DE102004002079A1 - Membranpumpe - Google Patents

Membranpumpe Download PDF

Info

Publication number
DE102004002079A1
DE102004002079A1 DE102004002079A DE102004002079A DE102004002079A1 DE 102004002079 A1 DE102004002079 A1 DE 102004002079A1 DE 102004002079 A DE102004002079 A DE 102004002079A DE 102004002079 A DE102004002079 A DE 102004002079A DE 102004002079 A1 DE102004002079 A1 DE 102004002079A1
Authority
DE
Germany
Prior art keywords
membrane
annular
diaphragm pump
drive element
pump according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102004002079A
Other languages
English (en)
Inventor
Robert KÄCH
Christian Kissling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KNF Flodos AG
Original Assignee
KNF Flodos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KNF Flodos AG filed Critical KNF Flodos AG
Priority to DE102004002079A priority Critical patent/DE102004002079A1/de
Priority to DE502004001846T priority patent/DE502004001846D1/de
Priority to EP04025738A priority patent/EP1555434B1/de
Priority to US11/033,425 priority patent/US7373872B2/en
Priority to JP2005006629A priority patent/JP5371171B2/ja
Publication of DE102004002079A1 publication Critical patent/DE102004002079A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/0009Special features
    • F04B43/0054Special features particularities of the flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating Pumps (AREA)

Abstract

Eine Membranpumpe (1) weist einen ringförmigen Arbeitsraum (6) und eine ringförmige Membrane (3) auf, die an ihrem äußeren Umfangsbereich (12) und an ihrem inneren Randbereich (13) eingespannt ist. Die innere und die äußere Membran-Einspannstelle sind relativ zueinander feststehend und zwischen der äußeren und inneren Einspannstelle greift ein mit einem Pumpenantrieb verbundenes Antriebselement (8) zur Auslenkung der ringförmigen Membrane (3) an. Das Antriebselement (8) ist, der Mebrane zugewandt, hülsen- oder ringförmig mit einem etwa dem ringförmigen Arbeitsraum (6) entsprechenden Durchmesser ausgebildet und greift mit einer seiner ringförmigen Stirnseiten quer zur Membranebene an der dem Pumpenantrieb zugewandten Seite der Ringmembrane (3) zur Auslenkung und zur Übertragung einer Hin- und Herbewegung an der Ringmembrane (3) an. DOLLAR A Mit der erfindungsgemäßen Membranpumpe (1) ist insbesondere eine schnelllaufende Membran-Flüssigkeitspumpe geschaffen, bei der eine Kombination von hoher Hubzahl bei gleichzeitig geringer Fördermenge vorhanden ist und die trotzdem konstruktiv einfach und stabil im Aufbau ist.

Description

  • Die Erfindung bezieht sich auf eine Membranpumpe mit einem ringförmigen Arbeitsraum und einer ringförmigen Membrane, die an ihrem äußeren Umfangsbereich und an ihrem inneren Randbereich eingespannt ist, wobei die innere und die äußere Membran-Einspannstelle relativ zueinander feststehend sind und wobei zwischen der äußeren und inneren Einspannstelle ein mit einem Pumpenantrieb verbundenes Antriebselement zur Auslenkung der ringförmigen Membrane angreift.
  • Beim Fördern kleiner und kleinster Fördermengen mit Hilfe schnelllaufender Membranpumpen besteht das Problem, dass mit zunehmender Miniaturisierung der Bauform die Herstellung insbesondere der Membrane und daran angreifender, vorzugsweise anvulkanisierter Stahlteile sehr schwierig und/oder unwirtschaftlich ist. Die hohen Drehzahlen derartiger Membranpumpen sind dabei notwendig, damit die Ventile exakt arbeiten können und die Toleranzen bei der Fertigung der Ventilpartien nicht zu eng gesetzt werden müssen. Dabei bestimmt der Durchmesser der im allgemeinen kreisförmigen Membrane, das heißt die Volumenänderung des Arbeitsraumes durch die Auslenkung der Membrane, die Fördermenge der Membranpumpe, wobei die Membrane mit Hilfe eines vorzugsweise im Zentrum der Membrane anvulkanisierten Stahlpleuels bewegt wird. Ist der Durchmesser der Membrane sehr klein, beispielsweise etwa 5 mm oder noch kleiner, ist ein Anvulkanisieren des Stahlpleuels, welches dabei unter Umständen einen Durchmesser von weniger als 1 mm aufweist, nur sehr schwer möglich. Außerdem ist es bei einer solchen Miniaturisierung auch schwierig, die hydraulischen oder pneumatischen Verbindungen zu den Ein- und Auslassventilen des Arbeitsraumes herzustellen. Trotz der sehr geringen Abmessungen der Membrane mit einem Durchmesser von zum Beispiel 5 mm würde sich bei einer Arbeitsdrehzahl von 3000 Umdrehungen pro Minute und einem Hub von 0,8 mm bereits eine Fördermenge von etwa 25 ml pro Minute ergeben. In vielen Anwendungsfällen wäre es aber wünschenswert, bei akzeptabler, noch gut handhabbarer Baugröße der Pumpe diese oder auch geringere Fördermengen zu realisieren.
  • Es besteht daher die Aufgabe, eine Membranpumpe zu schaffen, mit der kleine und kleinste Fördermengen gepumpt werden können, wobei die Baugröße der Pumpe und insbesondere deren Membrane eine einfache und kostengünstige Herstellung und Justage der Bauteile ermöglicht.
  • Zur Lösung dieser Aufgabe schlägt die Erfindung insbesondere vor, dass bei einer Membranpumpe mit einem ringförmigen Arbeitsraum und einer ringförmigen Membrane das Antriebselement der Ringmembrane, der Membrane zugewandt, hülsen- oder ringförmig mit einem etwa dem ringförmigen Arbeitsraum entsprechenden Durchmesser ausgebildet ist und mit einer seiner ringförmigen Stirnseiten quer zur Membranebene an der dem Pumpenantrieb zugewandten Seite der Ringmembrane zur Auslenkung und zur Übertragung einer Hin- und Herbewegung an der Ringmembrane angreift.
  • Einerseits kann durch die ringförmige Geometrie der Ringmembrane das Fördervolumen bei akzeptablem Durchmesser der Ringmembrane pro Förderhub klein gehalten werden und andererseits bildet das hülsenförmige Antriebselement der Ringmembrane ein stabiles Kraftübertragungselement, welches darüber hinaus eine sichere Anbindung an die Ringmembrane ermöglicht und auch an den Pumpenantrieb.
  • Die ringförmige Fläche der Membrane ist bei gleichem Durchmesser kleiner als eine Kreisfläche, so dass auch bei Kleinstpumpen für geringe Fördermengen der Durchmesser der Ringmembrane eine noch gut handhabbare Größe aufweisen kann.
  • Eine solche Ringmembranpumpe mit größerem Durchmesser der Ringmembrane und des ebenfalls ringförmigen Arbeitsraumes kann dadurch leichter hergestellt und justiert werden, weil die Herstellungsprobleme durch die sonst notwendige, extreme Miniaturisierung der Bauelemente nicht vorhanden sind. Vor allem die Verbindung des hülsenförmigen Antriebselements mit der ringförmigen Membrane kann durch den größeren Durchmesser dieses Elements mit insbesondere wiederholbarer, guter Genauigkeit und wesentlich unkomplizierter erfolgen als bei bekannten Membranpumpen vergleichbarer Pumpleistung, wobei die Pumpleistung insbesondere weniger als 100ml pro Minute, zum Beispiel weniger als 50ml pro Minute betragen kann.
  • Zwar kennt man aus der US 3 291 064 bereits eine Membranpumpe mit einem ringförmigen Arbeitsraum sowie einer ringförmigen Membrane, die als Kraftstoffpumpe Verwendung findet. Bei dieser Pumpe wird der Antrieb für den Saughub der Membrane von der Arbeitsraumseite der Membrane mittels eines Stößels durch eine zentrale Führung hindurch auf die Rückseite der Membrane und dort durch eine Druckplatte auf die Membrane übertragen. Für den Arbeitshub der Membrane ist eine die Druckplatte beaufschlagende Druckfeder vorgesehen. Die Verbindung zwischen der Druckplatte und der Membrane erfolgt über nietenartige Vorsprünge eines Klemmrings, der auf der Arbeitsraumseite der Membrane angeordnet ist und mit seinen nietenartigen Vorsprüngen die Membrane und die Druckplatte durchsetzt.
  • Eine solche Konstruktion ist insbesondere für Kleinstpumpen ungeeignet, weil für die Antriebsübertragungselemente nur sehr wenig Platz vorhanden ist und deshalb nur filigrane Dimensionierungen mit entsprechenden Nachteilen bezüglich der Belastbarkeit und Lebensdauer möglich wären. Nachteilig ist weiterhin, dass die Durchbrüche in der Membrane für die sie durchsetzenden Befestigungselemente Schwachstellen bezüglich einer langfristigen Dichtigkeit bilden. Außerdem müsste beim Fördern aggressiver Medien dafür Sorge getragen werden, dass alle im Arbeitsraum befindlichen Teile, also Membrane beziehungsweise Membranoberfläche, Klemmring und dessen Befestigungsmittel und dergleichen diesen aggressiven Medien widerstehen. Durch den in den Arbeitsraum ragenden Klemmring kann die Strömung des Fördermediums gestört werden. Schließlich weist diese Pumpe in nachteiliger Weise ein vergleichsweise großes Totraumvolumen auf.
  • Bei der erfindungsgemäßen Membranpumpe ist die Antriebsübertragung so vereinfacht und direkt praktisch auf kürzestem Weg vom Hubantrieb zur Membrane geführt, dass sie auch bei Kleinstpumpen untergebracht werden kann und trotz der beengten Platzverhältnisse stabil und funktionssicher ausgeführt sein kann.
  • Bevorzugt ist vorgesehen, dass das zumindest bereichsweise hülsen- oder ringförmige Antriebselement nur an einer Seite der Ringmembrane an der dem Pumpenraum abgewandten Seite befestigt ist.
  • Es steht somit die dem Arbeitsraum zugewandte, durchgehend dichte Membranoberfläche zur Verfügung. Dies ist beim Fördern aggressiver Medien vorteilhaft, weil durch die glatte Oberfläche praktisch keine Angriffsstellen vorhanden sind und die dem Arbeitsraum zugewandte Seite der Membrane durchgehend durch eine ununterbrochene Beschichtung insbesondere aus PTFE geschützt werden kann.
  • Das hülsen- oder ringförmige Antriebselement ist vorzugsweise durch Vulkanisieren mit der Ringmembrane verbunden. Dadurch ist eine haltbare Verbindung gebildet. Gegebenenfalls kommt auch eine form- und/oder kraftschlüssig Verbindung in Frage.
  • Die Ringmembrane ist zweckmäßigerweise bei der inneren Membran-Einspanstelle zwischen einem den ringförmigen Arbeitsraum aufweisenden Pumpenkopfteil und einem damit verbindbaren Klemmteil kraftschlüssig eingespannt und/oder formschlüssig gehalten.
  • Dabei kann das bei der inneren Membran-Einspanstelle angeordnete Klemmteil durch eine vorzugsweise zentrale Schraubverbindung mit dem Pumpenkopfteil verbunden sein.
  • Diese zentrale Befestigung der Ringmembrane ermöglicht eine einfache und schnelle Montage und eine gute Abdichtung in diesem Bereich. Die formschlüssige Halterung der Membrane gegebenenfalls in Kombination mit einer kraftschlüssigen Halterung vermeidet unerwünschte Verformungen der Membrane.
  • Das Klemmteil bei der inneren Membran-Einspanstelle befindet sich zweckmäßigerweise innerhalb des im wesentlichen durch das hülsenförmige Antriebselement gebildeten Ringraums. Somit wird der vorhandene Ringraum ausgenutzt um das Klemmteil platzsparend unterzubringen.
  • Nach einer Weiterbildung der Erfindung kann das Klemmteil mit der Ringmembrane durch Vulkanisieren verbunden sein. Die Ringmembrane und das Klemmteil bilden bei dieser Ausführung ein zusammenhängendes Bauteil. Wenn auch das hülsenförmige Antriebselement durch Vulkanisieren mit der Ringmembrane verbunden ist, bilden alle drei Bauelemente eine Einheit, so dass eine vereinfachte Montage begünstigt ist.
  • Durch das anvulkanisierte innere Klemmteil kann ohne zusätzliche konstruktive Mittel eine dichte und stabile Verbindung beider Bauteile erreicht werden.
  • Nach einer Ausgestaltung der Erfindung kann das Antriebselement einstückig mit der Membrane verbunden sein und einen Anschluss zum Koppeln mit dem Pumpenantrieb aufweisen.
  • Diese Ausführungsform der Membrane weist kein separates Teil auf, das als Verbindungselement zwischen der eigentlichen Membrane und dem Pumpenantrieb vorgesehen ist, sondern die Membrane setzt sich unterseitig beziehungsweise antriebsseitig einstückig mit einem zunächst hülsenartigen Teil bis zu dem Exzenterantrieb fort, wo eine entsprechende Formung zur Bildung eines Anschlusses zum Koppeln mit dem Antrieb vorhanden ist. Die direkte Verbindung im Bereich des Exzenters oder eines Kurbeltriebs kann vorzugsweise über ein in diesem Bereich integriertes (einvulkanisiertes) Kunststoff- oder Metallteil erfolgen.
  • Diese Ausführungsform der Membrane mit einstückig angeformtem Verbindungselement ist besonders einfach und durch die hülsenartige, einstückige Fortsetzung im Anschluss an die Membrane können ausreichende Druck- und Zugkräfte übertragen werden. Zumindest zum Fördern von Gasen reichen die übertragbaren Kräfte aus.
  • Zur Stabilisierung kann in das aus dem Material der Membrane bestehende Antriebselement zumindest bereichsweise Armierungen aus biegesteifem Material integriert sein.
  • Dadurch können auch höhere Druck- und Zugkräfte übertragen werden. Dabei kann ein hülsen- oder ringförmiges, aus Metall bestehendes Antriebselement als Armierung weitgehend vollständig in das gummielastische Membranmaterial eingebettet sein, wobei sich an das antriebsseitige Ende des hülsen- oder ringförmigen Antriebselementes entweder eine Fortsetzung aus gummielastischem Material bis zum Exzenter anschließt oder als Fortsetzung ein zusätzliches Übertragungselement vorgesehen ist.
  • Die Ringmembrane ist auch an ihrem Außenrand zwischen dem den ringförmigen Arbeitsraum aufweisenden Pumpenkopfteil und einem damit verbindbaren Gehäuseteil kraftschlüssig eingespannt und/oder formschlüssig gehalten. Damit ist auch im Außenumfangsbereich der Ringmembrane eine dichte und bei einer formschlüssigen Halterung eine praktisch spannungsfreie Halterung vorhanden.
  • Besonders vorteilhaft ist es, wenn das zumindest membranseitig hülsen- oder ringförmige Antriebselement mit seiner der Ringmembrane zugewandten, ringförmigen Stirnseite etwa in Verlängerung einer den ringförmigen Arbeitsraum etwa mittig schneidenden, konzentrischen Ringfläche an der Ringmembrane angreift. Dadurch ist besonders gut ein Verformen der Membrane in den Arbeitsraum während des Verdrängungshubs gegeben. Dies begünstigt ein praktisch totraumfreies Verdrängen des Fördermediums.
  • Zur Stabilisierung der Membrane und für einen belastbaren Übergang zwischen dem hülsen- oder ringförmigen Ende des Antriebselementes und der Ringmembrane, weist die Ringmembrane eine vorzugsweise ringförmig umlaufende, rippenartige Anschluss- und Stabilisierwulst auf, die mit dem hülsen- oder ringförmigen Ende des Antriebselementes verbunden ist und dass das Antriebselement im Verbindungsbereich vorzugsweise in den Anschluss- und Stabilisierwulst eingreift beziehungsweise dort einvulkanisiert ist.
  • Vorzugsweise ist der Pumpenantrieb als Exzenterantrieb ausgebildet, der ein mit dem hülsenförmigen Antriebselement an dessen der Ringmembrane abgewandten Ende verbundenes Übertragungselement aufweist.
  • Zusätzliche Ausgestaltungen der Erfindung sind in den weiteren Unteransprüchen aufgeführt.
  • Nachstehend ist die Erfindung anhand der Zeichnungen noch näher beschrieben.
  • Es zeigt in zum Teil schematisierter Darstellung:
  • 1 eine stark vergrößerte Teildarstellung einer erfindungsgemäßen Membranpumpe im Querschnitt,
  • 2 eine vergrößerte Darstellung einer erfindungsgemäßen Ringmembrane im Querschnitt mit einem verbundenen hülsenförmigen Antriebselement,
  • 3 eine perspektivische Unteransicht der in 2 gezeigten Ringmembrane und
  • 4 eine perspektivische Oberseitenansicht der in 2 gezeigten Ringmembrane.
  • Eine in 1 zum Teil dargestellte Membranpumpe 1 weist innerhalb eines Pumpenkopfes 2 eine Ringmembrane 3 auf, die an ihrem äußeren Umfangsbereich zwischen Gehäuseteilen 4, 5 sowie an ihrem inneren Randbereich zwischen dem Gehäuseteil 4 und einem Klemmteil 9 eingespannt ist. Die Ringmembrane 3 begrenzt einen ringförmigen Arbeitsraum 6. Zur Ruslenkung der Ringmembrane 3 ist ein hier nicht dargestellter Pumpenantrieb vorgesehen, der vorzugsweise als Exzenterantrieb oder Kurbelantrieb ausgebildet sein kann. Er weist ein Übertragungselement 7 auf, das mit einem hülsenförmigen Antriebselement 8 verbunden ist. Dieses ist mit seinem anderen Ende mit der Ringmembrane 3 verbunden. Der Arbeitsraum 6 steht über hier nicht dargestellte Ein- und Auslasskanäle mit einem Einlassventil und einem Auslassventil in Verbindung. Die Ventile sind vorzugsweise als Plattenventile ausgebildet.
  • Die Ringmembrane 3 und das damit verbundene Antriebselement 8 sind in den 2 bis 4 dargestellt.
  • Die Ringmembrane 3 ist mit einer Stirnseite des hülsenförmigen Antriebselementes 8 vorzugsweise durch Vulkanisieren verbunden. Dabei besteht die Ringmembrane 3 aus einem gummielastischen Material, während das Antriebselement 8 beispielsweise durch eine Stahlhülse gebildet ist. Im gezeigten Ausführungsbeispiel ist das Antriebselement 8 in die Ringmembrane 3 einvulkanisiert und greift mit einem Stirnende etwas in eine Nut 10 bei der Membranunterseite ein. Gut zu erkennen ist hierbei, dass im Verbindungsbereich zwischen Ringmembrane 3 und Antriebselement 8 eine ringförmig umlaufende, rippenartige Anschluss- und Stabilisierwulst 11 vorgesehen ist, insbesondere um die Druc- und Zugübertragung von dem Antriebselement 8 besser in die Membrane einbringen zu können. Die Anschluss- und Stabilisierwulst 11 ist etwa in einem konzentrischen Bereich mittig zwischen Außenrand 12 und Innenrand 13 der Ringbreite der Ringmembrane 3 angeordnet. In 1 ist auch gut erkennbar, dass die Ringmembrane 3 zu dem Arbeitsraum 6 so angeordnet ist, dass eine etwa mittige Ausrichtung des Antriebselementes 8 beziehungsweise der Anschluss- und Stabilisierwulst 11 zu dem Arbeitsraum 6 vorhanden ist.
  • Bei einer Hubbewegung des hülsenförmigen Übertragungselementes 8 entsprechend dem Pfeil Pf1 wird die Ringmembrane zumindest teilweise in den Arbeitsraum 6 verformt, so dass darin befindliches Fördermedium verdrängt wird. Bedarfsweise kann die Formung des Arbeitsraums 6 und der Ringmembrane 3 so vorgesehen sein, dass in oberer Totpunktlage die Membrane den Arbeitsraum praktisch totraumfrei ausfüllt.
  • Die Ringmembrane 3 wird gegenüber den Gehäuseteilen 4 und 5 beziehungsweise auch dem Klemmteil 9 durch einen inneren Wulst 14 und durch einen äußeren Wulst 15 abgedichtet. Die Wülste 14, 15 greifen in Nuten 20, 21 des Gehäuseteils 5 ein.
  • Der den ringförmigen Arbeitsraum aufweisende Gehäuseteil 4, der ein Pumpenkopfteil bildet, weist mittig zu der zentralen Öffnung 16 der Ringmembrane 3 eine Durchtrittsöffnung für eine Befestigungsschraube 17 auf (1) mit der das innenseitig der Kopfplatte 4 angeordnete, den inneren Membranrand 13 untergreifende Klemmteil 9 befestigt und zum Halten der Ringmembrane 3 gegen die Kopfplatte 4 gespannt werden kann. Das Klemmteil 9 befindet sich innerhalb von dem durch das hülsenförmige Antriebselement 8 gebildeten Ringraum 18, so dass dieser zur Verfügung stehende Platz ausgenützt ist. Insgesamt kann durch die direkte Antriebsübertragung von einem Exenterantrieb auf die Membrane und auch durch die platzsparende Anordnung des Klemmteils 9 innerhalb des Ringraums 18 eine Pumpe mit geringer Bauhöhe realisiert werden.
  • Das sich an das Antriebselement 8 anschließende Übertragungselement 7 kann ein Kunststoffteil sein, das an seinem dem Antriebselement 8 zugewandten Ende einen Ansatz 19 aufweist, auf den das hülsenartige Antriebselement 8 aufgesteckt werden kann und gegebenenfalls durch Presssitz oder Verklebung damit verbindbar ist.
  • Das Klemmteil 9 kann gegebenenfalls auch durch Vulkanisieren mit der Ringmembrane verbunden sein, so dass zusammen mit dem Antriebselement 8 ein aus drei Teilen bestehendes Bauelement gebildet ist. Es ergeben sich dann nur wenige Montageteile, die in kurzer Zeit zusammengebaut werden können.
  • Die Membranpumpe 1 ist vorzugsweise als Förderpumpe für geringe Fördermengen bei vergleichsweise hoher Hubfrequenz ausgebildet. Beispielsweise lassen sich damit Fördermengen von 25 ml pro Minute realisieren, wobei 3000 Hübe pro Minute vorgesehen sein können. Die hohe Hubzahl ist erforderlich, damit die Ventile exakt arbeiten und die Toleranzen der Ventilpartien nicht zu eng gesetzt werden müssen. Für eine solche Kleinstpumpe kann die in 3 und 4 perspektivisch zusammen mit dem Antriebselement 8 dargestellte Ringmembrane 3 beispielsweise einen Außendurchmesser von 10 mm aufweisen, so dass die Darstellungen in 3 und 4 etwa einem Maßstab von 5:1 entsprechen würden.
  • Erwähnt sei noch, dass das hülsenförmige Antriebselement 8 vorzugsweise eine durchgehende Wandung hat, gegebenenfalls aber auch eine mit Aussparungen versehene Wandung oder eine durch wenigstens bereichsweise durch Stäbe oder Finger gebildete Wandung aufweisen kann, so dass eine entsprechende Massenreduzierung oder ein Zutritt zu dem inneren Ringraum vorhanden ist.
  • Weiterhin sei erwähnt, dass die ringförmige Membrane 3 zwar bevorzugt eine kreisrunde Form hat, jedoch auch eine davon abweichende Form haben kann. Gleiches gilt für das daran angreifende Antriebselement 8 beziehungsweise die zum Antrieb führende Fortsetzung der Membrane, das beziehungsweise die zumindest im Anschlussbereich bei der Membrane vorzugsweise jeweils gleiche Formen wie die Membrane und dabei insbesondere wie deren dem Arbeitsraum 6 zugewandter Bereich oder auch davon abweichend ausgebildet sein können. Beispielsweise kann die ringförmige Membrane insgesamt oder bereichsweise eine elliptische Form aufweisen, was Vorteile in Verbindung mit einem Kurbeltrieb und der damit verbundenen Pendelbewegung des Antriebselementes ergibt. Die Pendelbewegung verläuft dabei vorzugsweise in Richtung der kleinen Achse der Ellipse.
  • Auch besteht die Möglichkeit, den den Arbeitsraum 6 begrenzenden Ringbereich der Membrane 3 und den Außenrandbereich 12 unterschiedlich zu gestalten.
  • Mit der erfindungsgemäßen Membranpumpe 1 ist insbesondere eine schnelllaufende Membran-Flüssigkeitspumpe geschaffen, bei der eine Kombination von hoher Hubzahl bei gleichzeitig geringer Fördermenge vorhanden ist und die trotzdem konstruktiv einfach und stabil im Aufbau ist. Solche Membranpumpen 1 sind vor allem in Labors oder auch für mikrosystemtechnische Anwendungen einsetzbar. Durch die erfindungsgemäße Membrane 2 sind auch noch kleinere Ausführungsformen der Membrane 2 als in der in 2 bis 4 im Maßstab 5:1 dargestellten Größe möglich.

Claims (18)

  1. Membranpumpe (1) mit einem ringförmigen Arbeitsraum (6) und einer ringförmigen Membrane (3), die an ihrem äußeren Umfangsbereich (12) und an ihrem inneren Randbereich (13) eingespannt ist, wobei die innere und die äußere Membran-Einspannstelle relativ zueinander feststehend sind und wobei zwischen der äußeren und inneren Einspannstelle ein mit einem Pumpenantrieb verbundenes Antriebselement (8) zur Auslenkung der ringförmigen Membrane (3) angreift, wobei das Antriebselement (8) der Membrane zugewandt hülsen- oder ringförmig mit einem etwa dem ringförmigen Arbeitsraum (6) entsprechenden Durchmesser ausgebildet ist und mit einer seiner ringförmigen Stirnseiten quer zur Membranebene an der dem Pumpenantrieb zugewandten Seite der Ringmembrane (3) zur Auslenkung und zur Übertragung einer Hin- und Herbewegung an der Ringmembrane (3) angreift.
  2. Membranpumpe nach Anspruch 1, dadurch gekennzeichnet, dass das zumindest bereichsweise hülsenförmige Antriebselement (8) nur an einer Seite der Ringmembrane (3) an der dem Arbeitsraum (6) abgewandten Seite befestigt ist.
  3. Membranpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das hülsenförmige Antriebselement (8) als Zylinderhülse mit durchgehender Wandung oder mit Aussparungen aufweisender Wandung oder mit einer wenigstens bereichsweise durch Stäbe oder Finger gebildeten Wandung ausgebildet ist.
  4. Membranpumpe nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Pumpenantrieb vorzugsweise als Exzenterantrieb ausgebildet ist, der ein mit dem hülsenförmigen Antriebselement (8) an dessen der Ringmembrane (3) abgewandten Ende verbundenes Übertragungselement (7) aufweist.
  5. Membranpumpe nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Ringmembrane (3) bei der inneren Membran-Einspanstelle zwischen einem den ringförmigen Arbeitsraum (6) aufweisenden Pumpenkopfteil (4) und einem damit verbindbaren Klemmteil (9) kraftschlüssig eingespannt und/oder formschlüssig gehalten ist.
  6. Membranpumpe nach Anspruch 5, dadurch gekennzeichnet, dass das bei der inneren Membran-Einspanstelle angeordnete Klemmteil (9) durch eine vorzugsweise zentrale Schraubverbindung mit dem Pumpenkopfteil (4) verbunden ist.
  7. Membranpumpe nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass das Klemmteil (9) mit der Ringmembrane (3) durch Vulkanisieren verbunden ist.
  8. Membranpumpe nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass sich das Klemmteil (9) bei der inneren Membran-Einspanstelle innerhalb des im wesentlichen durch das zumindest bereichsweise hülsenförmige Antriebselement (8) gebildeten Ringraums (18) befindet.
  9. Membranpumpe nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Ringmembrane (3) an ihrem Außenrand (12) zwischen dem den ringförmigen Arbeitsraum (3) aufweisenden Pumpenkopfteil und einem damit verbindbaren Gehäuseteil kraftschlüssig eingespannt und/oder formschlüssig gehalten ist.
  10. Membranpumpe nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das zumindest membranseitig hülsen- oder ringförmige Antriebselement (8) mit seiner der Ringmembrane (3) zugewandten, ringförmigen Stirnseite etwa in Verlängerung einer den ringförmigen Arbeitsraum (6) etwa mittig schneidenden, konzentrischen Ringfläche an der Ringmembrane angreift.
  11. Membranpumpe nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Ringmembrane (3) eine vorzugsweise ringförmig umlaufende, rippenartige Anschluss- und Stabilisierwulst (11) aufweist, die mit dem hülsen- oder ringförmigen Ende des Antriebselementes (8) verbunden ist und dass das Antriebselement im Verbindungsbereich vorzugsweise in den Anschluss- und Stabilisierwulst eingreift.
  12. Membranpumpe nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass die dem Arbeitsraum (6) zugewandte Seite der Ringmembrane (3) eine vorzugsweise durchgehende Beschichtung insbesondere aus PTFE aufweist.
  13. Membranpumpe nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das hülsenförmige Antriebselement (8) vorzugsweise durch Vulkanisieren und/oder form- und/oder kraftschlüssig mit der Ringmembrane (3) verbunden ist.
  14. Membranpumpe nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass das hülsenförmige Antriebselement (8) aus Metall, vorzugsweise Stahl und das damit verbindbare Übertragungselement (7) vorzugsweise aus Kunststoff bestehen.
  15. Membranpumpe nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass die Ringmembrane (3) an ihrem Außenrand (12) eine Außenwulst (15) und am inneren Rand eine Innenwulst (14) aufweist.
  16. Membranpumpe nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass sie als Förderpumpe für geringe Fördermengen im Bereich von vorzugsweise unter 100 ml pro Minute und einer hohen Hubfrequenz von etwa 50 Hz ausgebildet ist.
  17. Membranpumpe nach einem der Ansprüche 1, 2, 5 bis 12, 15 oder 16, dadurch gekennzeichnet, dass das Antriebselement (8) einstückig mit der Membrane (3) verbunden ist und einen Anschluss zum Koppeln mit dem Pumpenantrieb aufweist.
  18. Membranpumpe nach Anspruch 17, dadurch gekennzeichnet, dass in das aus dem Material der Membrane (3) bestehende Antriebselement (8) zumindest bereichsweise Armierungen aus biegesteifem Material integriert sind.
DE102004002079A 2004-01-15 2004-01-15 Membranpumpe Withdrawn DE102004002079A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102004002079A DE102004002079A1 (de) 2004-01-15 2004-01-15 Membranpumpe
DE502004001846T DE502004001846D1 (de) 2004-01-15 2004-10-29 Membranpumpe
EP04025738A EP1555434B1 (de) 2004-01-15 2004-10-29 Membranpumpe
US11/033,425 US7373872B2 (en) 2004-01-15 2005-01-11 Diaphragm pump
JP2005006629A JP5371171B2 (ja) 2004-01-15 2005-01-13 ダイヤフラムポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004002079A DE102004002079A1 (de) 2004-01-15 2004-01-15 Membranpumpe

Publications (1)

Publication Number Publication Date
DE102004002079A1 true DE102004002079A1 (de) 2005-08-11

Family

ID=34609560

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102004002079A Withdrawn DE102004002079A1 (de) 2004-01-15 2004-01-15 Membranpumpe
DE502004001846T Active DE502004001846D1 (de) 2004-01-15 2004-10-29 Membranpumpe

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE502004001846T Active DE502004001846D1 (de) 2004-01-15 2004-10-29 Membranpumpe

Country Status (4)

Country Link
US (1) US7373872B2 (de)
EP (1) EP1555434B1 (de)
JP (1) JP5371171B2 (de)
DE (2) DE102004002079A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140134019A1 (en) * 2012-11-15 2014-05-15 Mindray Medical Sweden Ab Magnetic circuit
CN108757409B (zh) * 2018-07-06 2023-08-25 珠海格力电器股份有限公司 隔膜组件、稳压泵及净水机

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3223045A (en) * 1959-05-04 1965-12-14 Chrysler Corp Fuel pump
US3291064A (en) * 1963-01-25 1966-12-13 Gen Motors Corp Diaphragm pump with annular pumping chamber

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2731534A (en) * 1948-02-26 1956-01-17 Taylor Winfield Corp Fluid pressure actuator for machine components
GB734294A (en) * 1952-11-05 1955-07-27 George William Webb Improvements in or relating to pumping apparatus for use with boats
US3008427A (en) * 1959-02-11 1961-11-14 Gen Motors Corp Fuel pump
US3252424A (en) * 1960-01-15 1966-05-24 Acf Ind Inc Fuel systems
US3241494A (en) * 1960-01-15 1966-03-22 Acf Ind Inc Fuel systems
JPS61160666A (ja) * 1984-12-29 1986-07-21 Nippon Valqua Ind Ltd ダイアフラムおよびその製造方法
US5291822A (en) * 1992-11-16 1994-03-08 Orbital Walbro Corporation Diaphragm for pressure regulators and method of making
DE4244619A1 (de) * 1992-12-31 1994-07-07 Knf Neuberger Gmbh Verfahren zum Betreiben einer Membranpumpe sowie Membranpumpe zum Durchführen des Verfahrens
US5634391A (en) * 1996-07-09 1997-06-03 Westinghouse Air Brake Co. Inert plastic coated flexible type diaphragm for application in a sanitary type pump
DE19802443C1 (de) * 1998-01-23 1999-05-12 Luk Fahrzeug Hydraulik Pumpe
DE19819408A1 (de) 1998-04-30 1999-11-11 Freudenberg Carl Fa Membranpumpe zur Förderung von gasförmigen oder flüssigen Medien
DE10233561B4 (de) * 2002-07-24 2008-02-21 Prominent Dosiertechnik Gmbh Sicherheitsmembran für eine Membranpumpe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3223045A (en) * 1959-05-04 1965-12-14 Chrysler Corp Fuel pump
US3291064A (en) * 1963-01-25 1966-12-13 Gen Motors Corp Diaphragm pump with annular pumping chamber

Also Published As

Publication number Publication date
JP5371171B2 (ja) 2013-12-18
DE502004001846D1 (de) 2006-12-07
JP2005201278A (ja) 2005-07-28
US7373872B2 (en) 2008-05-20
EP1555434B1 (de) 2006-10-25
EP1555434A1 (de) 2005-07-20
US20050158190A1 (en) 2005-07-21

Similar Documents

Publication Publication Date Title
DE2713599C2 (de)
DE3852260T2 (de) Pumpe und Ventil.
EP0733802B1 (de) Membranpumpe mit einer Formmembran
DE102009018930B4 (de) Rückschlagventil
EP3447290B1 (de) Austauschbarer pumpenkopf für eine membranpumpe
DE3545200A1 (de) Taumelscheibenkompressor mit variablem hub
DE2258832A1 (de) Kolbenpumpe
DE102007036119A1 (de) Hydraulischer Kettenspanner für ein Zugmittelgetriebe mit einem Gussgehäuse
DE102012219621A1 (de) Kolbenpumpe
DE2842611A1 (de) Auslassventileinrichtung eines kompressors
DE202005002471U1 (de) Membranpumpe
DE102005013409A1 (de) Handkolbenpumpe mit blockierbarem Ausgabekopf zur Ausgabe von fluiden Substanzen
DE3443768A1 (de) Schlauch-kolbenpumpe
DE2745470C3 (de) Pumpenventilkopf
EP1555434B1 (de) Membranpumpe
DE112009000777B4 (de) Handpumpe zum Pumpen von Kraftstoff
DE60309280T2 (de) Integriertes Ringventil für einen Kompressorkolben
DE69723144T2 (de) Doppelmembranpumpe
DE102006055556B4 (de) Membranpumpe
DE3882949T2 (de) Hin- und herbewegende schaltungsstrukttur für pumpe.
DE9416432U1 (de) Dichtung
DE102006044255B3 (de) Membranpumpe zur Förderung und Dosierung eines Fluids
DE69502036T2 (de) Antriebsvorrichtung für einen Kolben durch Fluidumdruck
DE19844518A1 (de) Hydraulischer Wegverstärker für Mikrosysteme
EP1520988A1 (de) Schlauchmembran-kolbenpumpe

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8130 Withdrawal