EP3830316A1 - Procédé de fabrication d'une couche de transport poreuse pour une cellule électrochimique - Google Patents

Procédé de fabrication d'une couche de transport poreuse pour une cellule électrochimique

Info

Publication number
EP3830316A1
EP3830316A1 EP18756157.6A EP18756157A EP3830316A1 EP 3830316 A1 EP3830316 A1 EP 3830316A1 EP 18756157 A EP18756157 A EP 18756157A EP 3830316 A1 EP3830316 A1 EP 3830316A1
Authority
EP
European Patent Office
Prior art keywords
layer
porous
binder
metal
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18756157.6A
Other languages
German (de)
English (en)
Inventor
Stefan Höller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoeller Electrolyzer GmbH
Original Assignee
Hoeller Electrolyzer GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoeller Electrolyzer GmbH filed Critical Hoeller Electrolyzer GmbH
Publication of EP3830316A1 publication Critical patent/EP3830316A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • C23C24/085Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/087Coating with metal alloys or metal elements only
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • C25B11/032Gas diffusion electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • C25B9/23Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms comprising ion-exchange membranes in or on which electrode material is embedded
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a process for producing a porous transport layer for an electrochemical cell, in particular for an electrolyser from PEM-Bauarf, in particular for the electrolytic splitting of water into oxygen and hydrogen.
  • Porous transport layers also known under the term PTL (Porous Transport Layer) are used for electrochemical cells, for example electrolysers from PEM-Bauarf (PEM sfehf for Profon Exchange Membrane and Polymer Electrolyte Membrane), on the one hand to reactants, e.g. , B. water, to bring the catalysts and the PEM of the cell stack formed from electrolysers and on the other hand to remove the reaction products again.
  • PEM-Bauarf PEM sfehf for Profon Exchange Membrane and Polymer Electrolyte Membrane
  • reactants e.g. , B. water
  • these also have an essential electrical function in order to supply the largest possible current to the catalysts on the cell membrane over a large area or, for example, to derive them from the membrane in a fuel cell.
  • Bipolar plates with integrated current distribution layers are already state of the art, in which the individual parts are connected to one another by sintering.
  • the invention is based on the object of improving a generic method for producing a porous transport layer for an electrochemical cell, in particular for the oxygen, ie anode side of a PEM electrolyzer. [07] This object is achieved according to the invention by a method with the features specified in claim 1. Vorfeilhaffe refinements of the invention are specified in the claims, the following description and the drawings.
  • a metal which forms part of the transport layer should, for example titanium, be mixed as a powdered powder with a binder ⁇ and subsequently formed into a flat element or applied to a carrier film.
  • the flat element formed from metallic powder and a binder, or the carrier foil provided with metallic powder is brought to bear on a porous metallic layer or a green file of a porous metallic layer ⁇ .
  • the flat element can also be applied directly to a porous metallic layer or a green file or brown file of a porous metallic layer.
  • the binder and the carrier film are removed ⁇ and the remaining brown file layer is sintered with the porous Mefall layer or the brown file of the porous Mefall layer or connected by diffusion welding.
  • an intimate, smooth-fitting bond is created, in which a microporous Mefall layer is connected to a porous Mefall layer to form a component.
  • the basic idea of the method according to the invention is to provide a porous metallic layer, such as is basically state of the art ⁇ and used for the production of such a porous metallic layer, with a fine porous (microporous) metallic layer by that powdery powdered powder is first mixed with a binder ⁇ .
  • This binder can be a binder consisting of several substances, for example consisting of polyethylene and wax, in order in this way to produce a material which is referred to as feedsfock and which can then be processed in an extruder or another suitable machine under the action of heat and pressure in such a way that a suitable material is used Shaping is possible.
  • the shaping is carried out to form a planar element, for example a thin film, a thin planar layer or with the aid of a carrier film on which the thin layer is applied.
  • a flat element is formed into a self-supporting element such as a film or formed by means of a carrier film as a layer on such a layer or is brought directly as a layer onto a porous metal layer of preferably the same material or onto a green part of such a porous metal layer.
  • the binder and the carrier sequence which may be present are typically removed alternatively or additionally by thermal debinding by chemical debinding.
  • the then remaining porous metal layer with the flat element thereon as a brown part - is the metal part remaining from the film / carrier film after removal of the binder and the carrier film - is then sintered, i.e. H. connected to a component by exposure to high temperature and, if necessary, additional pressure. Alternatively, this can also be done by diffusion welding.
  • the porous metal layer is made from a metal powder and a binder ⁇ , then the process of removing the binder and the subsequent sintering process of both layers, i.e. the porous metal to be achieved, can be done tall slaughter and the flat element arranged thereon or the parts remaining after removal of the binder are sintered simultaneously and together.
  • the flat element to be formed which in the finished product forms the later thin, microporous, electrically conductive and fluid-permeable layer for contacting a catalyst surface can either be produced by producing an inherently stable, ie self-supporting film, by applying a layer on a carrier film or by applying a layer directly to the porous one me metallic layer or a green part of the porous metallic layer, if this is to be produced in the same way.
  • metal powder and binder on a carrier foil, e.g. B. a film made of polyethylene, then must first be removed by thermal and / or chemical treatment of the binder and the carrier film, after which then also egg brown part layer consisting of fine metal powder remains, which is sintered together with the porous metal layer.
  • a carrier foil e.g. B. a film made of polyethylene
  • these layers can also be joined by diffusion welding.
  • the method according to the invention enables a cost-effective and at the same time effective production of porous transport layers with a comparatively low use of metal material.
  • a very uniform and at the same time particularly thin microporous layer can thus be applied to the porous metal layer and thus a thinly constructed porous transport layer which is highly effective in terms of electrical connectivity and fluid permeability is formed.
  • the sintering of the materials can optionally be supplemented by pressurization additionally or before or after the thermal treatment.
  • porous transport layer formed from titanium or a titanium alloy. see, it is understood that, however, with the method according to the invention, porous transport layers can also be formed from other metals or metal alloys.
  • the porous metal layer used and the grain size of the metal powder are decisive for the layer thickness, which is specified in more detail below.
  • the mixture formed from metal powder with a binder is extruded, that is to say using an extruder, to form a film.
  • extruders are known from plastic injection molding technology and are available in numerous variants.
  • the film thus formed ⁇ forms a green part, the binder of which is typically subsequently removed by thermal treatment, i.e. by heating, after the film has been applied to the porous metal layer or a green part or a brown part of the porous metal layer, which then has the supporting function the slide takes over.
  • the film can be shaped by continuous casting, the film possibly being subjected to mechanical reworking, be it still warm or in cold form, in order to bring about a stretching or thinning effect by rolling.
  • the film can be shaped by calendering in accordance with a further development of the invention.
  • the layer thickness can be made more uniform ⁇ , moreover, a certain rolling effect can also be achieved ⁇ with this process.
  • Calendering can take place after extrusion or continuous casting.
  • the manufacturing method according to the invention can also be used bypassing film technology, be it the formation of a film from Mefall powder and binder or the use of a carrier film to which Mefall powder with binder is applied if the Mefall powder mixed with a binder is not suitable a film, but is applied to the porous metal layer using the screen printing process.
  • the binder used for the screen printing process can typically be a different binder than that used to form the film.
  • the temperature and viscosity are to be coordinated so that this mixture of metal powder and binder can be applied to the porous metal layer by means of a doctor blade through a suitable, fine-meshed fabric, and after removal of the fabric this layer flows together to form a layer that is as homogeneous as possible and has the same thickness ⁇ .
  • the binder Before sintering, the binder must be removed again, which can be done by thermal and / or chemical exposure.
  • the print layer can be rinsed with a solvent before or after the thermal treatment so that the diffusion processes are not hindered by contamination of the binder during later sintering.
  • the porous metal layer can be formed by a sintered metal plate, a metal mesh and / or a metal felt.
  • Such sintered metal plates are part of the prior art and are offered, for example, by the GKN Group or the US MOTT Corporation.
  • the use of metal felt, as z. B. from NV Bekare ⁇ S.A. are offered for these purposes or are offered by the German Melicon GmbH.
  • metal powder which has a maximum grain size less than 45 miti in white ⁇ .
  • the maximum grain size is less than 20 miti or even more favorably less than 10 miti, which is currently considered to be the smallest possible, manageable and commercially available grain size. In principle, an even smaller grain size would be desirable, but is not feasible according to the current state of the art.
  • the microporous layer is provided, for example, in a PEM electrolyzer for contacting a catalyst layer arranged on a polymer electrolyte membrane. To ensure that the To ensure proper system, it is provided according to a development of the method according to the invention to smooth the surface of the porous transport layer on its soap intended for contact with a catalyst, ie the free surface of the microporous layer, by grinding and / or rolling.
  • the film formed from metal powder and binder in a thickness of 0.04 mm to 0.2 mm, preferably in one Thickness from 0.04mm to 0.1mm.
  • the minimum layer thickness is determined by the maximum grain size, the smaller the maximum grain size, the smaller the layer thickness of the film can be.
  • the porous metallic layer has a grain size that is significantly above that used to manufacture the microporous layer.
  • it is intended to weld this porous transport layer to a bipolar plate so as to to produce a component that is easy to handle in the assembly process of an electrolyser and that can be used in particular in automated assembly processes.
  • a bipolar plate can e.g. B. made of titanium or titanium-coated stainless steel and is smoothly connected to the porous Mefall layer. It goes without saying that the areal extension of the bipolar plate and the transport layer are matched to one another.
  • FIG. 1 shows the structure of an electrolytic cell of a PEM electrolyzer in a greatly simplified schematic sectional view
  • FIG. 2 shows a schematic sectional view of the extrusion of a film formed from metallic foil and binder
  • FIG. 3 shows the structure of the film in an enlarged sectional view
  • FIG. 4 shows the film placed on the porous metallic layer in the position corresponding to FIG. 3,
  • FIG. 4a shows the foil placed on a green part of a porous metallic layer in a representation corresponding to FIG. 4,
  • FIG. 5 shows the arrangement of FIG. 4 after removing the binder, 6 the porous transport layer on its surface in an enlarged representation in section after smoothing,
  • Fig. 8 shows a schematic representation of the application of the mass consisting of metal powder and binder on the porous metal layer in the screen printing process.
  • FIG. 1 The basic structure of a PEM electrolyser is shown in Fig. 1.
  • the electrical voltage for the production of hydrogen and oxygen from water is applied to two outer bipolar plates 1, which have channels 2 for supplying the reactant, the water and for removing the reaction products hydrogen and oxygen.
  • the channels 2 of the bipolar plates 1 which are open to the interior of the electrolytic cell are covered by porous transport layers 3, 4 which are electrically conductive and permeable to liquids.
  • the po rös transport layers 3 and 4 are each electrically conductive to egg ner catalyst layer 5 and 6, which are applied to a PEM 7.
  • the anode-side transport layer 4 consists of titanium and the cathode-side transport layer 3 consists of graphite.
  • the anode-side catalyst layer 6 is formed from iridium oxide, the cathode-side catalyst layer 5 from platinum. Such a structure is part of the prior art and is therefore not explained in detail here.
  • Such an electrolysis cell is sealed on the circumference, so that the required fluid guidance is ensured.
  • a large number of such electrolysis cells are arranged one on top of the other as a stack (electrolysis stack) in order to produce a powerful but compact electronic form trolyseur.
  • the anode-side porous transport layer and its production method are explained below, wherein this porous transport layer 4 can also be used for other electrochemical applications, so that the electrolyzer application is only given here by way of example.
  • the porous transport layer 4 which is formed from titanium, consists of a porous metallic layer 8 in the form of a felt layer 8 formed from titanium fibers, which is gas-permeable and conductive.
  • This felt layer 8 is 0.25 mm thick and forms ⁇ the carrier of the porous transport layer 4, on which a microporous metal layer 9 is applied, which together with the metal layer 8 forms the anode-side porous transport layer 4 made of titanium ⁇ .
  • This microporous metal layer 9 is made ⁇ by using fine metal powder, here titanium powder, with a maximum grain size of 10 miti with a binder, for example made of polyethylene and wax ⁇ . The metal powder and the binder formed from polyethylene and wax are mixed intensively and granulated into a feedstock.
  • This granule ⁇ is liquefied using an extruder ⁇ and processed using a calender 1 1 to form a film 10 ⁇ , which has a thickness of 0.1 mm ⁇ .
  • This film 10 forms the green part in this powder injection molding process, this film 10 is in section in FIG. 3 shown ⁇ and is subsequently brought up on the porous Mefallschichf 8, so that the arrangement shown in FIG. 4 results ⁇ .
  • the film 10 consists of metal grains 12 which are enclosed by the binder 13 or connected to each other by this.
  • the porous metal layer 8 is also made of titanium and forms the carrier for the foil 10 lying thereon. h "In a first thermal process, the structure consisting of porous metal layer 8 and foil 10 is heated to such an extent that the binder 13 is removed and the metal grains 12 come to rest on the porous metal layer 8. The metal grains 12 now form a brown part which, together with the porous metal layer 8, is subjected to a further heat treatment at a higher temperature (sintering), so that the metal grains 12 sinter with one another and with the porous metal layer, i. H. be united and compressed to their final geometric and mechanical properties.
  • sintering a higher temperature
  • this composite can also be formed by diffusion welding.
  • the porous transport layer 4 formed in this way is formed by the porous metal layer 8 with a felt structure and the microporous metal layer 9 lying above it.
  • the surface of the latter is smoothed by rolling, so that there is a surface 14 as shown schematically in FIG. 6. If necessary, the surface can be smoothed by grinding or a combination of these processing methods. It serves to ensure that the porous transport layer 4 formed in this way is in full contact with the catalyst layer 6.
  • the surface 14 is the microporous Metal layer ⁇ 9, as shown in Fig. 7 ⁇ , microscopically roughened by pickling ⁇ .
  • a film 10 consisting of metallic granules 12 and binder 13 is manufactured as a green part by injection molding ⁇ .
  • this can also be done by setting a z. B. film made of polyethylene is used as a carrier film ⁇ , which is provided with metal powder 12 and binder 13, this film then provided with a metal powder-binder mixture instead of the film 10 shown in FIG. 4 on the porous metal layer 8 is applied.
  • the further manufacturing process follows ⁇ as described above.
  • FIG. 8 an alternative manufacturing process for producing and applying the microporous layer 9 is shown in the screen printing process ⁇ .
  • a fabric 15 is placed on the porous metal layer ⁇ 8 as a template and subsequently applied with a squeegee 16, instead of the otherwise applied printing ink, here a pasty / liquid substance 1 7 consisting of metal beads 12 and a binding agent.
  • a pasty / liquid substance 1 7 consisting of metal beads 12 and a binding agent.
  • the tissue 15 is removed and the pasty / liquid substance 1 7 by thermal action or z.
  • B Evaporation of a solvent solidified, whereby the consistency of the pasty / liquid substance 1 7 is set such that after the removal of the tissue 15 a certain distribution still occurs ⁇ , so that a homogeneous smooth surface is formed ⁇ .
  • the binder is removed by a first thermal treatment and subsequently a bond of the metal grains 12 among themselves and with the porous metal layer 8 is produced by sintering or diffusion welding.
  • the surface treatment steps can be carried out as described above.
  • the thermal see removing the binder by chemical removal or a combination of both ⁇ .
  • the microporous metal layer ⁇ 9 is always applied to a porous metal layer ⁇ 8, be it by placing a corresponding film 10 or a carrier film provided with metal powder and binder or by direct application of the mixture formed from metal grains and binder.
  • the porous metal layer ⁇ 8 can also be manufactured in a manner analogous to that of the microporous metal layer ⁇ 9. It is understood that a mixture of metal powder and binder is used here, the metal grains 12 of which are clear larger than the Metallkör ner 12 of the microporous metal layer ⁇ and its binder 13a may have the same surface or a different composition than the binder 13.
  • FIG. 4a shows a green part 8a of such a porous metal layer ⁇ , which is processed together with the green part of the overlying layer, which later forms the microporous metal layer ⁇ 9, i. h “First, the binders 13 and 13a are removed from both layers ⁇ , so that a two-layer brown part is formed from two brown parts, which is sintered to the porous transport layer ⁇ 4 in the subsequent sintering process.
  • the porous transport layer ⁇ 4 thus formed is then expediently, for. B. by welding, cohesively connected to the bipolar plate 1, so that an inherently stable, self-supporting component arises ⁇ , which is particularly easy to handle in an automated assembly process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Inert Electrodes (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Fuel Cell (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

Le procédé de fabrication d'une couche de transport poreuse (4) d'une cellule électrochimique consiste à mélanger une poudre métallique avec un liant et à la transformer ensuite en film. Le film est mis en contact avec une couche métallique poreuse (8), le liant est ensuite enlevé et la couche (9) partielle brune restante est frittée avec la couche métallique poreuse (8) de sorte qu'une couche de transport poreuse (4) soit formée qui présente une couche métallique poreuse (8) ayant une couche métallique microporeuse (9) appliquée sur celle-ci.
EP18756157.6A 2018-07-27 2018-07-27 Procédé de fabrication d'une couche de transport poreuse pour une cellule électrochimique Pending EP3830316A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/070458 WO2020020467A1 (fr) 2018-07-27 2018-07-27 Procédé de fabrication d'une couche de transport poreuse pour une cellule électrochimique

Publications (1)

Publication Number Publication Date
EP3830316A1 true EP3830316A1 (fr) 2021-06-09

Family

ID=63254669

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18756157.6A Pending EP3830316A1 (fr) 2018-07-27 2018-07-27 Procédé de fabrication d'une couche de transport poreuse pour une cellule électrochimique

Country Status (8)

Country Link
US (1) US20210164109A1 (fr)
EP (1) EP3830316A1 (fr)
JP (1) JP7290711B2 (fr)
KR (1) KR102625438B1 (fr)
CN (1) CN112513335A (fr)
AU (1) AU2018433633B2 (fr)
CA (1) CA3107046C (fr)
WO (1) WO2020020467A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4285427A1 (fr) * 2021-01-26 2023-12-06 Electric Hydrogen Co. Couches d'interconnexion dans des cellules électrochimiques
WO2022233386A1 (fr) * 2021-05-03 2022-11-10 Hoeller Electrolyzer Gmbh Empilement d'électrolyse de l'eau pour générer de l'hydrogène et de l'oxygène à partir d'eau
WO2023061869A1 (fr) 2021-10-15 2023-04-20 Basf Se Procédé de fabrication d'une couche de transport poreuse
DE102021214920A1 (de) * 2021-12-22 2023-06-22 Siemens Energy Global GmbH & Co. KG Halbzelle einer Elektrolysezelle für einen Elektrolyseur und Verfahren zum Herstellen einer Komponente für eine Elektrolysezelle
WO2023167859A2 (fr) * 2022-03-01 2023-09-07 Electric Hydrogen Co. Couches de transport poreuses pour cellules électrochimiques
WO2023242404A1 (fr) 2022-06-17 2023-12-21 Headmade Materials Gmbh Procédé de production d'un dispositif destiné à être utilisé dans la filtration, des procédés chimiques ou des procédés électrochimiques comprenant une couche poreuse et une couche de support et dispositif pouvant être obtenu au moyen du procédé
EP4292731A1 (fr) 2022-06-17 2023-12-20 Element 22 GmbH Procédé de production de structures de feuilles en couches à partir de titane ou d'alliages de titane à utiliser dans des électrodes d'électrolyseurs et/ou de piles à combustible de type pem
DE102022121615A1 (de) * 2022-08-26 2024-02-29 Schaeffler Technologies AG & Co. KG Bipolarplatte, Elektrolyseur und Verfahren zur Herstellung einer Bipolarplatte
EP4343898A1 (fr) 2022-09-21 2024-03-27 iGas energy GmbH Combinaison d'une couche de transport poreuse et d'une plaque bipolaire pour cellules électrochimiques
KR20240053329A (ko) 2022-10-17 2024-04-24 현대자동차주식회사 다공성 확산층용 조성물, 이로부터 제조된 다공성 확산층, 및 이의 제조방법
CN117026171B (zh) * 2023-08-16 2024-02-06 上海亿氢能源科技有限公司 基于脉冲激光沉积技术制备pem电解槽多孔扩散层的方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1006811A (en) * 1962-11-28 1965-10-06 Canadian Patents Dev Improvements in or relating to ceramic capacitors
JPS62227097A (ja) * 1986-03-27 1987-10-06 Agency Of Ind Science & Technol チタン電極
US5368667A (en) * 1993-01-29 1994-11-29 Alliedsignal Inc. Preparation of devices that include a thin ceramic layer
US5599456A (en) * 1993-09-03 1997-02-04 Advanced Waste Reduction Fluid treatment utilizing a reticulated foam structured media consisting of metal particles
JPH09118902A (ja) * 1995-10-25 1997-05-06 Mitsubishi Materials Corp 積層体の製造方法及び積層体並びに多孔質焼結金属板の製造方法
DE19619333C1 (de) * 1996-05-14 1997-05-15 Dirk Schulze Mehrschichtige Elektrode für Elektrolysezelle
JP3508604B2 (ja) * 1998-04-08 2004-03-22 三菱マテリアル株式会社 高強度スポンジ状焼成金属複合板の製造方法
JP3644007B2 (ja) 1998-08-11 2005-04-27 株式会社豊田中央研究所 燃料電池
JP2001073010A (ja) 1999-09-03 2001-03-21 Ishikawajima Harima Heavy Ind Co Ltd 金属多孔体の焼成方法
JP2001279481A (ja) * 2000-03-29 2001-10-10 Shinko Pantec Co Ltd 給電体の製造方法および給電体
US6860976B2 (en) * 2000-06-20 2005-03-01 Lynntech International, Ltd. Electrochemical apparatus with retractable electrode
JP3982356B2 (ja) 2002-07-24 2007-09-26 三菱マテリアル株式会社 固体高分子型燃料電池の集電板
JP4346874B2 (ja) * 2002-08-08 2009-10-21 株式会社大阪チタニウムテクノロジーズ 多孔質導電板
JP3819341B2 (ja) 2002-08-08 2006-09-06 住友チタニウム株式会社 多孔質導電板
JP4396091B2 (ja) 2002-09-30 2010-01-13 三菱マテリアル株式会社 燃料電池用ガス拡散層
US7718293B2 (en) * 2002-10-14 2010-05-18 Reinz-Dichtungs-Gmbh Electrochemical system with fluid passage integrated within a sealing bead
JP3894093B2 (ja) 2002-10-21 2007-03-14 富士電機ホールディングス株式会社 電気化学装置およびその製造方法
JP2005339594A (ja) * 2004-05-24 2005-12-08 Fuji Photo Film Co Ltd 磁気記録再生方法およびこれに用いる磁気記録媒体
JP4165655B2 (ja) * 2005-02-25 2008-10-15 本田技研工業株式会社 電解装置、電気化学反応型膜装置及び多孔質導電体
US20090092862A1 (en) * 2005-12-14 2009-04-09 Wispi.Net Integrated self contained sensor assembly
JP5353054B2 (ja) 2008-05-16 2013-11-27 三菱マテリアル株式会社 保水部材用多孔質金属及び燃料電池用保水部材
FR2948821B1 (fr) * 2009-08-03 2011-12-09 Commissariat Energie Atomique Cellule electrochimique a metal support et son procede de fabrication
JP5573110B2 (ja) 2009-11-06 2014-08-20 三菱マテリアル株式会社 電気化学部材用焼結金属シート材及び電気化学部材用焼結金属シート材の製造方法
DE102011083118A1 (de) * 2011-09-21 2013-03-21 Future Carbon Gmbh Gasdiffusionsschicht mit verbesserter elektrischer Leitfähigkeit und Gasdurchlässigkeit
DE102013207075A1 (de) 2013-04-19 2014-10-23 Robert Bosch Gmbh Bipolarplattenkonzept mit integrierten Stromverteilern für Elektrolyseure
DE102013207900A1 (de) * 2013-04-30 2014-10-30 Volkswagen Ag Membran-Elektroden-Einheit und Brennstoffzelle mit einer solchen
DE102013008473A1 (de) * 2013-05-21 2014-11-27 Plansee Composite Materials Gmbh Brennstoffzelle
US10084192B2 (en) * 2014-03-20 2018-09-25 Versa Power Systems, Ltd Cathode contact layer design for preventing chromium contamination of solid oxide fuel cells
DE102015111918A1 (de) 2015-07-17 2017-01-19 Deutsches Zentrum für Luft- und Raumfahrt e.V. Stromkollektor, Membraneinheit, elektrochemische Zelle, Verfahren zur Herstellung eines Stromkollektor, einer Membraneinheit und einer elektrochemischen Zelle
US10734656B2 (en) * 2016-08-16 2020-08-04 University Of South Carolina Fabrication method for micro-tubular solid oxide cells
KR101931504B1 (ko) * 2017-03-23 2018-12-21 (주)엘켐텍 전기화학 셀용 막전극접합체

Also Published As

Publication number Publication date
WO2020020467A1 (fr) 2020-01-30
JP2021531411A (ja) 2021-11-18
US20210164109A1 (en) 2021-06-03
CA3107046A1 (fr) 2020-01-30
KR20210029275A (ko) 2021-03-15
AU2018433633A1 (en) 2021-02-11
AU2018433633B2 (en) 2022-04-28
JP7290711B2 (ja) 2023-06-13
KR102625438B1 (ko) 2024-01-15
CA3107046C (fr) 2023-07-25
CN112513335A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
EP3830316A1 (fr) Procédé de fabrication d'une couche de transport poreuse pour une cellule électrochimique
DE19548422A1 (de) Materialverbunde und ihre kontinuierliche Herstellung
WO2009115227A2 (fr) Élément structurel à nanofils
DE102005023615A1 (de) Verfahren zur Herstellung von Gasdiffusionselektroden
EP1402587B1 (fr) Procede pour la production d'electrodes a diffusion gazeuse
EP2335312B1 (fr) Procédé de fabrication d'un interconnecteur pour piles à combustible à haute température, pile à combustible à haute température correspondante et système de piles à combustible constitué de piles à combustible de ce type
DE102013108413A1 (de) Verfahren zum Herstellen eines Brennstoffzellenstapels sowie Brennstoffzellenstapel und Brennstoffzelle/Elektrolyseur
EP3513416A1 (fr) Procédé de fabrication de composants électroniques par impression 3d
EP3000145A1 (fr) Pile à combustible
EP1769551A1 (fr) ELECTRODE DE DIFFUSION GAZEUSE A BASE D'ARGENT, DESTINEE A ETRE UTILISEE DANS DE L'AIR CONTENANT DU CO<SB>2</SB>, ET SON PROCEDE DE PRODUCTION
WO2019145337A1 (fr) Procédé de fabrication d'une électrode pour une batterie et électrode pour une batterie
EP2744028A1 (fr) Électrode destinée au fonctionnement d'une cellule de combustible et procédé destiné à sa fabrication
WO2021198137A1 (fr) Procédé de fabrication d'une structure conductrice de gaz et/ou d'électrons et pile à combustible/cellule d'électrolyse
DE2936142A1 (de) Verfahren zur herstellung der messelektrode einer elektrochemischen zelle
EP2157641B1 (fr) Procédé de fabrication d'une plaque bipolaire et plaque bipolaire pour une batterie bipolaire au plomb
EP4200926A1 (fr) Procédé de production d'ensemble à structure fonctionnelle pour pile à combustible et ensemble membrane-électrode
DE2924669A1 (de) Zusammengesetzte graphit-harz- elektrodenstruktur und verfahren zu ihrer herstellung
DE102008036318A1 (de) Verfahren zur Herstellung einer Bipolarzelle und Bipolarzelle für eine bipolare Batterie
WO2019185416A1 (fr) Structure de répartiteur de gaz pour une pile à combustible
DE10056535A1 (de) Brennstoffzellenanordnung und Verfahren zur Herstellung einer solchen
WO2018019586A1 (fr) Procédé de fabrication d'un collecteur de courant pour une pile à combustible et pile à combustible
EP4303957A2 (fr) Procédé de fabrication d'un support d'électrode électrolytique pour applications électrochimiques et support d'électrode électrolytique
DE102008036320B4 (de) Verfahren zur Herstellung einer Bipolarplatte und Bipolarplatte für eine bipolare Batterie
EP4285426A1 (fr) Système de revêtement multicouche notamment destiné à être appliqué sur une pile à combustible et pile à combustible comportant un tel système de revêtement
WO2024105229A2 (fr) Composite à demi-cellules destiné à être utilisé dans des cellules électrochimiques

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20201223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20221129