EP1555434B1 - Membranpumpe - Google Patents

Membranpumpe Download PDF

Info

Publication number
EP1555434B1
EP1555434B1 EP04025738A EP04025738A EP1555434B1 EP 1555434 B1 EP1555434 B1 EP 1555434B1 EP 04025738 A EP04025738 A EP 04025738A EP 04025738 A EP04025738 A EP 04025738A EP 1555434 B1 EP1555434 B1 EP 1555434B1
Authority
EP
European Patent Office
Prior art keywords
diaphragm
annular
drive element
pump according
sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04025738A
Other languages
English (en)
French (fr)
Other versions
EP1555434A1 (de
Inventor
Robert KÄCH
Christian Kissling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KNF Flodos AG
Original Assignee
KNF Flodos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KNF Flodos AG filed Critical KNF Flodos AG
Publication of EP1555434A1 publication Critical patent/EP1555434A1/de
Application granted granted Critical
Publication of EP1555434B1 publication Critical patent/EP1555434B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0054Special features particularities of the flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms

Definitions

  • the invention relates to a diaphragm pump having an annular working space and an annular diaphragm which is clamped at its outer peripheral portion and at its inner edge region, wherein the inner and the outer diaphragm clamping point are fixed relative to each other and wherein between the outer and inner clamping point a drive element connected to a pump drive acts to deflect the annular diaphragm.
  • the problem is that with increasing miniaturization of the design, in particular the membrane and it attacking, preferably vulcanized steel parts is very difficult and / or uneconomical.
  • the high speeds of such diaphragm pumps are necessary so that the valves can work exactly and the tolerances in the manufacture of the valve sections need not be set too tight.
  • the diameter of the generally circular membrane that is, the volume change of the Working space by the deflection of the membrane, the flow rate of the diaphragm pump, wherein the membrane is moved by means of a vulcanized preferably in the center of the membrane Stahlpleuels.
  • the diameter of the membrane is very small, for example about 5 mm or even smaller, vulcanization of the steel connecting rod, which under certain circumstances has a diameter of less than 1 mm, is very difficult. Moreover, with such miniaturization, it is also difficult to make the hydraulic or pneumatic connections to the inlet and outlet valves of the working space. Despite the very small dimensions of the membrane with a diameter of, for example, 5 mm, a flow rate of about 25 ml per minute would already result at a working speed of 3000 revolutions per minute and a stroke of 0.8 mm. In many applications, however, it would be desirable to realize this or even lower flow rates at an acceptable, yet manageable size of the pump.
  • the invention proposes in particular that in a diaphragm pump with an annular working space and an annular membrane, the drive element of the ring membrane facing the membrane, sleeve or ring is formed with an approximately the annular working space corresponding diameter and with one of its annular End faces transversely to the membrane plane on the side facing the pump drive side of the ring diaphragm for the deflection and transmission of a and Hermos at the ring membrane attacks.
  • the annular volume of the annular membrane per delivery stroke can be kept small by the annular geometry of the annular membrane and on the other hand, the sleeve-shaped drive element of the annular membrane forms a stable force transmission element, which also allows a secure connection to the annular membrane and also to the pump drive.
  • the annular surface of the membrane is smaller than a circular area with the same diameter, so that even with very small pumps for small flow rates, the diameter of the ring membrane can still have a manageable size.
  • Such a ring diaphragm pump with a larger diameter of the annular membrane and the likewise annular working space can be made easier and adjusted, because the manufacturing problems are not present due to the otherwise extreme, extreme miniaturization of the components.
  • connection of the sleeve-shaped drive element with the annular membrane can be made by the larger diameter of this element with particular repeatable, good accuracy and much less complicated than known diaphragm pumps comparable pump power, the pumping power in particular less than 100ml per minute, for example, less than 50ml can be per minute.
  • the drive transmission is so simplified and performed almost directly by the shortest route from the linear actuator to the membrane that they can be accommodated even with very small pumps and can be made stable and reliable despite the cramped space.
  • the at least partially sleeve-shaped or annular drive element is attached only on one side of the ring diaphragm on the side remote from the pump chamber. It is thus the working space facing, continuous dense membrane surface available. This is when conveying aggressive media advantageous because virtually no attack sites are available through the smooth surface and the working space facing side of the membrane can be protected continuously by a continuous coating, in particular made of PTFE.
  • the sleeve or annular drive element is preferably connected by vulcanization with the annular membrane. This creates a durable connection.
  • a positive and / or non-positive connection comes into question.
  • the annular diaphragm is expediently clamped in a force-fitting manner at the inner membrane clamping point between a pump head part having the annular working space and a clamping part connectable therewith and / or held in a form-fitting manner.
  • the arranged at the inner membrane clamping point clamping member may be connected by a preferably central screw with the pump head part. This central attachment of the ring diaphragm allows easy and quick installation and a good seal in this area.
  • the positive retention of the membrane optionally in combination with a non-positive support avoids undesirable deformation of the membrane.
  • the clamping member at the inner membrane Einspanstelle is conveniently located within the annular space formed substantially by the sleeve-shaped drive element.
  • the existing annulus is utilized to accommodate the clamping part to save space.
  • the clamping part may be connected to the annular membrane by vulcanization.
  • the ring diaphragm and the clamping part form a coherent component in this embodiment.
  • the sleeve-shaped drive element is connected by vulcanization with the annular membrane, all three components form a unit, so that a simplified assembly is favored. Due to the vulcanized inner clamping part, a tight and stable connection of both components can be achieved without additional structural means.
  • the drive element may be integrally connected to the diaphragm and have a connection for coupling with the pump drive.
  • This embodiment of the membrane has no separate part, which is provided as a connecting element between the actual membrane and the pump drive, but the membrane continues on the underside or drive side in one piece with an initially sleeve-like part to the eccentric drive, where a corresponding shaping to form a Connection for coupling with the drive is present.
  • the direct connection in the region of the eccentric or a crank mechanism can preferably take place via a plastic or metal part integrated (vulcanised in) in this area.
  • This embodiment of the membrane with integrally molded connecting element is particularly simple and by the sleeve-like, one-piece continuation following the membrane sufficient compressive and tensile forces can be transmitted. At least for the transport of gases, the transferable forces are sufficient.
  • reinforcements made of rigid material may be integrated into the drive element consisting of the material of the diaphragm at least in some areas. As a result, higher compressive and tensile forces can be transmitted.
  • a sleeve-shaped or annular, consisting of metal drive element can be largely embedded as a reinforcement in the elastomeric membrane material, with the drive-side end of the sleeve or annular drive element either a continuation of rubber-elastic material to the eccentric connects or continuation an additional transmission element is provided.
  • the annular diaphragm is also frictionally clamped and / or positively held at its outer edge between the pump head part having the annular working space and a housing part connectable therewith. This is also in the outer peripheral region of the annular membrane a dense and a form-fitting support a virtually stress-free mount available.
  • the at least membrane-side sleeve-shaped or annular drive element engages with its ring membrane facing, annular end approximately in extension of the annular working space approximately centrally intersecting, concentric annular surface on the ring membrane.
  • the annular membrane has a preferably annular circumferential, rib-like connection and Stabilisierwulst, which is connected to the sleeve or annular end of the drive element and that the drive element in the connection region preferably engages in the connection and Stabilisierwulst or vulcanized there.
  • the pump drive is designed as an eccentric drive, which has a transmission element connected to the sleeve-shaped drive element at its end facing away from the annular diaphragm.
  • diaphragm pump 1 has within a pump head 2 a ring diaphragm 3, which is clamped at its outer peripheral region between housing parts 4.5 and at its inner edge region between the housing part 4 and a clamping part 9.
  • the annular diaphragm 3 defines an annular working space 6.
  • a pump drive not shown here, is provided, which may preferably be designed as an eccentric drive or crank drive. It has a transmission element 7, which with a sleeve-shaped Drive element 8 is connected. This is connected at its other end to the ring diaphragm 3.
  • the working chamber 6 is connected via inlet and outlet channels, not shown here, to an inlet valve and an outlet valve.
  • the valves are preferably designed as plate valves.
  • the ring diaphragm 3 and the drive element 8 connected thereto are shown in FIGS. 2 to 4.
  • the ring diaphragm 3 is preferably connected to an end face of the sleeve-shaped drive element 8 by vulcanization.
  • the annular diaphragm 3 consists of a rubber-elastic material, while the drive element 8 is formed for example by a steel sleeve.
  • the drive element 8 is vulcanized into the annular membrane 3 and engages with a front end something in a groove 10 at the diaphragm bottom.
  • an annular circumferential, rib-like connection and Stabilisierwulst 11 is provided, in particular in order to bring the pressure and train transmission from the drive element 8 better in the membrane.
  • the connecting and stabilizing bead 11 is arranged approximately in a concentric region in the middle between outer edge 12 and inner edge 13 of the annular width of the annular membrane 3.
  • Fig. 1 is also clearly visible that the annular membrane 3 is arranged to the working space 6 so that an approximately central orientation of the drive element 8 and the connecting and stabilizing bead 11 is present to the working space 6.
  • the annular membrane is at least partially deformed into the working space 6, so that displaced therein conveyed medium becomes.
  • the shaping of the working space 6 and the annular membrane 3 may be provided so that in top dead center, the membrane fills the working space virtually dead space.
  • the annular diaphragm 3 is sealed relative to the housing parts 4 and 5 or also the clamping part 9 by an inner bead 14 and by an outer bead 15.
  • the beads 14,15 engage in grooves 20,21 of the housing part 5 a.
  • the ring-shaped working space having housing part 4, which forms a pump head part, has centrally to the central opening 16 of the annular membrane 3, a passage opening for a fastening screw 17 (Fig. 1) with the inside of the top plate 4 arranged, the inner edge of the membrane 13 under cross-clamping part 9 fixed and can be stretched to hold the ring diaphragm 3 against the top plate 4.
  • the clamping part 9 is located within the annular space 18 formed by the sleeve-shaped drive element 8, so that this available space is utilized. Overall, a pump with low height can be realized by the direct drive transmission from a Exenterantrieb on the membrane and also by the space-saving arrangement of the clamping part 9 within the annular space 18.
  • the adjoining the drive element 8 transmission element 7 may be a plastic part, which at its end facing the drive element 8 has a lug 19 on which the sleeve-like drive element 8 can be plugged and optionally connected by press fit or adhesive bond.
  • the clamping part 9 can also be connected to the annular membrane by vulcanization, so that together with the drive element 8 a component consisting of three parts is formed. There are then only a few assembly parts that can be assembled in a short time.
  • the membrane pump 1 is preferably designed as a feed pump for low flow rates at a comparatively high stroke frequency. For example, it is possible to realize delivery rates of 25 ml per minute, wherein 3,000 strokes per minute can be provided. The high number of strokes is required so that the valves work exactly and the tolerances of the valve sections do not have to be set too tight.
  • the annular membrane 3 shown in perspective in FIGS. 3 and 4 together with the drive element 8 may for example have an outer diameter of 10 mm, so that the representations in FIGS. 3 and 4 would correspond approximately to a scale of 5: 1.
  • the sleeve-shaped drive element 8 preferably has a continuous wall, but optionally also may have a wall provided with recesses or formed by at least partially by rods or fingers wall, so that a corresponding mass reduction or access to the inner annulus exist is. It should also be mentioned that although the annular membrane 3 preferably has a circular shape, it may also have a different shape.
  • the attacking drive element 8 and the leading to the drive continuation of the membrane or the at least in the terminal region in the membrane preferably the same shapes as the membrane and thereby in particular as the working space 6 facing area or may be designed differently ,
  • the annular membrane may have an elliptical shape as a whole or in some areas, which has advantages in conjunction with a crank mechanism and the associated pendulum motion of the drive element results.
  • the pendulum movement preferably runs in the direction of the minor axis of the ellipse.
  • a high-speed membrane-liquid pump in which a combination of high stroke rate with low flow rate is present and is still structurally simple and stable in construction.
  • Such membrane pumps 1 are mainly used in laboratories or for microsystem applications. Even smaller embodiments of the membrane 2 than in the size shown in FIGS. 2 to 4 on a scale of 5: 1 are possible through the membrane 2 according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Description

  • Die Erfindung bezieht sich auf eine Membranpumpe mit einem ringförmigen Arbeitsraum und einer ringförmigen Membrane, die an ihrem äußeren Umfangsbereich und an ihrem inneren Randbereich eingespannt ist, wobei die innere und die äußere Membran-Einspannstelle relativ zueinander feststehend sind und wobei zwischen der äußeren und inneren Einspannstelle ein mit einem Pumpenantrieb verbundenes Antriebselement zur Auslenkung der ringförmigen Membrane angreift.
  • Beim Fördern kleiner und kleinster Fördermengen mit Hilfe schnelllaufender Membranpumpen besteht das Problem, dass mit zunehmender Miniaturisierung der Bauform die Herstellung insbesondere der Membrane und daran angreifender, vorzugsweise anvulkanisierter Stahlteile sehr schwierig und/oder unwirtschaftlich ist. Die hohen Drehzahlen derartiger Membranpumpen sind dabei notwendig, damit die Ventile exakt arbeiten können und die Toleranzen bei der Fertigung der Ventilpartien nicht zu eng gesetzt werden müssen. Dabei bestimmt der Durchmesser der im allgemeinen kreisförmigen Membrane, das heißt die Volumenänderung des Arbeitsraumes durch die Auslenkung der Membrane, die Fördermenge der Membranpumpe, wobei die Membrane mit Hilfe eines vorzugsweise im Zentrum der Membrane anvulkanisierten Stahlpleuels bewegt wird. Ist der Durchmesser der Membrane sehr klein, beispielsweise etwa 5 mm oder noch kleiner, ist ein Anvulkanisieren des Stahlpleuels, welches dabei unter Umständen einen Durchmesser von weniger als 1 mm aufweist, nur sehr schwer möglich. Außerdem ist es bei einer solchen Miniaturisierung auch schwierig, die hydraulischen oder pneumatischen Verbindungen zu den Ein- und Auslassventilen des Arbeitsraumes herzustellen. Trotz der sehr geringen Abmessungen der Membrane mit einem Durchmesser von zum Beispiel 5 mm würde sich bei einer Arbeitsdrehzahl von 3000 Umdrehungen pro Minute und einem Hub von 0,8 mm bereits eine Fördermenge von etwa 25 ml pro Minute ergeben. In vielen Anwendungsfällen wäre es aber wünschenswert, bei akzeptabler, noch gut handhabbarer Baugröße der Pumpe diese oder auch geringere Fördermengen zu realisieren.
  • Es besteht daher die Aufgabe, eine Membranpumpe zu schaffen, mit der kleine und kleinste Fördermengen gepumpt werden können, wobei die Baugröße der Pumpe und insbesondere deren Membrane eine einfache und kostengünstige Herstellung und Justage der Bauteile ermöglicht.
  • Zur Lösung dieser Aufgabe schlägt die Erfindung insbesondere vor, dass bei einer Membranpumpe mit einem ringförmigen Arbeitsraum und einer ringförmigen Membrane das Antriebselement der Ringmembrane, der Membrane zugewandt, hülsen- oder ringförmig mit einem etwa dem ringförmigen Arbeitsraum entsprechenden Durchmesser ausgebildet ist und mit einer seiner ringförmigen Stirnseiten quer zur Membranebene an der dem Pumpenantrieb zugewandten Seite der Ringmembrane zur Auslenkung und zur Übertragung einer Hin- und Herbewegung an der Ringmembrane angreift.
    Einerseits kann durch die ringförmige Geometrie der Ringmembrane das Fördervolumen bei akzeptablem Durchmesser der Ringmembrane pro Förderhub klein gehalten werden und andererseits bildet das hülsenförmige Antriebselement der Ringmembrane ein stabiles Kraftübertragungselement, welches darüber hinaus eine sichere Anbindung an die Ringmembrane ermöglicht und auch an den Pumpenantrieb.
    Die ringförmige Fläche der Membrane ist bei gleichem Durchmesser kleiner als eine Kreisfläche, so dass auch bei Kleinstpumpen für geringe Fördermengen der Durchmesser der Ringmembrane eine noch gut handhabbare Größe aufweisen kann.
    Eine solche Ringmembranpumpe mit größerem Durchmesser der Ringmembrane und des ebenfalls ringförmigen Arbeitsraumes kann dadurch leichter hergestellt und justiert werden, weil die Herstellungsprobleme durch die sonst notwendige, extreme Miniaturisierung der Bauelemente nicht vorhanden sind. Vor allem die Verbindung des hülsenförmigen Antriebselements mit der ringförmigen Membrane kann durch den größeren Durchmesser dieses Elements mit insbesondere wiederholbarer, guter Genauigkeit und wesentlich unkomplizierter erfolgen als bei bekannten Membranpumpen vergleichbarer Pumpleistung, wobei die Pumpleistung insbesondere weniger als 100ml pro Minute, zum Beispiel weniger als 50ml pro Minute betragen kann.
  • Zwar kennt man aus der US 3 291 064 bereits eine Membranpumpe mit einem ringförmigen Arbeitsraum sowie einer ringförmigen Membrane, die als Kraftstoffpumpe Verwendung findet. Bei dieser Pumpe wird der Antrieb für den Saughub der Membrane von der Arbeitsraumseite der Membrane mittels eines Stößels durch eine zentrale Führung hindurch auf die Rückseite der Membrane und dort durch eine Druckplatte auf die Membrane übertragen. Für den Arbeitshub der Membrane ist eine die Druckplatte beaufschlagende Druckfeder vorgesehen. Die Verbindung zwischen der Druckplatte und der Membrane erfolgt über nietenartige Vorsprünge eines Klemmrings, der auf der Arbeitsraumseite der Membrane angeordnet ist und mit seinen nietenartigen Vorsprüngen die Membrane und die Druckplatte durchsetzt.
    Eine solche Konstruktion ist insbesondere für Kleinstpumpen ungeeignet, weil für die Antriebsübertragungselemente nur sehr wenig Platz vorhanden ist und deshalb nur filigrane Dimensionierungen mit entsprechenden Nachteilen bezüglich der Belastbarkeit und Lebensdauer möglich wären. Nachteilig ist weiterhin, dass die Durchbrüche in der Membrane für die sie durchsetzenden Befestigungselemente Schwachstellen bezüglich einer langfristigen Dichtigkeit bilden. Außerdem müsste beim Fördern aggressiver Medien dafür Sorge getragen werden, dass alle im Arbeitsraum befindlichen Teile, also Membrane beziehungsweise Membranoberfläche, Klemmring und dessen Befestigungsmittel und dergleichen diesen aggressiven Medien widerstehen. Durch den in den Arbeitsraum ragenden Klemmring kann die Strömung des Fördermediums gestört werden. Schließlich weist diese Pumpe in nachteiliger Weise ein vergleichsweise großes Totraumvolumen auf.
  • Eine andere Membranpumpe, nach dem Oberbegriff des Anspruchs 1, ist aus der US 3 241 494 A bekannt.
  • Bei der erfindungsgemäßen Membranpumpe ist die Antriebsübertragung so vereinfacht und direkt praktisch auf kürzestem Weg vom Hubantrieb zur Membrane geführt, dass sie auch bei Kleinstpumpen untergebracht werden kann und trotz der beengten Platzverhältnisse stabil und funktionssicher ausgeführt sein kann.
    Es ist vorgesehen, dass das zumindest bereichsweise hülsen- oder ringförmige Antriebselement nur an einer Seite der Ringmembrane an der dem Pumpenraum abgewandten Seite befestigt ist.
    Es steht somit die dem Arbeitsraum zugewandte, durchgehend dichte Membranoberfläche zur Verfügung. Dies ist beim Fördern aggressiver Medien vorteilhaft, weil durch die glatte Oberfläche praktisch keine Angriffsstellen vorhanden sind und die dem Arbeitsraum zugewandte Seite der Membrane durchgehend durch eine ununterbrochene Beschichtung insbesondere aus PTFE geschützt werden kann.
    Das hülsen- oder ringförmige Antriebselement ist vorzugsweise durch Vulkanisieren mit der Ringmembrane verbunden. Dadurch ist eine haltbare Verbindung gebildet. Gegebenenfalls kommt auch eine form- und/oder kraftschlüssig Verbindung in Frage.
  • Die Ringmembrane ist zweckmäßigerweise bei der inneren Membran-Einspanstelle zwischen einem den ringförmigen Arbeitsraum aufweisenden Pumpenkopfteil und einem damit verbindbaren Klemmteil kraftschlüssig eingespannt und/oder formschlüssig gehalten.
    Dabei kann das bei der inneren Membran-Einspanstelle angeordnete Klemmteil durch eine vorzugsweise zentrale Schraubverbindung mit dem Pumpenkopfteil verbunden sein.
    Diese zentrale Befestigung der Ringmembrane ermöglicht eine einfache und schnelle Montage und eine gute Abdichtung in diesem Bereich. Die formschlüssige Halterung der Membrane gegebenenfalls in Kombination mit einer kraftschlüssigen Halterung vermeidet unerwünschte Verformungen der Membrane.
    Das Klemmteil bei der inneren Membran-Einspanstelle befindet sich zweckmäßigerweise innerhalb des im wesentlichen durch das hülsenförmige Antriebselement gebildeten Ringraums. Somit wird der vorhandene Ringraum ausgenutzt um das Klemmteil platzsparend unterzubringen.
    Nach einer Weiterbildung der Erfindung kann das Klemmteil mit der Ringmembrane durch Vulkanisieren verbunden sein. Die Ringmembrane und das Klemmteil bilden bei dieser Ausführung ein zusammenhängendes Bauteil. Wenn auch das hülsenförmige Antriebselement durch Vulkanisieren mit der Ringmembrane verbunden ist, bilden alle drei Bauelemente eine Einheit, so dass eine vereinfachte Montage begünstigt ist.
    Durch das anvulkanisierte innere Klemmteil kann ohne zusätzliche konstruktive Mittel eine dichte und stabile Verbindung beider Bauteile erreicht werden.
  • Nach einer Ausgestaltung der Erfindung kann das Antriebselement einstückig mit der Membrane verbunden sein und einen Anschluss zum Koppeln mit dem Pumpenantrieb aufweisen.
    Diese Ausführungsform der Membrane weist kein separates Teil auf, das als Verbindungselement zwischen der eigentlichen Membrane und dem Pumpenantrieb vorgesehen ist, sondern die Membrane setzt sich unterseitig beziehungsweise antriebsseitig einstückig mit einem zunächst hülsenartigen Teil bis zu dem Exzenterantrieb fort, wo eine entsprechende Formung zur Bildung eines Anschlusses zum Koppeln mit dem Antrieb vorhanden ist. Die direkte Verbindung im Bereich des Exzenters oder eines Kurbeltriebs kann vorzugsweise über ein in diesem Bereich integriertes (einvulkanisiertes) Kunststoff- oder Metallteil erfolgen.
    Diese Ausführungsform der Membrane mit einstückig angeformtem Verbindungselement ist besonders einfach und durch die hülsenartige, einstückige Fortsetzung im Anschluss an die Membrane können ausreichende Druck- und Zugkräfte übertragen werden. Zumindest zum Fördern von Gasen reichen die übertragbaren Kräfte aus.
    Zur Stabilisierung kann in das aus dem Material der Membrane bestehende Antriebselement zumindest bereichsweise Armierungen aus biegesteifem Material integriert sein.
    Dadurch können auch höhere Druck- und Zugkräfte übertragen werden. Dabei kann ein hülsen- oder ringförmiges, aus Metall bestehendes Antriebselement als Armierung weitgehend vollständig in das gummielastische Membranmaterial eingebettet sein, wobei sich an das antriebsseitige Ende des hülsen- oder ringförmigen Antriebselementes entweder eine Fortsetzung aus gummielastischem Material bis zum Exzenter anschließt oder als Fortsetzung ein zusätzliches Übertragungselement vorgesehen ist.
  • Die Ringmembrane ist auch an ihrem Außenrand zwischen dem den ringförmigen Arbeitsraum aufweisenden Pumpenkopfteil und einem damit verbindbaren Gehäuseteil kraftschlüssig eingespannt und/oder formschlüssig gehalten. Damit ist auch im Außenumfangsbereich der Ringmembrane eine dichte und bei einer formschlüssigen Halterung eine praktisch spannungsfreie Halterung vorhanden.
  • Besonders vorteilhaft ist es, wenn das zumindest membranseitig hülsen- oder ringförmige Antriebselement mit seiner der Ringmembrane zugewandten, ringförmigen Stirnseite etwa in Verlängerung einer den ringförmigen Arbeitsraum etwa mittig schneidenden, konzentrischen Ringfläche an der Ringmembrane angreift. Dadurch ist besonders gut ein Verformen der Membrane in den Arbeitsraum während des Verdrängungshubs gegeben. Dies begünstigt ein praktisch totraumfreies Verdrängen des Fördermediums.
  • Zur Stabilisierung der Membrane und für einen belastbaren Übergang zwischen dem hülsen- oder ringförmigen Ende des Antriebselementes und der Ringmembrane, weist die Ringmembrane eine vorzugsweise ringförmig umlaufende, rippenartige Anschluss- und Stabilisierwulst auf, die mit dem hülsen- oder ringförmigen Ende des Antriebselementes verbunden ist und dass das Antriebselement im Verbindungsbereich vorzugsweise in den Anschluss- und Stabilisierwulst eingreift beziehungsweise dort einvulkanisiert ist.
  • Vorzugsweise ist der Pumpenantrieb als Exzenterantrieb ausgebildet, der ein mit dem hülsenförmigen Antriebselement an dessen der Ringmembrane abgewandten Ende verbundenes Übertragungselement aufweist.
  • Zusätzliche Ausgestaltungen der Erfindung sind in den weiteren Unteransprüchen aufgeführt.
    Nachstehend ist die Erfindung anhand der Zeichnungen noch näher beschrieben.
    Es zeigt in zum Teil schematisierter Darstellung:
  • Fig. 1
    eine stark vergrößerte Teildarstellung einer erfindungsgemäßen Membranpumpe im Querschnitt,
    Fig. 2
    eine vergrößerte Darstellung einer erfindungsgemäßen Ringmembrane im Querschnitt mit einem verbundenen hülsenförmigen Antriebselement,
    Fig. 3
    eine perspektivische Unteransicht der in Fig 2 gezeigten Ringmembrane und
    Fig. 4
    eine perspektivische Oberseitenansicht der in Fig 2 gezeigten Ringmembrane.
  • Eine in Fig.1 zum Teil dargestellte Membranpumpe 1 weist innerhalb eines Pumpenkopfes 2 eine Ringmembrane 3 auf, die an ihrem äußeren Umfangsbereich zwischen Gehäuseteilen 4,5 sowie an ihrem inneren Randbereich zwischen dem Gehäuseteil 4 und einem Klemmteil 9 eingespannt ist. Die Ringmembrane 3 begrenzt einen ringförmigen Arbeitsraum 6. Zur Auslenkung der Ringmembrane 3 ist ein hier nicht dargestellter Pumpenantrieb vorgesehen, der vorzugsweise als Exzenterantrieb oder Kurbelantrieb ausgebildet sein kann. Er weist ein Übertragungselement 7 auf, das mit einem hülsenförmigen Antriebselement 8 verbunden ist. Dieses ist mit seinem anderen Ende mit der Ringmembrane 3 verbunden. Der Arbeitsraum 6 steht über hier nicht dargestellte Ein- und Auslasskanäle mit einem Einlassventil und einem Auslassventil in Verbindung. Die Ventile sind vorzugsweise als Plattenventile ausgebildet.
    Die Ringmembrane 3 und das damit verbundene Antriebselement 8 sind in den Figuren 2 bis 4 dargestellt.
  • Die Ringmembrane 3 ist mit einer Stirnseite des hülsenförmigen Antriebselementes 8 vorzugsweise durch Vulkanisieren verbunden. Dabei besteht die Ringmembrane 3 aus einem gummielastischen Material, während das Antriebselement 8 beispielsweise durch eine Stahlhülse gebildet ist. Im gezeigten Ausführungsbeispiel ist das Antriebselement 8 in die Ringmembrane 3 einvulkanisiert und greift mit einem Stirnende etwas in eine Nut 10 bei der Membranunterseite ein. Gut zu erkennen ist hierbei, dass im Verbindungsbereich zwischen Ringmembrane 3 und Antriebselement 8 eine ringförmig umlaufende, rippenartige Anschluss- und Stabilisierwulst 11 vorgesehen ist, insbesondere um die Druck- und Zugübertragung von dem Antriebselement 8 besser in die Membrane einbringen zu können. Die Anschluss- und Stabilisierwulst 11 ist etwa in einem konzentrischen Bereich mittig zwischen Außenrand 12 und Innenrand 13 der Ringbreite der Ringmembrane 3 angeordnet. In Fig. 1 ist auch gut erkennbar, dass die Ringmembrane 3 zu dem Arbeitsraum 6 so angeordnet ist, dass eine etwa mittige Ausrichtung des Antriebselementes 8 beziehungsweise der Anschluss- und Stabilisierwulst 11 zu dem Arbeitsraum 6 vorhanden ist.
    Bei einer Hubbewegung des hülsenförmigen Übertragungselementes 8 entsprechend dem Pfeil Pf1 wird die Ringmembrane zumindest teilweise in den Arbeitsraum 6 verformt, so dass darin befindliches Fördermedium verdrängt wird. Bedarfsweise kann die Formung des Arbeitsraums 6 und der Ringmembrane 3 so vorgesehen sein, dass in oberer Totpunktlage die Membrane den Arbeitsraum praktisch totraumfrei ausfüllt.
    Die Ringmembrane 3 wird gegenüber den Gehäuseteilen 4 und 5 beziehungsweise auch dem Klemmteil 9 durch einen inneren Wulst 14 und durch einen äußeren Wulst 15 abgedichtet. Die Wülste 14,15 greifen in Nuten 20,21 des Gehäuseteils 5 ein.
  • Der den ringförmigen Arbeitsraum aufweisende Gehäuseteil 4, der ein Pumpenkopfteil bildet, weist mittig zu der zentralen Öffnung 16 der Ringmembrane 3 eine Durchtrittsöffnung für eine Befestigungsschraube 17 auf (Fig. 1) mit der das innenseitig der Kopfplatte 4 angeordnete, den inneren Membranrand 13 untergreifende Klemmteil 9 befestigt und zum Halten der Ringmembrane 3 gegen die Kopfplatte 4 gespannt werden kann. Das Klemmteil 9 befindet sich innerhalb von dem durch das hülsenförmige Antriebselement 8 gebildeten Ringraum 18, so dass dieser zur Verfügung stehende Platz ausgenützt ist. Insgesamt kann durch die direkte Antriebsübertragung von einem Exenterantrieb auf die Membrane und auch durch die platzsparende Anordnung des Klemmteils 9 innerhalb des Ringraums 18 eine Pumpe mit geringer Bauhöhe realisiert werden.
  • Das sich an das Antriebselement 8 anschließende Übertragungselement 7 kann ein Kunststoffteil sein, das an seinem dem Antriebselement 8 zugewandten Ende einen Ansatz 19 aufweist, auf den das hülsenartige Antriebselement 8 aufgesteckt werden kann und gegebenenfalls durch Presssitz oder Verklebung damit verbindbar ist.
    Das Klemmteil 9 kann gegebenenfalls auch durch Vulkanisieren mit der Ringmembrane verbunden sein, so dass zusammen mit dem Antriebselement 8 ein aus drei Teilen bestehendes Bauelement gebildet ist. Es ergeben sich dann nur wenige Montageteile, die in kurzer Zeit zusammengebaut werden können.
  • Die Membranpumpe 1 ist vorzugsweise als Förderpumpe für geringe Fördermengen bei vergleichsweise hoher Hubfrequenz ausgebildet. Beispielsweise lassen sich damit Fördermengen von 25 ml pro Minute realisieren, wobei 3000 Hübe pro Minute vorgesehen sein können. Die hohe Hubzahl ist erforderlich, damit die Ventile exakt arbeiten und die Toleranzen der Ventilpartien nicht zu eng gesetzt werden müssen. Für eine solche Kleinstpumpe kann die in Fig. 3 und 4 perspektivisch zusammen mit dem Antriebselement 8 dargestellte Ringmembrane 3 beispielsweise einen Außendurchmesser von 10 mm aufweisen, so dass die Darstellungen in Fig. 3 und 4 etwa einem Maßstab von 5:1 entsprechen würden.
  • Erwähnt sei noch, dass das hülsenförmige Antriebselement 8 vorzugsweise eine durchgehende Wandung hat, gegebenenfalls aber auch eine mit Aussparungen versehene Wandung oder eine durch wenigstens bereichsweise durch Stäbe oder Finger gebildete Wandung aufweisen kann, so dass eine entsprechende Massenreduzierung oder ein Zutritt zu dem inneren Ringraum vorhanden ist.
    Weiterhin sei erwähnt, dass die ringförmige Membrane 3 zwar bevorzugt eine kreisrunde Form hat, jedoch auch eine davon abweichende Form haben kann. Gleiches gilt für das daran angreifende Antriebselement 8 beziehungsweise die zum Antrieb führende Fortsetzung der Membrane, das beziehungsweise die zumindest im Anschlussbereich bei der Membrane vorzugsweise jeweils gleiche Formen wie die Membrane und dabei insbesondere wie deren dem Arbeitsraum 6 zugewandter Bereich oder auch davon abweichend ausgebildet sein können. Beispielsweise kann die ringförmige Membrane insgesamt oder bereichsweise eine elliptische Form aufweisen, was Vorteile in Verbindung mit einem Kurbeltrieb und der damit verbundenen Pendelbewegung des Antriebselementes ergibt. Die Pendelbewegung verläuft dabei vorzugsweise in Richtung der kleinen Achse der Ellipse.
    Auch besteht die Möglichkeit, den den Arbeitsraum 6 begrenzenden Ringbereich der Membrane 3 und den Außenrandbereich 12 unterschiedlich zu gestalten.
  • Mit der erfindungsgemäßen Membranpumpe 1 ist insbesondere eine schnelllaufende Membran-Flüssigkeitspumpe geschaffen, bei der eine Kombination von hoher Hubzahl bei gleichzeitig geringer Fördermenge vorhanden ist und die trotzdem konstruktiv einfach und stabil im Aufbau ist. Solche Membranpumpen 1 sind vor allem in Labors oder auch für mikrosystemtechnische Anwendungen einsetzbar. Durch die erfindungsgemäße Membrane 2 sind auch noch kleinere Ausführungsformen der Membrane 2 als in der in Figur 2 bis 4 im Maßstab 5:1 dargestellten Größe möglich.

Claims (17)

  1. Membranpumpe (1) mit einem ringförmigen Arbeitsraum (6) und einer ringförmigen Membrane (3), die an ihrem äußeren Umfangsbereich (12) und an ihrem inneren Randbereich (13) eingespannt ist, wobei die innere und die äußere Membran-Einspannstelle relativ zueinander feststehend sind und wobei zwischen der äußeren und inneren Einspannstelle ein mit einem Pumpenantrieb verbundenes Antriebselement (8) zur Auslenkung der ringförmigen Membrane (3) angreift, dadurch gekennzeichnet, dass das Antriebselement (8) der Membrane zugewandt hülsen- oder ringförmig mit einem etwa dem ringförmigen Arbeitsraum (6) entsprechenden Durchmesser ausgebildet ist und mit einer seiner ringförmigen Stirnseiten quer zur Membranebene an der dem Pumpenantrieb zugewandten Seite der Ringmembrane (3) zur Auslenkung und zur Übertragung einer Hin- und Herbewegung an der Ringmembrane (3) angreift und dass das zumindest bereichsweise hülsenförmige Antriebselement (8) nur an einer Seite der Ringmembrane (3) an der dem Arbeitsraum (6) abgewandten Seite befestigt ist.
  2. Membranpumpe nach Anspruch 1, dadurch gekennzeichnet, dass das hülsenförmige Antriebselement (8) als Zylinderhülse mit durchgehender Wandung oder mit Aussparungen aufweisender Wandung oder mit einer wenigstens bereichsweise durch Stäbe oder Finger gebildeten Wandung ausgebildet ist.
  3. Membranpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Pumpenantrieb vorzugsweise als Exzenterantrieb ausgebildet ist, der ein mit dem hülsenförmigen Antriebselement (8) an dessen der Ringmembrane (3) abgewandten Ende verbundenes Übertragungselement (7) aufweist.
  4. Membranpumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Ringmembrane (3) bei der inneren Membran-Einspanstelle zwischen einem den ringförmigen Arbeitsraum (6) aufweisenden Pumpenkopfteil (4) und einem damit verbindbaren Klemmteil (9) kraftschlüssig eingespannt und/oder formschlüssig gehalten ist.
  5. Membranpumpe nach Anspruch 4, dadurch gekennzeichnet, dass das bei der inneren Membran-Einspanstelle angeordnete Klemmteil (9) durch eine vorzugsweise zentrale Schraubverbindung mit dem Pumpenkopfteil (4) verbunden ist.
  6. Membranpumpe nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das Klemmteil (9) mit der Ringmembrane (3) durch Vulkanisieren verbunden ist.
  7. Membranpumpe nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass sich das Klemmteil (9) bei der inneren Membran-Einspanstelle innerhalb des im wesentlichen durch das zumindest bereichsweise hülsenförmige Antriebselement (8) gebildeten Ringraums (18) befindet.
  8. Membranpumpe nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Ringmembrane (3) an ihrem Außenrand (12) zwischen dem den ringförmigen Arbeitsraum (3) aufweisenden Pumpenkopfteil und einem damit verbindbaren Gehäuseteil kraftschlüssig eingespannt und/oder formschlüssig gehalten ist.
  9. Membranpumpe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das zumindest membranseitig hülsen- oder ringförmige Antriebselement (8) mit seiner der Ringmembrane (3) zugewandten, ringförmigen Stirnseite etwa in Verlängerung einer den ringförmigen Arbeitsraum (6) etwa mittig schneidenden, konzentrischen Ringfläche an der Ringmembrane angreift.
  10. Membranpumpe nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Ringmembrane (3) eine vorzugsweise ringförmig umlaufende, rippenartige Anschluss- und Stabilisierwulst (11) aufweist, die mit dem hülsen- oder ringförmigen Ende des Antriebselementes (8) verbunden ist und dass das Antriebselement im Verbindungsbereich vorzugsweise in den Anschluss- und Stabilisierwulst eingreift.
  11. Membranpumpe nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die dem Arbeitsraum (6) zugewandte Seite der Ringmembrane (3) eine vorzugsweise durchgehende Beschichtung insbesondere aus PTFE aufweist.
  12. Membranpumpe nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass das hülsenförmige Antriebselement (8) vorzugsweise durch Vulkanisieren und/oder form- und/oder kraftschlüssig mit der Ringmembrane (3) verbunden ist.
  13. Membranpumpe nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das hülsenförmige Antriebselement (8) aus Metall, vorzugsweise Stahl und das damit verbindbare Übertragungselement (7) vorzugsweise aus Kunststoff bestehen.
  14. Membranpumpe nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass die Ringmembrane (3) an ihrem Außenrand (12) eine Außenwulst (15) und am inneren Rand eine Innenwulst (14) aufweist.
  15. Membranpumpe nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass sie als Förderpumpe für geringe Fördermengen im Bereich von vorzugsweise unter 100 ml pro Minute und einer hohen Hubfrequenz von etwa 50 Hz ausgebildet ist.
  16. Membranpumpe nach einem der Ansprüche 1, 4 bis 11, 14 oder 15, dadurch gekennzeichnet, dass das Antriebselement (8) einstückig mit der Membrane (3) verbunden ist und einen Anschluss zum Koppeln mit dem Pumpenantrieb aufweist.
  17. Membranpumpe nach Anspruch 16, dadurch gekennzeichnet, dass in das aus dem Material der Membrane (3) bestehende Antriebselement (8) zumindest bereichsweise Armierungen aus biegesteifem Material integriert sind.
EP04025738A 2004-01-15 2004-10-29 Membranpumpe Expired - Lifetime EP1555434B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004002079 2004-01-15
DE102004002079A DE102004002079A1 (de) 2004-01-15 2004-01-15 Membranpumpe

Publications (2)

Publication Number Publication Date
EP1555434A1 EP1555434A1 (de) 2005-07-20
EP1555434B1 true EP1555434B1 (de) 2006-10-25

Family

ID=34609560

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04025738A Expired - Lifetime EP1555434B1 (de) 2004-01-15 2004-10-29 Membranpumpe

Country Status (4)

Country Link
US (1) US7373872B2 (de)
EP (1) EP1555434B1 (de)
JP (1) JP5371171B2 (de)
DE (2) DE102004002079A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9377017B2 (en) * 2012-11-15 2016-06-28 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Extended elasticity of pump membrane with conserved pump force
CN108757409B (zh) * 2018-07-06 2023-08-25 珠海格力电器股份有限公司 隔膜组件、稳压泵及净水机

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2731534A (en) * 1948-02-26 1956-01-17 Taylor Winfield Corp Fluid pressure actuator for machine components
GB734294A (en) * 1952-11-05 1955-07-27 George William Webb Improvements in or relating to pumping apparatus for use with boats
US3008427A (en) 1959-02-11 1961-11-14 Gen Motors Corp Fuel pump
US3223045A (en) * 1959-05-04 1965-12-14 Chrysler Corp Fuel pump
US3241494A (en) * 1960-01-15 1966-03-22 Acf Ind Inc Fuel systems
US3252424A (en) * 1960-01-15 1966-05-24 Acf Ind Inc Fuel systems
US3291064A (en) * 1963-01-25 1966-12-13 Gen Motors Corp Diaphragm pump with annular pumping chamber
JPS61160666A (ja) * 1984-12-29 1986-07-21 Nippon Valqua Ind Ltd ダイアフラムおよびその製造方法
US5291822A (en) * 1992-11-16 1994-03-08 Orbital Walbro Corporation Diaphragm for pressure regulators and method of making
DE4244619A1 (de) * 1992-12-31 1994-07-07 Knf Neuberger Gmbh Verfahren zum Betreiben einer Membranpumpe sowie Membranpumpe zum Durchführen des Verfahrens
US5634391A (en) * 1996-07-09 1997-06-03 Westinghouse Air Brake Co. Inert plastic coated flexible type diaphragm for application in a sanitary type pump
DE19802443C1 (de) * 1998-01-23 1999-05-12 Luk Fahrzeug Hydraulik Pumpe
DE19819408A1 (de) 1998-04-30 1999-11-11 Freudenberg Carl Fa Membranpumpe zur Förderung von gasförmigen oder flüssigen Medien
DE10233561B4 (de) * 2002-07-24 2008-02-21 Prominent Dosiertechnik Gmbh Sicherheitsmembran für eine Membranpumpe

Also Published As

Publication number Publication date
JP2005201278A (ja) 2005-07-28
EP1555434A1 (de) 2005-07-20
US20050158190A1 (en) 2005-07-21
JP5371171B2 (ja) 2013-12-18
DE102004002079A1 (de) 2005-08-11
US7373872B2 (en) 2008-05-20
DE502004001846D1 (de) 2006-12-07

Similar Documents

Publication Publication Date Title
DE102007030311B4 (de) Membranpumpe
EP1991777B1 (de) Linearverdichter und antriebsaggregat dafür
DE2713599C2 (de)
EP0057288B1 (de) Zweizylinder-Dickstoffpumpe, vorzugsweise Betonpumpe mit einem von einer zylinderseitigen Brillenplatte abwechselnd schwenkenden Schaltorgan
EP0733802B1 (de) Membranpumpe mit einer Formmembran
DE102012000676A1 (de) Verdrängerpumpe
EP3447290B1 (de) Austauschbarer pumpenkopf für eine membranpumpe
EP0367988B1 (de) Membranpumpe
DE2427528A1 (de) Drosselventil, insbesondere fuer einen kraftfahrzeug-kuehlwasserkreislauf
EP3851674A1 (de) Doppelmembranpumpe
DE102020126241A1 (de) Membrananordnung
EP1555434B1 (de) Membranpumpe
DE60315785T2 (de) Pumpe
EP0214394B2 (de) Membranpumpe
DE102014006503B4 (de) Membranpumpe
DE112009000777B4 (de) Handpumpe zum Pumpen von Kraftstoff
DE10143978B4 (de) Hydraulisch angetriebene Membranpumpe mit vorgespannter Membran
DE19844518A1 (de) Hydraulischer Wegverstärker für Mikrosysteme
DE3882949T2 (de) Hin- und herbewegende schaltungsstrukttur für pumpe.
DE9416432U1 (de) Dichtung
EP2954208B1 (de) Asymmetrischer hubkolbenverdichter
DE202005002471U1 (de) Membranpumpe
EP1520988A1 (de) Schlauchmembran-kolbenpumpe
DE102006055556B4 (de) Membranpumpe
EP1602831A1 (de) Durch Fluidbeaufschlagung aktivierbare Betätigungseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20050924

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AKX Designation fees paid

Designated state(s): CH DE FR GB LI

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HANS RUDOLF GACHNANG PATENTANWALT

REF Corresponds to:

Ref document number: 502004001846

Country of ref document: DE

Date of ref document: 20061207

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070126

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070726

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: GACHNANG AG PATENTANWAELTE, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 20

Ref country code: DE

Payment date: 20231002

Year of fee payment: 20

Ref country code: CH

Payment date: 20231102

Year of fee payment: 20

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNGEN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004001846

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20241028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20241028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20241028