EP3447290B1 - Austauschbarer pumpenkopf für eine membranpumpe - Google Patents

Austauschbarer pumpenkopf für eine membranpumpe Download PDF

Info

Publication number
EP3447290B1
EP3447290B1 EP18189481.7A EP18189481A EP3447290B1 EP 3447290 B1 EP3447290 B1 EP 3447290B1 EP 18189481 A EP18189481 A EP 18189481A EP 3447290 B1 EP3447290 B1 EP 3447290B1
Authority
EP
European Patent Office
Prior art keywords
pump head
pump
housing
inlet
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18189481.7A
Other languages
English (en)
French (fr)
Other versions
EP3447290A1 (de
Inventor
Markus Schöning
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isg Innovative Systems GmbH
Original Assignee
Isg Innovative Systems GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isg Innovative Systems GmbH filed Critical Isg Innovative Systems GmbH
Priority to PL18189481T priority Critical patent/PL3447290T3/pl
Publication of EP3447290A1 publication Critical patent/EP3447290A1/de
Application granted granted Critical
Publication of EP3447290B1 publication Critical patent/EP3447290B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B11/00Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation
    • F04B11/0008Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using accumulators
    • F04B11/0033Equalisation of pulses, e.g. by use of air vessels; Counteracting cavitation using accumulators with a mechanical spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms

Definitions

  • the invention relates to a pump head for a diaphragm pump according to the preamble of claim 1 and a diaphragm pump according to the preamble of claim 18.
  • a diaphragm pump which essentially consists of a pump head connected to a drive and having a plurality of pump chambers.
  • the pump chambers are each sealed off from a drive chamber by means of a pump membrane, the respective pump membrane being able to be set in a periodic axial pumping movement via an associated pump element.
  • the pump chambers are connected to an inlet chamber via inlet valves and to an outlet chamber via an outlet valve.
  • the inlet chamber is arranged centrally and the outlet chamber is concentric to the inlet chamber.
  • a shoulder is provided in the valve plate of this diaphragm pump, in which a separate inlet valve plate, which has the inlet valves, can be inserted. This is upstream of the pump chambers.
  • U1 Diaphragm pumps are known which essentially consist of a pump head connected to a drive.
  • Another diaphragm pump is in US patent application US 2011/0070107 A1 described.
  • This pump includes a disposable pump head with an inlet and outlet port.
  • the pump head is easy to replace, so that maintenance, in particular cleaning and / or disinfection of the same, is not necessary.
  • the advantage here is that the next application or the next procedure can be started with a short time delay.
  • diaphragm pumps of this type are used in the pharmaceutical sector for drug production, but also in chemistry and biotechnology.
  • manufacture of drugs in the pharmaceutical industry is a very cost-intensive area, so that it is desirable to achieve time savings in the area of cleaning diaphragm pumps, primarily with the aim of reducing costs.
  • the production costs of diaphragm pumps are also very high due to the high sterility requirements, and so it is desirable to reduce the costs in the production of the pump elements.
  • the disadvantage of the known diaphragm pumps is that they have a pump head that is firmly connected to the drive, in particular the drive housing and the drive elements.
  • the diaphragm pumps known in the prior art are made of metal, predominantly of high-alloy stainless steel, which makes production expensive and makes handling of these pumps difficult. Since the pump head is firmly connected to the other elements of the diaphragm pump, the pump head must be completely cleaned after each flow of liquid. This means that the pump head must be completely emptied and made sterile before a new batch of medication can run through the unit. As a result, after a test run for a special drug, for example, several days and further time-consuming cleaning steps are required in order to complete new test runs with this unit.
  • the invention is therefore based on the object of improving the previously known diaphragm pumps of the type mentioned in such a way that the pump head can be manufactured more cost-effectively, is lighter in weight and can be changed more quickly than the interchangeable pump heads known from the prior art and this cleaning and emptying of residues is no longer necessary, so that considerable time savings are possible in the manufacture of drugs in the pharmaceutical industry.
  • the present invention is also intended to increase the speed until a drug is ready for the market and to reduce costs by eliminating process validation.
  • the present invention is intended to dispense with complex cleaning processes.
  • the manual attachment of the pump head to the drive and the replacement of the pump head should be made easier.
  • an environmentally friendly pump head is to be provided that can be recycled.
  • an absolute tightness and greater safety of the pump head should be guaranteed due to the design of the pump head.
  • the liquid pulsation in the pump head should be reduced.
  • the pump head according to the invention is characterized in that it is designed as a single-use variant for the manufacture of medicaments.
  • the pump head is designed separately from the other elements of the diaphragm pump, namely the drive, in particular the drive unit and the drive housing, and is therefore individually exchangeable.
  • the advantage is that the pump head can be changed relatively easily with two hand movements. This saves a lot of time.
  • no tool is required to replace the pump head, which in any case causes problems in the sterile field.
  • the pump head is preferably made in such a way that it is used only once for a liquid flow, in particular a test run for the production of a medicament or the production of the medicament itself.
  • the The pump head can be disposed of after use and a new pump head can be connected to the other elements of the diaphragm pump, more precisely the drive, during the next test run or the next drug production.
  • the conventional pump head is usually completely emptied and made sterile before it can be used again for a new liquid run. Since residual emptying and sterile cleaning is no longer necessary with the pump head according to the invention as a single-use variant, several days of idle time for cleaning and residual emptying can be saved. Consequently, considerable cost savings are possible in the pharmaceutical industry due to the pump head according to the invention.
  • the pump head is self-contained and its inner workings are completely hermetically sealed from the outside. Only the inlet and outlet should preferably be closed finally. The interior is designed for small residual quantities after the end of the test runs.
  • the pump head is made entirely of plastic. Preference is given to using FDA-compliant plastics, in particular plastics that meet the requirements for drug production and that meet the mechanical loads. In comparison to the known pumps made of high-alloy stainless steels, a different material is used, namely plastic, which is lighter than metals and less expensive to manufacture.
  • the construction of the pump head from plastic facilitates the manual attachment to the drive, the other elements of the diaphragm pump and thus the exchange of the pump head.
  • the pump head can be recycled and thus represents a more environmentally friendly element of a diaphragm pump than the previously known pump head elements of diaphragm pumps. Disposal is cheaper and easier. Complex validation processes are no longer necessary for disposable plastic.
  • the pump head housing is preferably made of polypropylene (PP), polyvinylidene difluoride (PVDF) and / or polytetrafluoroethylene (PTFE) and thus has a high level of media resistance.
  • the pump head has a 5-chamber system compared to the 4-chamber systems known in the prior art.
  • the liquid pulsation in the pump head especially in the unit, can be reduced. This is an advantage over the 4-chamber system.
  • 4-chamber systems are compared with 5-chamber systems.
  • a total of five pump chambers are therefore provided in the valve receiving body, into which at least one inlet valve for each pump chamber opens.
  • the pumping chambers differ in their shape from the known circular pumping chambers, preferably in that they are designed in a piriform or pear-shaped manner.
  • the area of the piriform pump chamber which tapers to a point at one end is arranged centrally in the valve receiving body, so that the larger-volume area rounded towards the other end closes off in the direction of the outer edge of the valve receiving body.
  • the outlet valve which is consequently arranged centrally, is preferably located in the tapered area of the pump chamber.
  • an inlet valve which is located from the bottom of the valve receiving body are arranged concentrically to the outlet valves as seen.
  • Comparative example 2 Comparative example 3. Comparative example Connection arrangement 180 degrees: Active inlet to active outlet on the side housing wall in a 180 degree position 90 degrees: Active inlet to active outlet on the side housing wall in a 90 degree position Front active inlet and active outlet on the bottom Static pressure in Pascal, measured at the inlet on the side of the housing wall 188.771 188.375 (-25.3943) (connection on side housing wall not used) Speed in mm / s, measured at the inlet on the side of the housing wall 1633.25 1633.25 (27,9028) (connection on side housing wall not used) Static pressure in Pascal, measured at the bottom / front inlet (30,2918) (front connection not used) (30.0523) (front connection not used) 70.7398 Speed in mm / s, measured at the bottom / front inlet (103,997) (front connector not used) (104) (front connection not used) 1632.43 Static pressure in Pascal, measured at the outlet 2512.74 2680.44 4018.15 Speed in
  • Comparative example 5 Comparative example 5. Comparative example 6. Comparative example Connection arrangement 180 degrees: Active inlet to active outlet on the side housing wall in a 180 degree position 90 degrees: Active inlet to active outlet on the side housing wall in a 90 degree position Front active inlet and active outlet on the bottom Static pressure in Pascal, measured at the inlet on the side of the housing wall 186.196 186.234 (2.05115) (connection on side housing wall not used) Speed in mm / s, measured at the inlet on the side of the housing wall 1632.91 1632.91 (0.528212) (connection on side housing wall not used) Static pressure in Pascal, measured at the bottom / front inlet (50,2839) (front connection not used) (50,5011) (front connection not used) 94.4495 Speed in mm / s, measured at the bottom / front inlet (95,2814) (front connection not used) (95,5958) (front connection not used) 1632.14 Static pressure in Pascal, measured at the outlet 2509.02 2690.
  • a static pressure (in Pascal) in the area of the inlet of the side housing wall is 809,302 in the case of a 4-chamber system and when using the medium water measurable (example 1).
  • this connection arrangement there is a speed at the same measuring point in the inlet area of the side housing wall, the measurement taking place inside the pump head at the inlet area (in mm / s) of 2,472.94 detectable.
  • these values are significantly higher in comparison with a 5-chamber system as shown in Table 2a (comparative example 1).
  • the static pressure in a 5-chamber system is 188.771 Pascal and thus 620.531 Pascal lower.
  • the speed in comparative example 1 is 1,633.25 mm / s in a 5-chamber system, with the same measuring point and the medium water.
  • the speed in a 5-chamber system is almost twice as low as in a 4-chamber system. The liquid pulsation can thus be reduced significantly. The pump is used more efficiently.
  • Another alternative connection arrangement is preferably provided with an arrangement of the active inlet to the active outlet on the side housing wall of the pump head in a 90 degree position.
  • the static pressure which is measured in the inlet area inside the pump head, is 814.047 Pascal in example 2 of the 4-chamber system.
  • the speed at the same measuring point with the same medium water in this arrangement is 2,472.93 mm / s.
  • the static pressure of Comparative Example 2 measured in a 5-chamber system is significantly lower and is 188.375 Pascal, namely when it is measured at the same measuring point and using the medium water.
  • the speed in a 5-chamber system is also significantly lower at 1,633.25 mm / s.
  • the arrangement of the active connections inlet and outlet at a 180 degree angle on the side housing wall of the pump head or at a 90 degree angle results in no difference in speed when using the medium water.
  • the speed is preferably the same.
  • the pump head can preferably have several connections for possible use as an inlet and outlet, which are, however, preferably closed with a stopper when not in use
  • the inlet area within the pump head on the side housing wall can also be measured in terms of static pressure and speed, although the connection is not used and only the front connections, i.e. the front inlet and the front outlet, are used.
  • the measurement in a 4-chamber system using the medium water results in the inlet area inside the pump head on the side housing wall at the measuring point, if this is not used Inlet and when using the front connections a static pressure value of -237.403 Pascal and a velocity value of 23.3715 of the liquid (comparative example 3).
  • the static pressure value in the active inlet area on the front, measured inside the pump head is 977.654 Pascal and the speed value at the same measuring point is 2,472.77 mm / s.
  • the pressure value in a 5-chamber system according to comparative example 3 is 70.7398 Pascal and the speed value is 1,632.43 mm / s.
  • the pressure values and speed values in the 5-chamber system are therefore significantly lower and ensure more efficient use of the pump.
  • a static pressure of 4,912.81 Pascal can be measured in the active outlet area within the pump head with a connection arrangement from active inlet to active outlet on the side housing wall in a 180 degree position.
  • the speed with the same measuring position and the same medium is 227.787 mm / s in a 4-chamber system.
  • the values in a 5-chamber system according to comparative example 1 are 2,512.74 Pascals and 135.315 mm / s. This in turn shows the enormous increase in efficiency of a 5-chamber system.
  • connection arrangement of an inlet to outlet on the side housing wall in a 90 degree position results in a static pressure of 4,579.17 Pascal measured at the active outlet area within the pump head in a 4-chamber system when using the medium water.
  • the speed is 231.263 mm / s in this preferred experimental set-up.
  • the static pressure value is 2,680.44 Pascal and the speed value is 136.758 mm / s.
  • the valve receiving body of the pump head preferably has five outlet valves.
  • the outlet chamber is preferably located centrally on the inside in relation to the inlet chambers in the valve receiving body.
  • the chamber geometry is preferably designed in a flow-favored manner by means of CFD (Computational Fluid Dynamics) analysis.
  • the pump head housing is designed in the shape of a cylinder, open at the top, preferably with a side housing wall and a bottom preferably closing off at the bottom, with at least two connections, preferably an inlet and an outlet, horizontally and at a 90 ° bend the side housing wall, particularly preferably three connections arranged horizontally and in a 90 ° bend on the side housing wall, as well as at least two front connections (connections on the underside in the figures), preferably an inlet and an outlet, are provided.
  • the connections which can preferably be selected individually as outlets and outlets, can be used variably, depending on customer requirements. They are preferably multifunctional.
  • the pump head housing preferably has three connections, preferably two outlets and one inlet, on the side housing wall.
  • the pump head housing preferably has two connections, preferably an inlet and an outlet at the bottom of the pump head housing.
  • connection openings that are not required must be closed. In a preferred embodiment, this takes place with a blind plug (plug or blind plug) which closes the opening leak-free by means of a snapper system or, particularly preferably, a seamlessly manufactured thread.
  • a blind plug plug or blind plug
  • the pump head is a single-use variant, the customer can preferably close the connection once with the blind plug.
  • the blind plug can be attached via a click lock and then preferably no longer dismantled.
  • the blind plug can optionally be attached via a thread, which is preferably made without seams and can be dismantled again.
  • the customer can choose the connections that he needs for the liquid flow and then, since the pump head is a disposable version, close the connections that are not in use with the blind plugs before commissioning.
  • the multifunctionality of the connections provides the customer with a high degree of flexibility in using the pump head.
  • the pump head according to the invention preferably comprises an overflow valve on the underside (corresponds to the front side) for reducing work-related or system-related overpressures.
  • the overflow valve is preferably hermetically connected to the pump head housing and enables constant flow conditions.
  • the overflow valve or pressure control valve relieves pressure peaks by relieving the system when the set pressure is exceeded.
  • the overflow valve can advantageously be installed horizontally or vertically in the pump head housing, regardless of its position. It can therefore be used in many ways.
  • the overflow valve is preferably connected to the pump head housing by means of a simple screw connection, so that it can be easily and quickly assembled and disassembled.
  • the overflow valve of the pump head according to the invention is continuously adjustable.
  • the setting ranges are preferably from 0.2 to 6 bar, in particular from 0.2 to 5 bar and particularly preferably from 0.4 to 5 bar.
  • the pressure holding valve is preferably continuously adjustable. It can also be adjusted during the pumping process so that the valve setting is also possible under working pressure. Pressure peaks and pulsations are reliably reduced.
  • the valve preferably has a small hysteresis.
  • the housing of the overflow valve is preferably made of PP, PVDF and PTFE and thus has a high level of media resistance and corresponds to all approval standards for the biopharmaceutical sector.
  • the liquid or the product is preferably located in the respective part of the pump head, where it or it is guided to the respective outlets with normal delivery.
  • the membrane opens when the set upper value is reached and lifts against the spring. In this position, a channel is preferably released, which discharges the pressure peak to the inlet of the pump and thus provides a bypass delivery. The result is a constant delivery flow.
  • the spring force can be set during operation and is finely adjustable due to the large membrane area.
  • the overflow valve is made entirely of plastic, the adjusting spring preferably being provided as a disk spring assembly, preferably made of plastic.
  • the adjusting spring can also be designed as a ring spring, preferably metallic, so that the valve is preferably made almost entirely of plastic. In the completely plastic version, the entire pump head is free of metal. But even with the metallic ring spring, the remaining components of the overflow valve are preferably made entirely of plastic.
  • the permissible medium temperature in connection with the valve depends on the base material. For example, if the housing is made of PVDF, a temperature of 120 ° C is permissible and for a version made of PTFE, 150 ° C.
  • the membrane of the pump head unit is designed in such a way that it completely spans the valve body with the pump chambers.
  • the outer edge of the membrane is preferably designed in such a way that it faces upwards and protrudes downward only a few millimeters from the membrane surface.
  • the downwardly protruding projection of the membrane rim preferably engages in a groove which is provided accordingly on the upper side of the outer rim of the valve receiving body.
  • the membrane surface itself preferably spans the entire inner area of the valve receiving body, starting from the outer edge of the valve receiving body.
  • the membrane is made of a permanently elastic material, in particular a material that is suitable for whipping.
  • the material is preferably plastic.
  • the membrane is provided with surfaces that are bulged in the suction and pressure direction towards the respective pump chamber (on its underside), the bulging of which is preferably adapted to the shape and dimensions of the inlet valve disk.
  • the membrane also has a plurality of downwardly protruding borders which engage in a groove which each surrounds the pump chambers on their upwardly open side.
  • the membrane hermetically seals the respective pump chambers.
  • the edging protruding downwards is preferably designed in a piriform shape corresponding to the respective pump chamber, the preferably piriform edging engaging in a corresponding preferably piriform groove which surrounds the pump chambers on its upwardly open side formed in the valve receiving body.
  • annular bulges which protrude upward are provided on the upper side of the membrane.
  • the inner diameter of the highest point of these annular bulges is preferably the same size as the outer diameter of the downwardly bulging surfaces.
  • a preferably plasticized pressure piece is provided in the center of the respective annular bulges of the membrane, which cooperates with a plunger which is attached to a swash plate of a drive unit in order to be set in a pumping movement.
  • the membrane with the pressure piece which is preferably cast vertically in a preferably advantageous manner and which preferably specifies a closing dimension of 3.5 °, is structurally designed in such a way that an optimal degree of efficiency can be achieved.
  • the preferred closing dimension of 3.5 ° relates to the idle state of the membrane.
  • the closed dimension can also be more or less, but in particular between 2.0 ° and 6.5 °.
  • the closed dimension relates to the bulging surfaces of the membrane that protrude downwards and the annular bulges that protrude upwards from the membrane.
  • the horizontal cross-section line of the membrane is the starting point for the dimensioning at 0 °.
  • the aforementioned bulges are at a 3.5 ° angle.
  • the angle of attack is preferably dependent on the position of the eccentric shaft and can be changed individually to a certain extent. This allows the delivery rate to be regulated, since the stroke is reduced or increased, which means that the delivery rate is variable.
  • the invention also preferably provides a diaphragm pump which has a drive which is connected to the pump head described above.
  • the pump head is preferably releasably fastened to the drive by means of several holding clamps or tensioning straps, preferably two holding clamps.
  • This quick-release mechanism is advantageous for the time-saving assembly of the exchangeable pump head on the other pump elements, in particular the drive.
  • a functionally reliable assembly of the pump heads is ensured.
  • the dismantling is just as quick as the assembly of the pump head, which is releasably attached to the drive housing via the retaining clips.
  • the retaining clamps are equipped with a snap clip which preferably engages in a groove on the pump head.
  • the groove is provided circumferentially on the side wall of the pump head housing, so that at the same time great individuality is possible in the position of the inlets and outlets of the connections.
  • the snap clamp pulls the pump head so close to the drive via the groove that the pump head and drive are hermetically sealed to one another.
  • the membrane pump according to the invention preferably has an electronic-hydraulic drive. Due to the hydraulics, the fluids flow better.
  • Diaphragm pump 2 shown consists of a drive 4 with an in Fig. 9 drive unit 3 shown and a pump head unit 1, on the underside of which an overflow valve 5 is arranged.
  • the drive 4 consists of a drive or motor housing 6 in which the drive unit 3 is located.
  • the retaining clip 7 comprises a clamping bracket 9, the lower, inwardly bent end 10 of which is inserted into a groove 11 on the Pump head 1 engages. When the closure element 12 is folded up, the clamping bracket 9 pulls the pump head housing 8 firmly towards the drive housing 6.
  • the drive unit 3 is connected to the eccentric disk 14 of the pump head unit 1 by means of a screw connection via a centering disk 13.
  • the in Fig. 2 The pump head unit 1 shown in detail consists of the eccentric disk 14, a tappet plate or swashplate 15 with five tappets 16, a frame 17 with five circular frame openings 18 for receiving the tappets 16, a membrane 19, a valve receiving body 20, a centering ring 21, a pump head housing 8 with several connections 22 and an overflow valve 5.
  • the centering ring 21 is fastened to the pump head housing 8 by means of countersunk screws 23 and centers the upper end 24 of the pump head housing 8 in the drive housing 6.
  • the pump head elements are shown in an exploded view.
  • the pump head housing 8 has a total of five openings 25 for five multifunctional connections 22, each of which can be closed with a stopper 26.
  • Two of the connection openings 25 are located on the underside (not visible), three of them on the side of the housing (two of them visible).
  • the overflow valve 5 is arranged on the underside in the area of the base 27 of the pump head housing 8.
  • five pump chambers 28 are arranged concentrically in the valve receiving body 20.
  • the five pump chambers are pear-shaped, the round, large-volume area of the chamber being on the outer edge of the valve receiving body and the tapered area of the chamber being centrally located in the valve receiving body.
  • the membrane 19 is arranged above the valve receiving body 20. This shows five annular bulges 29 around a push button 30 each, which point in the direction of the frame 17 and hermetically close the respective frame openings 18 there.
  • the annular bulges 29 drop downward in the area of their inner diameter in the direction of the push button 30.
  • five correspondingly curved surfaces 31 are also formed. These downward bulging surfaces 31 are shown in FIG Fig. 8 described in more detail.
  • the annular bulge 29 towards the top is in Fig. 8 clearly visible.
  • the push button 30 cast into the membrane 19 protrudes vertically upwards through the respective frame openings 18 of the frame 17, so that the recess 33 in the plunger 16 encompasses the protruding part of the push button 30.
  • the eccentric disk 14 Located above the tappet plate 15 is the eccentric disk 14, which is screwed to the tappet plate 15 with five countersunk screws 34.
  • the diaphragm 19 provides a total of five pressure pieces 30 which protrude from the top of the diaphragm 19 and come into contact with the respective tappets 16 of the swash plate 15.
  • the frame 17 has five frame openings 18 which are sealed at the bottom with the annular bulges 29 of the membrane 19.
  • the upper part of the pressure piece 30, which is firmly cast in the membrane 19, extends into the frame opening 18.
  • the eccentric disk 14 is connected to the tappet plate 15 with the five countersunk screws 34.
  • FIG. 3 shows the pump head insert 32, which consists of eccentric disk 14, tappet plate 15, frame 17, membrane 19 and valve receiving body 20 including sealing ring 38.
  • the inlet valves 35 are arranged on the outside and the outlet valves 36 are arranged on the inside.
  • a sealing ring 38 which seals the outlet chamber 55 in the housing 8, is provided on the underside of the valve receiving body 20.
  • the pump head housing 8 together with the side view of the overflow valve housing 37 is shown in FIG Fig. 4 shown.
  • the exploded view shows three multifunctional connections 22 arranged laterally and two connections 22 arranged on the underside of the pump head housing 8.
  • the connections 22 are each connected to the pump head housing 8 with a sealing ring 50.
  • Four of the connections 22 are provided with a plug 26.
  • the overflow valve 5 is arranged decentrally on the underside 27 of the pump head housing 8 and is fastened to the housing 8 by means of a screw connection.
  • Figure 5 shows a side view of the diaphragm pump 2.
  • Two lateral connections 22 on the pump head housing 8 and two connections 22 (shown closely offset from one another in perspective) on the underside 27 of the pump head housing 8 are visible.
  • the overflow valve 5 is located decentrally on the underside 27 of the pump head housing 8.
  • the clamping bracket 9 of the retaining clamp or tensioning strap 7 shown in the drawing engages in a groove 11 of the pump head housing 8, which surrounds the side wall of the housing 8 and fixes the pump head housing 8 to drive 4.
  • the locking lever 12 of the terminal 7 is in the closed state.
  • FIG. 6 shows a side view in longitudinal section AA of FIG Fig. 5
  • Diaphragm pump 2 shown.
  • the flange 39 of the cylinder head 40 of the drive 4 is fastened to the drive housing 6 with several cylinder head screws 41.
  • the pump head 1 is fastened to the lower side of the drive 4 by means of retaining clips 7.
  • the lower end 10 of the clamping bracket 9 of the holding clamps 7 engages in the laterally circumferential groove 11 of the pump head housing 8.
  • the pump connections 22 are connected with the sealing ring 50 to the pump head housing 8.
  • the valve receiving body 20 with the membrane 19 and the frame 17 is completely received in the pump head housing 8, the centering ring 21 functioning as an interface between the pump head housing 8 and the drive housing 6.
  • the eccentric disk 14 protrudes into the drive housing 6.
  • FIG. 11 shows the pump head 1 with the drive unit 3 without cylinder head 40 in a side view, along the line KK of FIG Figure 7a Diaphragm pump 2 shown cut, shown.
  • the eccentric 42 extends through the opening in the upper side of the motor housing 6 into the motor compartment 43.
  • the elements of the drive unit 3 can be seen including ball bearings 43, 44 and are shown in detail in Fig. 9 shown.
  • a membrane 45 of the overflow valve 5 is shown together with the spring 46 in the valve 5.
  • FIG. 7b is an enlarged view of the overflow valve 5, according to enlargement L of FIG Fig. 7 .
  • the overflow valve 5 is arranged on the underside 27 of the pump head housing 8.
  • the membrane 45 seals an outlet 47 and an inlet 48 towards the liquid chamber 49 of the pump head 1.
  • the spring 46 is arranged below the membrane 45 in the valve housing 37. When an increased internal pump pressure is reached, the membrane 45 opens and lifts off against the spring 46. As a result, a channel or ring channel 51 is released, which discharges the pressure peak to the inlet 48 of the pump 2. A constant delivery flow in the pump 2 can thus be maintained.
  • Figure 8 shows an exploded view of the membrane 19 and the valve receiving body 20.
  • Three of the five pump chambers 28 of the valve receiving body 20 are clearly visible in an oblique top view.
  • the with reference numeral 28 in Figure 8 directly marked pumping chamber has a kind of piriform.
  • the large-volume area of the piriform chamber is arranged on the outer edge of the valve receiving body.
  • the pump chamber then tapers towards the center of the valve receiving body so that it has a pear-like shape.
  • a piriform or pear-shaped groove 52 which surrounds the individual pump chambers 28 on their side which is open at the top in the valve receiving body 20, can also be clearly seen in the case of three pump chambers 28.
  • the respective corresponding one engages in this groove 52 a piriform enclosure 53, which is provided on the underside (not visible here) of the membrane 19.
  • Figure 8a shows a sectional view through the in Figure 8 The membrane 19 shown and the valve receiving body 20.
  • the outlet chamber 55 is shown on the underside 54 of the valve receiving body 20, into which the outlet valves 36 (three visible here) open.
  • the outlet valves 36 are preferably designed as membrane valves.
  • An outlet valve 36 is shown in section.
  • An inlet valve 35 is also shown in section, with an inlet chamber 56 provided on the underside 54 of the valve receiving body 20 in front of the inlet valves 35 (three visible here).
  • the inlet valves 35 are preferably also designed as a membrane valve.
  • the preassembled pressure piece 30 is firmly cast (plasticized) with the membrane 19.
  • one of the plurality of piriform rims 53 of the membrane 19 protruding downward from the membrane surface 58 is shown in its entirety.
  • the outer edge 59 of the membrane has projections 59 ', 59 ′′ protruding upwards and downwards from the membrane surface 58 and encircling the outer edge 59 of the membrane can engage in a correspondingly formed matching groove 60 on the valve receiving body 20, which is provided on the upper side of the outer edge of the valve receiving body 20.
  • the groove 60 which is provided on the upper side of the outer edge of the valve receiving body 20, is shown in FIG Figure 8a shown.
  • Figure 8b shows the membrane 19 in cross section and in the state of rest.
  • the pressure piece 30, which is cast vertically into the membrane 19 and which specifies the closing dimension, is in the idle state.
  • Figure 8c shows the valve receiving body 20, which has an outlet chamber 55 and several inlet chambers 56 (one shown here) in the lower region. An inlet valve 35 and an outlet valve 36 are also shown in section.
  • Figure 9 shows an exploded view of the drive unit 3. This comprises several drive elements. Including the eccentric 42, several retaining rings 61, 61 ', two ball bearings 43, 44, the centering disk 13 and a bearing pressure disk 63 which is fastened to the eccentric 42 with a countersunk screw 64.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Description

    Gebiet der Erfindung
  • Die Erfindung betrifft einen Pumpenkopf für eine Membranpumpe nach dem Oberbegriff des Schutzanspruchs 1 und eine Membranpumpe nach dem Oberbegriff des Schutzanspruchs 18.
  • Stand der Technik
  • Aus der DE 10 2008 035 592 B4 ist eine Membranpumpe bekannt, die im Wesentlichen aus einem mit einem Antrieb verbundenen Pumpenkopf mit mehreren Pumpkammern besteht. Die Pumpkammern sind dabei jeweils mittels einer Pumpmembran gegenüber einer Antriebskammer abgedichtet, wobei die jeweilige Pumpmembran über ein zugeordnetes Pumpelement in eine periodisch axiale Pumpbewegung versetzbar ist. Die Pumpkammern sind dabei über Einlassventile mit einer Einlasskammer und über ein Auslassventil mit einer Auslasskammer verbunden. Dabei ist die Einlasskammer zentral angeordnet und die Auslasskammer konzentrisch zu der Einlasskammer. In der Ventilplatte dieser Membranpumpe ist ein Absatz vorgesehen, in den eine separate Einlassventilplatte, welche die Einlassventile aufweist, eingesetzt werden kann. Diese ist den Pumpkammern hin vorgelagert. Auch aus der DE 101 17 531 A1 und DE 20 2006 020 237 U1 sind Membranpumpen bekannt, die im Wesentlichen aus einem mit einem Antrieb verbundenen Pumpenkopf bestehen.
  • Eine weitere Membranpumpe ist in der US-Patentanmeldung US 2011/0070107 A1 beschrieben. Diese Pumpe umfasst einen wegwerfbaren Pumpenkopf mit einem Einlass- und Auslasskanal. Der Pumpenkopf ist einfach austauschbar, sodass eine Wartung, insbesondere Reinigung und/oder Desinfizierung desselben nicht erforderlich ist. Vorteil hier ist es, dass die nächste Anwendung oder das nächste Verfahren mit geringer zeitlicher Verzögerung gestartet werden kann.
  • Derartige bekannte Membranpumpen werden im Pharmabereich zur Medikamentenherstellung aber auch in der Chemie und Biotechnologie eingesetzt. Bekannterweise ist die Medikamentenherstellung in der Pharmaindustrie ein sehr kostenintensiver Bereich, so dass es wünschenswert ist, im Bereich der Reinigung von Membranpumpen zeitliche Einsparungen vorwiegend mit dem Ziel der Kostensenkung zu erreichen. Auch die Herstellungskosten von Membranpumpen sind aufgrund der hohen Sterilitätsanforderungen sehr hoch und so ist es erstrebenswert, die Kosten in der Herstellung der Pumpelemente zu reduzieren.
  • Nachteilig bei den bekannten Membranpumpen ist, dass diese einen Pumpenkopf aufweisen, der fest mit dem Antrieb, insbesondere dem Antriebsgehäuse und den Antriebselementen verbunden ist. Darüber hinaus sind die im Stand der Technik bekannten Membranpumpen aus Metall, vorwiegend aus hochlegiertem Edelstahl was die Herstellung teuer macht und das Handling dieser Pumpen erschwert. Da der Pumpenkopf fest mit den weiteren Elementen der Membranpumpe verbunden ist, muss der Pumpenkopf nach jedem Flüssigkeitslauf komplett gereinigt werden. Dies bedeutet, dass der Pumpenkopf restentleert und steril gemacht werden muss, bevor eine neue Medikamentencharge das Aggregat durchlaufen kann. Dies führt dazu, dass beispielsweise nach einem Testlauf für ein spezielles Medikament mehrere Tage und noch weitere zeitintensive Reinigungsschritte benötigt werden, um mit diesem Aggregat neue Testläufe zu absolvieren. Die Kosten für allein den Reinigungsvorgang sind sehr hoch, da Reinigungsmittel, Personen- und erheblicher Zeitaufwand und dergleichen bereitgestellt werden muss. Auch vor Einsatz der Membranpumpe müssen jedes Mal erneut, d.h. vor jedem neuen Medikamentendurchlauf Validierungsprozesse durchgeführt werden. Dies ist zeitaufwendig. Regelmäßig entstehen in den bekannten Membranpumpen außerdem Druckschwankungen, da diese für Standardanwendungen konzipiert wurden und Überdrücke entstehen, die die Strömungsverhältnisse negativ beeinflussen.
  • Der Erfindung liegt daher die Aufgabe zugrunde, die bisher bekannten Membranpumpen der eingangs angeführten Art so zu verbessern, dass der Pumpenkopf kostengünstiger hergestellt werden kann, vom Gewicht her leichter ausgebildet und schneller zu wechseln ist als die aus dem Stand der Technik bekannten austauschbaren Pumpenköpfe und dieser keiner Reinigung und Restentleerung mehr bedarf, so dass erhebliche Zeiteinsparungen bei der Medikamentenherstellung in der Pharmaindustrie möglich sind. Mit der vorliegenden Erfindung soll darüber hinaus die Geschwindigkeit bis zur Marktreife eines Medikamentes erhöht werden und Kosten durch die Eliminierung der Prozessvalidierung reduziert werden. Aufwendige Reinigungsverfahren sollen durch die vorliegende Erfindung entfallen. Die manuelle Anbringung des Pumpenkopfes an dem Antrieb und der Austausch des Pumpenkopfes sollen erleichtert werden. Zudem soll ein umweltfreundlicher Pumpenkopf bereitgestellt werden, der recycelt werden kann. Gleichzeitig soll eine absolute Dichtheit und höhere Sicherheit des Pumpenkopfes aufgrund der Ausgestaltung des Pumpenkopfes gewährleistet werden. Zudem soll die Flüssigkeitspulsation im Pumpenkopf verringert werden.
  • Diese Aufgabe wird in Verbindung mit dem Oberbegriff des Schutzanspruchs 1 durch den kennzeichnenden Teil des Schutzanspruchs 1 gelöst und in Verbindung mit dem Oberbegriff des Schutzanspruchs 18 durch den kennzeichnenden Teil des Schutzanspruchs 18.
  • Der erfindungsgemäße Pumpenkopf ist dadurch gekennzeichnet, dass dieser als Single-Use-Variante zur Medikamentenherstellung ausgebildet ist. Der Pumpenkopf ist dabei separat zu den weiteren Elementen der Membranpumpe, nämlich dem Antrieb, insbesondere zu der Antriebseinheit und dem Antriebsgehäuse, ausgebildet und somit individuell austauschbar. Vorteil ist es dadurch, dass der Pumpenkopf mit zwei Handgriffen relativ einfach gewechselt werden kann. Dies erspart ein Vielfaches an Zeit. Darüber hinaus ist kein Werkzeug für den Austausch des Pumpenkopfes erforderlich, welches im Sterilbereich ohnehin Probleme bereitet. Der Pumpenkopf ist dabei vorzugsweise so hergestellt, dass dieser nur für einen Flüssigkeitsdurchlauf, insbesondere einen Testlauf für die Herstellung eines Medikaments oder die Herstellung des Medikaments selbst einmalig verwendet wird. Als Einwegartikel kann der Pumpenkopf nach Verwendung entsorgt werden und ein neuer Pumpenkopf bei einem nächsten Testlauf oder einer nächsten Medikamentenherstellung an die weiteren Elemente der Membranpumpe, genauer gesagt den Antrieb, angeschlossen werden. Dadurch ergeben sich Einsparungen im Millionenbereich für die Pharmaindustrie, weil beispielsweise bei einem einwöchigen Test für ein künftiges Medikament ca. drei Tage eingespart werden können, und zwar, weil aufgrund des austauschbaren Pumpenkopfes keine Reinigung desselben mehr erforderlich ist. Der herkömmliche Pumpenkopf wird gewöhnlich restentleert und steril gemacht, bevor dieser wieder für einen neuen Flüssigkeitsdurchlauf eingesetzt werden kann. Da eine Restentleerung und keimfreie Reinigung bei dem erfindungsgemäßen Pumpenkopf als Single-Use-Variante nicht mehr erforderlich ist, können mehrere Tage an Leerlauf für die Reinigung und Restentleerung eingespart werden. Folglich sind aufgrund des erfindungsgemäßen Pumpenkopfes erhebliche Kosteneinsparungen in der Pharmaindustrie möglich.
  • Der Pumpenkopf ist in sich geschlossen ausgebildet und dessen Innenleben vollständig nach außen hermetisch abgedichtet. Lediglich der Ein- und Auslauf ist vorzugsweise noch abschließend zu schließen. Der Innenraum ist konstruktiv auf geringe Restmengen nach Beendigung der Testläufe ausgebildet.
  • Der Pumpenkopf ist vollständig aus Kunststoff ausgebildet. Bevorzugt werden FDA konforme Kunststoffe eingesetzt, insbesondere Kunststoffe, die den Anforderungen bei der Medikamentenherstellung entsprechen und den mechanischen Belastungen genügen. Im Vergleich zu den bekannten Pumpen aus hochlegierten Edelstählen findet folglich ein anderer Werkstoff, nämlich Kunststoff Verwendung, der leichter als Metalle und kostengünstiger in der Herstellung ist. Die Ausbildung des Pumpenkopfes aus Kunststoff erleichtert die manuelle Anbringung an dem Antrieb, den weiteren Elementen der Membranpumpe und damit den Austausch des Pumpenkopfes. Darüber hinaus kann der Pumpenkopf recycelt werden und stellt somit ein umweltfreundlicheres Element einer Membranpumpe dar als die bisher bekannten Pumpenkopfelemente von Membranpumpen. Dabei ist die Entsorgung günstiger und einfacher. Aufwendige Validierungsprozesse entfallen bei Kunststoff als Einwegvariante. Vorzugsweise ist das Pumpenkopfgehäuse aus Polypropylen (PP), Polyvinylidendifluorid (PVDF) und/oder Polytetrafluorethylen (PTFE) ausgebildet und weist damit eine hohe Medienresistenz auf.
  • Der Pumpenkopf weist ein 5-Kammersystem gegenüber dem im Stand der Technik bekannten 4-Kammersystemen auf. Mit dem 5-Kammersystem kann die Flüssigkeitspulsation im Pumpenkopf, insbesondere im Aggregat, verringert werden. Gegenüber dem 4-Kammersystem ist dies von Vorteil. In den nachfolgenden Tabellen werden 4-Kammersysteme mit 5-Kammersystemen verglichen. Es sind also insgesamt fünf Pumpkammern in dem Ventilaufnahmekörper vorgesehen, in die mindestens ein Einlassventil je Pumpkammer mündet. In einer besonders bevorzugten Ausgestaltung unterscheiden sich dabei die Pumpkammern in ihrer Form von den bekannten kreisförmigen Pumpkammern vorzugsweise dadurch, dass diese piriförmig bzw. birnenförmig ausgebildet sind. Der zu einem Ende hin spitz zulaufende Bereich der piriförmigen Pumpkammer ist dabei zentral in dem Ventilaufnahmekörper angeordnet, so dass der zum anderen Ende abgerundete großvolumigere Bereich in Richtung des äußeren Randes des Ventilaufnahmekörpers hin abschließt. Im verjüngten Bereich der Pumpkammer befindet sich vorzugsweise das Auslassventil, welches folglich zentral angeordnet ist. Im großvolumigeren Bereich der Pumpkammer befindet sich jeweils vorzugsweise ein Einlassventil, welches von der Unterseite des Ventilaufnahmekörpers her gesehen konzentrisch zu den Auslassventilen angeordnet sind.
  • Nachfolgend sind vier Tabellen 1a, 1b und 2a, 2b dargestellt, welche die Unterschiede zwischen einem 5-Kammersystem und einem 4-Kammersystem darstellen. Im Vergleich eines 4-Kammersystems gemäß Tabellen 1a, 1b zu einem 5-Kammersystem gemäß Tabellen 2a, 2b lassen sich deutlich reduzierte Betriebsinnendrücke im 5-Kammersystem feststellen. Die Anordnung der aktiven Anschlüsse in den jeweiligen Beispielen und Vergleichsbeispielen, nämlich einmal für den Flüssigkeitseinlass und einmal für den Flüssigkeitsauslass, ist in einem ersten Beispiel und vierten Vergleichsbeispiel in einem 180°-Winkel an der Außenseite des Pumpenkopfes vorgesehen. In einem zweiten Beispiel und fünften Vergleichsbeispiel sind diese aktiven Anschlüsse in einem 90°-Winkel angeordnet und in einem dritten Beispiel und sechsten Vergleichsbeispiel frontseitig (entspricht der Unterseite). Tabelle 1a: Druck- und Geschwindigkeitswerte eines 4-Kammersystems bei Wasser
    1. Beispiel 2. Beispiel 3. Beispiel
    Anschlussanordnung 180 Grad: Aktiver Einlass zu aktiver Auslass an seitlicher Gehäusewand in 180 Grad Stellung 90 Grad: Aktiver Einlass zu aktiver Auslass an seitlicher Gehäusewand in 90 Grad Stellung Front: Aktiver Einlass und aktiver Auslass an Unterseite
    Statischer Druck in Pascal, gemessen am Einlass seitliche Gehäusewand 809,302 814,047 (-237,403) (Anschluss seitliche Gehäusewand nicht genutzt)
    Geschwindigkeit in mm/s, gemessen am Einlass seitliche Gehäusewand 2472,94 2472,93 (23,3715) (Anschluss seitliche Gehäusewand nicht genutzt)
    Statischer Druck in Pascal, gemessen am Einlass Unterseite/ Front (704,574) (Frontanschluss nicht genutzt) (714,092) (Frontanschluss nicht genutzt) 977,654
    Geschwindigkeit in mm/s, gemessen am Einlass Unterseite/ Front (61,9302) (Frontanschluss nicht genutzt) (55,3904) (Frontanschluss nicht genutzt) 2472,77
    Statischer Druck in Pascal, gemessen am Auslass 4912,81 4579,17 6073,68
    Geschwindigkeit in mm/s, gemessen am Auslass 227,787 231,263 231,007
    Tabelle 1b: Druck- und Geschwindigkeitswerte eines 4-Kammersystems bei Blut
    4. Beispiel 5. Beispiel 6. Beispiel
    Anschlussanordnung 180 Grad: Aktiver Einlass zu aktiver Auslass an seitlicher Gehäusewand in 180 Grad Stellung 90 Grad: Aktiver Einlass zu aktiver Auslass an seitlicher Gehäusewand in 90 Grad Stellung Front: Aktiver Einlass und aktiver Auslass an Unterseite
    Statischer Druck in Pascal, gemessen am Einlass seitliche Gehäusewand 787,718 782,738 (-230,959) (Anschluss seitliche Gehäusewand nicht genutzt)
    Geschwindigkeit in mm/s, gemessen am Einlass seitliche Gehäusewand 2471,72 2471,71 (0,0262517) (Anschluss seitliche Gehäusewand nicht genutzt)
    Statischer Druck in Pascal, gemessen am Einlass Unterseite/Front (707,783) (Frontanschluss nicht genutzt) (710,07) (Frontanschluss nicht genutzt) 979,036
    Geschwindigkeit in mm/s, gemessen am Einlass Unterseite/Front (56,3939) (Frontanschluss nicht genutzt) (48,7154) (Frontanschluss nicht genutzt) 2471,39
    Statischer Druck in Pascal, gemessen am Auslass 4892,6 4558,85 6059,91
    Geschwindigkeit in mm/s, gemessen am Auslass 233,393 236,664 236,405
    Tabelle 2a: Druck- und Geschwindigkeitswerte des erfindungsgemäßen 5-Kammersystems bei Wasser
    1. Vergleichsbeispiel 2. Vergleichsbeispiel 3. Vergleichsbeispiel
    Anschlussanordnung 180 Grad: Aktiver Einlass zu aktiver Auslass an seitlicher Gehäusewand in 180 Grad Stellung 90 Grad: Aktiver Einlass zu aktiver Auslass an seitlicher Gehäusewand in 90 Grad Stellung Front Aktiver Einlass und aktiver Auslass an Unterseite
    Statischer Druck in Pascal, gemessen am Einlass seitliche Gehäusewand 188,771 188,375 (-25,3943) (Anschluss seitliche Gehäusewand nicht genutzt)
    Geschwindigkeit in mm/s, gemessen am Einlass seitliche Gehäusewand 1633,25 1633,25 (27,9028) (Anschluss seitliche Gehäusewand nicht genutzt)
    Statischer Druck in Pascal, gemessen am Einlass Unterseite/Front (30,2918) (Frontanschluss nicht genutzt) (30,0523) (Frontanschluss nicht genutzt) 70,7398
    Geschwindigkeit in mm/s, gemessen am Einlass Unterseite/Front (103,997) (Frontanschluss nicht genutzt) (104) (Frontanschluss nicht genutzt) 1632,43
    Statischer Druck in Pascal, gemessen am Auslass 2512,74 2680,44 4018,15
    Geschwindigkeit in mm/s, gemessen am Auslass 135,315 136,758 136,7
    Tabelle 2b: Druck- und Geschwindigkeitswerte des erfindungsgemäßen 5-Kammersystems bei Blut
    4. Vergleichsbeispiel 5. Vergleichsbeispiel 6. Vergleichsbeispiel
    Anschlussanordnung 180 Grad: Aktiver Einlass zu aktiver Auslass an seitlicher Gehäusewand in 180 Grad Stellung 90 Grad: Aktiver Einlass zu aktiver Auslass an seitlicher Gehäusewand in 90 Grad Stellung Front Aktiver Einlass und aktiver Auslass an Unterseite
    Statischer Druck in Pascal, gemessen am Einlass seitliche Gehäusewand 186,196 186,234 (2,05115) (Anschluss seitliche Gehäusewand nicht genutzt)
    Geschwindigkeit in mm/s, gemessen am Einlass seitliche Gehäusewand 1632,91 1632,91 (0,528212) (Anschluss seitliche Gehäusewand nicht genutzt)
    Statischer Druck in Pascal, gemessen am Einlass Unterseite/ Front (50,2839) (Frontanschluss nicht genutzt) (50,5011) (Frontanschluss nicht genutzt) 94,4495
    Geschwindigkeit in mm/s, gemessen am Einlass Unterseite/ Front (95,2814) (Frontanschluss nicht genutzt) (95,5958) (Frontanschluss nicht genutzt) 1632,14
    Statischer Druck in Pascal, gemessen am Auslass 2509,02 2690,27 4007,21
    Geschwindigkeit in mm/s, gemessen am Auslass 137,59 139,013 138,928
  • In einer Anschlussanordnung des aktiven Einlasses zum aktiven Auslass an der seitlichen Gehäusewand des Pumpenkopfes in einer 180 Grad Stellung ist ein statischer Druck (in Pascal) im Bereich des Einlasses der seitlichen Gehäusewand in Höhe von 809,302 bei einem 4-Kammersystem und bei Verwendung des Mediums Wasser messbar (Beispiel 1). In dieser Anschlussanordnung ist an gleicher Messstelle im Einlassbereich der seitlichen Gehäusewand, wobei die Messung innerhalb des Pumpenkopfes am Einlassbereich erfolgt, eine Geschwindigkeit (in mm/s) von 2.472,94 feststellbar. Diese Werte sind bei einem 4-Kammersystem und Einsatz des Mediums Wasser im Vergleich zu einem 5-Kammersystem wie in Tabelle 2a (Vergleichsbeispiel 1) dargestellt, deutlich höher. Bei gleicher Anschlussanordnung, gleicher Messstelle und dem Medium Wasser liegt der statische Druck in einem 5-Kammersystem bei 188,771 Pascal und damit um 620,531 Pascal niedriger. Die Geschwindigkeit im Vergleichsbeispiel 1 beträgt in einem 5-Kammersystem, bei gleicher Messstelle und dem Medium Wasser 1.633,25 mm/s. Die Geschwindigkeit in einem 5-Kammersystem ist damit fast doppelt so niedrig, wie in einem 4-Kammersystem. Die Flüssigkeitspulsation kann damit wesentlich verringert werden. Die Pumpe wird effizienter genutzt.
  • Eine weitere alternative Anschlussanordnung wird vorzugsweise mit einer Anordnung des aktiven Einlasses zum aktiven Auslass an der seitlichen Gehäusewand des Pumpenkopfes in einer 90 Grad Stellung bereitgestellt. Der statische Druck, welcher im Einlassbereich im Inneren des Pumpenkopfes gemessen wird, beträgt dabei im Beispiel 2 des 4-Kammersystems 814,047 Pascal. Die Geschwindigkeit an gleicher Messstelle bei gleichem Medium Wasser in dieser Anordnung beträgt 2.472,93 mm/s. Im Vergleich dazu ist der statische Druck des Vergleichsbeispiels 2 gemessen in einem 5-Kammersystem deutlich niedriger und liegt bei 188,375 Pascal und zwar, wenn er an gleicher Messstelle und bei Verwendung des Mediums Wasser gemessen wird. Die Geschwindigkeit in einem 5-Kammersystem ist ebenfalls mit 1.633,25 mm/s deutlich niedriger.
  • Besonders bevorzugt ergibt die Anordnung der aktiven Anschlüsse Einlass und Auslass in einem 180 Grad Winkel an der seitlichen Gehäusewand des Pumpenkopfes oder in einem 90 Grad Winkel keinen Unterschied in der Geschwindigkeit bei Verwendung des Mediums Wasser. Die Geschwindigkeit ist vorzugsweise gleich.
  • Da der Pumpenkopf vorzugsweise mehrere Anschlüsse zur möglichen Nutzung als Ein- und Auslass aufweisen kann, die allerdings im Falle der Nichtbenutzung vorzugsweise mit einem Stopfen verschlossen sind, kann auch der Einlassbereich innerhalb des Pumpenkopfes an der seitlichen Gehäusewand in punkto statischer Druck und Geschwindigkeit bemessen werden, obwohl der Anschluss nicht genutzt ist und nur eine Anschlussnutzung der Frontanschlüsse, also des Fronteinlasses und des Frontauslasses, erfolgt. In diesem Fall ergibt die Messung in einem 4-Kammersystem unter Verwendung des Mediums Wasser an der Messstelle Einlassbereich innerhalb des Pumpenkopfes an der seitlichen Gehäusewand, bei Nichtnutzung dieses Einlasses und bei Nutzung der Frontanschlüsse einen statischen Druckwert von -237,403 Pascal und einen Geschwindigkeitswert von 23,3715 der Flüssigkeit (Vergleichsbeispiel 3). Im Vergleich hierzu ist im Vergleichsbeispiel 3 bei einem 5-Kammersystem der statische Druckwert -25,3943 und der Geschwindigkeitswert 27,9028. Aus dem Vergleich geht hervor, dass die statischen Unterdrücke in einem 5-Kammersystem geringer ausfallen als in einem 4-Kammersystem.
  • In Bezug auf Tabelle 1a und der aktiv genutzten Anschlussanordnung 180 Grad von Einlass zu Auslass an der seitlichen Gehäusewand (Beispiel 1) können Werte im nicht genutzten Einlassbereich des Frontanschlusses (Einlassanschluss an der Unterseite) in Höhe von 704,574 Pascal (statischer Druck) und 61,9302 mm/s gemessen werden. An gleicher Messstelle ergeben sich in Beispiel 2 Druckwerte von 714,092 und Geschwindigkeitswerte von 55,3904 bei einer 90 Grad Positionierung der aktiven Anschlüsse Einlass und Auslass an der seitlichen Gehäusewand.
  • Bei vorzugsweise aktiver Verwendung der Frontanschlüsse Einlass und Auslass (Beispiel 3) beträgt der statische Druckwert im aktiven Einlassbereich an der Frontseite, gemessen innerhalb des Pumpenkopfes, 977,654 Pascal und der Geschwindigkeitswert an gleicher Messstelle 2.472,77 mm/s. Im Vergleich dazu beläuft sich, bei gleicher Anordnung und Messposition und gleichem Medium, nämlich Wasser, der Druckwert bei einem 5-Kammersystem gemäß Vergleichsbeispiel 3 auf 70,7398 Pascal und der Geschwindigkeitswert auf 1.632,43 mm/s. Die Druckwerte und Geschwindigkeitswerte im 5-Kammersystem sind demnach wesentlich niedriger und sorgen für eine effizientere Nutzung der Pumpe.
  • In einem 4-Kammersystem und dem Versuchsmedium Wasser kann gemäß Beispiel 1 ein statischer Druck im aktiven Auslassbereich innerhalb des Pumpenkopfes bei einer Anschlussanordnung von aktivem Einlass zu aktivem Auslass an der seitlichen Gehäusewand in einer 180 Grad Stellung in Höhe von 4.912,81 Pascal gemessen werden. Die Geschwindigkeit bei gleicher Messposition und gleichem Medium beträgt in einem 4-Kammersystem 227,787 mm/s. Im Vergleich dazu liegen die Werte in einem 5-Kammersystem gemäß Vergleichsbeispiel 1 (bei gleicher Messposition und gleichem Medium) bei 2.512,74 Pascal und 135,315 mm/s. Dies zeigt wiederum die enorme Effizienzsteigerung eines 5-Kammersystems.
  • Bei der Anschlussanordnung eines Einlasses zu Auslasses an seitlicher Gehäusewand in 90 Grad Stellung gemäß Beispiel 2 ergibt sich ein statischer Druck in Höhe von 4.579,17 Pascal gemessen am aktiven Auslassbereich innerhalb des Pumpenkopfes in einem 4-Kammersystem bei Verwendung des Mediums Wasser. Die Geschwindigkeit beträgt 231,263 mm/s in dieser bevorzugten Versuchsanordnung. Im Vergleichsbeispiel 2 des 5-Kammersystems beträgt der statische Druckwert 2.680,44 Pascal und der Geschwindigkeitswert 136,758 mm/s.
  • In einem weiteren alternativen Ausführungsbeispiel, das eine aktive Anschlussanordnung des Ein- und Auslasses an der Frontseite gemäß Beispiel 3 vorsieht, ergeben sich statische Druckwerte in Höhe von 6.073,68 Pascal, gemessen am aktiven Auslassbereich innerhalb des Pumpenkopfes bei einem 4-Kammersystem und dem Medium Wasser. Der Geschwindigkeitswert in dieser Anordnung beträgt 231,007 mm/s. Im Vergleichsbeispiel 3 eines 5-Kammersystems sind der statische Druckwert bei 4.018,15 Pascal und der Geschwindigkeitswert bei 136,7 mm/s.
  • In Bezug auf die Tabellen 1b und 2b sind gleiche Messpositionen und Anschlussanordnungen im Vergleich dargestellt, wie in den Tabellen 1a und 2a, allerdings unter Verwendung des Mediums Blut. Auch ein Vergleich dieser Werte zeigt deutlich die Verbesserung des statischen Innendrucks und der Geschwindigkeit bei einem 5-Kammersystem.
  • Zur Auslasskammer hin weist der Ventilaufnahmekörper des Pumpenkopfes vorzugsweise fünf Auslassventile auf. Die Auslasskammer ist dabei vorzugsweise zentral innen liegend im Verhältnis zu den Einlasskammern im Ventilaufnahmekörper angeordnet. Die Kammergeometrie ist dabei vorzugsweise mittels CFD (Computational Fluid Dynamics)-Analyse strömungsbegünstigt ausgeführt.
  • In einem weiteren bevorzugten Ausführungsbeispiel des erfindungsgemäßen Pumpenkopfes ist das Pumpenkopfgehäuse zylinderförmig nach oben hin offen mit vorzugsweise einer seitlichen Gehäusewand und einem vorzugsweise nach unten abschließenden Boden ausgebildet, wobei mindestens zwei Anschlüsse, vorzugsweise ein Einlass und ein Auslass, horizontal und im 90°-Bogen an der seitlichen Gehäusewand, besonders bevorzugt drei horizontal und im 90°-Bogen angeordnete Anschlüsse an der seitlichen Gehäusewand, sowie mindestens zwei frontseitige Anschlüsse (unterseitige Anschlüsse in den Figuren), vorzugsweise ein Einlass und ein Auslass, vorgesehen sind.
  • Die Anschlüsse, welche vorzugsweise als Aus- und Abgänge individuell gewählt werden können, sind variabel einsetzbar, je nach Kundenanforderung. Sie sind vorzugsweise multifunktionell. Das Pumpenkopfgehäuse weist bevorzugt drei Anschlüsse, vorzugsweise zwei Auslässe und einen Einlass, an der seitlichen Gehäusewand auf. Das Pumpenkopfgehäuse weist bevorzugt zwei Anschlüsse, vorzugsweise einen Einlass und einen Auslass am Boden des Pumpenkopfgehäuses auf.
  • Die nicht benötigten Anschlussöffnungen müssen verschlossen werden. Dies geschieht in einer bevorzugten Ausführungsform mit einem Blindverschluss (Stopfen bzw. Blindstopfen), welcher die Öffnung mittels vorzugsweise eines Schneppersystems oder besonders bevorzugt eines nahtfrei gefertigten Gewindes leckagefrei verschließt. Dadurch wird eine hohe Dichtheit und Langzeitstabilität erreicht, da die Abdichtung über einen Dichtbund erfolgt und zusätzliche Teile, wie O-Ringe entfallen. Da es sich bei dem Pumpenkopf um eine Single-Use-Variante handelt, kann der Kunde mit dem Blindstopfen vorzugsweise einmalig den Anschluss verschließen. Dabei ist der Blindstopfen über einen Klickverschluss anbringbar und dann vorzugsweise nicht mehr demontierbar. Wahlweise ist der Blindstopfen über ein Gewinde anbringbar, das vorzugsweise nahtfrei gefertigt ist und wieder demontierbar ist. Der Kunde kann sich also die Anschlüsse aussuchen, welche er für den Flüssigkeitslauf benötigt und dann, da es sich bei dem Pumpenkopf um eine Wegwerf-Variante handelt, die nicht in Verwendung befindlichen Anschlüsse vor Inbetriebnahme mit dem Blindstopfen verschließen. Die Multifunktionalität der Anschlüsse stellt für den Kunden eine hohe Flexibilität der Nutzung des Pumpenkopfes bereit.
  • Ferner umfasst der erfindungsgemäße Pumpenkopf bevorzugt an der Unterseite (entspricht der Frontseite) ein Überströmventil zum Abbau von arbeits- oder systembedingten Überdrücken. Das Überströmventil ist dabei vorzugsweise hermetisch mit dem Pumpenkopfgehäuse verbunden und ermöglicht konstante Strömungsverhältnisse. Das Überströmventil bzw. Druckhalteventil baut Druckspitzen ab, indem es bei Überschreitung des eingestellten Drucks das System entlastet. Vorteilhafterweise kann das Überströmventil vorzugsweise lageunabhängig horizontal oder vertikal im Pumpenkopfgehäuse eingebaut werden. Es ist daher vielseitig nutzbar.
  • Weiter bevorzugt ist das Überströmventil mittels einfacher Schraubverbindung am Pumpenkopfgehäuse verbunden, so dass es einfach und schnell montiert und demontiert werden kann.
  • In einer besonders bevorzugten Ausführungsform ist das Überströmventil des erfindungsgemäßen Pumpenkopfes stufenlos einstellbar. Die Einstellbereiche sind dabei bevorzugt von 0,2 bis 6 bar, insbesondere von 0,2 bis 5 bar und besonders bevorzugt von 0,4 bis 5 bar. Bevorzugt ist das Druckhalteventil stufenlos einstellbar. Es kann auch während des Pumpvorganges angepasst werden, so dass die Ventileinstellung auch unter Arbeitsdruck möglich ist. Druckspitzen und Pulsationen werden dabei zuverlässig abgebaut. Das Ventil verfügt dabei vorzugsweise über eine kleine Hysterese. Das Gehäuse des Überstromventils besteht vorzugsweise aus PP, PVDF und PTFE und weist somit eine hohe Medienresistenz auf und entspricht allen Zulassungsnormen für den Biopharmabereich. Bei normalem Pumpeninnendruck befindet sich die Flüssigkeit bzw. das Produkt vorzugsweise im jeweiligen Teil des Pumpenkopfs, wo sie bzw. es bei normaler Förderung zu den jeweiligen Auslässen geführt wird. Sobald sich der Pumpeninnendruck erhöht, öffnet sich bei Erreichung des eingestellten Oberwertes die Membran und hebt sich gegen die Feder ab. In dieser Position wird vorzugsweise ein Kanal freigegeben, welcher die Druckspitze zum Einlauf der Pumpe abführt und so eine Bypassförderung bereitstellt. Ein konstanter Förderfluss ist die Folge. Die Federkraft kann bei laufendem Betrieb eingestellt werden und ist aufgrund der großen Membranfläche fein justierbar.
  • In einer weiteren bevorzugten Ausführungsform ist das Überströmventil vollständig aus Kunststoff ausgebildet, wobei die Stellfeder vorzugsweise als Tellerfederpaket vorzugsweise in Kunststoff vorgesehen ist. Alternativ kann die Stellfeder aber auch als Ringfeder vorzugsweise metallisch ausgeführt sein, so dass das Ventil vorzugsweise fast vollständig aus Kunststoff ist. Bei der vollständigen Kunststoffausführung ist der komplette Pumpenkopf metallisch frei. Aber auch bei der metallisch ausgeführten Ringfeder sind die restlichen Bestandteile des Überstromventils vorzugsweise komplett aus Kunststoff. Die zulässige Medientemperatur in Zusammenhang mit dem Ventil ist abhängig von dem Grundwerkstoff. So ist beispielsweise bei der Ausführung des Gehäuses in PVDF eine Temperatur von 120°C zulässig und bei einer Ausführung in PTFE von 150°C.
  • Die Membran der Pumpenkopfeinheit ist in einer besonderen bevorzugten Ausführung so ausgestaltet, dass sie den Ventilkörper mit den Pumpkammern vollständig überspannt. Dabei ist die Außenumrandung der Membran vorzugsweise so ausgestaltet, dass diese nach oben hin und nach unten hin nur einige Millimeter von der Membranfläche vorsteht. Der nach unten vorstehende Vorsprung der Membranumrandung greift dabei vorzugsweise in eine Nut ein, die an der Oberseite der Außenumrandung des Ventilaufnahmekörpers entsprechend vorgesehen ist. Die Membranfläche selbst überspannt vorzugsweise den gesamten innenliegenden Bereich des Ventilaufnahmekörpers, ausgehend von der Außenumrandung des Ventilaufnahmekörpers. Es sind also nicht, wie üblicherweise fünf Membrane erforderlich, die jeweils einzeln über den Pumpkammern angeordnet werden, sondern kann lediglich eine Membraneinheit als ein Stück kostengünstig und einfach hergestellt und am Ventilaufnahmekörper angeordnet werden. Insbesondere die Anbringung der Membran am Ventilaufnahmekörper und in der Pumpenkopfeinheit wird dadurch vereinfacht und kann schnell erfolgen, im Vergleich zu fünf einzelnen Membranen, die jeweils einzeln über der jeweiligen Pumpkammer angeordnet werden müssen. Dies führt auch zu Zeiteinsparungen in der Herstellung des Pumpenkopfeinsatzes.
  • In einer weiteren Ausführung des Pumpenkopfes ist die Membran aus einem dauerelastischen, insbesondere walktauglichen Material ausgebildet. Das Material ist bevorzugt Kunststoff. Dadurch ist die Beweglichkeit der Membran hinsichtlich ihrer Ansaug- und Druckeigenschaften hervorragend.
  • Nach einer weiteren bevorzugten Ausführungsform der Erfindung ist die Membran mit in Ansaug- und Druckrichtung zur jeweiligen Pumpkammer hin (an ihrer Unterseite) ausgewölbten Flächen versehen, deren Auswölbung vorzugsweise der Form und Abmessung der Einlassventilteller angepasst ist. Die Membran weist besonders bevorzugt zudem mehrere nach unten hin vorstehende Einfassungen auf, die in eine Nut eingreifen, die jeweils die Pumpkammern an ihrer nach oben offenen Seite umrandet. Die Membran verschließt dadurch die jeweiligen Pumpkammern hermetisch. Die nach unten hin vorstehende Einfassung ist bevorzugt piriförmig entsprechend der jeweiligen Pumpkammer ausgebildet, wobei die bevorzugt piriförmige Einfassung in eine entsprechende bevorzugt piriförmig ausgebildete Nut eingreift, welche die Pumpkammern an ihrer nach oben offenen, im Ventilaufnahmekörper ausgebildeten Seite umrandet.
  • An der Oberseite der Membran sind in einem weiteren bevorzugten Ausführungsbeispiel mehrere, vorzugsweise fünf, ringförmige Auswölbungen, die nach oben hin vorstehen, vorgesehen. Der innere Durchmesser des höchsten Punkts dieser ringförmigen Auswölbungen ist dabei vorzugsweise gleich groß zu dem Außendurchmesser der nach unten ausgewölbten Flächen.
  • Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist im Zentrum der jeweiligen ringförmigen Auswölbungen der Membran jeweils ein, vorzugsweise plastifiziertes, Druckstück vorgesehen, das mit einem Stössel, der an einer Taumelscheibe einer Antriebseinheit angebracht ist, zusammenwirkt, um in eine Pumpbewegung versetzt zu werden. Die Membran ist mit dem in vorzugsweise vorteilhafter Weise senkrecht eingegossenen Druckstück, welches bevorzugt ein Schließmaß von 3,5° vorgibt, konstruktiv so gestaltet, dass ein optimaler Wirkungsgrad erzielt werden kann. Das bevorzugte Schließmaß von 3,5° bezieht sich dabei auf den Ruhezustand der Membran. Das Schließmaß kann auch mehr oder weniger, insbesondere aber zwischen 2,0° und 6,5° betragen. Das Schließmaß betrifft die ausgewölbten Flächen der Membran, die nach unten hin vorstehen und die ringförmigen Auswölbungen, die nach oben hin von der Membran vorstehen. Dabei ist die horizontale Querschnittslinie der Membran Ausgangspunkt der Bemessung mit 0°. Im 3,5°-Winkel stehen die vorbezeichneten Auswölbungen. Der Anstellwinkel ist dabei vorzugsweise abhängig von der Lageposition der Exzenterwelle und kann individuell in einem gewissen Rahmen verändert werden. Damit kann die Fördermenge reguliert werden, da sich der Hub verkleinert oder aber vergrößert, was dazu führt, dass die Förderleistung variabel ist.
  • Ferner bevorzugt stellt die Erfindung eine Membranpumpe bereit, die einen Antrieb aufweist, der mit dem oben beschriebenen Pumpenkopf verbunden ist. Dabei ist der Pumpenkopf vorzugsweise mittels mehrerer Halteklemmen bzw. Spannlaschen, vorzugsweise zweier Halteklemmen an dem Antrieb lösbar befestigt. Dieser Schnellverschlussmechanismus ist für die zeitsparende Montage des austauschbaren Pumpenkopfes an den weiteren Pumpelementen, insbesondere dem Antrieb, vorteilhaft. Darüber hinaus wird eine funktionssichere Montage der Pumpenköpfe sichergestellt. Die Demontage ist dabei genauso schnell möglich wie die Montage des Pumpenkopfes, der über die Halteklemmen mit dem Antriebsgehäuse lösbar befestigt ist.
  • Nach einem bevorzugten Ausführungsbeispiel sind die Halteklemmen mit einem Schnappbügel ausgestattet, der vorzugsweise in eine Nut am Pumpenkopf eingreift. Die Nut ist dabei umlaufend an der Seitenwand des Pumpenkopfgehäuses vorgesehen, so dass zugleich eine große Individualität bei der Lageposition der An- und Abgänge der Anschlüsse möglich ist.
  • Bei Zuziehen der Halteklemmen zieht der Schnappbügel über die Nut den Pumpenkopf vorzugsweise so nah an den Antrieb heran, dass Pumpenkopf mit Antrieb hermetisch zueinander verschlossen sind.
  • Die erfindungsgemäße Membranpumpe weist vorzugsweise einen elektronisch-hydraulischen Antrieb auf. Aufgrund der Hydraulik ist eine Strömungsbegünstigung der Flüssigkeiten erreicht.
  • Kurzbeschreibung der Zeichnungen
  • In den Zeichnungen zeigen:
  • Figur 1
    eine Explosionsansicht einer Membranpumpe bestehend aus einem Antrieb und einem Pumpenkopf
    Figur 2
    eine Explosionsansicht des erfindungsgemäßen Pumpkopfs bzw. der Pumpenkopfeinheit
    Figur 3
    eine Explosionsansicht des Pumpenkopfeinsatzes
    Figur 4
    eine Seitenansicht des Pumpenkopfgehäuses mit Überströmventil
    Figur 5
    eine Seitenansicht auf die Membranpumpe mit Antrieb und Pumpenkopf sowie Überströmventil
    Figur 6
    eine Seitenansicht der in Figur 5 gezeigten Membranpumpe, entlang der Linie A-A geschnitten
    Figur 7
    eine Seitenansicht der Pumpenkopfeinheit mit Überströmventil sowie der in Fig. 9 gezeigten Antriebseinheit, entlang der Linie K-K der in Figur 7a gezeigten Membranpumpe geschnitten
    Figur 7a
    eine Unteransicht der Membranpumpe
    Figur 7b
    eine vergrößerte Darstellung der Einkreisung L aus Fig. 7
    Figur 8
    eine perspektivische Ansicht von schräg oben auf die Membran und den Ventilaufnahmekörper
    Figur 8a
    eine perspektivische Querschnittansicht von schräg unten auf eine Hälfte der in Figur 8 gezeigten Membran und den Ventilaufnahmekörper
    Figur 8b
    eine Seitenansicht der Membran, im Querschnitt
    Figur 8c
    eine Seitenansicht des Ventilaufnahmekörpers, im Querschnitt
    Figur 9
    eine Explosionsansicht der Antriebseinheit
  • Die in Figur 1 gezeigte Membranpumpe 2 besteht aus einem Antrieb 4 mit einer in Fig. 9 gezeigten Antriebseinheit 3 und einer Pumpenkopfeinheit 1, an deren Unterseite ein Überströmventil 5 angeordnet ist. Der Antrieb 4 besteht aus einem Antriebs- oder Motorgehäuse 6, in dem sich die Antriebseinheit 3 befindet. An zwei gegenüberliegenden Seiten des Antriebsgehäuses 6 befindet sich jeweils eine Halteklemme 7 (hier nur eine sichtbar) zum Befestigen des Antriebsgehäuses 6 an einem Pumpenkopfgehäuse 8. Die Halteklemme 7 umfasst einen Klemmbügel 9, dessen unteres, nach innen gebogenes Ende 10 in eine Nut 11 am Pumpenkopf 1 eingreift. Bei Hochklappen des Verschlusselements 12 zieht der Klemmbügel 9 das Pumpenkopfgehäuse 8 fest an das Antriebsgehäuse 6 heran. Die Antriebseinheit 3 wird mittels Schraubverbindung über eine Zentrierscheibe 13 mit der Exzenterscheibe 14 der Pumpenkopfeinheit 1 verbunden. Dabei setzt sich die in Fig. 2 im Detail dargestellte Pumpenkopfeinheit 1 zusammen aus der Exzenterscheibe 14, einer Stößelplatte bzw. Taumelscheibe 15 mit fünf Stößeln 16, einem Rahmen 17 mit fünf kreisrunden Rahmenöffnungen 18 zur Aufnahme der Stössel 16, einer Membran 19, einem Ventilaufnahmekörper 20, einem Zentrierring 21, einem Pumpenkopfgehäuse 8 mit mehreren Anschlüssen 22 sowie einem Überströmventil 5. Der Zentrierring 21 ist mittels Senkschrauben 23 am Pumpenkopfgehäuse 8 befestigt und zentriert das obere Ende 24 des Pumpenkopfgehäuses 8 im Antriebsgehäuse 6.
  • In Figur 2 sind die Pumpenkopfelemente in einer Explosionsansicht dargestellt. Dabei weist das Pumpenkopfgehäuse 8 in diesem Ausführungsbeispiel insgesamt fünf Öffnungen 25 für fünf multifunktionelle Anschlüsse 22 auf, die jeweils mit einem Stopfen 26 verschließbar sind. Zwei der Anschlussöffnungen 25 befinden sich an der Unterseite (nicht sichtbar), drei davon seitlich am Gehäuse (zwei davon sichtbar). Das Überströmventil 5 ist an der Unterseite im Bereich des Bodens 27 des Pumpenkopfgehäuses 8 angeordnet. In dieser Ausführungsform sind fünf Pumpkammern 28 konzentrisch in dem Ventilaufnahmekörper 20 angeordnet. Die fünf Pumpkammern sind dabei birnenförmig ausgebildet, wobei sich der rund geformte großvolumige Bereich der Kammer am äußeren Rand des Ventilaufnahmekörpers befindet und der verjüngte Bereich der Kammer zentral im Ventilaufnahmekörper liegt. In Fig. 8 wird die Piriform genauer beschrieben. Über dem Ventilaufnahmekörper 20 ist die Membran 19 angeordnet. Diese zeigt fünf ringförmige Auswölbungen 29 um jeweils einen Druckknopf 30, die in Richtung Rahmen 17 weisen und dort die jeweiligen Rahmenöffnungen 18 hermetisch abschließen. Die ringförmigen Auswölbungen 29 fallen im Bereich ihres inneren Durchmessers nach unten hin in Richtung des Druckknopfes 30 ab. An der Unterseite der Membran 19 bilden sich ebenfalls fünf entsprechend ausgewölbte Flächen 31 (nicht sichtbar). Diese ausgewölbten Flächen 31 nach unten sind in Fig. 8 genauer beschrieben. Die ringförmige Auswölbung 29 nach oben hin ist in Fig. 8 gut sichtbar dargestellt. In zusammengesetzter Anordnung eines Pumpenkopfeinsatzes 32, der in Fig. 3 beschrieben und dargestellt ist, steht der in die Membrane 19 eingegossene Druckknopf 30 senkrecht nach oben hin durch die jeweiligen Rahmenöffnungen 18 des Rahmens 17 hindurch hervor, so dass die Aussparung 33 im Stößel 16 den hinausragenden Teil des Druckknopfes 30 umfasst. Über der Stößelplatte 15 befindet sich die Exzenterscheibe 14, welche mit fünf Senkschrauben 34 mit der Stößelplatte 15 verschraubt ist.
  • Im Ventilaufnahmekörper 20 sind fünf Pumpkammern 28 gezeigt. Die Membrane 19 sieht insgesamt fünf Druckstücke 30 vor, die an der Oberseite der Membrane 19 hervorragen und in Kontakt mit den jeweiligen Stößeln 16 der Taumelscheibe 15 treten. Der Rahmen 17 weist fünf Rahmenöffnungen 18 auf, welche nach unten hin mit den ringförmigen Auswölbungen 29 der Membran 19 abgedichtet sind. Der obere Teil des fest in der Membran 19 vergossenen Druckstückes 30 reicht in die Rahmenöffnung 18 hinein. Die Exzenterscheibe 14 ist mit den fünf Senkschrauben 34 zu der Stößelplatte 15 verbunden.
  • Figur 3 zeigt den Pumpenkopfeinsatz 32, der aus Exzenterscheibe 14, Stößelplatte 15, Rahmen 17, Membran 19 und Ventilaufnahmekörper 20 samt Dichtring 38 besteht. In diesem Ausführungsbeispiel sind die Einlassventile 35 außenliegend und die Auslassventile 36 innenliegend angeordnet. An der Unterseite des Ventilaufnahmekörpers 20 ist ein Dichtring 38 vorgesehen, der die Auslasskammer 55 im Gehäuse 8 abdichtet.
  • Das Pumpenkopfgehäuse 8 ist samt Seitenansicht auf das Überströmventilgehäuse 37 in Fig. 4 gezeigt. Die Explosionsdarstellung zeigt drei seitlich angeordnete multifunktionelle Anschlüsse 22 und zwei an der Unterseite des Pumpenkopfgehäuses 8 angeordnete Anschlüsse 22. Die Anschlüsse 22 sind jeweils mit einem Dichtring 50 zum Pumpenkopfgehäuse 8 verbunden. Vier der Anschlüsse 22 sind mit einem Stopfen 26 versehen. Das Überströmventil 5 ist dezentral an der Unterseite 27 des Pumpenkopfgehäuses 8 angeordnet und mittels Schraubverbindung am Gehäuse 8 befestigt.
  • Figur 5 zeigt eine Seitenansicht der Membranpumpe 2. Es sind zwei seitliche Anschlüsse 22 am Pumpenkopfgehäuse 8 sowie zwei Anschlüsse 22 (eng in Perspektive versetzt zueinander dargestellt) an der Unterseite 27 des Pumpenkopfgehäuses 8 sichtbar. Das Überströmventil 5 befindet sich dezentral an der Unterseite 27 des Pumpenkopfgehäuses 8. Der in der Zeichnung dargestellte Klemmbügel 9 der Halteklemme bzw. Spannlasche 7 greift in eine Nut 11 des Pumpenkopfgehäuses 8 ein, welche die Seitenwand des Gehäuses 8 umlaufend umfasst und fixiert das Pumpenkopfgehäuse 8 zum Antrieb 4. Der Schließhebel 12 der Klemme 7 befindet sich in geschlossenem Zustand.
  • Figur 6 zeigt eine Seitenansicht im Längsschnitt A-A der in Fig. 5 gezeigten Membranpumpe 2. Der Flansch 39 des Zylinderkopfs 40 des Antriebs 4 ist mit mehreren Zylinderkopfschrauben 41 an dem Antriebsgehäuse 6 befestigt. An der unteren Seite des Antriebs 4 ist der Pumpenkopf 1 mittels Halteklemmen 7 befestigt. Dabei greift das untere Ende 10 des Klemmbügels 9 der Halteklemmen 7 in die seitlich umlaufende Nut 11 des Pumpenkopfgehäuses 8 ein. Die Pumpenanschlüsse 22 sind mit dem Dichtring 50 zum Pumpenkopfgehäuse 8 hin verbunden. Der Ventilaufnahmekörper 20 ist mit der Membrane 19 und dem Rahmen 17 vollständig im Pumpenkopfgehäuse 8 aufgenommen, wobei der Zentrierring 21 als Schnittstelle zwischen Pumpenkopfgehäuse 8 und Antriebsgehäuse 6 fungiert. Die Exzenterscheibe 14 ragt in das Antriebsgehäuse 6 hinein.
  • In Fig. 7 ist der Pumpenkopf 1 mit der Antriebseinheit 3 ohne Zylinderkopf 40 in einer Seitenansicht, entlang der Linie K-K der in Fig. 7a gezeigten Membranpumpe 2 geschnitten, dargestellt. Der Exzenter 42 reicht durch die Öffnung in der oberen Seite des Motorgehäuses 6 in den Motorraum 43 hinein. Die Elemente der Antriebseinheit 3 sind samt Kugellager 43, 44 ersichtlich und im Detail in Fig. 9 dargestellt. Eine Membran 45 des Überströmventils 5 ist mitsamt Feder 46 im Ventil 5 gezeigt.
  • Figur 7b ist eine vergrößerte Ansicht des Überströmventils 5, gemäß Vergrößerung L der Fig. 7. Das Überströmventil 5 ist an der Unterseite 27 des Pumpenkopfgehäuses 8 angeordnet. Die Membran 45 dichtet einen Auslass 47 und einen Einlass 48 hin zur Flüssigkeitskammer 49 des Pumpenkopfes 1 ab. Die Feder 46 ist unterhalb der Membran 45 im Ventilgehäuse 37 angeordnet. Bei Erreichung eines erhöhten Pumpeninnendrucks öffnet sich die Membran 45 und hebt sich gegen die Feder 46 ab. Dadurch wird ein Kanal bzw. Ringkanal 51 freigegeben, welcher die Druckspitze zum Einlauf 48 der Pumpe 2 abführt. Damit kann ein konstanter Förderfluss in der Pumpe 2 aufrechterhalten werden.
  • Figur 8 zeigt eine Explosionsdarstellung der Membran 19 und des Ventilaufnahmekörpers 20. Drei der fünf Pumpkammern 28 des Ventilaufnahmekörpers 20 sind in einer schrägen Draufsicht deutlich sichtbar. Die mit Bezugszeichen 28 in Figur 8 direkt gekennzeichnete Pumpkammer weist eine Art Piriform auf. Der großvolumige Bereich der piriförmigen Kammer ist am äußeren Rand des Ventilaufnahmekörpers angeordnet. Zur Mitte hin des Ventilaufnahmekörpers verjüngt sich dann die Pumpkammer, sodass eine birnenartige Form vorliegt. Dabei ist eine Seite, die den großvolumigen Bereich mit der Spitze der Verjüngung der Pumpkammer verbindet gerade verlaufend (das ist die mit Bezugsstrich von Bezugszeichen 28 gekennzeichnete Seite) und die gegenüberliegende Seite in ihrer Mitte, zwischen unterem Ende des großvolumigen Bereichs am äußeren Rand und oberen Ende des verjüngten Bereichs, leicht nach innen gekrümmt. An dieser leicht nach innen gekrümmten mittigen Stelle der mit Bezugszeichen 28 in Figur 8 direkt gekennzeichneten Pumpkammer grenzt das obere Ende der Verjüngung der vollständig ersichtlichen Pumpkammer der Figur 8 an. Fünf ringförmige Auswölbungen 29 der Membran 19, die das jeweilige zentral innerhalb der jeweiligen Auswölbung 29 angeordnete Druckstück 30 einkreisen und nach oben hin vorstehen, sind sichtbar. Auch eine piriförmige bzw. birnenförmige Nut 52, welche die einzelnen Pumpkammern 28 an ihrer nach oben offen im Ventilaufnahmekörper 20 ausgebildeten Seite umrandet ist gut bei drei Pumpkammern 28 ersichtlich. In diese Nut 52 greift die jeweils entsprechende piriförmige Einfassung 53 ein, welche an der Unterseite (hier nicht sichtbar) der Membran 19 vorgesehen ist.
  • Figur 8a zeigt eine Schnittansicht durch die in Figur 8 gezeigte Membrane 19 und den Ventilaufnahmekörper 20. An der Unterseite 54 des Ventilaufnahmekörpers 20 ist die Auslasskammer 55 gezeigt, in welche die Auslassventile 36 (hier drei sichtbar) münden. Die Auslassventile 36 sind bevorzugt als Membranventile ausgebildet. Dabei ist ein Auslassventil 36 im Schnitt gezeigt. Ein Einlassventil 35 ist ebenfalls im Schnitt gezeigt, wobei den Einlassventilen 35 (hier drei sichtbar) jeweils eine an der Unterseite 54 des Ventilaufnahmekörpers 20 vorgesehenen Einlasskammer 56 vorgelagert ist. Die Einlassventile 35 sind vorzugsweise ebenfalls als Membranventil ausgebildet. Das vormontierte Druckstück 30 ist mit der Membrane 19 fest vergossen (plastifiziert). An der Unterseite 57 der Membran 19 ist eine der mehreren von der Membranfläche 58 nach unten hin vorstehenden piriförmigen Einfassungen 53 der Membran 19 vollständig gezeigt. Die Außenumrandung 59 der Membran weißt nach oben und nach unten hin von der Membranfläche 58 vorstehende, den Außenrand 59 der Membran umlaufende Vorsprünge 59', 59" auf. Der nach unten hin vorstehende Vorsprung 59' der Membranumrandung 59 ist dabei so ausgestaltet, dass dieser in eine entsprechend an dem Ventilaufnahmekörper 20 ausgebildeten passenden Nut 60, die an der Oberseite der Außenumrandung des Ventilaufnahmekörpers 20 vorgesehen ist, eingreifen kann. Die Nut 60, welche an der Oberseite der Außenumrandung des Ventilaufnahmekörpers 20 vorgesehen ist, ist in Fig. 8a gezeigt.
  • Figur 8b zeigt die Membran 19 im Querschnitt und im Ruhezustand. Das senkrecht in die Membran 19 eingegossene Druckstück 30, welches das Schließmaß vorgibt, befindet sich im Ruhezustand. Dabei gibt es in diesem Ausführungsbeispiel ein dargestelltes Schließmaß von 3,5 Grad vor. Die im Außenrandbereich der Membran 19 sichtbare ringförmige Auswölbung 29 steht in einem Winkel von 3,5 Grad von der horizontalen Membranfläche 58 (= 0°) nach oben hervor.
  • Figur 8c zeigt den Ventilaufnahmekörper 20, der im unteren Bereich eine Auslasskammer 55 und mehrere Einlasskammern 56 (hier eine gezeigt) aufweist. Auch ein Einlassventil 35 und ein Auslassventil 36 sind im Schnitt dargestellt.
  • Figur 9 zeigt eine Explosionsansicht der Antriebseinheit 3. Diese umfasst mehrere Antriebselemente. Darunter den Exzenter 42, mehrere Sicherungsringe 61, 61' zwei Kugellager 43, 44, die Zentrierscheibe 13 und eine Lagerandruckscheibe 63, die mit einer Senkschraube 64 zum Exzenter 42 befestigt ist.
  • Bezugszeichenliste
  • 1
    Pumpkopfeinheit / Pumpenkopf
    2
    Membranpumpe / Pumpe
    3
    Antriebseinheit
    4
    Antrieb
    5
    Überströmventil / Ventil
    6
    Antriebs- oder Motorgehäuse
    7
    Halteklemme / Klemme / Spannlasche
    8
    Pumpenkopfgehäuse / Gehäuse
    9
    Klemmbügel
    10
    unteres, nach innen gebogenes Ende des Klemmbügels
    11
    Nut
    12
    Verschlusselement / Schließhebel der Halteklemme
    13
    Zentrierscheibe
    14
    Exzenterscheibe
    15
    Stößelplatte bzw. Taumelscheibe
    16
    Stößel
    17
    Rahmen
    18
    Rahmenöffnung
    19
    Membran
    20
    Ventilaufnahmekörper
    21
    Zentrierring
    22
    Anschlüsse / Pumpenanschlüsse
    23
    Senkschrauben
    24
    oberes Ende des Pumpenkopfgehäuses
    25
    Öffnung im Pumpenkopfgehäuse
    26
    Stopfen
    27
    Boden bzw. Unterseite des Pumpenkopfgehäuses
    28
    Pumpkammer
    29
    ringförmige Auswölbung
    30
    Druckknopf / Druckstück
    31
    ausgewölbte Fläche
    32
    Pumpenkopfeinsatz
    33
    Stößelaussparung
    34
    Senkschrauben
    35
    Einlassventile
    36
    Auslassventile
    37
    Überströmventilgehäuse/Ventilgehäuse
    38
    Dichtring
    39
    Flansch
    40
    Zylinderkopf
    41
    Zylinderkopfschrauben
    42
    Exzenter
    43
    unteres Kugellager
    44
    oberes Kugellager
    45
    Membran des Überströmventils
    46
    Feder
    47
    Auslass
    48
    Einlass / Einlauf
    49
    Flüssigkeitskammer
    50
    Dichtring
    51
    Kanal
    52
    piriförmige Nut
    53
    piriförmige Einfassung
    54
    Unterseite des Ventilaufnahmekörpers
    55
    Auslasskammer
    56
    Einlasskammer
    57
    Unterseite der Membran
    58
    Membranfläche
    59
    Außenumrandung der Membran
    59'
    nach unten hin vorstehender Vorsprung
    59"
    nach oben hin vorstehender Vorsprung
    60
    Nut
    61, 61'
    Sicherungsringe
    63
    Lagerandruckscheibe
    64
    Senkschraube

Claims (18)

  1. Pumpenkopf (1) für Membranpumpen (2) umfassend
    ein Pumpenkopfgehäuse (8) mit mehreren Anschlüssen (22), die am Pumpenkopfgehäuse (8) ausgebildet sind und sowohl Einlässe als auch Auslässe bereitstellen,
    einen Zentrierring (21) zum Zentrieren des Pumpenkopfgehäuses (8) in einem Antriebsgehäuse (6),
    und einen Pumpenkopfeinsatz (32), umfassend
    einen Ventilaufnahmekörper (20) mit mehreren Einlass- und Auslassventilen (35, 36) und mehreren Pumpkammern (28), wobei die Pumpkammern (28) über die Einlassventile (35) mit einer Einlasskammer (56) und über die Auslassventile (36) mit einer Auslasskammer (55) verbunden sind und die Pumpkammern (28) an der Oberseite im Ventilaufnahmekörper (20) ausgebildet sind,
    eine Pumpmembran (19), die über den Pumpkammern (28) des Ventilaufnahmekörpers (20) angeordnet ist und diese leckagefrei abdichtet,
    eine Taumelscheibe (15),
    eine Exzenterscheibe (14), die über der Taumelscheibe (15) angeordnet ist, und
    einen Rahmen (17) mit mehreren vorzugsweise kreisrunden Rahmenöffnungen (18) zur Aufnahme mehrerer Stößel (16), die an der Unterseite der Taumelscheibe (15) angeordnet sind, wobei
    der Pumpenkopf (1) separat von einem Antrieb (4) ausgebildet und somit individuell austauschbar ist,
    dadurch gekennzeichnet, dass
    der Pumpenkopf eine in sich hermetisch abgeschlossene Einheit bildet, wobei der Ventilaufnahmekörper (20) fünf Pumpkammern (28) mit je mindestens einem Einlassventil (35) aufweist und
    der Pumpenkopf (1) aus Kunststoff ausgebildet und recyclebar ist.
  2. Pumpenkopf (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    der Ventilaufnahmekörper (20) zur Auslasskammer (55) hin fünf Auslassventile (36) aufweist.
  3. Pumpenkopf (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das Pumpenkopfgehäuse (8) vorzugsweise zylinderförmig und nach oben hin offen, mit einer seitlichen Gehäusewand und einem nach unten abschließenden Boden (27) ausgebildet ist und mindestens zwei Anschlüsse (22), vorzugsweise einen Einlass und einen Auslass an der seitlichen Gehäusewand sowie mindestens zwei Anschlüsse (22), vorzugsweise einen Einlass und einen Auslass an der Unterseite (27) des Pumpenkopfgehäuses aufweist.
  4. Pumpenkopf (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Anschlüsse (22) individuell austauschbar sind und vorzugsweise als multifunktionelle Anschlüsse ausgebildet sind.
  5. Pumpenkopf (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Anschlüsse (22), welche sich außer Betrieb befinden, mit einem Stopfen (26), vorzugsweise einem Blindstopfen, leckagefrei verschließbar sind.
  6. Pumpenkopf (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das Pumpenkopfgehäuse (8) vorzugsweise an der Unterseite (27) ein Überströmventil (5) zum Abbau von arbeits- oder systembedingten Überdrücken aufweist, das hermetisch mit dem Pumpenkopfgehäuse (8) verbunden ist.
  7. Pumpenkopf (1) nach Anspruch 6,
    dadurch gekennzeichnet, dass
    das Überströmventil (5) mittels Schraubverbindung am Pumpenkopfgehäuse (8) befestigt ist.
  8. Pumpenkopf (1) nach Anspruch 6 oder 7,
    dadurch gekennzeichnet, dass
    das Überströmventil (5) stufenlos, vorzugsweise während des Pumpvorgangs unter Arbeitsdruck, von 0,2 bis 6 bar, insbesondere von 0,2 bis 5 bar, besonders bevorzugt von 0,4 bis 5 bar einstellbar ist.
  9. Pumpenkopf (1) nach einem der Ansprüche 6, 7 oder 8,
    dadurch gekennzeichnet, dass
    die Stellfeder (46) des Überströmventils (5) als Ringfeder oder als Tellerfederpaket, vorzugsweise metallisch oder aus Kunststoff ausgebildet ist.
  10. Pumpenkopf (1) nach einem der Ansprüche 6, 7 oder 8,
    dadurch gekennzeichnet, dass
    das Überströmventil (5) aus Kunststoff ausgebildet ist.
  11. Pumpenkopf (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Membran (19) den Ventilaufnahmekörper (20) mit den Pumpkammern (28) vollständig überspannt.
  12. Pumpenkopf (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Membran (19) aus einem dauerelastischen, insbesondere walktauglichen Kunststoffmaterial ist.
  13. Pumpenkopf (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Membran (19) in Ansaug- und Druckrichtung zur jeweiligen Pumpkammer (28) hin ausgewölbte Flächen (31) aufweist, die der Form und Abmessung der Einlassventilteller angepasst ist und die Membran mehrere nach unten hin vorstehende, vorzugsweise piriförmig ausgebildete Einfassungen (53) aufweist, die in eine, vorzugsweise piriförmig ausgebildete Nut (52), welche die einzelnen Pumpkammern (28) an ihrer nach oben offen im Ventilaufnahmekörper (20) ausgebildeten Seite umrandet, eingreift und die Pumpkammern (28) hermetisch verschließt.
  14. Pumpenkopf (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Membran (19) an ihrer Oberseite mehrere, vorzugsweise fünf ringförmige Auswölbungen (29) aufweist, deren innerer Durchmesser an dem höchsten Punkt der ringförmigen Auswölbung (29) gleich groß zu dem Außendurchmesser der nach unten ausgewölbten Flächen (31) ist.
  15. Pumpenkopf (1) nach Anspruch 14,
    dadurch gekennzeichnet, dass
    im Zentrum der ringförmigen Auswölbungen (29) jeweils ein, vorzugsweise plastifiziertes, Druckstück (30) vorgesehen ist, das mit einem Stössel (16), der an einer Taumelscheibe (15) einer Antriebseinheit (3) angebracht ist, zusammenwirkt, um in eine Pumpbewegung versetzt zu werden.
  16. Membranpumpe (2) gebildet aus einem mit einem Antrieb (4) verbundenen Pumpenkopf (1) nach mindestens einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Antrieb (4) eine Antriebseinheit (3) umfasst, die innerhalb eines Antriebsgehäuses (6) angeordnet ist, wobei,
    der Pumpenkopf (1) mittels mehrerer, vorzugsweise zweier Halteklemmen (7), die an gegenüberliegenden seitlichen Gehäuseflächen des Antriebsgehäuses (6) angeordnet sind, zu dem Antrieb (4) lösbar befestigt ist.
  17. Membranpumpe (2) nach Anspruch 16,
    dadurch gekennzeichnet, dass
    die mehreren, vorzugsweise zwei Halteklemmen (7) mit einem Schnappbügel (9) ausgestattet sind, der in eine Nut (11) am Pumpenkopf (1) eingreift, so dass bei Zuziehen der Halteklemmen (7) der Schnappbügel (9) den Pumpenkopf (1) an den Antrieb (4) heranzieht und diesen hermetisch mit dem Antrieb (4) verschließt.
  18. Membranpumpe (2) nach Anspruch 16,
    dadurch gekennzeichnet, dass
    diese einen elektronisch hydraulischen Antrieb (4) aufweist und pulsationsfrei arbeitet.
EP18189481.7A 2017-08-23 2018-08-17 Austauschbarer pumpenkopf für eine membranpumpe Active EP3447290B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL18189481T PL3447290T3 (pl) 2017-08-23 2018-08-17 Wymienna głowica pompy dla pompy membranowej

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE202017004425.0U DE202017004425U1 (de) 2017-08-23 2017-08-23 Austauschbarer Pumpenkopf für eine Membranpumpe

Publications (2)

Publication Number Publication Date
EP3447290A1 EP3447290A1 (de) 2019-02-27
EP3447290B1 true EP3447290B1 (de) 2021-06-23

Family

ID=59929610

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18189481.7A Active EP3447290B1 (de) 2017-08-23 2018-08-17 Austauschbarer pumpenkopf für eine membranpumpe

Country Status (5)

Country Link
EP (1) EP3447290B1 (de)
DE (1) DE202017004425U1 (de)
DK (1) DK3447290T3 (de)
ES (1) ES2885125T3 (de)
PL (1) PL3447290T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202022100074U1 (de) 2022-01-05 2022-02-08 ISG Innovative Systems GmbH Pumpenkopfanschluss mit Schneidringdichtung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208564922U (zh) * 2018-06-29 2019-03-01 深圳华星恒泰泵阀有限公司 一种微型隔膜水泵
DE102018008037B4 (de) 2018-10-11 2020-09-10 Psg Germany Gmbh Spannvorrichtung für eine Vorrichtung zur Förderung von Fluid und Vorrichtung zur Förderung von Fluid
DE202019106655U1 (de) 2019-11-29 2019-12-11 Schöning Gmbh Pumpenverschluss
DE102021134629B4 (de) 2021-12-23 2024-05-29 KNF Micro AG Pumpenkopf für eine Membranpumpe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150337819A1 (en) * 2014-05-20 2015-11-26 Ying Lin Cai Roundel structure for five-compressing-chamber diaphragm pump

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2812076A1 (de) * 1978-03-20 1979-10-04 Ekkehard Schuppe Vorrichtung zur pulsationsdaempfung bei hochdruckfluessigkeitspumpen
DE10117531A1 (de) 2001-04-07 2002-10-17 Quattroflow Fluid Systems Gmbh Membranpumpe
DE202006020237U1 (de) 2006-10-25 2008-02-21 Quattroflow Fluid Systems Gmbh & Co. Kg Membranpumpe
DE102008035592B4 (de) 2008-07-31 2014-10-30 Almatec Maschinenbau Gmbh Membranpumpe
US8616862B2 (en) * 2009-09-24 2013-12-31 Xylem IP Holdings LLC. Disposable pump head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150337819A1 (en) * 2014-05-20 2015-11-26 Ying Lin Cai Roundel structure for five-compressing-chamber diaphragm pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202022100074U1 (de) 2022-01-05 2022-02-08 ISG Innovative Systems GmbH Pumpenkopfanschluss mit Schneidringdichtung

Also Published As

Publication number Publication date
DE202017004425U1 (de) 2017-09-01
DK3447290T3 (da) 2021-09-20
ES2885125T3 (es) 2021-12-13
PL3447290T3 (pl) 2022-02-28
EP3447290A1 (de) 2019-02-27

Similar Documents

Publication Publication Date Title
EP3447290B1 (de) Austauschbarer pumpenkopf für eine membranpumpe
DE10300494B4 (de) Pumpe zum Abgeben von fließfähigem Material
EP2454506B1 (de) Mehrweghahn und verfahren zu dessen herstellung
DE1302372C2 (de) In einem gefaess eingebaute einfachwirkende handbetaetigte schubkolbenpumpe
DE202006020237U1 (de) Membranpumpe
EP2924285B1 (de) Sterilisierbare Pumpeinheit
EP3108137B1 (de) Kolben-kraftstoffpumpe für eine brennkraftmaschine
EP1745812A1 (de) Ventil für ein Fluid, insbesondere zur Verwendung in einer mechanisch betriebenen Flüssigkeitspumpe
EP3978751B1 (de) Verbundmembran für membranpumpen
DE10392934B4 (de) Membranpumpe
EP2885035B1 (de) Einweg-ventileinrichtung
EP1918620B1 (de) Rückschlagventil, insbesondere für medizinische Anwendungen
DE10224634C2 (de) Vorrichtung zum Filtern von unter einem hohen Druck geförderten Fluiden
EP3199815A1 (de) Kreiselpumpe
DE3906489A1 (de) Luftbetaetigte pumpe
EP0346285B1 (de) Ventilanordnung
DE102009002530A1 (de) Hochdruckpumpe für ein Kraftstoffeinspritzsystem
DE10117531A1 (de) Membranpumpe
WO2009127477A1 (de) Handpumpe zum pumpen von kraftstoff
WO2021078898A1 (de) Fördervorrichtung zumindest zu einem fördern eines fluids und pumpe mit einer derartigen fördervorrichtung
EP1555434B1 (de) Membranpumpe
DE1503390A1 (de) Hydraulische Membranpumpe
EP0758053A1 (de) Als Kapselpumpe ausgebildete Dosierpumpe
DE19859368C2 (de) Kompressor
CH717057A1 (de) Doppelmembranpumpe.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190821

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200220

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40006186

Country of ref document: HK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210122

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1404540

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210715

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018005794

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20210917

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210923

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210924

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2885125

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211025

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018005794

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210817

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502018005794

Country of ref document: DE

Representative=s name: KOHLMANN, KAI, DIPL.-ING., DE

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180817

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230823

Year of fee payment: 6

Ref country code: LU

Payment date: 20230821

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230831

Year of fee payment: 6

Ref country code: GB

Payment date: 20230824

Year of fee payment: 6

Ref country code: ES

Payment date: 20230918

Year of fee payment: 6

Ref country code: CH

Payment date: 20230902

Year of fee payment: 6

Ref country code: AT

Payment date: 20230818

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230823

Year of fee payment: 6

Ref country code: PL

Payment date: 20230718

Year of fee payment: 6

Ref country code: FR

Payment date: 20230821

Year of fee payment: 6

Ref country code: DK

Payment date: 20230823

Year of fee payment: 6

Ref country code: DE

Payment date: 20230627

Year of fee payment: 6

Ref country code: BE

Payment date: 20230822

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210623