EP3851674B1 - Doppelmembranpumpe - Google Patents

Doppelmembranpumpe Download PDF

Info

Publication number
EP3851674B1
EP3851674B1 EP21152179.4A EP21152179A EP3851674B1 EP 3851674 B1 EP3851674 B1 EP 3851674B1 EP 21152179 A EP21152179 A EP 21152179A EP 3851674 B1 EP3851674 B1 EP 3851674B1
Authority
EP
European Patent Office
Prior art keywords
drive
chamber
pump
membrane
designed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP21152179.4A
Other languages
English (en)
French (fr)
Other versions
EP3851674A1 (de
Inventor
Paul Knecht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tekoma Sarl
Original Assignee
Tekoma Sarl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tekoma Sarl filed Critical Tekoma Sarl
Publication of EP3851674A1 publication Critical patent/EP3851674A1/de
Application granted granted Critical
Publication of EP3851674B1 publication Critical patent/EP3851674B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/025Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms two or more plate-like pumping members in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/025Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms two or more plate-like pumping members in parallel
    • F04B43/026Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms two or more plate-like pumping members in parallel each plate-like pumping flexible member working in its own pumping chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • F04B9/045Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms the means being eccentrics

Definitions

  • the present invention relates to a double diaphragm pump with a mechanical drive mechanism.
  • Diaphragm pumps are used to pump fluids, especially liquids and gases.
  • a diaphragm pump has a diaphragm arranged in a diaphragm chamber, which separates a delivery space or fluid space or product chamber from a drive space, i.e. from a drive mechanism of the pump. Accordingly, the drive elements located in the drive space are not in contact with the at least partially aggressive fluid to be pumped.
  • the membrane is set in motion by a hydraulic, pneumatic, mechanical, or electromagnetic drive mechanism.
  • a mechanical diaphragm pump generally shows higher efficiency, lower pulsation and universal applicability than, for example, a pneumatic diaphragm pump.
  • Mechanical diaphragm pumps can be driven by an electric motor via an eccentric and a reciprocating piston or connecting rod.
  • Double diaphragm pumps include a pump housing with two parallel line sections, which form a first diaphragm chamber and a second diaphragm chamber.
  • a membrane is arranged in each of the membrane chambers, sealingly separating the respective fluid space from the drive space.
  • the drive mechanism of the double diaphragm pump is set up to move the diaphragms periodically.
  • the membranes can be coupled to a connecting shaft, also referred to as a coupling rod, and move synchronously.
  • independent drive means for the membranes which can be synchronized by means of a controller.
  • Movement of the membranes changes the volumes of the conveying or fluid chamber and the drive chamber in a complementary manner to one another, so that the fluid chamber is filled with the medium to be conveyed in a suction movement and the fluid chamber is emptied in a pressure movement.
  • the conveying direction is specified by means of arranged valve devices, so that an outlet side is blocked during the suction movement and an inlet side during a pressure movement.
  • Double diaphragm pumps suck in fluid and push fluid out at the same time.
  • Diaphragm pumps with a multi-part pump housing are known, the individual housing parts of the pump housing being essentially plate-shaped, arranged along a longitudinal axis, sealed against one another and braced, for example, by means of fastening means.
  • the housing parts are made of metal, for example, so that sealing forces to be applied axially can be applied without distortion and without settling.
  • the suction connection and pressure connection can be arranged in a suitable orientation, depending on the requirement.
  • Diaphragm pumps of this type are expensive to manufacture and can lose their strength or tightness over their lifetime under unfavorable operating conditions.
  • double diaphragm pumps with diaphragms that move back and forth in unison, i.e. synchronously with one another, in order to alternately fill and evacuate the delivery chamber have the disadvantage that periodically recurring delivery pressure drops occur on the outlet side. This leads to more or less severe interruptions in delivery and vibrations, which make downstream damping necessary. Furthermore, due to the material properties of the membranes, the conveying pressure shows a sawtooth-shaped progression over time.
  • Electromechanically operated double diaphragm pumps are known, with a piston rod being operatively connected to a crank pin which is arranged at a free end of an output shaft of a geared motor. In this way, a rotary movement emanating from the drive motor is converted into the linear movement of the piston rod or the membranes connected to it, as is the case, for example, in DE 20109650 U1 is described.
  • a diaphragm pump the diaphragm is subject to mechanical deformation during a pump cycle, so that over the lifetime of the diaphragm pump, signs of wear and mechanical defects in the diaphragm often lead to pump failure.
  • Known membranes are made of a material with a certain elasticity, for example elastomers such as NBR (acrylonitrile butadiene rubber).
  • elastomers such as NBR (acrylonitrile butadiene rubber).
  • Structural diaphragms are known so that the diaphragm is simultaneously sufficiently dimensionally stable and sufficiently elastic to be deformed during pump operation by the opposing pressure forces acting on opposite diaphragm sides. These can, for example, have concentric webs or radial ribs on their side facing away from the fluid space, which allow a defined flexing movement of the structured membrane during pumping operation. Molded and structured diaphragms can have a Teflon coating on their three-dimensional surface on the medium side.
  • a multi-chamber diaphragm pump is known.
  • several membrane pumps are arranged one above the other, which are actuated by means of a common rod with a crank drive.
  • the respective conveying chambers are connected via a chamber to a suction line and via a further chamber to a pressure line, with openings being able to be closed via replaceable suction or pressure flaps.
  • a diaphragm pump which can be actuated by means of a piston rod, the piston rod being connectable to a drivable crank pin via a ball joint.
  • the object of the present invention is to further develop a double diaphragm pump with a mechanical drive mechanism.
  • the double diaphragm pump according to the invention can be manufactured inexpensively and has a compact design.
  • the double-diaphragm pump can be dismantled and wearing parts are easy to replace, with sealants not being required on the product or medium side.
  • the double diaphragm pump according to the invention is also suitable for pumping aggressive chemicals and fluids with a solids content.
  • the double membrane pump is characterized by high efficiency and almost vibration-free operation, so that the good stability allows universal use.
  • the double membrane pump according to the invention with a mechanical drive mechanism comprises a pump housing which has at least one suction connection and at least one pressure connection as well as a first membrane chamber and a second membrane chamber.
  • a first membrane separates a first delivery space from a drive space and in the second membrane chamber a second membrane separates a second delivery space from an air chamber.
  • the second membrane chamber is a mirror image of the first membrane chamber.
  • the conveying chambers are connected to at least one suction port on the one hand and the pressure port on the other hand via valve devices.
  • the first membrane and the second membrane can be connected to a coupling rod.
  • a symmetrical design of the pump housing in relation to the suction and pressure connection is particularly advantageous, so that it can be reassembled for use in a reverse orientation, if necessary.
  • the mechanical drive mechanism of the double membrane pump comprises a drive piston and a ball joint that can be accommodated therein, as well as a receptacle that can be connected to the ball joint and is designed to be able to be coupled to an output shaft of a drive unit designed as an eccentric shaft.
  • the receptacle is also designed such that the ball joint can be screwed into a threaded bore and is clamped therein.
  • a membrane chamber is formed in two parallel line sections in the pump housing, in which freely oscillating membranes are arranged, so that a product or fluid chamber, referred to as the conveying chamber, and a drive chamber or an air chamber are sealingly separated from one another.
  • the drive space and air chamber of the two membrane chambers can be connected to one another by means of an air duct, preferably with a small diameter. Accordingly, when the membranes move in the other air chamber or the drive chamber, an increasing and decreasing back pressure is generated. This back pressure supports the movement of the membranes and serves to compensate for thermal effects and pumping effects.
  • the two membranes are connectable to one another by a rigid coupling rod which extends axially along a longitudinal axis through the center of each of the membranes and is releasably secured to the membranes in each case.
  • a fastening element is provided on each of the membranes in a central zone, for example vulcanized, which on the one hand serves to detachably attach the coupling rod to the respective diaphragm and on the other hand to axially secure one of the diaphragms relative to or to detachably attach to the drive piston of the mechanical drive mechanism.
  • each fastening element can have an internal thread into which an external thread is formed at the ends the coupling rod, or vice versa. Furthermore, an internal thread can be provided on a membrane for connection to the mechanical drive mechanism on the fastening element, into which an external thread of the drive piston is screwed or vice versa.
  • Fastening by means of screws has the advantage that the assembly is easy to handle, is inexpensive and can be dismantled, and also allows adjustability in order to set a delivery volume.
  • the fastening element is preferably designed in the form of a disk, the diameter being selected in such a way that it largely covers a central zone of the membrane.
  • the fastening element is made of metal, so that a dimensionally stable and precise fastening on the one hand of the coupling rod and on the other hand of the drive component of the drive mechanism is possible.
  • the membranes are moved back and forth in push-pull between two movement end points.
  • the membranes it is also conceivable for the membranes to be moved by separate drive means, with the movement of the membranes being able to be coordinated by means of an included controller.
  • one of the conveying chambers is alternately filled with the medium or fluid to be conveyed in a suction movement and emptied in a pressure movement.
  • Valve devices on the suction port and on the pressure port specify the conveying direction by blocking the outlet side during the suction movement and the inlet side of the respective diaphragm chamber during the pressure movement.
  • a drive unit for example a motor, which can be coupled to the mechanical drive mechanism, is provided for moving the membranes.
  • the drive unit can be detachably connected to the pump housing, for example by means of a correspondingly designed flange connection.
  • a free end of an output shaft of the drive unit protrudes into the pump housing and is provided there with an eccentric.
  • an output shaft designed as an eccentric shaft engages in the receptacle, with the eccentric being able to be placed on a roller, ball or nail bearing and an outer ring of the bearing being able to be accommodated in the receptacle.
  • the recording includes on a side surface and thus perpendicular to the axis of Output shaft has a threaded bore into which a component of the drive mechanism designed as a ball joint can be screwed and held in a clamped position.
  • the ball joint can be designed in such a way that it has a ball head and a threaded shank extending therefrom, at the free end of which a threaded area is formed.
  • the ball joint is designed to transfer the movement originating from the drive unit and the eccentric to one of the membranes.
  • the threaded bore provided in the receptacle is slotted, with the width of the slot being variable by means of screwing means.
  • the screwing means enable the threaded shaft to be positioned in the threaded bore and thus the ball joint relative to one of the membranes and, in a tensioned state, determine the adjustable or set position.
  • the ball joint is accommodated in the drive piston, which can be connected to one of the diaphragms and is slidably accommodated within the pump housing.
  • a seal is in sealing contact with the drive piston and is received in a groove formed on the pump housing. Accordingly, no lubricants are required for the displaceable mounting of the drive piston, but there is an arrangement with dry lubrication.
  • the ball joint or the ball head is mounted in a bearing block that can be accommodated in the drive piston, so that a rotational movement of the output shaft is transformed into a longitudinal movement of the drive piston and can be transmitted to one of the membranes.
  • the bearing block itself can be made in several parts and can be positioned within the drive piston.
  • the bearing block can bear against insert parts, for example cylindrical spacers, accommodated in the drive piston.
  • end faces of the bearing block suitably designed stops in the interior of the drive piston.
  • the drive piston has a through hole, so that the ball joint can be dismantled from the receptacle in the stored position using an insertable tool.
  • a tool holder can be formed on the ball head, into which a tool that can be inserted through the through bore engages and can be connected to the ball joint in a rotationally fixed manner.
  • This through-hole serves to enable the components of the mechanical drive mechanism to be dismantled.
  • the drive piston can be designed in several parts, with sleeve-shaped components being able to be connected to one another by a screw connection.
  • spring means can be accommodated in the drive piston, between which the ball joint can be mounted in a prestressed manner.
  • the position of the ball joint is therefore pretensioned, so it can always be reset to an initial position.
  • the resetting takes place against a spring force of one of the spring means.
  • the spring means or means can be designed in the form of spiral springs or cup springs, with a free spring length being adjustable to the stroke of the drive piston. Since limited rotational movement of the ball joint about its longitudinal axis but no movement in the direction of the longitudinal axis is possible, the ball joint provides power transmission with a stable, centered bearing, which prevents tilting or snaking.
  • the valve devices can be arranged in fluid-conducting connections of the pumping chambers to the at least one suction port on the one hand and to the at least one pressure port on the other.
  • a passive valve device can be arranged on at least one suction opening provided in each conveying space, which valve devices open when the associated membrane is suction-moved.
  • the valve device that can be used is designed as a plate valve made of an elastic plastic. The movable valve plate can be connected to a plug, which can be accommodated in a connecting channel at the respective suction opening. Depending on the position of the plate valve, a fluid-conducting connection between the pumping chamber and the suction port can be opened or closed.
  • the valve device that can be arranged there is designed as a flap valve made of an elastic plastic.
  • the flap valve can be used in a crossing area between the connecting channels and an outlet channel, so that the flap valve alternately opens or closes one of the pressure openings of the conveying chambers of the first membrane chamber and the second membrane chamber.
  • the flap valve is preferably designed in several parts.
  • the flap valve has a V-shape, with a hinge shaft being clamped at the base of the V-shape and being insertable into a hinge element. Accordingly, the flaps or wings of the flap valve can perform a tilting movement.
  • the flapper valve can be installed and removed through the pressure connection.
  • at least the hinge element is firmly fixed in position and the hinge shaft, held clamped in the V-shape of the wings, can be pressed into receptacles on the hinge element.
  • the pump housing is designed in several parts, with a pump cover, a control block, in which the suction port for sucking in a fluid to be pumped and the Pressure connection are provided for the exit of the pumped fluid and includes a drive housing and are sealingly connected to each other.
  • the pump cover and control block therefore form a type of pump head which can be connected to the drive housing.
  • the control block itself can be made in one piece or in several pieces.
  • the pump housing is made of a plastic that is chemically inert and resistant to the medium to be pumped. Alternatively, however, a design made of metal is also conceivable.
  • One of the membrane chambers can be formed by the pump cover and the control block, and the other of the membrane chambers, the first membrane chamber, is formed between the control block and the drive housing.
  • Circular depressions can be formed on the parallel outer surface of the control block, each of which is arched over by one of the membranes.
  • a circumferential groove is provided concentrically around the circular depression on each of the two outer sides of the control block, in which groove a peripheral annular bead of the respective membrane can be accommodated.
  • the separating surfaces between the pump cover and the control block and between the control block and the drive housing are sealed from one another by the membrane that can be arranged in this separating surface.
  • the several parts of the pump housing can be connected to one another by means of screw connections which are provided in an arrangement which enables an even application of force.
  • control block can be made in several parts.
  • individual blocks can be connected to one another in a non-positive and/or form-fitting manner by pressing or another suitable connection technique.
  • the control block comprises a suction block with the suction port and inlet channel and connecting channels, a pressure block with the pressure port and outlet channel and connecting channels and a central block designed to accommodate the coupling rod.
  • the at least one suction connection is in fluid-conducting connection via an inlet channel and a respective connecting channel with a suction opening of the respective delivery space of the first membrane chamber and the second membrane chamber.
  • the fluid is conveyed from the conveying chamber via a pressure area via so-called pressure openings from the conveying chambers via respective connecting channels to an outlet channel and to the pressure connection.
  • the conveying direction is determined by the position of the valve devices.
  • the connecting channels can be T-shaped in the suction area and V-shaped in the pressure area.
  • each membrane is designed as a structured membrane.
  • a membrane core can be provided in a central zone of the membrane, which brings about a certain stiffening of the central zone.
  • the fastening element for connection to the drive mechanism and the coupling rod can also be used in this.
  • the membrane can include one or more zones, each of which fulfills a different function.
  • the membrane on the outer circumference comprises the annular bead mentioned and thus a clamping zone, via which the membrane is clamped between housing parts of the pump housing and is held in a sealing manner on the circumferential side. Centering and/or positioning in relation to the drive mechanism is possible by means of the clamping zone. Due to the sealing effect, the housing parts of the pump housing are sealed off from the environment and from the drive mechanism in the area of the medium to be pumped without additional sealing means.
  • One or more radial zones of the membrane can adjoin between the clamping zone and the central zone, which are convex and/or concave in shape when the membrane is not under load and, for example, fulfill a support function and/or a balancing function. This enables the membrane to be guided as safely and with as little vibration as possible. This also promotes low-noise operation.
  • the membranes on the side of the fluid or conveying space are made of a material that is largely insensitive to aggressive chemicals in particular.
  • the membrane can be made of a chemical-resistant, but at the same time very tear-resistant and elastic material, such as plastic.
  • Each of the membranes preferably comprises at least two individual membrane layers lying on top of one another and connected to one another.
  • these are plastic layers made of different materials, for example a PTFE (polytetrafluoroethylene) or a chemically modified PTFE with a certain glass fiber content, which show only a low tendency to deform under load and low gas permeability.
  • plastics with a high level of resistance including resistance to mineral oils and chemicals, as well as good technological properties such as swelling resistance, elasticity and resistance to compression deformation are suitable.
  • the double membrane pump according to the invention can be easily dismantled into its individual parts.
  • wearing parts, such as valve devices can be easily replaced if necessary without having to completely dismantle the double diaphragm pump.
  • Diaphragms and valve devices can be exchanged separately from one another by means of separate access options.
  • FIG 1 shows a perspective view of a pump housing 10 of a double diaphragm pump 1.
  • the pump housing 10 is designed in several parts in the illustrated embodiment. It therefore comprises a pump cover 12, a control block 14 and a drive housing 16.
  • the drive housing 16 can be connected to a drive unit (not shown), for example an electric servo motor, or a conventional drive motor or air motor.
  • An output shaft 20 of the drive unit designed as an eccentric shaft, can be held in bearings in the drive housing 16 and is operatively connected to a mechanical drive mechanism that is still to be described. The rotational movement of the output shaft 20 of the drive unit is thus transformed into a translatory movement of the mechanical drive mechanism, ie into a sinusoidal movement.
  • an opening 30 is shown schematically, which marks an inlet or an outlet for the fluid to be pumped.
  • the pump housing 10 or parts thereof can be made of a plastic, for example polytetrafluoroethylene or another chemically inert material.
  • FIG 2 shows a longitudinal section through the double membrane pump 1.
  • the membrane pump shown as a double membrane pump 1 is not limited to an embodiment as a double membrane pump, rather its technical principles can be transferred to any conceivable embodiment of a membrane pump.
  • the drive unit (not shown) can be releasably attached to the pump housing 10 or the drive housing 16 by means of a flange connection.
  • the output shaft 20 of the drive unit designed as an eccentric shaft, protrudes into the interior of the drive housing 16 and is mounted there. Furthermore, the eccentric formed on the output shaft 20 is in contact with a receptacle 100 or is accommodated in a bearing arranged in the receptacle 100 .
  • the output shaft 20 can be coupled to the mechanical drive mechanism to be described in more detail below Figures 3 , 9 and 10 is referenced.
  • the mechanical drive mechanism includes drive components, which are designed as a connecting rod or a push or drive rod and can be brought into operative connection with the output shaft 20 .
  • a drive piston 120 is provided, which can be connected to a membrane in order to move it.
  • the double diaphragm pump 1 shown has a first diaphragm chamber 40 in the multi-part pump housing 10 between the drive housing 16 and the control block 14 and a second diaphragm chamber 50 between the control block 14 and the pump cover 12 .
  • a membrane 42, 52 are arranged in a freely swinging manner.
  • the membranes 42, 52 each have a peripheral annular bead 44, 54 which is compressed between the drive housing 16 and the control block 14 or between this and the pump cover 12 in a correspondingly designed clamping area and is held there in a sealing manner.
  • the membrane 42 separates a first delivery space 46 from a drive space 48 and the membrane 52 in the second membrane chamber 50 separates a second delivery space 56 from an air chamber 58 with changing volumes.
  • the drive space 48 and the air chamber 58 are shown connected to one another via an air duct 18 which is preferably designed with a small diameter.
  • the air duct 18 is set up such that during a suction movement, for example of the membrane 42 in the first membrane chamber 40 , air is pressed out of the drive space 48 into the air chamber 58 of the second membrane chamber 50 . In this way and due to the small diameter of the air channel 18, a pressure builds up in the membrane chamber 50, which supports the pressure movement of the second membrane 52 and vice versa.
  • Materials of the membranes 42, 52 are preferably elastomeric composites, for example NBR (acrylonitrile butadiene rubber), which assumes the function of an elastic base material in the composite.
  • NBR acrylonitrile butadiene rubber
  • a chemically inert PTFE film polytetrafluoroethylene
  • each of the membranes 42; 52 is a fastener 60 in a central zone of the membranes 42; 52 recordable, eg embedded.
  • the fastener 60 may be formed with a lug through one in the central zone of the membranes 42; 52 provided opening is performed. Furthermore, a disc-shaped area can be formed on the fastening element 60, which this opening or the central zone of the membranes 42; 52 covered and applied to this.
  • the attachment of the fastening element 60 is designed as a component of a screw connection, ie it has an internal thread 62 into which an external thread of either a cover element 64 or an external thread of a drive piston 120 comprised by the drive mechanism can be screwed. The latter serves to detachably connect one of the membranes 42; 52 with the drive mechanism.
  • a second internal thread 66 is formed, into which an external thread of a coupling rod 68 for the rigid connection of the first membrane 42 and the second membrane 52 can be screwed.
  • the arrangements of the threads can also be reversed.
  • the parts can be detached and disassembled from one another in a simple manner by means of the screw connections provided, so that an exchange of one of the membranes 42; 52 is easy to carry out.
  • Other types of connection of the membranes 42; 52 with the coupling rod 68 or the cover element 64 and/or drive piston 120 are conceivable.
  • the coupling rod 68 with the membranes 42; 52 can be connected by means of a positive fit, for example the coupling rod 68 can be connected to at least one of the membranes 42; 52 be overmoulded.
  • the membranes 42; 52 is designed as a structural membrane, with several zones being able to be formed between the central zone and the annular bead 44, which zones have different functions.
  • the membranes 42; 52 is designed as a structural membrane, with several zones being able to be formed between the central zone and the annular bead 44, which zones have different functions.
  • concave and/or convex zones are conceivable, which can be designed as a support zone and/or as a compensation zone.
  • the membranes 42; 52 can have a membrane core 41 which, as a mold core, stabilizes the central zone in particular.
  • the membrane core 41 can be made of metal, plastic or an elastomer in the membranes 42; 52 be vulcanized or glued to prevent sagging the diaphragm 42; 52 via the suction or pressure openings in the conveying chambers 46; 56 is reduced or abolished.
  • the figure 3 shows a cross section of a part of the double diaphragm pump 1 according to the embodiment of FIG figure 2 in a top view. Identical elements are denoted by the same reference symbols.
  • a valve device designed as a plate valve 90 is accommodated at each suction opening 70 and determines the conveying direction of the fluid or medium to be conveyed.
  • the fluid to be conveyed is fed via a suction connection 72 at the inlet, an inlet channel 74 and one of the connecting channels 76 to one of the suction openings 70 into the conveying chamber 46; 56 of the diaphragm chambers 40; 50 promoted, in which the arranged membrane 42; 52 is in the suction position.
  • the plate valve 90 Details of the plate valve 90 are given in figure 7 shown.
  • the pumped fluid is in a pressure movement of the membrane 42; 52, in which the corresponding plate valve 90 has the suction opening 70 in the delivery chamber 46; 56 closes, conveyed via the pressure opening 80, the connecting channel 76, an open flap valve 92 and an outlet channel 84 to a pressure connection 82.
  • the flap valve 92 is arranged and designed at a crossing area between the connecting channels 76 and the outlet channel 84 that with the pressure movement of the membranes 42; 52 the fluid from one of the delivery chambers 46; 56 is squeezed out. Details of the flapper valve 92 are in FIG figure 8 shown. In particular, the flap valve 92 can be inserted or removed from the pump housing 10 via the outlet channel 84 .
  • Out of figure 3 also shows that a seal 122 is provided on an outer circumference of the drive piston 120, which seals the associated drive chamber 48.
  • the Figures 4 and 5 each show different phases of the assembly of a double diaphragm pump 1 according to one embodiment.
  • the control block 14 is shown at least partially in section and shows its interior.
  • the respective connection channels 76 are visible, which establish a fluid-conducting connection on the one hand on the side of the suction connection 72 and on the other hand on the side of the pressure connection 82 for pumping fluid into or out of the first pumping space 46 of the first membrane chamber 40 and the second pumping space 56 of the second membrane chamber allow 50.
  • the conveying direction of the fluid to be conveyed or conveyed is determined by the movement of the membranes 42; 52 (not shown) conditional position of the valve devices 90, 92 specified.
  • the plate valves 90 can be arranged at the respective suction openings 70 in the suction region in which the suction connection 72 is located.
  • the plate valve 90 can be inserted in the connection channel 76, which provides a corresponding recess.
  • the plate valve 90 opens the suction opening 70 and the fluid enters the enlarging pumping chamber 46; 56. Meanwhile, in the pressure area, a fluid-conducting connection between the pumping chamber 46 or 56 to be filled and the pressure connection 82 is blocked by the flap valve 92 arranged there. With a reversal of movement of the corresponding membrane 42; 52 in the pressure movement, the plate valve 90 closes the associated suction opening 70. The flap valve 92 moves into a position so that the fluid-conducting connection between the pumping chamber 46 to be emptied; 56 is released.
  • the plate valve 90 comprises a plate 91a bent in a V shape and preferably made of an elastic material or plastic.
  • a bore is provided on one side of the V-shaped plate 91a, in which a sleeve 91b is held, which can be inserted into the suction opening 70 or the connecting channel 76.
  • Out of figure 7 1 shows a perspective view of the flapper valve 92.
  • the flapper valve 92 is designed in a V-shape and has two flapper blades 93a, 93b.
  • the material of the flap valve 92 is also an elastic plastic with very good mechanical properties, for example high mechanical strength, rigidity and wear resistance, which are suitable for continuous operation of the flap valve 92.
  • PEEK polyetheretherketone
  • At the base of the V-shape of the flapper valve 92 is supportingly received a hinge shaft 94 which projects with free ends beyond the vanes 93a, 93b.
  • the free ends of the hinge shaft 94 are connected to a hinge element 95 ( figure 4 ) lockable, and freely rotatable therein, so that the flapper valve 92 can perform a tilting movement.
  • the hinge element 95 is held firmly in a crossing area between the connecting channels 76 and the outlet channel 84, so that when the hinge shaft 94 is engaged, the flap wings 93a, 93b connected to it alternately establish one of the fluid-conducting connections to the conveying chambers 46; 56 opens or blocks.
  • FIG 8 a detail of the mechanical drive mechanism is shown in perspective. Shown is the receptacle 100, in which the output shaft 20 of the drive unit (not shown) is rotatably mounted in a bearing 110 provided for this purpose, designed here as a ball bearing.
  • the receptacle 100 forms a kind of connecting rod with a ball joint 112, which is regarded as a component of the mechanical drive mechanism.
  • the receptacle 100 corresponds to a certain extent to a connecting rod head and is largely cuboid in shape.
  • a slot 102 is formed on one of the side surfaces of the receptacle 100 and runs parallel to a base surface of the receptacle 100 and thus perpendicularly to the output shaft 20 .
  • the slot 102 intersects a threaded hole 104 formed on the side surface.
  • the width of the slot 102 is adjustable. Screw means 106 are provided for this purpose, which change the width of the slot 102 depending on the position.
  • the ball joint 112 comprises a ball head 114 at one end, from which a threaded shank 116 extends, at the end of which a threaded area complementary to the threaded bore 104 is formed. In the illustrated embodiment, the ball joint 112 is formed in one piece, a multi-part design is also conceivable. Thus, the ball joint 112 can be threaded into the socket 100 and clamped in place with the width of the slot 102 adjusted accordingly.
  • a tool holder 118 is formed, in which a tool can be accommodated in a twist-proof manner. Accordingly, the ball joint 112 can be detached from the receptacle 100 when the screw means 106 are loosened.
  • the figure 9 shows a detailed view of the mechanical drive mechanism of the double diaphragm pump 1 in a sectional view.
  • the ball joint 112 is connected to the receptacle 100 via the threaded shank 116 , ie screwed into the slotted threaded bore 104 .
  • the output shaft 20 designed as an eccentric shaft is accommodated in the bearing 110 .
  • the ball head 114 of the ball joint 112 is accommodated in the drive piston 120 .
  • the ball head 114 is rotatably mounted in a multi-part bearing block 130, which is accommodated in the drive piston 120 designed as a hollow piston, for example adjacent to one or more insertable spacers (not shown).
  • the drive piston 120 has a multi-part design, with the parts being able to be connected to one another by means of a screw connection 121 .
  • the drive piston 120 has a through hole 124 on an end face. A tool can be passed through the through hole 124 from the drive space 48 of the first diaphragm chamber 40 to the tool holder 118 on the ball head 114 in order to release the ball joint 112 from the holder 100 .
  • spring means 140 can be arranged, which enable the multi-part bearing block 130 to be held in a prestressed manner.
  • the multi-part bearing block 130 is arranged between spring means 140 so that it can always be returned to its initial position.
  • the overload protection can also be designed in the form of an electronic overload protection.
  • Reference sign 1 double diaphragm pump 92 flap valve 10 pump housing 93a,b damper wings 12 pump cover 94 hinge shaft 14 control block 95 hinge element 16 drive housing 18 air duct 100 Recording 20 output shaft 102 slot 104 threaded hole 30 opening 106 screw means 40 first membrane chamber 110 camp 50 second membrane chamber 112 ball joint 114 ball head 41 membrane core 116 threaded shank 42 first membrane 118 tool holder 44 ring bead 120 drive piston 46 first promotion room 121 screw connection 48 drive room 122 poetry 124 through hole 52 second membrane 54 ring bead 130 storage block 56 second conveyor room 58 air chamber 140 spring means 60 fastener 62 inner thread 64 cover element 66 second internal thread 68 coupling rod 70 suction port 72 suction port 74 inlet channel 76 connecting channel 80 pressure port 82 pressure connection 84 exhaust port 90 plate valve 91a V-shaped curved plate 91b sleeve

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)
  • Transmission Devices (AREA)

Description

    Technisches Gebiet der Erfindung
  • Die vorliegende Erfindung betrifft eine Doppelmembranpumpe mit einem mechanischen Antriebsmechanismus.
  • Stand der Technik
  • Membranpumpen werden zum Fördern von Fluiden eingesetzt, insbesondere Flüssigkeiten und Gasen. Allgemein weist eine Membranpumpe eine in einer Membrankammer angeordnete Membran auf, welche einen Förderraum bzw. Fluidraum oder Produktkammer von einem Antriebsraum trennt, d.h. von einem Antriebsmechanismus der Pumpe. Demnach stehen die im Antriebsraum befindlichen Antriebselemente nicht in Kontakt mit dem zumindest teilweise aggressiven, zu fördernden Fluid. Die Membran wird in eine Bewegung durch einen hydraulischen, pneumatischen, mechanischen oder elektromagnetischen Antriebsmechanismus versetzt. Eine mechanische Membranpumpe zeigt im Allgemeinen einen höheren Wirkungsgrad, eine geringere Pulsation und universelle Einsatzbarkeit als beispielsweise eine pneumatische Membranpumpen. Bei mechanischen Membranpumpen kann der Antrieb mittels eines Elektromotors über einen Exzenter und einen Hubkolben oder Pleuel erfolgen.
  • Doppelmembranpumpen umfassen ein Pumpengehäuse mit zwei parallelen Leitungsabschnitten, welche eine erste Membrankammer und eine zweite Membrankammer ausbilden. In jeder der Membrankammern ist eine Membran angeordnet, die den jeweiligen Fluidraum von dem Antriebsraum dichtend trennt. Der Antriebsmechanismus der Doppelmembranpumpe ist eingerichtet, um die Membranen periodisch zu bewegen. Gemäss einem Membrantyp sind die Membranen mit einer Verbindungswelle, bezeichnet auch als Kopplungsstange, koppelbar und bewegen sich im Gleichtakt. Bekannt sind auch unabhängige Antriebsmittel der Membranen, welche mittels einer Steuerung synchronisierbar sind.
  • Durch Bewegung der Membranen ändern sich die Volumina des Förder- bzw. Fluidraums und des Antriebsraums komplementär zueinander, so dass in einer Saugbewegung der Fluidraum mit zu förderndem Medium gefüllt und in einer Druckbewegung der Fluidraum entleert wird. Mittels angeordneter Ventileinrichtungen wird die Förderrichtung vorgegeben, so dass bei der Saugbewegung eine Auslassseite und bei einer Druckbewegung eine Einlassseite blockiert ist. Doppelmembranpumpen saugen zeitgleich Fluid an und drücken Fluid heraus.
  • Bekannt sind Membranpumpen mit einem mehrteiligen Pumpengehäuse, wobei die einzelnen Gehäuseteile des Pumpengehäuses im Wesentlichen plattenförmig, entlang einer Längsachse angeordnet, gegeneinander abgedichtet und beispielsweise mittels Befestigungsmitteln verspannt sind. Die Gehäuseteile sind z.B. aus Metall, so dass axial aufzubringende Abdichtkräfte verzugsfrei und ohne Setzerscheinungen aufgebracht werden können. Bei gewissen Ausführungen modular aufgebauter Membranpumpen, bzw. Doppelmembranpumpen, sind Sauganschluss und Druckanschluss je nach Anforderung in einer geeigneten Orientierung anordenbar. Derartige Membranpumpen sind in ihrer Fertigung teuer und können über ihre Lebenszeit bei ungünstigen Einsatzbedingungen ihre Festigkeit bzw. Dichtheit verlieren.
  • Im Allgemeinen haben Doppelmembranpumpen mit im Gleichklang, d.h. synchron zueinander, hin und her bewegter Membranen, um abwechselnd den Förderraum zu füllen und zu evakuieren, den Nachteil, dass es an der Auslassseite zu periodisch wiederkehrenden Förderdruckabfällen kommt. Damit kommt es zu mehr oder weniger starken Förderunterbrüchen und Vibrationen, welche eine nachgeschaltete Dämpfung erforderlich machen. Ferner zeigt der Förderdruck aufgrund von Materialeigenschaften der Membranen einen sägezahnförmigen zeitlichen Verlauf.
  • Es ist bekannt, Membranpumpen mit Druckluft zu betätigen, wobei dies den Einsatz von teurer und nur begrenzt zur Verfügung stehender Druckluft erfordert. Demnach bedarf es einer speziell abgestimmten Infrastruktur, um Druckluft am Einsatzort verfügbar zu machen, so dass ein mobiler Einsatz der Membranpumpe problematisch ist.
  • Es sind elektromechanisch betriebene Doppelmembranpumpen bekannt, wobei eine Kolbenstange in Wirkverbindung mit einem Kurbelzapfen steht, welcher an einem freien Ende einer Abtriebswelle eines Getriebemotors angeordnet ist. So wird eine von dem Antriebsmotor ausgehende Drehbewegung in die Linearbewegung der Kolbenstange bzw. der damit verbundenen Membranen umgewandelt, wie dies beispielsweise in DE 20109650 U1 beschrieben ist.
  • In einer Membranpumpe unterliegt die Membran während eines Pumpenzyklus einer mechanischen Verformung, so dass über die Lebenszeit der Membranpumpe Verschleisserscheinungen und mechanische Defekte der Membran häufig zum Ausfall der Pumpe führen. Bekannte Membrane sind aus einem Material mit einer gewissen Elastizität gefertigt, z.B. Elastomere, wie NBR (Acrylnitril-Butadien-Kautschuk). Bekannt sind auch Verbundmembrane in Sandwichbauweise mit einer Schicht eines Elastomer und einer weiteren z.B. extrudierten Schicht, beispielsweise PTFE, welche sich durch Chemiebeständigkeit gegenüber aggressiven Medien auszeichnet und demnach an der Mediumseite vorgesehen ist.
  • Damit die Membran gleichzeitig ausreichend formstabil und ausreichend elastisch ist, um während des Pumpenbetriebs durch die auf gegenüberliegenden Membranseiten wirkenden gegensätzlichen Druckkräfte verformt zu werden, sind Strukturmembrane bekannt. Diese können beispielsweise an ihrer dem Fluidraum abgewandten Seite konzentrische Stege oder radiale Rippen aufweisen, welche eine definierte Walkbewegung der Strukturmembran während des Pumpbetriebes erlauben. Form- und Strukturmembrane können an ihrer dreidimensionalen Oberfläche zur Mediumseite hin eine Beschichtung aus Teflon aufweisen.
  • Aus AT 34 296 B ist eine mehrkammerige Membranpumpe bekannt. Hierbei sind mehrere Membranpumpen übereinander angeordnet, welche mittels einer gemeinsamen Stange mit einem Kurbelantrieb betätigt werden. Die jeweiligen Förderräume stehen über eine Kammer mit einer Saugleitung und über einer weiteren Kammer mit einer Druckleitung in Verbindung, wobei Öffnungen über austauschbare Saug- bzw. Druckklappen verrschliessbar sind.
  • Aus US 3 027 848 A ist eine Membranpumpe bekannt, welche mittels einer Kolbenstange betätigbar ist, wobei die Kolbenstange über ein Kugelgelenk mit einem antreibbaren Kurbelzapfen verbindbar ist.
  • Aus US 2 918 878 A ist eine gegenläufige Doppelmembranpumpe mit einem von Hand betätigbaren Antriebsmechanismus zur Bewegung der Membranen bekannt.
  • Zusammenfassung der Erfindung
  • Aufgabe der vorliegenden Erfindung ist es, eine Doppelmembranpumpe mit einem mechanischen Antriebsmechanismus weiterzuentwickeln. Die erfindungsgemässe Doppelmembranpumpe kann kostengünstig gefertigt werden und weist eine kompakte Bauweise auf. Die Doppelmembranpumpe ist demontierbar und Verschleissteile sind einfach austauschbar, wobei Dichtmittel im Bereich der Produkt- bzw. Mediumseite nicht erforderlich sind. Ferner ist die Doppelmembranpumpe gemäss der Erfindung auch zum Fördern aggressiver Chemikalien sowie von Fluiden mit einem Feststoffanteil geeignet. Darüber hinaus zeichnet sich die Doppelmembranpumpe durch einen hohen Wirkungsgrad und einen nahezu vibrationsfreien Betrieb aus, so dass die gute Standfestigkeit einen universellen Einsatz erlaubt.
  • Die Aufgaben werden gemäss der Erfindung mit einer Doppelmembranpumpe mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen der Doppelmembranpumpe ergeben sich durch die Merkmale der unabhängigen Patentansprüche.
  • Zwar bezieht sich die Erfindung auf eine Doppelmembranpumpe, doch sind auch andere Membranpumpen mit einem mechanischen Antriebsmechanismus grundsätzlich umfasst.
  • Die erfindungsgemässe Doppelmembranpumpe mit einem mechanischen Antriebsmechanismus umfasst ein Pumpengehäuse, welches mindestens einen Sauganschluss und mindestens einen Druckanschluss sowie eine erste Membrankammer und eine zweite Membrankammer aufweist. Dabei trennt in der ersten Membrankammer eine erste Membran einen ersten Förderraum von einem Antriebsraum und in der zweiten Membrankammer eine zweite Membran einen zweiten Förderraum von einer Luftkammer. Im Falle, dass beide Membranen durch einen mechanischen Antriebsmechanismus bewegbar sind, ist die zweite Membrankammer spiegelbildlich zur ersten Membrankammer ausgebildet. Die Förderräume sind mit mindestens einem Sauganschluss einerseits und dem Druckanschluss andererseits über Ventileinrichtungen verbunden. Ferner sind die erste Membran und die zweite Membran mit einer Kopplungsstange verbindbar. Durch die mechanische
    Kopplung erfolgt eine Übertragung der Bewegung einer der Membranen, erzeugt durch den mechanischen Antriebsmechanismus. Besonders vorteilhaft ist eine symmetrische Gestaltung des Pumpengehäuses in Bezug auf den Saug- und Druckanschluss, so dass dieses gegebenenfalls in einer umgekehrten Orientierung wieder für einen Einsatz montierbar ist.
  • Der mechanische Antriebsmechanismus der Doppelmembranpumpe umfasst einen Antriebskolben und ein darin aufnehmbares Kugelgelenk sowie eine mit dem Kugelgelenk verbindbare Aufnahme, welche ausgebildet ist, um mit einer als Exzenterwelle ausgebildeten Abtriebswelle einer Antriebseinheit koppelbar zu sein. Die Aufnahme ist ferner ausgebildet, dass das Kugelgelenk in einer Geweindebohrung einschraubbar und darin klemmend gehalten ist.
  • Demnach sind in dem Pumpengehäuse in zwei parallelen Leitungsabschnitten jeweils eine Membrankammer ausgebildet, in denen freischwingende Membranen angeordnet sind, so dass eine Produkt- bzw. Fluidkammer, bezeichnet als Förderraum und ein Antriebsraum bzw. eine Luftkammer dichtend voneinander getrennt sind. Antriebsraum und Luftkammer der beiden Membrankammern können mittels eines Luftkanals, vorzugsweise mit kleinem Durchmesser, miteinander verbunden sein. Demnach wird bei einer Bewegung der Membranen in der jeweils anderen Luftkammer bzw. dem Antriebsraum ein sich aufbauender und abbauender Gegendruck erzeugt. Dieser Gegendruck unterstützt die Bewegung der Membranen und dient zum Ausgleich von thermischen Effekten und Umpumpeffekten.
  • Die beiden Membranen, auch bezeichnet als erste Membran und als zweite Membran, sind durch eine starre Kopplungsstange miteinander verbindbar, welche sich axial entlang einer Längsachse durch den Mittelpunkt jeder der Membranen erstreckt und an den Membranen jeweils lösbar befestigt ist. Hierfür ist an jeder der Membranen in einer Zentralzone ein Befestigungselement vorgesehen, beispielsweise einvulkanisiert, das einerseits zur lösbaren Befestigung der Kopplungsstange mit der jeweiligen Membran und andererseits bei einer der Membranen zur axialen Sicherung gegenüber bzw. zur lösbaren Befestigung mit dem Antriebskolben des mechanischen Antriebsmechanismus dient. Hierzu kann jedes Befestigungselement ein Innengewinde aufweisen, in welches Aussengewinde, ausgebildet an Enden der Kopplungsstange, eingeschraubt werden oder umgekehrt. Ferner kann an einer Membran zur Verbindung mit dem mechanischen Antriebsmechanismus an dem Befestigungselement ein Innengewinde vorgesehen sein, in welches ein Aussengewinde des Antriebskolbens eingeschraubt wird oder umgekehrt. Eine Befestigung mittels Verschrauben hat den Vorteil, dass die Montage einfach zu handhaben, preiswert und demontierbar ist, sowie eine Einstellbarkeit ermöglicht, um ein Fördervolumen einzustellen. Vorzugsweise ist das Befestigungselement scheibenförmig ausgebildet, wobei der Durchmesser derart gewählt ist, dass dieser weitgehend eine Zentralzone der Membran überdeckt. Insbesondere ist das Befestigungselement aus Metall gefertigt, wodurch eine formstabile und präzise Befestigung einerseits der Kopplungsstange und andererseits der Antriebskomponente des Antriebsmechanismus möglich ist.
  • Mittels der Kopplungsstange und dem mechanischen Antriebsmechanismus werden die Membranen im Gegentakt zwischen zwei Bewegungsendpunkten hin und her bewegt. Denkbar ist aber auch, dass die Membranen durch separate Antriebsmittel bewegt werden, wobei mittels einer umfassten Steuerung die Bewegung der Membranen koordinierbar ist. Bei dem Bewegungsablauf wird abwechselnd in einer Saugbewegung einer der Förderräume mit zu förderndem Medium bzw. Fluid gefüllt und bei einer Druckbewegung entleert. Ventileinrichtungen am Sauganschluss und am Druckanschluss geben die Förderrichtung vor, in dem sie bei der Saugbewegung die Auslassseite und bei der Druckbewegung die Einlassseite der jeweiligen Membrankammer blockieren.
  • Zur Bewegung der Membranen ist eine Antriebseinheit, z.B. ein Motor, vorgesehen, welcher mit dem mechanischen Antriebsmechanismus koppelbar ist. Die Antriebseinheit ist an dem Pumpengehäuse lösbar verbindbar, beispielsweise mittels einer entsprechend ausgebildeten Flanschverbindung. Eine Abtriebswelle der Antriebseinheit ragt mit einem freien Ende in das Pumpengehäuse hinein und ist dort mit einem Exzenter versehen. So greift beispielsweise eine als Exzenterwelle ausgebildete Abtriebswelle in die Aufnahme ein, wobei der Exzenter auf ein Wälz- Kugel- oder Nagellager setzbar ist und ein Aussenring des Lagers in der Aufnahme aufnehmbar ist. Die Aufnahme umfasst an einer Seitenfläche und damit senkrecht zur Achse der Abtriebswelle eine Gewindebohrung, in welche eine als Kugelgelenk ausgebildete Komponente des Antriebsmechanismus einschraubbar und in Position klemmend gehalten ist. Das Kugelgelenk kann derart ausgebildet sein, dass es einen Kugelkopf und einen sich davon erstreckenden Gewindeschaft aufweist, an dessen freiem Ende ein Gewindebereich ausgebildet ist. Das Kugelgelenk ist ausgebildet, um die von der Antriebseinheit und dem Exzenter ausgehende Bewegung auf eine der Membranen zu übertragen.
  • In einer Ausführungsform ist die in der Aufnahme vorgesehene Gewindebohrung geschlitzt ausgebildet, wobei eine Breite des Schlitzes mittels Schraubmitteln veränderbar ist. Die Schraubmittel ermöglichen in einem gelösten Zustand die Positionierung des Gewindeschafts in der Gewindebohrung und damit des Kugelgelenks relativ zu einer der Membranen und legen in einem gespannten Zustand die einstellbare bzw. eingestellte Position fest.
  • Das Kugelgelenk ist in dem Antriebskolben aufgenommen, welcher mit einer der Membranen verbindbar und innerhalb des Pumpengehäuses verschieblich aufgenommen ist. Eine Dichtung steht im dichtenden Kontakt mit dem Antriebskolben und ist in einer am Pumpengehäuse ausgebildeten Nut aufgenommen. Demnach sind keine Schmiermittel zur verschieblichen Lagerung des Antriebskolbens erforderlich, sondern es liegt eine Anordnung mit Trockenschmierung vor.
  • Das Kugelgelenk bzw. der Kugelkopf ist in einem in dem Antriebskolben aufnehmbaren Lagerblock gelagert, so dass eine Drehbewegung der Abtriebswelle in eine Längsbewegung des Antriebskolbens transformiert und auf eine der Membranen übertragbar ist. Der Lagerblock selbst kann mehrteilig ausgebildet sein und ist innerhalb des Antriebskolbens positionierbar. Beispielsweise kann der Lagerblock an Einlegeteilen anliegen, beispielsweise zylinderförmigen Distanzstücken, aufgenommen in dem Antriebskolben. Alternativ können Stirnflächen des Lagerblocks an entsprechend ausgebildeten Anschlägen im Innenraum des Antriebskolbens anliegen.
  • In einer Ausführungsform weist der Antriebskolben eine Durchgangsbohrung auf, so dass das Kugelgelenk in gelagerter Position aus der Aufnahme mittels eines einführbaren Werkzeugs demontierbar ist. Hierbei kann an dem Kugelkopf eine Werkzeugaufnahme ausgebildet sein, in welches ein durch die Durchgangsbohrung einführbares Werkzeug angreift und drehfest mit dem Kugelgelenk verbindbar ist. Diese Durchgangsbohrung dient der Demontierbarkeit der Komponenten des mechanischen Antriebsmechanismus.
  • Der Antriebskolben kann mehrteilig ausgebildet sein, wobei hülsenförmige Komponenten miteinander durch eine Schraubverbindung verbindbar sind.
  • In einer bevorzugten Ausführungsform sind in dem Antriebskolben Federmittel aufnehmbar, zwischen welchen das Kugelgelenk vorgespannt lagerbar ist. Die Position des Kugelgelenks ist demnach vorgespannt, so ist dieses stets in eine Ausgangslage rückstellbar. Die Rückstellung erfolgt dabei gegen eine Federkraft eines der Federmittel. Durch die Anordnung der Federmittel innerhalb des Antriebskolbens kann ein kompakter Aufbau mit vermindertem Bauraum realisiert werden. Die Anordnung der Federmittel erlaubt eine Art Überlastsicherung, welche das automatische Rückstellen des Kugelgelenks und damit des Antriebskolbens in eine Ausgangsposition ermöglicht.
  • Das oder die Federmittel können in Form von Spiralfedern oder Tellerfedern ausgebildet sein, wobei eine freie Federlänge an den Hub des Antriebskolbens anpassbar ist. Da eine begrenzte Drehbewegung des Kugelgelenks um seine Längsachse aber keine Bewegung in Richtung der Längsachse möglich ist, stellt das Kugelgelenk eine Kraftübertragung mit einer stabilen zentrierten Lagerung bereit, welche ein Kippen oder Schlingern vermeidet.
  • In einer Ausführungsform der Doppelmembranpumpe sind die Ventileinrichtungen in fluidleitenden Verbindungen der Förderräume einerseits zu dem mindestens einen Sauganschluss und andererseits zu dem mindestens einen Druckanschluss anordenbar. Demnach sind an mindestens einer in jedem Förderraum vorgesehenen Saugöffnung eine passive Ventileinrichtungen anordenbar, welche bei einer Saugbewegung der zugeordneten Membran öffnet. In einer Ausführungsform ist die einsetzbare Ventileinrichtung als Plattenventil aus einem elastischen Kunststoff ausgebildet. Die bewegliche Ventilplatte ist mit einem Stopfen verbindbar, welcher an einem Verbindungskanal an der jeweiligen Saugöffnung aufnehmbar ist. Dabei kann in Abhängigkeit der Stellung des Plattenventils eine fluidleitende Verbindung zwischen Förderraum und Sauganschluss freigegeben oder verschlossen werden.
  • Ferner ist in der fluidleitenden Verbindung der Förderräume mit dem Druckanschluss die dort anordenbare Ventileinrichtung als Klappenventil aus einem elastischen Kunststoff ausgebildet. Insbesondere ist das Klappenventil in einen Kreuzungsbereich zwischen den Verbindungskanälen und einem Auslasskanal einsetzbar, so dass das Klappenventil abwechselnd eine der Drucköffnungen der Förderräume der ersten Membrankammer und der zweiten Membrankammer öffnet oder schliesst. Das Klappenventil ist bevorzugt mehrteilig ausgebildet. In einer Ausführungsform weist das Klappenventil eine V-Form auf, wobei eine Scharnierwelle am Grund der V-Form klemmend gehalten und in ein Scharnierelement einsetzbar ist. Demnach können die Klappen oder Flügel des Klappenventils eine Kippbewegung ausführen.
  • In einer Ausführungsform ist das Klappenventil durch den Druckanschluss montierbar und demontierbar. Hierbei ist zumindest das Scharnierelement fest in Position fixiert und die Scharnierwelle, klemmend gehalten in der V-Form der Flügel, kann in Aufnahmen am Scharnierelement eingepresst werden.
  • In einer weiteren Ausführungsform ist das Pumpengehäuse mehrteilig ausgebildet, wobei ein Pumpendeckel, ein Steuerblock, in welchen der Sauganschluss für das Ansaugen eines zu fördernden Fluid und der Druckanschluss für das Austreten des geförderten Fluid vorgesehen sind und ein Antriebsgehäuse umfasst und miteinander dichtend verbindbar sind.
  • Pumpendeckel und Steuerblock bilden demnach eine Art Pumpenkopf, welcher mit dem Antriebsgehäuse verbindbar ist. Der Steuerblock selbst kann einteilig oder mehrteilig ausgebildet sein. In einer Ausführungsform ist das Pumpengehäuse aus einem Kunststoff gefertigt, welches insbesondere chemisch inert und resistent gegen das zu fördernde Medium ist. Alternativ ist aber auch eine Ausführung aus Metall vorstellbar.
  • So kann eine der Membrankammern, hier bezeichnet als zweite Membrankammer, von dem Pumpendeckel und dem Steuerblock gebildet werden und die andere der Membrankammern, die erste Membrankammer, ist zwischen Steuerblock und Antriebsgehäuse ausgebildet. An parallelen Aussenfläche des Steuerblocks können kreisförmige Vertiefungen ausgebildet sein, die jeweils von einer der Membranen überwölbt sind. Insbesondere ist konzentrisch um die kreisförmige Vertiefung auf jeder der zwei Aussenseiten des Steuerblocks eine umlaufende Nut vorgesehen, in welche ein peripherer Ringwulst der jeweiligen Membran aufnehmbar ist. Beim Zusammenfügen und Verbinden des mehrteiligen Pumpengehäuses können die Membranen mit ihrem peripheren Ringwulst in einem jeweiligen Einspannbereich zusammengedrückt und in der Nut gehalten werden. Die Trennflächen zwischen Pumpendeckel und Steuerblock und zwischen Steuerblock und Antriebsgehäuse sind gegeneinander über die jeweils in dieser Trennfläche anordenbare Membran abgedichtet. Beispielsweise können die mehreren Teile des Pumpengehäuses mittels Schraubverbindungen miteinander verbunden werden, welche in einer Anordnung vorgesehen sind, welche eine gleichmässige Kraftbeaufschlagung ermöglicht.
  • In einer anderen Ausführungsform kann der Steuerblock mehrteilig ausgebildet sein. Bei dem mehrteiligen Steuerblock können die einzelnen Blöcke durch Verpressen oder einer anderen geeigneten Verbindungstechnik miteinander kraft- und/oder formschlüssig dichtend verbunden sein.
  • Der Steuerblock umfasst einen Saugblock mit dem Sauganschluss sowie Einlasskanal und Verbindungskanäle, einen Druckblock mit dem Druckanschluss sowie Auslasskanal und Verbindungskanäle und einen zentralen Block, ausgebildet zur Aufnahme der Kopplungsstange. In einem Saugbereich steht demnach der mindestens eine Sauganschluss über einen Einlasskanal und jeweils einen Verbindungskanal mit einer Saugöffnung des jeweiligen Förderraums der ersten Membrankammer und der zweiten Membrankammer in fluidleitender Verbindung. Aus dem Förderraum wird das Fluid über einen Druckbereich über sogenannte Drucköffnungen aus den Förderräumen über jeweilige Verbindungskanäle zu einem Auslasskanal und zum Druckanschluss gefördert. Die Förderrichtung wird durch die Stellung der Ventileinrichtungen bestimmt. Die Verbindungskanäle können beispielsweise im Saugbereich T-förmig und im Druckbereich V-förmig ausgebildet sein.
  • Die einsetzbaren Membranen sind ausgebildet, um ausreichend formstabil zu sein, so dass sie nicht während des Pumpenbetriebs durch die auf gegenüberliegenden Membranseiten einwirkenden gegensätzlichen Druckkräfte leistungsmindernd verformt werden. Insbesondere ist jede Membran als Strukturmembran ausgebildet. In einer Zentralzone der Membran kann ein Membrankern vorgesehen sein, welcher eine gewisse Versteifung der Zentralzone bewirkt. In dieser ist auch das Befestigungselement zur Verbindung mit dem Antriebsmechanismus und der Kopplungsstange einsetzbar.
  • Neben der Zentralzone kann die Membran eine oder weitere Zonen umfassen, welche jeweils unterschiedliche Funktionen erfüllen. So umfasst die Membran am Aussenumfang den erwähnten Ringwulst und damit eine Einspannzone, über welche die Membran zwischen Gehäuseteilen des Pumpengehäuses eingespannt und umfangsseitig dichtend gehalten ist. Mittels der Einspannzone ist eine Zentrierung und/oder Positionierung in Bezug auf den Antriebsmechanismus möglich. Aufgrund der dichtenden Wirkung werden die Gehäuseteile des Pumpengehäuses ohne zusätzliche Dichtmittel im Bereich des zu fördernden Mediums gegenüber der Umgebung und gegenüber dem Antriebsmechanismus abgedichtet.
  • Zwischen Einspannzone und Zentralzone können sich eine oder mehrere radiale Zonen der Membran anschliessen, welche im unbelasteten Zustand der Membran konvex und/oder konkav geformt sind und beispielsweise eine Stützfunktion und/oder eine Ausgleichsfunktion erfüllen. So ist eine möglichst sichere und schwingungsarme Membranführung möglich. Dies begünstigt darüber hinaus einen geräuscharmen Betrieb.
  • Ferner sind die Membranen auf der Seite des Fluid- bzw. Förderraums aus einem Material gefertigt, welches insbesondere gegenüber aggressiven Chemikalien weitgehend unempfindlich ist. So kann die Membran aus einem chemikalienresistenten, aber auch gleichzeitig sehr reissfesten sowie elastischen Material, wie Kunststoff, gefertigt sein. Bevorzugt umfasst jede der Membranen mindestens zwei aufeinanderliegende und miteinander verbundene Einzelmembranlagen. Insbesondere handelt es sich dabei um Kunststoffschichten aus unterschiedlichen Materialien, beispielsweise einem PTFE (Polytetraflourethylen) bzw. einem chemisch modifizierten PTFE mit einem gewissen Glasfaseranteil, welche nur geringe Deformationsneigung unter Last und eine geringe Gasdurchlässigkeit zeigen. Für die Produktseite eignen sich Kunststoffe mit hoher Beständigkeit, unteranderem gegen Mineralöle und Chemikalien, sowie guten technologischen Eigenschaften wie Quellbeständigkeit, Elastizität, Druckverformungsresistenz.
  • Aufgrund der Ausbildung des mechanischen Antriebsmechanismus und seiner Verbindung zu den Membranen kann die erfindungsgemässe Doppelmembranpumpe einfach in ihre Einzelteile demontiert werden. Darüber hinaus können auch Verschleissteile, beispielsweise Ventileinrichtungen, bei Bedarf einfach ausgetauscht werden, ohne die Doppelmembranpumpe komplett zu demontieren. Mittels separater Zugangsmöglichkeiten können Membranen und Ventileinrichtungen getrennt voneinander ausgetauscht werden.
  • Kurzbeschreibung der Zeichnung
  • Bevorzugte Ausführungsformen der Erfindung werden nachfolgend anhand der in der Zeichnung dargestellten Figuren beispielhaft näher erläutert. Es zeigen:
    • Figur 1 eine perspektivische Ansicht eines Pumpengehäuses einer Doppelmembranpumpe mit einer darin angeordneten Abtriebswelle einer Antriebseinheit;
    • Figur 2 einen Längsschnitt einer Doppelmembranpumpe in Seitenansicht mit einem Antriebsmechanismus gemäss einer ersten Ausführungsform;
    • Figur 3 eine Detailansicht der Doppelmembranpumpe gemäss der ersten Ausführungsform in Draufsicht;
    • Figur 4 eine teilweise geschnittene perspektivische Ansicht der Doppelmembranpumpe mit teilweise entfernten Ventileinrichtungen;
    • Figur 5 eine teilweise geschnittene perspektivische Ansicht der Doppelmembranpumpe gemäss Figur 4 mit eingesetzten Ventileinrichtungen;
    • Figur 6 eine perspektivische Detailansicht einer Ventileinrichtung, ausgebildet als Plattenventil;
    • Figur 7 eine perspektivische Detailansicht einer Ventileinrichtung, ausgebildet als Klappenventil;
    • Figur 8 eine perspektivische Ansicht eines Details des mechanischen Antriebsmechanismus;
    • Figur 9 eine Detailansicht einer Doppelmembranpumpe mit einem mechanischen Antriebsmechanismus gemäss einer zweiten Ausführungsform.
    Detaillierte Beschreibung der Ausführungsformen der Erfindung
  • Figur 1 zeigt eine perspektivische Ansicht eines Pumpengehäuses 10 einer Doppelmembranpumpe 1. Das Pumpengehäuse 10 ist in der dargestellten Ausführungsform mehrteilig ausgebildet. Es umfasst demnach einen Pumpendeckel 12, einen Steuerblock 14 und ein Antriebsgehäuse 16. Das Antriebsgehäuse 16 ist mit einer nicht dargestellten Antriebseinheit, beispielsweise einem elektrischen Servomotor, bzw. einem üblichen Antriebsmotor oder Luftmotor verbindbar. Eine als Exzenterwelle ausgebildete Abtriebswelle 20 der Antriebseinheit kann in dem Antriebsgehäuse 16 gelagert gehalten sein und steht in Wirkverbindung mit einem noch zu beschreibenden mechanischen Antriebsmechanismus. Die Drehbewegung der Abtriebswelle 20 der Antriebseinheit wird so in eine translatorische Bewegung des mechanischen Antriebsmechanismus transformiert, d.h. in eine sinusförmige Bewegung. An einer der Seitenflächen des Pumpengehäuses 10 ist schematisch eine Öffnung 30 dargestellt, welche einen Einlass oder einen Auslass für das zu fördernde Fluid markiert. Das Pumpengehäuse 10 oder Teile davon können aus einem Kunststoff gefertigt sein, beispielsweise aus Polytetrafluorethylen oder einem anderen chemisch inerten Material.
  • Figur 2 zeigt einen Längsschnitt durch die Doppelmembranpumpe 1. Die als Doppelmembranpumpe 1 dargestellte Membranpumpe ist nicht auf eine Ausführungsform als Doppelmembranpumpe beschränkt, sondern deren technische Prinzipien sind vielmehr auf jede denkbare Ausführungsform einer Membranpumpe übertragbar.
  • Wie angedeutet in Figur 2 kann die Antriebseinheit (nicht dargestellt) mittels einer Flanschverbindung an dem Pumpengehäuse 10, bzw. dem Antriebsgehäuse 16, lösbar befestigt werden. Dabei ragt die als Exzenterwelle ausgebildete Abtriebswelle 20 der Antriebseinheit in das Innere des Antriebsgehäuses 16 und ist dort gelagert. Ferner steht der an der Abtriebswelle 20 ausgebildete Exzenter in Kontakt mit einer Aufnahme 100, bzw. ist in einem in der Aufnahme 100 angeordneten Lager aufgenommen. Die Abtriebswelle 20 ist mit dem noch näher zu beschreibenden mechanischen Antriebmechanismus koppelbar, wobei hier auf die Figuren 3, 9 und 10 verwiesen wird. Der mechanische Antriebsmechanismus umfasst Antriebskomponenten, welche als ein Pleuel bzw. eine Schub- oder Treibstange ausgebildet und in Wirkverbindung mit der Abtriebswelle 20 bringbar sind. Insbesondere ist ein Antriebskolben 120 vorgesehen, welcher mit einer Membran verbindbar ist, um diese zu bewegen.
  • Die dargestellte Doppelmembranpumpe 1 weist in dem mehrteilig ausgebildeten Pumpengehäuse 10 zwischen dem Antriebsgehäuse 16 und dem Steuerblock 14 eine erste Membrankammer 40 sowie zwischen dem Steuerblock 14 und dem Pumpendeckel 12 eine zweite Membrankammer 50 auf. In der ersten Membrankammer 40 und in der zweiten Membrankammer 50 sind jeweils eine Membran 42, 52 freischwingend angeordnet. Die Membranen 42, 52 weisen jeweils einen peripheren Ringwulst 44, 54 auf, welcher zwischen Antriebsgehäuse 16 und Steuerblock 14 bzw. zwischen diesem und dem Pumpendeckel 12 in einem entsprechend ausgebildeten Einspannbereich zusammengedrückt und dort dichtend gehalten sind. Die Membran 42 trennt in der ersten Membrankammer 40 einen ersten Förderraum 46 von einem Antriebsraum 48 und die Membran 52 in der zweiten Membrankammer 50 einen zweiten Förderraum 56 von einer Luftkammer 58 mit wechselnden Volumina ab.
  • Wie in der Figur 2 dargestellt sind der Antriebsraum 48 und die Luftkammer 58 miteinander über einen Luftkanal 18 verbunden, welcher vorzugsweise mit kleinem Durchmesser ausgebildet ist. Der Luftkanal 18 ist eingerichtet, dass bei einer Saugbewegung beispielsweise der Membran 42 in der ersten Membrankammer 40 Luft aus dem Antriebsraum 48 in die Luftkammer 58 der zweiten Membrankammer 50 gepresst wird. Dabei und bedingt durch den kleinen Durchmesser des Luftkanals 18 baut sich ein Druck in der Membrankammer 50 auf, welcher die Druckbewegung der zweiten Membran 52 unterstützt und umgekehrt.
  • Materialien der Membranen 42, 52 sind vorzugsweise elastomere Verbundstoffe, beispielsweise NBR (Acrylnitril-Butadien-Kautschuk), welches in dem Verbundstoff die Funktion eines elastischen Grundmaterials übernimmt. Zum Förderraum 46; 56 hin und damit zum geförderten Medium hin kann an den Membranen 42; 52 eine chemisch inerte PTFE-Folie (Polytetrafluorethylen) aufkaschiert sein.
  • In jeder der Membranen 42; 52 ist ein Befestigungselement 60 in einer Zentralzone der Membranen 42; 52 aufnehmbar, z.B. eingebettet. Das Befestigungselement 60 kann mit einem Ansatz ausgebildet sein, der durch eine in der Zentralzone der Membranen 42; 52 vorgesehene Öffnung geführt ist. Ferner kann an dem Befestigungselement 60 ein scheibenförmiger Bereich ausgebildet sein, welcher diese Öffnung bzw. die Zentralzone der Membranen 42; 52 überdeckt und an dieser anliegt. Der Ansatz des Befestigungselements 60 ist als eine Komponente einer Schraubverbindung ausgebildet, d.h. weist z.B. ein Innengewinde 62 auf, in welches ein Aussengewinde entweder eines Deckelelements 64 oder ein Aussengewinde eines vom Antriebsmechanismus umfassten Antriebskolbens 120 einschraubbar ist. Letzteres dient der lösbaren Verbindung einer der Membranen 42; 52 mit dem Antriebsmechanismus.
  • Ferner ist an einer dem Ansatz gegenüberliegenden Seite des Befestigungselements 60 ein zweites Innengewinde 66 ausgebildet, in welches ein Aussengewinde einer Kopplungsstange 68 zur starren Verbindung der ersten Membran 42 und der zweiten Membran 52 einschraubbar ist. Die Anordnungen der Gewinde können auch umgekehrt sein. Mittels der vorgesehenen Schraubverbindungen sind die Teile in einfacher Weise voneinander lösbar und demontierbar, so dass ein Austausch einer der Membranen 42; 52 leicht durchführbar ist. Andere Verbindungsarten der Membranen 42; 52 mit der Kopplungsstange 68 bzw. dem Deckelelement 64 und/oder Antriebskolben 120 sind denkbar. So kann die Kopplungsstange 68 mit den Membranen 42; 52 mittels Formschluss verbunden sein, beispielsweise kann die Kopplungsstange 68 mit mindestens einer der Membranen 42; 52 umspritzt sein.
  • In der Figur 2 sind die Membranen 42; 52 als Strukturmembran ausgebildet, wobei zwischen der Zentralzone und dem Ringwulst 44 mehrere Zonen ausgebildet sein können, welche unterschiedliche Funktionen haben. Hierfür sind in Richtung Förderraum 46; 56 konkav und/oder konvex gewölbte Zonen denkbar, welche als Stützzone und/oder als Ausgleichszone ausgebildet sein können.
  • Die Membranen 42; 52 können einen Membrankern 41 aufweisen, welcher als ein Formkern insbesondere die Zentralzone stabilisiert. Der Membrankern 41 kann aus Metall, Kunststoff oder einem Elastomer in die Membranen 42; 52 einvulkanisiert oder eingeklebt sein, um ein Durchbiegen der Membrane 42; 52 über den noch zu beschreibenden Saug- bzw. Drucköffnungen in den Förderräumen 46; 56 vermindert oder aufgehoben wird.
  • Die Figur 3 zeigt einen Querschnitt eines Teils der Doppelmembranpumpe 1 gemäss der Ausführungsform der Figur 2 in einer Draufsicht. Gleiche Elemente werden mit gleichen Bezugszeichen bezeichnet.
  • In den Förderräumen 46; 56 der ersten Membrankammer 40 bzw. der zweiten Membrankammer 50 ist zumindest je eine Saugöffnung 70 und je eine Drucköffnung 80 ausgebildet. An jeder Saugöffnung 70 ist eine als Plattenventil 90 ausgebildete Ventileinrichtung aufgenommen, welche die Förderrichtung des zu fördernden Fluid bzw. Medium bestimmt. Das zu fördernde Fluid wird über einen Sauganschluss 72 am Einlass, einen Einlasskanal 74 und einem der Verbindungskanäle 76 zu einer der Saugöffnungen 70 in den Förderraum 46; 56 der Membrankammern 40; 50 gefördert, in der sich die angeordnete Membran 42; 52 in Saugstellung befindet. Bei einer Saugbewegung der jeweiligen Membranen 42; 52 wird die zugeordnete Saugöffnung 70 von dem entsprechenden Plattenventil 90 freigegeben. Details des Plattenventils 90 werden in Figur 7 dargestellt.
  • Das geförderte Fluid wird bei einer Druckbewegung der Membran 42; 52, bei welcher das entsprechende Plattenventil 90 die Saugöffnung 70 in dem Förderraum 46; 56 schliesst, über die Drucköffnung 80, den Verbindungskanal 76, einem geöffneten Klappenventil 92 und einem Auslasskanal 84 zu einem Druckanschluss 82 gefördert. Das Klappenventil 92 ist derart an einem Kreuzungsbereich zwischen den Verbindungskanälen 76 und dem Auslasskanal 84 angeordnet und ausgebildet, dass mit der Druckbewegung der Membranen 42; 52 das Fluid aus einem der Förderräume 46; 56 ausgepresst wird. Details des Klappenventils 92 sind in der Figur 8 dargestellt. Insbesondere ist das Klappenventil 92 aus dem Pumpengehäuse 10 über den Auslasskanal 84 einsetzbar bzw. demontierbar.
  • Aus Figur 3 geht auch hervor, dass an einem Aussenumfang des Antriebskolbens 120 eine Dichtung 122 vorgesehen ist, welche den zugeordneten Antriebsraum 48 abdichtet.
  • Die Figuren 4 und 5 zeigen jeweils unterschiedliche Phasen der Montage einer Doppelmembranpumpe 1 gemäss einer Ausführungsform. In den Figuren 4 und 5 ist der Steuerblock 14 zumindest teilweise geschnitten dargestellt und zeigt jeweils sein Inneres. Sichtbar sind die jeweiligen Verbindungskanäle 76, welche eine fluidleitende Verbindung einerseits auf der Seite des Sauganschlusses 72 und andererseits auf der Seite des Druckanschlusses 82 zum Fördern von Fluid in bzw. aus dem ersten Förderraum 46 der ersten Membrankammer 40 und dem zweiten Förderraum 56 der zweiten Membrankammer 50 ermöglichen. Die Förderrichtung des zu fördernden bzw. des geförderten Fluid wird durch die von der Bewegung der Membranen 42; 52 (nicht dargestellt) bedingte Stellung der Ventileinrichtungen 90, 92 vorgegeben. In dem Saugbereich, in dem sich der Sauganschlusses 72 befindet, sind die Plattenventile 90 an den jeweiligen Saugöffnungen 70 anordenbar. Das Plattenventil 90 kann in dem Verbindungskanal 76 eingesetzt werden, welcher eine entsprechende Ausnehmung bereitstellt.
  • Bei der Saugbewegung der zugeordneten Membran 42 bzw. 52 öffnet das Plattenventil 90 die Saugöffnung 70 und das Fluid gelangt in den sich vergrössernden Förderraum 46; 56. Währenddessen ist in dem Druckbereich eine fluidleitende Verbindung zwischen dem zu füllenden Förderraum 46 bzw. 56 und dem Druckanschluss 82 von dem dort angeordneten Klappenventil 92 blockiert. Bei einer Bewegungsumkehr der entsprechenden Membran 42; 52 in die Druckbewegung schliesst das Plattenventil 90 die zugeordnete Saugöffnung 70. Das Klappenventil 92 bewegt sich in eine Stellung, so dass die fluidleitende Verbindung zwischen dem zu entleerenden Förderraum 46; 56 freigegeben wird.
  • Mit Verweis auf Figur 6, welche eine perspektivische Ansicht eines Plattenventils 90 zeigt, umfasst das Plattenventil 90 eine bevorzugt aus einem elastischen Material bzw. Kunststoff gefertigte, V-förmig gebogene Platte 91a. An einer Seite der V-förmigen Platte 91a ist eine Bohrung vorgesehen, in welche eine Hülse 91b gehalten ist, die in die Saugöffnung 70 bzw. den Verbindungskanal 76 einführbar ist.
  • Aus Figur 7 geht eine perspektivische Darstellung des Klappenventils 92 hervor. Das Klappenventil 92 ist in einer V-förmigen Form gestaltet und weist zwei Klappenflügeln 93a, 93b auf. Das Material des Klappenventils 92 ist ebenfalls ein elastischer Kunststoff mit sehr guten mechanischen Eigenschaften, z.B. hoher mechanischer Festigkeit, Steifigkeit und Verschleissfestigkeit, welche für einen Dauerbetrieb des Klappenventils 92 geeignet sind. Geeignet ist PEEK (Polyetheretherketon), welches sowohl für thermisch als auch mechanisch stark belastete Teile empfohlen ist. Am Grund der V-Form des Klappenventils 92 ist eine Scharnierwelle 94 haltend aufgenommen, welche mit freien Enden über die Flügel 93a, 93b vorsteht. Die freien Enden der Scharnierwelle 94 sind in ein Scharnierelement 95 (Figur 4) einrastbar, und darin frei drehbar, so dass das Klappenventil 92 eine Kippbewegung ausführen kann. Das Scharnierelement 95 ist in einem Kreuzungsbereich zwischen den Verbindungskanälen 76 und dem Auslasskanal 84 fest aufgenommen, so dass bei eingerasteter Scharnierwelle 94 die damit verbundenen Klappenflügel 93a, 93b abwechselnd eine der fluidleitenden Verbindungen zu den Förderräumen 46; 56 öffnet bzw. blockiert.
  • In Figur 8 ist ein Detail des mechanischen Antriebsmechanismus perspektivisch dargestellt. Gezeigt ist die Aufnahme 100, in welche die Abtriebswelle 20 der Antriebseinheit (nicht dargestellt) in einem dafür vorgesehenen Lager 110, hier ausgebildet als Kugellager, drehbar gelagert ist. Die Aufnahme 100 bildet mit einem Kugelgelenk 112 eine Art Pleuel, welches als Komponente des mechanischen Antriebsmechanismus betrachtet wird. Die Aufnahme 100 entspricht in gewisser Weise einem Pleuelkopf und weist weitgehend eine Quaderform auf. An einer der Seitenflächen der Aufnahme 100 ist ein Schlitz 102 ausgebildet, welcher parallel zu einer Grundfläche der Aufnahme 100 und so senkrecht zur Abtriebswelle 20 verläuft. Der Schlitz 102 schneidet eine Gewindebohrung 104, welche an der Seitenfläche ausgebildet ist. Die Breite des Schlitzes 102 ist einstellbar. Hierfür sind Schraubmittel 106 vorgesehen, welche je nach Stellung die Breite des Schlitzes 102 verändern. Das Kugelgelenk 112 umfasst an einem Ende einen Kugelkopf 114, von welchem sich ein Gewindeschaft 116 erstreckt, an dessen Ende ein Gewindebereich komplementär zur Gewindebohrung 104 ausgebildet ist. In der dargestellten Ausführungsform ist das Kugelgelenk 112 einstückig ausgebildet, wobei auch eine mehrteilige Ausführung denkbar ist. Demnach kann das Kugelgelenk 112 in die Aufnahme 100 eingeschraubt und klemmend in Position gehalten werden, wobei die Breite des Schlitzes 102 entsprechend eingestellt ist.
  • An dem Kugelkopf 114 in Verlängerung des Gewindeschaftes 116 ist eine Werkzeugaufnahme 118 ausgebildet, in welche ein Werkzeug verdrehsicher aufnehmbar ist. Demnach kann das Kugelgelenk 112 bei gelösten Schraubmitteln 106 aus der Aufnahme 100 gelöst werden. So ist eine einfache Justierung der Spannung der mit dem Antriebsmechanismus verbindbaren Membran 42; 52 möglich.
  • Die Figur 9 zeigt eine Detailansicht des mechanischen Antriebsmechanismus der Doppelmembranpumpe 1 in einer Schnittdarstellung. In dieser Darstellung ist das Kugelgelenk 112 über den Gewindeschaft 116 mit der Aufnahme 100 verbunden, d.h. in die geschlitzte Gewindebohrung 104 eingeschraubt. In dem Lager 110 ist die als Exzenterwelle ausgebildete Abtriebswelle 20 aufgenommen.
  • Der Kugelkopf 114 des Kugelgelenks 112 ist in dem Antriebskolben 120 aufgenommen. Hierfür ist der Kugelkopf 114 in einem mehrteiligen Lagerblock 130 drehbar gelagert, welcher in dem als Hohlkolben ausgebildeten Antriebskolben 120 aufgenommen ist, beispielsweise anliegend an einem oder mehreren einsetzbaren Distanzstücken (nicht dargestellt). In der dargestellten Ausführungsform ist der Antriebskolben 120 mehrteilig ausgebildet, wobei die Teile mittels einer Schraubverbindung 121 miteinander verbindbar sind. Der Antriebskolben 120 weist an einer Stirnfläche eine Durchgangsbohrung 124 auf. Durch die Durchgangsbohrung 124 ist von dem Antriebsraum 48 der ersten Membrankammer 40 aus ein Werkzeug bis zur Werkzeugaufnahme 118 am Kugelkopf 114 durchführbar ist, um das Kugelgelenk 112 aus der Aufnahme 100 zu lösen.
  • Anstelle oder zusätzlich zu den in dem Antriebskolben 120 aufnehmbaren Distanzstücken können Federmittel 140 angeordnet sein, welche eine vorgespannte Halterung des mehrteiligen Lagerblocks 130 ermöglichen. Insbesondere ist der mehrteilige Lagerblock 130 zwischen Federmitteln 140 angeordnet, so dass dieser stets in seine Ausgangsposition rückstellbar ist. Auf diese Weise ist eine Art Überlastsicherung geschaffen, welche das Rückstellen des mechanischen Antriebsmechanismus und der damit verbundenen ersten Membran 42 und zweiten Membran 52 ermöglicht. Alternativ kann auch die Überlastsicherung in Form einer elektronischen Überlastsicherung ausgebildet sein. Bezugszeichen
    1 Doppelmembranpumpe 92 Klappenventil
    10 Pumpengehäuse 93a,b Klappenflügel
    12 Pumpendeckel 94 Scharnierwelle
    14 Steuerblock 95 Scharnierelement
    16 Antriebsgehäuse
    18 Luftkanal 100 Aufnahme
    20 Abtriebswelle 102 Schlitz
    104 Gewindebohrung
    30 Öffnung 106 Schraubmittel
    40 erste Membrankammer 110 Lager
    50 zweite Membrankammer 112 Kugelgelenk
    114 Kugelkopf
    41 Membrankern 116 Gewindeschaft
    42 erste Membran 118 Werkezugaufnahme
    44 Ringwulst 120 Antriebskolben
    46 erster Förderraum 121 Schraubverbindung
    48 Antriebsraum 122 Dichtung
    124 Durchgangsbohrung
    52 zweite Membran
    54 Ringwulst 130 Lagerblock
    56 zweiter Förderraum
    58 Luftkammer 140 Federmittel
    60 Befestigungselement
    62 Innengewinde
    64 Deckelelement
    66 zweites Innengewinde
    68 Kopplungsstange
    70 Saugöffnung
    72 Sauganschluss
    74 Einlasskanal
    76 Verbindungskanal
    80 Drucköffnung
    82 Druckanschluss
    84 Auslasskanal
    90 Plattenventil
    91a V-förmig gebogene Platte
    91b Hülse

Claims (14)

  1. Doppelmembranpumpe (1) mit einem mechanischen Antriebsmechanismus mit
    - einem Pumpengehäuse (10), welches mindestens einen Sauganschluss (72) und mindestens einen Druckanschluss (82) sowie eine erste Membrankammer (40) und eine zweite Membrankammer (50) aufweist, wobei
    - in der ersten Membrankammer (40) eine erste Membran (42) einen ersten mit zu förderndem Fluid beaufschlagbaren Förderraum (46) von einem Antriebsraum (48), in welchem ein Antriebsmechanismus anordenbar ist und in der zweiten Membrankammer (50) eine zweite Membran (52) einen zweiten mit zu förderndem Fluid beaufschlagbaren Förderraum (56) von einer mit Luft beaufschlagbaren Luftkammer (58) trennt, wobei
    - die erste Membran (42) und die zweite Membran (52) mit einer Kopplungsstange (68) verbindbar sind, und
    - zumindest eine der Membranen (42; 52) mittels des mechanischen Antriebsmechanismus bewegbar ist, wobei der erste Förderraum (46) und der zweite Förderräume (56) abwechselnd über jeweils eine Ventileinrichtung (90) mit dem mindestens einen Sauganschluss (72) und über eine Ventileinrichtung (92) mit dem mindestens einen Druckanschluss (82) verbindbar sind,
    dadurch gekennzeichnet, dass
    der mechanische Antriebsmechanismus einen Antriebskolben (120) und ein darin aufnehmbares Kugelgelenk (112) sowie eine mit dem Kugelgelenk (112) verbindbare Aufnahme (100) umfasst, welche ausgebildet ist, um mit einer als Exzenterwelle ausgebildeten Abtriebswelle (20) einer Antriebseinheit koppelbar zu sein und wobei das Kugelgelenk (112) in einer Gewindebohrung (104) der Aufnahme (100) einschraubbar und darin klemmend gehalten ist.
  2. Doppelmembranpumpe (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Antriebskolben (120) mittels eines Befestigungselements (60) mit der ersten Membran (42) lösbar verbindbar ist.
  3. Doppelmembranpumpe (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Gewindebohrung (104) geschlitzt ausgebildet ist, wobei eine Breite des Schlitzes (102) mittels Schraubmitteln (106) veränderbar ist.
  4. Doppelmembranpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kugelgelenk (112) einen Gewindeschaft (116) zum lösbaren Verbinden mit der Aufnahme (100) und einen Kugelkopf (114) aufweist, welcher in einem in dem als Hohlkolben ausgebildeten Antriebskolben (120) aufnehmbaren Lagerblock (130) gelagert ist, so dass eine Drehbewegung der Abtriebswelle (20) in eine Längsbewegung des Antriebskolbens (120) transformiert und auf eine der Membranen (42; 52) übertragbar ist.
  5. Doppelmembranpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Antriebskolben (120) eine Durchgangsbohrung (124) aufweist, so dass mit einem einführbaren Werkzeug das Kugelgelenk (112) in die Aufnahme (100) einschraubbar bzw. aus der Aufnahme (100) demontierbar ist.
  6. Doppelmembranpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Federmittel (140) in dem als Hohlkolben ausgebildeten Antriebskolben (120) aufgenommen sind, um das Kugelgelenk (112) innerhalb des Antriebskolbens (120) vorgespannt zu lagern.
  7. Doppelmembranpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ventileinrichtungen (90), anordenbar in einer fluidleitenden Verbindung der Förderräume (46; 56) mit dem Sauganschluss (72), als Plattenventile (90) aus einem elastischen Kunststoff ausgebildet sind.
  8. Doppelmembranpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Ventileinrichtung (92), anordenbar in einer fluidleitenden Verbindung der Förderräume (46; 56) mit dem Druckanschluss (82), als Klappenventil (92) aus einem elastischen Kunststoff ausgebildet ist.
  9. Doppelmembranpumpe (1) nach Anspruch 8, dadurch gekennzeichnet, dass das Klappenventil (92) eine V-Form aufweist, mit einer Scharnierwelle (94), welche am Grund der V-Form klemmend gehalten ist und welche in ein Scharnierelement (95) einsetzbar ist, welches in der fluidleitenden Verbindung von dem Druckanschluss (82) zu den Förderräumen (46; 56) aufgenommen ist.
  10. Doppelmembranpumpe (1) nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass das Klappenventil (92) durch den Druckanschluss (82) montierbar und demontierbar ist.
  11. Doppelmembranpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Pumpengehäuse (10) mehrteilig ausgebildet ist, wobei ein Pumpendeckel (12), ein Steuerblock (14) und ein Antriebsgehäuse (16) derart ausgebildet sind, dass sie ohne Dichtungsmittel miteinander dichtend verbindbar sind.
  12. Doppelmembranpumpe (1) nach Anspruch 11, dadurch gekennzeichnet, dass eine Trennfläche zwischen Pumpendeckel (12) und Steuerblock (14) und zwischen Steuerblock (14) und Antriebsgehäuse (16) gegeneinander über die jeweils in dieser Trennfläche anordenbaren Membran (42, 52) abgedichtet ist.
  13. Doppelmembranpumpe (1) nach Anspruch 11, dadurch gekennzeichnet, dass der Steuerblock (14) mehrteilig ausgebildet ist.
  14. Doppelmembranpumpe (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Antriebsraum (48) und die Luftkammer (58) mittels eines Luftkanals (18) verbunden sind.
EP21152179.4A 2020-01-20 2021-01-18 Doppelmembranpumpe Active EP3851674B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH00062/20A CH717057A1 (de) 2020-01-20 2020-01-20 Doppelmembranpumpe.

Publications (2)

Publication Number Publication Date
EP3851674A1 EP3851674A1 (de) 2021-07-21
EP3851674B1 true EP3851674B1 (de) 2023-08-23

Family

ID=74187212

Family Applications (1)

Application Number Title Priority Date Filing Date
EP21152179.4A Active EP3851674B1 (de) 2020-01-20 2021-01-18 Doppelmembranpumpe

Country Status (3)

Country Link
EP (1) EP3851674B1 (de)
JP (1) JP2021113557A (de)
CH (1) CH717057A1 (de)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2918878A (en) * 1957-12-05 1959-12-29 Symington Wayne Corp Double-acting diaphragm pump

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT34296B (de) * 1907-01-04 1908-09-10 Rudolf Lueftschitz Membranpumpe für Entstaubungsvorrichtungen.
FR585519A (fr) * 1924-09-09 1925-03-03 Pompe électro-magnétique alternative
US3027848A (en) * 1959-07-13 1962-04-03 Gen Motors Corp Diaphragm pump
GB992591A (en) * 1961-12-19 1965-05-19 Arthur Lyon & Co Engineers Ltd Improvements relating to diaphragm pumps
US3291055A (en) * 1965-08-02 1966-12-13 Alexander S Limpert Self-purging proportioning pump for corrosive liquids
NO871260L (no) * 1987-03-26 1988-09-27 Per Olav Haughom Boreslampumpe med hydraulisk pumpekammer.
US5364234A (en) * 1992-05-20 1994-11-15 Karl Eickmann High pressure devices
DE9420493U1 (de) * 1994-12-08 1995-02-16 ABEL GmbH & Co Handels- und Verwaltungsgesellschaft, 21514 Büchen Doppelmembranpumpe
DE20109650U1 (de) 2001-06-09 2001-08-23 Abel Gmbh & Co Kg Elektromechanisch angetriebene Doppelmembranpumpe
CN204572401U (zh) * 2015-03-26 2015-08-19 邱列扬 一种高效容积泵

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2918878A (en) * 1957-12-05 1959-12-29 Symington Wayne Corp Double-acting diaphragm pump

Also Published As

Publication number Publication date
EP3851674A1 (de) 2021-07-21
JP2021113557A (ja) 2021-08-05
CH717057A1 (de) 2021-07-30

Similar Documents

Publication Publication Date Title
EP3447290B1 (de) Austauschbarer pumpenkopf für eine membranpumpe
EP0577946B1 (de) Schlauchpumpe
DE4136805A1 (de) Doppelmembranpumpe
WO2007090508A1 (de) Hydraulische vorrichtung mit schmierpumpe
DE3152349A1 (en) Back-flow prevention valve
EP3029334A1 (de) Axial geteilte pumpe
DE202005002471U1 (de) Membranpumpe
EP3851674B1 (de) Doppelmembranpumpe
DE2937157A1 (de) Kolbenverdraengerpumpe, insbesondere dosierpumpe
DE10224634C2 (de) Vorrichtung zum Filtern von unter einem hohen Druck geförderten Fluiden
DE10147455C5 (de) Ventil mit mehrteiliger Ventildichtung
EP1696159A1 (de) Quetschventil
EP2148986B1 (de) Pumpe
DE3310131C2 (de)
DE102006055556B4 (de) Membranpumpe
DE3529978C2 (de)
EP1072868A1 (de) Dosiervorrichtung für Flüssigkeiten
DE102018113616A1 (de) Peristaltikpumpe
DE102008031450A1 (de) Pumpe
EP1555434B1 (de) Membranpumpe
EP1395754B1 (de) Mehrstufiger kolbenverdichter
EP1336780B1 (de) Sekundärdichtungselement für eine Gleitringdichtungsanordnung
EP1477675B1 (de) Dosierpumpe
WO1987006154A1 (fr) Dispositif de dosage et de melange de systemes a composants fluides multiples
DE19859368C2 (de) Kompressor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20211203

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220302

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230322

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502021001271

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231226

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231123

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231223

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20231124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240131

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 4

Ref country code: CH

Payment date: 20240202

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230823

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240131

Year of fee payment: 4