * 2007-02-08 2010-02-25 Linsheng Walter Tien Magnetic Stirring Devices and Methods
PL382610A1 (en) 2007-06-08 2008-12-22 Politechnika Częstochowska Electromagnetic mill
PL385075A1 (en) 2008-04-29 2009-11-09 Wapeco Spółka Z Ograniczoną Odpowiedzialnością method of production of cement and hydraulic binding agent as well as the cement and hydraulic binding agent, and method to upgrade class of cement and application of cement
PL401325A1 (en) 2012-10-22 2014-04-28 Presto Spółka Z Ograniczoną Odpowiedzialnością Magnetic mill

Also Published As

Publication number Publication date
DE102018216190A1 (en) 2020-03-26
EP3857573A1 (en) 2021-08-04
WO2020064430A1 (en) 2020-04-02
EP3857573C0 (en) 2023-07-12

Similar Documents

Publication Publication Date Title
DE2041225C3 (en) Process for the production of metal polymer masses
DE2436725A1 (en) ELECTROSTATOGRAPHIC FERRIDE RACK
EP2110175A1 (en) Method and device for thermal control of biological and chemical reactions using magnetic particles or magnetic beads and variable magnetic fields
JP6947490B2 (en) Ferrite powder for bonded magnets, their manufacturing methods, and ferrite-based bonded magnets
WO2002013580A1 (en) Ferrogmagnetic resonance excitation and its use for heating substrates that are filled with particles
EP3857573B1 (en) Grinding media, device and method for producing said grinding media and use thereof
JP2009234839A (en) Ferrite particle and production method thereof
DE102013205769A1 (en) METHOD FOR PRODUCING SINTERED MAGNETS WITH CONTROLLED / R STRUCTURES AND COMPOSITION DISTRIBUTION
Zhang et al. Preparation of poly (styrene–glucidylmethacrylate)/Fe3O4 composite microspheres with high magnetite contents
Liu et al. Unique properties of lunar impact glass: Nanophase metallic Fe synthesis
DE2452671A1 (en) BALL-SHAPED, VACUUM-FREE FERRITE PARTICLES
US20200035393A1 (en) Method, a system and a package for producing a magnetic composite
EP3948319A1 (en) Method for detecting and/or identifying magnetic supraparticles using magnet particle spectroscopy or magnet particle imaging
DE10297484B4 (en) A method and apparatus for producing a granulated rare earth metal alloy powder and a method of producing a rare earth alloy sintered body
Mair et al. Size-uniform 200 nm particles: fabrication and application to magnetofection
CN107025973B (en) Sheet magnetic material
Shishkovsky et al. Layerwise laser-assisted sintering and some properties of iron oxide core/PEEK shell magnetic nanocomposites
Lyubutin et al. Structural and magnetic properties of iron oxide nanoparticles in shells of hollow microcapsules designed for biomedical applications
EP3252017B1 (en) Magnetic filler
Vázquez-Victorio et al. Microwave absorption in nanostructured spinel ferrites
DE4129360A1 (en) Autogenous comminution of hard magnetic materials - by exposure to time-varying electromagnetic fields
US20220135423A1 (en) Methods and apparatus for synthesis and magnetophoretic fractionization size-selection of magnetic nanoparticles from a solution
Maleki-Jirsaraei et al. Promoting the aggregation and disaggregation dynamic of superparamagnetic nano-particles
EP1928621B1 (en) Method for carrying out a reaction in a microreaction chamber
EP3260259B1 (en) Device for magnetically freeze moulding ceramics and method for operating the same

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210401

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: B02C 17/20 20060101ALI20230202BHEP

Ipc: H01F 41/02 20060101ALI20230202BHEP

Ipc: H01F 1/11 20060101ALI20230202BHEP

Ipc: H01F 1/06 20060101ALI20230202BHEP

Ipc: H01F 7/02 20060101AFI20230202BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230316

INTG Intention to grant announced

Effective date: 20230320

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAUDRICH, ROLF

Owner name: HALBEDEL, BERND

Owner name: MAY, MATHIAS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BAUDRICH, ROLF

Inventor name: HALBEDEL, BERND

Inventor name: MAY, MATHIAS

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019008534

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20230801

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20230807

U20 Renewal fee paid [unitary effect]

Year of fee payment: 5

Effective date: 20230926

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231012

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231112

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231013

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230712

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT