EP3684981A1 - Procédé d'installation d'un pieu et pieu - Google Patents

Procédé d'installation d'un pieu et pieu

Info

Publication number
EP3684981A1
EP3684981A1 EP18734451.0A EP18734451A EP3684981A1 EP 3684981 A1 EP3684981 A1 EP 3684981A1 EP 18734451 A EP18734451 A EP 18734451A EP 3684981 A1 EP3684981 A1 EP 3684981A1
Authority
EP
European Patent Office
Prior art keywords
pile
collar
soil material
diameter
lateral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18734451.0A
Other languages
German (de)
English (en)
Inventor
Volker Herwig
Benjamin Matlock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rwe Offshore Wind GmbH
Original Assignee
Innogy SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innogy SE filed Critical Innogy SE
Publication of EP3684981A1 publication Critical patent/EP3684981A1/fr
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/24Placing by using fluid jets
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/32Foundations for special purposes
    • E02D27/42Foundations for poles, masts or chimneys
    • E02D27/425Foundations for poles, masts or chimneys specially adapted for wind motors masts
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D27/00Foundations as substructures
    • E02D27/10Deep foundations
    • E02D27/12Pile foundations
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles
    • E02D5/32Prefabricated piles with arrangements for setting or assisting in setting in position by fluid jets
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/26Placing by using several means simultaneously
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0056Platforms with supporting legs
    • E02B2017/0065Monopile structures
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B17/00Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
    • E02B2017/0091Offshore structures for wind turbines
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/18Placing by vibrating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore

Definitions

  • the present invention relates to a process for the instal- lation of a pile, in particular a monopile for a wind ⁇ turbine, in a bottom and a pile, in particular a monopile, for a wind turbine.
  • the installation of piles in a subsoil or soil is usually carried out with beating or vibrating application methods. If the vibration technology is used for the installation of piles at a designated final depth, it may occur in non-cohesive dense or very dense soils for local loosening and / or liquefaction of soil in areas adjacent to the pile. This loosening and / or liquefaction leads to a reduction in the lateral pile load capacities.
  • the invention relates to a method for installing a pile, in particular a monopile for a wind power plant in a soil with the method ⁇ steps of:
  • the lateral pile load capacity can be increased.
  • the method can be used, for example, to install a
  • Pile are for offshore or onshore wind turbine ver ⁇ spent.
  • an engagement of the pile can take place in a non-cohesive soil.
  • the non-cohesive soil consists essentially of sand and / or gravel, in particular sand with a grain size of, for example, 0.2 to 1 mm in diameter.
  • the compaction of the soil material can be effected by mechanical sealing , in particular displacement of soil material. Alternatively or additionally, the compaction can be achieved as a result of a local change in the particle size distribution of the soil material.
  • a further embodiment of the method provides that the compaction of the soil material surrounding the outer surface of the pile comprises the following method step: mechanical compaction of the soil material by engagement of the lateral surface of the pile at least partially ⁇ surrounding collar or by engaging a local increase in diameter, such as a pile thickening, pile widening or the like, in the ground.
  • the collar has a larger diameter than the pile and can cause an axial displacement of the soil material ent ⁇ long a direction of engagement or along a longitudinal axis of the pile.
  • the collar can abut against an outer circumferential surface of the pile in a gap-free or flush manner.
  • a lo ⁇ cal compression zone adjoining the collar can be formed by compacted soil material.
  • An axial length of the compression zone may be more than 1 m, in particular more than 5 m.
  • an exciter frequency of the vibration device is reduced during the engagement of the collar in the ground.
  • a feed By reducing the excitation frequency, a feed can be reduced or adjusted in the region of a bottom engaging end face of the pile, but there is an increased compaction of the soil material in the region of the collar.
  • the reduced excitation frequency may be maintained for a predetermined period of time until the required degree of compaction is achieved over a required axial length of a compression zone.
  • compaction can take place by a local change in the particle size distribution of the soil material.
  • Change in the particle size distribution of the soil material by injection of a fluid added with a filler, in particular in the region of an end face of the pile driven into the soil.
  • grain refining can be achieved by injecting the fluid filled with filler to densify the soil material.
  • the injected filler has a lower fine to medium grain size than the original ⁇ Lich existing soil material.
  • the filler may have particles having a diameter of 0.25 mm or less. It is understood that the diameter of the particles is selected depending on the soil material to be compacted.
  • the filler may comprise sand, cement or bentonite or consist of sand, cement or bentonite.
  • the particles may have a diameter of 0.125 mm or less.
  • the fluid may be, for example, water.
  • the fluid is at least partially pumped out again and / or seeped into the ground.
  • the method is characterized in that the injection takes place via at least one tube which is fastened to a lateral surface of the pile.
  • the tube can be welded to a lateral surface of the pile.
  • the injection takes place via at least four tubes, which are fastened to an inner and / or egg ⁇ ner outer lateral surface of the pile. This allows a compact integration of the tubes into the pile.
  • Loosening and / or liquefying the soil material can be done by the vibration of the pile. By loosening and / or liquefaction and subsequent compacting of the ground material a lateral load bearing capacity of the pile ge ⁇ aims can be adjusted.
  • the inventive method for installa ⁇ tion of pylons can be used for a power grid.
  • the invention relates to a pile, in particular monopile for a wind turbine, gekennzeich ⁇ net by a collar or a local fürmesservergre ⁇ tion, such as a pile thickening, a pile widening or the like, for the mechanical compaction of soil material, the collar or the local Diameter enlargement at least partially surrounds a lateral surface of the pile, and / or at least one pipe fastened to a lateral surface of the pile, which is set up to inject a fluid mixed with a filler into a soil.
  • a pile in particular monopile for a wind turbine, gekennzeich ⁇ net by a collar or a local fürmesservergre ⁇ tion, such as a pile thickening, a pile widening or the like, for the mechanical compaction of soil material
  • the collar or the local Diameter enlargement at least partially surrounds a lateral surface of the pile, and / or at least one pipe fastened to a lateral surface of the pile, which is set up to
  • the collar and / or the tubes can be used for compacting adjacent soil material.
  • the pile can in particular be used in a method described above
  • the stake may in particular be a monopile for an offshore or onshore wind turbine.
  • the collar is thus part of the support structure formed by the pile. It can be provided that the collar is wedge-shaped.
  • the collar or the local diameter increase for example, viewed along a direction of engagement of the pile may be tapered or tapered viewed against a direction of engagement of the pile considered.
  • the collar and / or the tube are welded to a lateral surface of the pile.
  • the collar has a larger diameter than the pile and can be an axial compression of the soil material along one Engagement direction or along a longitudinal axis of the pile effect.
  • the collar can abut against an outer circumferential surface of the pile in a gap-free or flush manner.
  • a local increase in diameter for example, a local thickening of the wall of the pile to provide, such as a circular circumferential bulge or the like, which may be part of an outer surface of the pile.
  • the collar is not provided separately and welded, but is an integral part and integral with the wall of the pile Herge ⁇ been.
  • a distance from a bottom in one side of the pile to engulfing end to the collar or the local diam ⁇ server josrung is 15 m or more.
  • the collar is therefore viewed along a direction of engagement of the end face trailing on the outer lateral surface provided.
  • the collar or local diameter increase may have an axial length of 0.1 m to 5 m.
  • the collar or the local diameter increase may have an axial length of more than 5 m. So a reliable compaction can be achieved.
  • the pile may be a substantially circular hollow profile, in particular a steel pipe.
  • the pile may be, for example, a monopile known per se for a wind energy plant, which has been supplemented by the additional elements for compaction.
  • the post may also be a ground anchor for a jacket structure of a wind turbine or other mast or support structure.
  • the post may in particular be a mast for carrying a power supply line of a power grid.
  • Figure 1 shows a pile according to the invention in a plan view and a longitudinal section.
  • Fig. 2 shows the pile of Fig. 1 in a plan view and in a
  • Fig. 3 shows another pile according to the invention in one
  • Fig. 5 shows another pile according to the invention in one
  • Fig. 6 shows another pile according to the invention in one
  • Fig. 1 shows a pile 2 according to the invention in a plan view and in a longitudinal section.
  • the pile 2 is a monopile for a wind turbine. To encourage improvements ⁇ tion of clarity of a base 4 associated part of the monopile is shown.
  • the pile 2 has a collar 6 for mechanically compacting soil material 8 of the bottom 4.
  • the collar 6 includes one a wall 10 of the pile 2 formed circumferential surface 12 on the input side completely. According to alternative execution ⁇ examples can be provided that the collar has a plurality of spaced segments.
  • the collar 6 In the fully assembled state of the pile 2 shown in FIG. 1, the collar 6 is partially seated in the floor 4 in which the pile 2 is installed.
  • the collar 6 is welded in the present case in the region of the outer circumferential surface 12 with the wall 10 of the pile 2.
  • a distance a from an end face 14 of the pile to be lowered in the bottom 4 to the collar 6 is more than 15 m.
  • the collar 6 in the present case has an axial length b of 3 m.
  • the pile 2 is present in a circular Wesent ⁇ union hollow profile made of steel. The distance a and the length b will be herein measured parallel to or along a ⁇ A reverse direction R, which in turn is parallel to or ent ⁇ long a longitudinal axis L of the pile. 2
  • the pile 2 is first engaged or vibrated into the floor 4 by means of a vibration device 16. Once the collar 6 when Einrü ⁇ CKEN of the pole 2 along the engagement direction R is in contact with the ground 4, the ground material is in a on the collar 6 and the outer surface 12 adjacent compressed compression region eighteenth In a loosening region 20 adjoining the compression region 18, the soil material 8 remains in the dissolved state resulting from the vibrations of the pile 2.
  • an excitation frequency of the vibrator 16 can be reduced. In this way, the enlarged compression area 18 shown in FIG. 2 results.
  • Fig. 3 shows an alternative embodiment of the invention ei ⁇ nes pile 22.
  • the pile 22 is turn around a monopile 22 for a wind turbine, which in a
  • the pile 22 has four tubes 26 secured to an inner surface 24 of the pile 22.
  • the tubes 26 are adapted to inject a filler-added fluid 28 into a floor 30.
  • the tubes 26 are welded to the inner Mantelflä ⁇ che 24.
  • the injection of the filler-added fluid 28 into the bottom 30 takes place in particular in the region of an end face 38 of the pile 22 driven into the ground.
  • the filler entrained with the fluid 28 has particles having a diameter of less than 0.25 mm.
  • Fig. 4 is a grain distribution before and after the introduction of the offset with filler fluid 28 exemplified Darge ⁇ represents.
  • the solid line “new” describes the state after introduction of the filled fluid 28, while the dashed line “alt” describes the grain size distribution prior to introduction of the filled fluid. It can be seen that a shift of the distribution has taken place in the direction of a graded grain.
  • Figures 5 and 6 show further variants of piles 2, which differ in comparison to the figures 1 and 2 by a wedge-shaped shape of the collar 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

L'invention concerne un procédé d'installation d'un pieu, en particulier d'un monopieu pour une éolienne, dans un sol, ledit procédé comprenant les étapes consistant à : - enfoncer le pieu (2) dans le sol (4) à l'aide d'un équipement vibrant (16) ; - tasser la matière (8) du sol qui entoure une surface latérale (12) du pieu (2).
EP18734451.0A 2017-09-20 2018-06-11 Procédé d'installation d'un pieu et pieu Pending EP3684981A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017121760.6A DE102017121760A1 (de) 2017-09-20 2017-09-20 Verfahren zur Installation eines Pfahls und Pfahl
PCT/EP2018/065335 WO2019057353A1 (fr) 2017-09-20 2018-06-11 Procédé d'installation d'un pieu et pieu

Publications (1)

Publication Number Publication Date
EP3684981A1 true EP3684981A1 (fr) 2020-07-29

Family

ID=62750931

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18734451.0A Pending EP3684981A1 (fr) 2017-09-20 2018-06-11 Procédé d'installation d'un pieu et pieu

Country Status (4)

Country Link
US (1) US11441288B2 (fr)
EP (1) EP3684981A1 (fr)
DE (1) DE102017121760A1 (fr)
WO (1) WO2019057353A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114739353B (zh) * 2022-03-07 2023-10-27 浙江理工大学 桩土相互作用可视化防扰式实验装置及实验方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1409760A (en) * 1919-05-05 1922-03-14 William J O'marr Pile-jetting apparatus
US1792333A (en) * 1927-03-19 1931-02-10 Takechi Shojiro Method for concrete piling
US2063142A (en) * 1931-04-18 1936-12-08 Dortmund Hoerder Huttenver Ag Pile
DE654502C (de) * 1932-06-12 1937-12-24 Dortmund Hoerder Huettenver Ak Eiserner Gruendungspfahl
US2924948A (en) * 1954-07-17 1960-02-16 Mueller Ludwig Pile
US2923133A (en) * 1955-07-12 1960-02-02 Muller Ludwig Method for making pile structures with concrete casings
US3064438A (en) * 1955-07-12 1962-11-20 Muller Ludwig Pile and method of installing the same
DE1129895B (de) * 1955-10-07 1962-05-17 Mueller Ludwig Verfahren und Vorrichtung zur Herstellung eines Gruendungspfahles mit Betonummantelung
US3277968A (en) * 1963-06-28 1966-10-11 Wood Marc Sa Screw piles
US3394766A (en) * 1966-03-11 1968-07-30 Lebelle Jean Louis Apparatus for emplacing elongated rigid members into the soil selectively in a vibratory mode or in a percussive mode
US3693364A (en) * 1971-09-09 1972-09-26 Albert G Bodine Sonic method for installing a pile jacket, casing member or the like in an earthen formation
US3842608A (en) * 1972-11-28 1974-10-22 L Turzillo Method and means for installing load bearing piles in situ
US3975917A (en) * 1974-08-22 1976-08-24 Kingo Asayama Flanged foundation pile group and method of constructing a foundation by means of the same
US4165198A (en) * 1976-09-07 1979-08-21 Farmer Foundation Company Method for forming pier foundation columns
JPS54155607A (en) * 1978-04-06 1979-12-07 Hisaharu Nakashima Method of pile driving construction to base rock
US4553443A (en) * 1982-11-19 1985-11-19 Geomarex High frequency vibratory systems for earth boring
US4603748A (en) * 1982-11-19 1986-08-05 Geomarex High frequency vibratory systems for earth boring
GB8406847D0 (en) * 1984-03-16 1984-04-18 Earl & Wright Ltd Installing pile
JPH03286022A (ja) 1990-03-31 1991-12-17 Kenchiyou Kobe:Kk 節杭打込工法
US5653556A (en) * 1995-10-10 1997-08-05 American Piledriving Equipment, Inc. Clamping apparatus and methods for driving caissons into the earth
US5860482A (en) * 1996-01-30 1999-01-19 Ernie J. Gremillion Multiple force hole forming device
NL1004237C2 (nl) * 1996-10-10 1998-04-14 Tijmen Van Halteren Profiel, meer in het bijzonder damwandprofiel.
GB9724024D0 (en) * 1997-11-13 1998-01-14 Kvaerner Cementation Found Ltd Improved piling method
GB2378471A (en) * 2001-08-08 2003-02-12 Cementation Found Skanska Ltd Method of forming enlarged pile heads with pre-cast driven piles
NZ539241A (en) * 2002-09-02 2007-09-28 Colin W Francis Compression pile anchor device
EP1621677A1 (fr) * 2004-07-27 2006-02-01 IHC Holland IE B.V. Dispositif et méthode pour positionner d'éléments de construction
US8079780B2 (en) * 2005-05-20 2011-12-20 Geopier Foundation Company, Inc. Slotted mandrel for lateral displacement pier and method of use
US20080019779A1 (en) * 2006-07-21 2008-01-24 Henderson Joy K Steel-Cased Concrete Piers
US7704017B2 (en) * 2008-04-30 2010-04-27 Pileco Inc. Friction shaft coupling with perpendicular adjustment
US20110110725A1 (en) * 2009-11-06 2011-05-12 International Construction Equipment, Inc. Vibratory pile driving apparatus
EP2557232B1 (fr) 2012-05-31 2014-10-15 Per Aarsleff A/S Ensemble de commande d'empilage
JP6093923B2 (ja) 2013-06-19 2017-03-15 新日鐵住金株式会社 鋼管杭及び鋼管杭の施工法
WO2015147674A1 (fr) * 2014-03-28 2015-10-01 Открытое акционерное общество "Акционерная компания по транспорту нефти "ТРАНСНЕФТЬ" Procédé de développement de supports de ligne aérienne de transmission dans des pergélisols
DE102015209661A1 (de) 2015-05-27 2016-12-01 Rwe Innogy Gmbh Verfahren zur Gründung eines Turmbauwerks sowie Onshore-Turmbauwerk
US9702108B2 (en) * 2015-05-28 2017-07-11 JAFEC USA, Inc. Direct power compaction method
EP3178996B1 (fr) * 2015-12-09 2018-02-14 innogy SE Pilier pour une structure de fondation monopile
WO2018030805A1 (fr) * 2016-08-10 2018-02-15 한국건설기술연구원 Ampoule d'injection de coulis en forme d'onde de micropieu et son procédé de formation

Also Published As

Publication number Publication date
US20200308799A1 (en) 2020-10-01
WO2019057353A1 (fr) 2019-03-28
DE102017121760A1 (de) 2019-03-21
US11441288B2 (en) 2022-09-13

Similar Documents

Publication Publication Date Title
DE69823223T2 (de) Verfahren für bohrungen und gründungspfählen
DE10158524A1 (de) Pfahlvorrichtung und Verfahren zur Konstruktion von Betonpfählen in weichem Erdboden
EP1234916A2 (fr) Méthode pour construire des colonnes
WO2014095767A1 (fr) Dispositif et procédé de compactage du sol et/ou de stabilisation du sol
EP3927899A1 (fr) Introduction par vibration de fondations
DE19518830B4 (de) Verfahren zur Stabilisierung des Untergrundes und zur Abtragung von Bauwerks- und Verkehrslasten
EP3303711B1 (fr) Procédé de réalisation d'une fondation d'une tour et tour sur terre ferme
DE102010022661A1 (de) Verfahren und Vorrichtung zur Bodenverdichtung
WO2020207651A1 (fr) Revêtement pour fondation
DE3624202C2 (de) Spiralbohrer
EP2650446B1 (fr) Procédé de fabrication d'une fondation pour une installation offshore
EP2208825B1 (fr) Procédé d'installation d'une structure de fondation offshore sur le fond de mer et structure de fondation offshore
DE112021001464T5 (de) Mit Vibrationszementierungspfählen verstärkte Einzelpfahlgründung des weichen Bodenfundaments für Offshore-Windkraftanlagen und Bauverfahren dafür
EP3684981A1 (fr) Procédé d'installation d'un pieu et pieu
DE102019217692A1 (de) Fundament für einen Turm einer Windkraftanlage
EP0481079B1 (fr) Procede et outil de production d'un pilot
EP0151389A1 (fr) Méthode et dispositif pour la réalisation d'éléments de construction dans le sol tels que pieux, ancrages injectés, murs souterrains ou similaires
DE102012004980A1 (de) Verfahren zur Stabilisierung des Untergrunds und zur Abtragung von Bauwerks- und Verkehrslasten in standfeste Bereiche
DE112013001151T5 (de) Schwingungsübertragungs-Unterdrückungsverfahren
DE102021116487B3 (de) Geotextilummantelte Flüssigbodensäulen
EP3051028B1 (fr) Procede de battage par vibration
DE102010024607B4 (de) Gründungspfahl sowie Verfahren zu seiner Herstellung
DE10025966A1 (de) Stützschlauch-Säulen
EP3115512B1 (fr) Procede de fabrication d'un pieu en beton et dispositif associe
EP2873775B1 (fr) Procédé de fondation d'une structure offshore et pieu de fondation destiné à l'utilisation pendant l'exécution du procédé

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200206

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RWE RENEWABLES GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20220316

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RWE RENEWABLES EUROPE & AUSTRALIA GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: RWE OFFSHORE WIND GMBH