EP3684981A1 - Verfahren zur installation eines pfahls und pfahl - Google Patents
Verfahren zur installation eines pfahls und pfahlInfo
- Publication number
- EP3684981A1 EP3684981A1 EP18734451.0A EP18734451A EP3684981A1 EP 3684981 A1 EP3684981 A1 EP 3684981A1 EP 18734451 A EP18734451 A EP 18734451A EP 3684981 A1 EP3684981 A1 EP 3684981A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pile
- collar
- soil material
- diameter
- lateral surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 29
- 239000002689 soil Substances 0.000 claims abstract description 51
- 239000000463 material Substances 0.000 claims abstract description 43
- 238000005056 compaction Methods 0.000 claims description 20
- 239000012530 fluid Substances 0.000 claims description 16
- 239000000945 filler Substances 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 10
- 230000004323 axial length Effects 0.000 claims description 7
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 239000004576 sand Substances 0.000 claims description 7
- 229910000278 bentonite Inorganic materials 0.000 claims description 5
- 239000000440 bentonite Substances 0.000 claims description 5
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 5
- 239000004568 cement Substances 0.000 claims description 5
- 230000008719 thickening Effects 0.000 claims description 5
- 230000005284 excitation Effects 0.000 claims description 4
- 229910000831 Steel Inorganic materials 0.000 claims description 3
- 239000010959 steel Substances 0.000 claims description 3
- 230000006835 compression Effects 0.000 description 11
- 238000007906 compression Methods 0.000 description 11
- 238000009434 installation Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 2
- 208000037656 Respiratory Sounds Diseases 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000010009 beating Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 206010037833 rales Diseases 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D7/00—Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
- E02D7/24—Placing by using fluid jets
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D27/00—Foundations as substructures
- E02D27/32—Foundations for special purposes
- E02D27/42—Foundations for poles, masts or chimneys
- E02D27/425—Foundations for poles, masts or chimneys specially adapted for wind motors masts
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D27/00—Foundations as substructures
- E02D27/10—Deep foundations
- E02D27/12—Pile foundations
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D5/00—Bulkheads, piles, or other structural elements specially adapted to foundation engineering
- E02D5/22—Piles
- E02D5/24—Prefabricated piles
- E02D5/32—Prefabricated piles with arrangements for setting or assisting in setting in position by fluid jets
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D7/00—Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
- E02D7/26—Placing by using several means simultaneously
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B17/00—Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
- E02B2017/0056—Platforms with supporting legs
- E02B2017/0065—Monopile structures
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02B—HYDRAULIC ENGINEERING
- E02B17/00—Artificial islands mounted on piles or like supports, e.g. platforms on raisable legs or offshore constructions; Construction methods therefor
- E02B2017/0091—Offshore structures for wind turbines
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D7/00—Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
- E02D7/18—Placing by vibrating
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/90—Mounting on supporting structures or systems
- F05B2240/95—Mounting on supporting structures or systems offshore
Definitions
- the present invention relates to a process for the instal- lation of a pile, in particular a monopile for a wind ⁇ turbine, in a bottom and a pile, in particular a monopile, for a wind turbine.
- the installation of piles in a subsoil or soil is usually carried out with beating or vibrating application methods. If the vibration technology is used for the installation of piles at a designated final depth, it may occur in non-cohesive dense or very dense soils for local loosening and / or liquefaction of soil in areas adjacent to the pile. This loosening and / or liquefaction leads to a reduction in the lateral pile load capacities.
- the invention relates to a method for installing a pile, in particular a monopile for a wind power plant in a soil with the method ⁇ steps of:
- the lateral pile load capacity can be increased.
- the method can be used, for example, to install a
- Pile are for offshore or onshore wind turbine ver ⁇ spent.
- an engagement of the pile can take place in a non-cohesive soil.
- the non-cohesive soil consists essentially of sand and / or gravel, in particular sand with a grain size of, for example, 0.2 to 1 mm in diameter.
- the compaction of the soil material can be effected by mechanical sealing , in particular displacement of soil material. Alternatively or additionally, the compaction can be achieved as a result of a local change in the particle size distribution of the soil material.
- a further embodiment of the method provides that the compaction of the soil material surrounding the outer surface of the pile comprises the following method step: mechanical compaction of the soil material by engagement of the lateral surface of the pile at least partially ⁇ surrounding collar or by engaging a local increase in diameter, such as a pile thickening, pile widening or the like, in the ground.
- the collar has a larger diameter than the pile and can cause an axial displacement of the soil material ent ⁇ long a direction of engagement or along a longitudinal axis of the pile.
- the collar can abut against an outer circumferential surface of the pile in a gap-free or flush manner.
- a lo ⁇ cal compression zone adjoining the collar can be formed by compacted soil material.
- An axial length of the compression zone may be more than 1 m, in particular more than 5 m.
- an exciter frequency of the vibration device is reduced during the engagement of the collar in the ground.
- a feed By reducing the excitation frequency, a feed can be reduced or adjusted in the region of a bottom engaging end face of the pile, but there is an increased compaction of the soil material in the region of the collar.
- the reduced excitation frequency may be maintained for a predetermined period of time until the required degree of compaction is achieved over a required axial length of a compression zone.
- compaction can take place by a local change in the particle size distribution of the soil material.
- Change in the particle size distribution of the soil material by injection of a fluid added with a filler, in particular in the region of an end face of the pile driven into the soil.
- grain refining can be achieved by injecting the fluid filled with filler to densify the soil material.
- the injected filler has a lower fine to medium grain size than the original ⁇ Lich existing soil material.
- the filler may have particles having a diameter of 0.25 mm or less. It is understood that the diameter of the particles is selected depending on the soil material to be compacted.
- the filler may comprise sand, cement or bentonite or consist of sand, cement or bentonite.
- the particles may have a diameter of 0.125 mm or less.
- the fluid may be, for example, water.
- the fluid is at least partially pumped out again and / or seeped into the ground.
- the method is characterized in that the injection takes place via at least one tube which is fastened to a lateral surface of the pile.
- the tube can be welded to a lateral surface of the pile.
- the injection takes place via at least four tubes, which are fastened to an inner and / or egg ⁇ ner outer lateral surface of the pile. This allows a compact integration of the tubes into the pile.
- Loosening and / or liquefying the soil material can be done by the vibration of the pile. By loosening and / or liquefaction and subsequent compacting of the ground material a lateral load bearing capacity of the pile ge ⁇ aims can be adjusted.
- the inventive method for installa ⁇ tion of pylons can be used for a power grid.
- the invention relates to a pile, in particular monopile for a wind turbine, gekennzeich ⁇ net by a collar or a local fürmesservergre ⁇ tion, such as a pile thickening, a pile widening or the like, for the mechanical compaction of soil material, the collar or the local Diameter enlargement at least partially surrounds a lateral surface of the pile, and / or at least one pipe fastened to a lateral surface of the pile, which is set up to inject a fluid mixed with a filler into a soil.
- a pile in particular monopile for a wind turbine, gekennzeich ⁇ net by a collar or a local fürmesservergre ⁇ tion, such as a pile thickening, a pile widening or the like, for the mechanical compaction of soil material
- the collar or the local Diameter enlargement at least partially surrounds a lateral surface of the pile, and / or at least one pipe fastened to a lateral surface of the pile, which is set up to
- the collar and / or the tubes can be used for compacting adjacent soil material.
- the pile can in particular be used in a method described above
- the stake may in particular be a monopile for an offshore or onshore wind turbine.
- the collar is thus part of the support structure formed by the pile. It can be provided that the collar is wedge-shaped.
- the collar or the local diameter increase for example, viewed along a direction of engagement of the pile may be tapered or tapered viewed against a direction of engagement of the pile considered.
- the collar and / or the tube are welded to a lateral surface of the pile.
- the collar has a larger diameter than the pile and can be an axial compression of the soil material along one Engagement direction or along a longitudinal axis of the pile effect.
- the collar can abut against an outer circumferential surface of the pile in a gap-free or flush manner.
- a local increase in diameter for example, a local thickening of the wall of the pile to provide, such as a circular circumferential bulge or the like, which may be part of an outer surface of the pile.
- the collar is not provided separately and welded, but is an integral part and integral with the wall of the pile Herge ⁇ been.
- a distance from a bottom in one side of the pile to engulfing end to the collar or the local diam ⁇ server josrung is 15 m or more.
- the collar is therefore viewed along a direction of engagement of the end face trailing on the outer lateral surface provided.
- the collar or local diameter increase may have an axial length of 0.1 m to 5 m.
- the collar or the local diameter increase may have an axial length of more than 5 m. So a reliable compaction can be achieved.
- the pile may be a substantially circular hollow profile, in particular a steel pipe.
- the pile may be, for example, a monopile known per se for a wind energy plant, which has been supplemented by the additional elements for compaction.
- the post may also be a ground anchor for a jacket structure of a wind turbine or other mast or support structure.
- the post may in particular be a mast for carrying a power supply line of a power grid.
- Figure 1 shows a pile according to the invention in a plan view and a longitudinal section.
- Fig. 2 shows the pile of Fig. 1 in a plan view and in a
- Fig. 3 shows another pile according to the invention in one
- Fig. 5 shows another pile according to the invention in one
- Fig. 6 shows another pile according to the invention in one
- Fig. 1 shows a pile 2 according to the invention in a plan view and in a longitudinal section.
- the pile 2 is a monopile for a wind turbine. To encourage improvements ⁇ tion of clarity of a base 4 associated part of the monopile is shown.
- the pile 2 has a collar 6 for mechanically compacting soil material 8 of the bottom 4.
- the collar 6 includes one a wall 10 of the pile 2 formed circumferential surface 12 on the input side completely. According to alternative execution ⁇ examples can be provided that the collar has a plurality of spaced segments.
- the collar 6 In the fully assembled state of the pile 2 shown in FIG. 1, the collar 6 is partially seated in the floor 4 in which the pile 2 is installed.
- the collar 6 is welded in the present case in the region of the outer circumferential surface 12 with the wall 10 of the pile 2.
- a distance a from an end face 14 of the pile to be lowered in the bottom 4 to the collar 6 is more than 15 m.
- the collar 6 in the present case has an axial length b of 3 m.
- the pile 2 is present in a circular Wesent ⁇ union hollow profile made of steel. The distance a and the length b will be herein measured parallel to or along a ⁇ A reverse direction R, which in turn is parallel to or ent ⁇ long a longitudinal axis L of the pile. 2
- the pile 2 is first engaged or vibrated into the floor 4 by means of a vibration device 16. Once the collar 6 when Einrü ⁇ CKEN of the pole 2 along the engagement direction R is in contact with the ground 4, the ground material is in a on the collar 6 and the outer surface 12 adjacent compressed compression region eighteenth In a loosening region 20 adjoining the compression region 18, the soil material 8 remains in the dissolved state resulting from the vibrations of the pile 2.
- an excitation frequency of the vibrator 16 can be reduced. In this way, the enlarged compression area 18 shown in FIG. 2 results.
- Fig. 3 shows an alternative embodiment of the invention ei ⁇ nes pile 22.
- the pile 22 is turn around a monopile 22 for a wind turbine, which in a
- the pile 22 has four tubes 26 secured to an inner surface 24 of the pile 22.
- the tubes 26 are adapted to inject a filler-added fluid 28 into a floor 30.
- the tubes 26 are welded to the inner Mantelflä ⁇ che 24.
- the injection of the filler-added fluid 28 into the bottom 30 takes place in particular in the region of an end face 38 of the pile 22 driven into the ground.
- the filler entrained with the fluid 28 has particles having a diameter of less than 0.25 mm.
- Fig. 4 is a grain distribution before and after the introduction of the offset with filler fluid 28 exemplified Darge ⁇ represents.
- the solid line “new” describes the state after introduction of the filled fluid 28, while the dashed line “alt” describes the grain size distribution prior to introduction of the filled fluid. It can be seen that a shift of the distribution has taken place in the direction of a graded grain.
- Figures 5 and 6 show further variants of piles 2, which differ in comparison to the figures 1 and 2 by a wedge-shaped shape of the collar 6.
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Piles And Underground Anchors (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017121760.6A DE102017121760A1 (de) | 2017-09-20 | 2017-09-20 | Verfahren zur Installation eines Pfahls und Pfahl |
PCT/EP2018/065335 WO2019057353A1 (de) | 2017-09-20 | 2018-06-11 | Verfahren zur installation eines pfahls und pfahl |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3684981A1 true EP3684981A1 (de) | 2020-07-29 |
Family
ID=62750931
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18734451.0A Pending EP3684981A1 (de) | 2017-09-20 | 2018-06-11 | Verfahren zur installation eines pfahls und pfahl |
Country Status (4)
Country | Link |
---|---|
US (1) | US11441288B2 (de) |
EP (1) | EP3684981A1 (de) |
DE (1) | DE102017121760A1 (de) |
WO (1) | WO2019057353A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114739353B (zh) * | 2022-03-07 | 2023-10-27 | 浙江理工大学 | 桩土相互作用可视化防扰式实验装置及实验方法 |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1409760A (en) * | 1919-05-05 | 1922-03-14 | William J O'marr | Pile-jetting apparatus |
US1792333A (en) * | 1927-03-19 | 1931-02-10 | Takechi Shojiro | Method for concrete piling |
US2063142A (en) * | 1931-04-18 | 1936-12-08 | Dortmund Hoerder Huttenver Ag | Pile |
DE654502C (de) * | 1932-06-12 | 1937-12-24 | Dortmund Hoerder Huettenver Ak | Eiserner Gruendungspfahl |
US2924948A (en) * | 1954-07-17 | 1960-02-16 | Mueller Ludwig | Pile |
US3064438A (en) * | 1955-07-12 | 1962-11-20 | Muller Ludwig | Pile and method of installing the same |
US2923133A (en) * | 1955-07-12 | 1960-02-02 | Muller Ludwig | Method for making pile structures with concrete casings |
DE1129895B (de) * | 1955-10-07 | 1962-05-17 | Mueller Ludwig | Verfahren und Vorrichtung zur Herstellung eines Gruendungspfahles mit Betonummantelung |
US3277968A (en) * | 1963-06-28 | 1966-10-11 | Wood Marc Sa | Screw piles |
US3394766A (en) * | 1966-03-11 | 1968-07-30 | Lebelle Jean Louis | Apparatus for emplacing elongated rigid members into the soil selectively in a vibratory mode or in a percussive mode |
US3693364A (en) * | 1971-09-09 | 1972-09-26 | Albert G Bodine | Sonic method for installing a pile jacket, casing member or the like in an earthen formation |
US3842608A (en) * | 1972-11-28 | 1974-10-22 | L Turzillo | Method and means for installing load bearing piles in situ |
US3975917A (en) * | 1974-08-22 | 1976-08-24 | Kingo Asayama | Flanged foundation pile group and method of constructing a foundation by means of the same |
US4165198A (en) * | 1976-09-07 | 1979-08-21 | Farmer Foundation Company | Method for forming pier foundation columns |
JPS54155607A (en) * | 1978-04-06 | 1979-12-07 | Hisaharu Nakashima | Method of pile driving construction to base rock |
US4553443A (en) * | 1982-11-19 | 1985-11-19 | Geomarex | High frequency vibratory systems for earth boring |
US4603748A (en) * | 1982-11-19 | 1986-08-05 | Geomarex | High frequency vibratory systems for earth boring |
GB8406847D0 (en) | 1984-03-16 | 1984-04-18 | Earl & Wright Ltd | Installing pile |
JPH03286022A (ja) | 1990-03-31 | 1991-12-17 | Kenchiyou Kobe:Kk | 節杭打込工法 |
US5653556A (en) * | 1995-10-10 | 1997-08-05 | American Piledriving Equipment, Inc. | Clamping apparatus and methods for driving caissons into the earth |
US5860482A (en) * | 1996-01-30 | 1999-01-19 | Ernie J. Gremillion | Multiple force hole forming device |
NL1004237C2 (nl) * | 1996-10-10 | 1998-04-14 | Tijmen Van Halteren | Profiel, meer in het bijzonder damwandprofiel. |
GB9724024D0 (en) * | 1997-11-13 | 1998-01-14 | Kvaerner Cementation Found Ltd | Improved piling method |
GB2378471A (en) * | 2001-08-08 | 2003-02-12 | Cementation Found Skanska Ltd | Method of forming enlarged pile heads with pre-cast driven piles |
NZ538764A (en) * | 2002-09-02 | 2006-07-28 | Colin William Francis | A pier |
EP1621677A1 (de) * | 2004-07-27 | 2006-02-01 | IHC Holland IE B.V. | Vorrichtung und Verfahren zur Einrichtung von Bauelementen |
CA2608209C (en) * | 2005-05-20 | 2012-04-24 | Geopier Foundation Company, Inc. | Slotted mandrel for lateral displacement pier and method of use |
US20080019779A1 (en) * | 2006-07-21 | 2008-01-24 | Henderson Joy K | Steel-Cased Concrete Piers |
US7704017B2 (en) * | 2008-04-30 | 2010-04-27 | Pileco Inc. | Friction shaft coupling with perpendicular adjustment |
US20110110725A1 (en) * | 2009-11-06 | 2011-05-12 | International Construction Equipment, Inc. | Vibratory pile driving apparatus |
EP2557232B1 (de) | 2012-05-31 | 2014-10-15 | Per Aarsleff A/S | Pfahlrammanordnung |
WO2014203858A1 (ja) | 2013-06-19 | 2014-12-24 | 新日鐵住金株式会社 | 鋼管杭及び鋼管杭の施工法 |
CA2942788C (en) * | 2014-03-28 | 2021-02-16 | Public Joint Stock Company "Transneft" | Method for installing overhead transmission line supports on permafrost soils |
DE102015209661A1 (de) | 2015-05-27 | 2016-12-01 | Rwe Innogy Gmbh | Verfahren zur Gründung eines Turmbauwerks sowie Onshore-Turmbauwerk |
US9702108B2 (en) * | 2015-05-28 | 2017-07-11 | JAFEC USA, Inc. | Direct power compaction method |
EP3178996B1 (de) * | 2015-12-09 | 2018-02-14 | innogy SE | Pfahl für eine offshore-monopile gründung |
CN109072575A (zh) * | 2016-08-10 | 2018-12-21 | 韩国建设技术研究院 | 微型桩的波形注浆体及其形成方法 |
-
2017
- 2017-09-20 DE DE102017121760.6A patent/DE102017121760A1/de active Pending
-
2018
- 2018-06-11 EP EP18734451.0A patent/EP3684981A1/de active Pending
- 2018-06-11 WO PCT/EP2018/065335 patent/WO2019057353A1/de unknown
- 2018-06-11 US US16/649,547 patent/US11441288B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
DE102017121760A1 (de) | 2019-03-21 |
US20200308799A1 (en) | 2020-10-01 |
WO2019057353A1 (de) | 2019-03-28 |
US11441288B2 (en) | 2022-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69823223T2 (de) | Verfahren für bohrungen und gründungspfählen | |
EP3927899B1 (de) | Einvibrieren von gründungen | |
EP1234916A2 (de) | Verfahren zum Herstellen von Säulen | |
WO2014095767A1 (de) | Vorrichtung und verfahren zur bodenverdichtung und/oder bodenverfestigung | |
DE112021001464T5 (de) | Mit Vibrationszementierungspfählen verstärkte Einzelpfahlgründung des weichen Bodenfundaments für Offshore-Windkraftanlagen und Bauverfahren dafür | |
DE19518830B4 (de) | Verfahren zur Stabilisierung des Untergrundes und zur Abtragung von Bauwerks- und Verkehrslasten | |
EP3303711B1 (de) | Verfahren zur gründung eines turmbauwerks sowie onshore-turmbauwerk | |
DE102010022661A1 (de) | Verfahren und Vorrichtung zur Bodenverdichtung | |
WO2020207651A1 (de) | Beschichtung für gründung | |
DE3624202C2 (de) | Spiralbohrer | |
EP2650446B1 (de) | Verfahren zur Herstellung einer Gründung für eine Offshore-Anlage | |
DE102019217692A1 (de) | Fundament für einen Turm einer Windkraftanlage | |
EP2208825B1 (de) | Verfahren zur Installation einer Offshore-Gründungsstruktur auf dem Meeresboden sowie Offshore-Gründungsstruktur | |
WO2019057353A1 (de) | Verfahren zur installation eines pfahls und pfahl | |
DE112013001151T5 (de) | Schwingungsübertragungs-Unterdrückungsverfahren | |
EP0481079B1 (de) | Verfahren und Werkzeug zur Herstellung eines Pfahls | |
EP0151389A1 (de) | Verfahren und Vorrichtung zum Herstellen von Bauelementen im Baugrund, wie Pfählen, Injektionsankern, Schlitzwänden oder dergleichen | |
DE102012004980A1 (de) | Verfahren zur Stabilisierung des Untergrunds und zur Abtragung von Bauwerks- und Verkehrslasten in standfeste Bereiche | |
DE102021116487B3 (de) | Geotextilummantelte Flüssigbodensäulen | |
EP3051028B1 (de) | Verfahren zum vibrationsrammen | |
DE10025966A1 (de) | Stützschlauch-Säulen | |
EP3542000B1 (de) | Verfahren zum rückbau von offshore gründungsstrukturen | |
DE102010024607B4 (de) | Gründungspfahl sowie Verfahren zu seiner Herstellung | |
EP3115512B1 (de) | Verfahren zur herstellung eines ortbetonrammpfahls und vorrichtung dafür | |
EP2873775B1 (de) | Verfahren zur Gründung eines Offshore-Bauwerks sowie Gründungspfahl zur Verwendung bei der Durchführung des Verfahrens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200206 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: RWE RENEWABLES GMBH |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20220316 |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: RWE RENEWABLES EUROPE & AUSTRALIA GMBH |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: RWE OFFSHORE WIND GMBH |
|
TPAC | Observations filed by third parties |
Free format text: ORIGINAL CODE: EPIDOSNTIPA |