EP3664863A2 - Hydraulisch-pneumatisches druckkammer-arzneimittelabgabesystem - Google Patents

Hydraulisch-pneumatisches druckkammer-arzneimittelabgabesystem

Info

Publication number
EP3664863A2
EP3664863A2 EP18759213.4A EP18759213A EP3664863A2 EP 3664863 A2 EP3664863 A2 EP 3664863A2 EP 18759213 A EP18759213 A EP 18759213A EP 3664863 A2 EP3664863 A2 EP 3664863A2
Authority
EP
European Patent Office
Prior art keywords
container
plunger
drive
medicament
cannula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP18759213.4A
Other languages
English (en)
French (fr)
Inventor
Mehran Mojarrad
John K. Hoffman
Paul Daniel Faucher
Matthew PACHECO
Ed MAHER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amgen Inc
Original Assignee
Amgen Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amgen Inc filed Critical Amgen Inc
Publication of EP3664863A2 publication Critical patent/EP3664863A2/de
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31565Administration mechanisms, i.e. constructional features, modes of administering a dose
    • A61M5/31576Constructional features or modes of drive mechanisms for piston rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/1452Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
    • A61M5/14526Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons the piston being actuated by fluid pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/19Syringes having more than one chamber, e.g. including a manifold coupling two parallelly aligned syringes through separate channels to a common discharge assembly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/3202Devices for protection of the needle before use, e.g. caps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/3205Apparatus for removing or disposing of used needles or syringes, e.g. containers; Means for protection against accidental injuries from used needles
    • A61M5/321Means for protection against accidental injuries by used needles
    • A61M5/322Retractable needles, i.e. disconnected from and withdrawn into the syringe barrel by the piston
    • A61M5/3221Constructional features thereof, e.g. to improve manipulation or functioning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/32Needles; Details of needles pertaining to their connection with syringe or hub; Accessories for bringing the needle into, or holding the needle on, the body; Devices for protection of needles
    • A61M5/34Constructions for connecting the needle, e.g. to syringe nozzle or needle hub
    • A61M5/343Connection of needle cannula to needle hub, or directly to syringe nozzle without a needle hub
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/14244Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
    • A61M2005/14264Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body with means for compensating influence from the environment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M2005/14506Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons mechanically driven, e.g. spring or clockwork
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M2005/14513Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons with secondary fluid driving or regulating the infusion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • A61M2005/206With automatic needle insertion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/24Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
    • A61M5/2455Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic with sealing means to be broken or opened
    • A61M5/2466Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic with sealing means to be broken or opened by piercing without internal pressure increase
    • A61M2005/247Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic with sealing means to be broken or opened by piercing without internal pressure increase with fixed or steady piercing means, e.g. piercing under movement of ampoule
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/24Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic
    • A61M5/2455Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic with sealing means to be broken or opened
    • A61M5/2466Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic with sealing means to be broken or opened by piercing without internal pressure increase
    • A61M2005/2474Ampoule syringes, i.e. syringes with needle for use in combination with replaceable ampoules or carpules, e.g. automatic with sealing means to be broken or opened by piercing without internal pressure increase with movable piercing means, e.g. ampoule remains fixed or steady
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/1452Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
    • A61M5/1454Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons spring-actuated, e.g. by a clockwork
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/14586Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of a flexible diaphragm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/142Pressure infusion, e.g. using pumps
    • A61M5/145Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
    • A61M5/155Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by gas introduced into the reservoir
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/20Automatic syringes, e.g. with automatically actuated piston rod, with automatic needle injection, filling automatically
    • A61M5/2053Media being expelled from injector by pressurised fluid or vacuum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/28Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle
    • A61M5/285Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle with sealing means to be broken or opened
    • A61M5/288Syringe ampoules or carpules, i.e. ampoules or carpules provided with a needle with sealing means to be broken or opened by piercing without internal pressure increase

Definitions

  • the present disclosure generally relates to drug delivery devices and, more particularly, mechanisms and methods of delivery as well as inserting or deploying a needle and/or cannula of a drug delivery device.
  • Some drug delivery devices such as on-body injectors, may be temporarily attached to a patient to deliver a drug via an injection needle or some other means over an extended period of time.
  • the drug delivery device may be attached to the tissue of the patient's abdomen, thigh, arm, or some other portion of the patient's body.
  • the drug delivery device may be worn by the patient for several minutes or hours while the drug is injected.
  • viscous drugs including some biologies, can require substantial forces to expel the drug from the drug delivery device, and thus may have long injection times.
  • some drug delivery devices are configured to be attached to the patient at a doctor's office, and then later deliver the drug to the patient when the patient returns to their home. For these reasons and others, a rigid injection member may be left inside the patient for a substantial amount of time, which can result in patient discomfort or unease.
  • drug delivery devices include a first needle that penetrates the skin of the user, while another (or the same needle) overcomes a sterile barrier of the primary container that stores the medicament.
  • the piercing of the sterile barrier may involve piercing a septum of a typical drug container.
  • automated needle insertion and retraction is typically preferred.
  • the injection process may involve multiple, potentially complex steps in order to properly administer the drug.
  • insertion mechanisms have been disposed within drug delivery devices to accomplish insertion and/or retraction movements of the needle. Such an insertion mechanism, however, may increase the overall size, complexity, and/or cost of the drug delivery device.
  • a wearable drug delivery device includes a housing, a needle assembly at least partially disposed in the housing, and a drive assembly at least partially disposed in the housing and coupled to the needle assembly.
  • the needle assembly includes a needle or cannula and a sterile barrier disposed proximal to the needle or cannula in a first configuration where the sterile barrier is intact.
  • the drive assembly includes a container that contains a medicament to be administered, a first plunger disposed in the container, and a drive mechanism that forces the first plunger to urge the medicament through the container.
  • the needle or cannula and the sterile barrier move relative to each other from the first configuration to a second configuration where the needle or cannula breaks the sterile barrier, thereby allowing the medicament to be administered via the needle or cannula.
  • the first plunger urges the medicament towards the second end of the container such that the medicament exerts a force that moves the needle or cannula and the sterile barrier relative to each other to the second configuration.
  • the container has a first end, a second end, an inner surface that defines an inner volume, and an outer surface.
  • the first plunger and the inner surface of the container cooperate to encapsulate the medicament.
  • the drive assembly may also include an outer shell that at least partially surrounds the container to define a pressure equalizing chamber therebetween.
  • the drive mechanism further exerts an equalizing pressure on the outer surface of the container that is approximately equal to the force exerted on the first plunger.
  • the drive mechanism may be a pneumatic and/or a hydraulic driving system.
  • the drive mechanism may be in the form of a pressurized gas chamber that, when engaged, releases a pressurized gas that exerts a force on the first plunger.
  • the drive mechanism may be in the form of a resilient member that urges a hydraulic fluid towards the first plunger.
  • the sterile barrier may be disposed near the second end of the container.
  • the sterile barrier may be disposed on a second plunger positioned near the second end of the container. This second plunger may be urged by the medicament towards the second end of the container, thereby moving the needle or cannula and the sterile barrier to the second configuration to break the sterile barrier.
  • the device may further include a second plunger positioned near the second end of the container.
  • the needle or cannula is coupled to the second plunger, and the second plunger and the needle or cannula are adapted to move toward and puncture the sterile barrier upon being urged by the medicament towards the second end of the container.
  • the drive assembly further includes an urging component disposed at the first end of the container.
  • the urging component urges the first plunger towards the second end of the container and causes the drive mechanism to exert the equalizing force on the outer surface of the container.
  • the urging component may be in the form of an inflatable elastic member and/or an elastomeric pusher member.
  • the elastomeric pusher member may include a sealing surface that restricts a driving fluid from contacting the medicament stored in the container.
  • the device may further include a release mechanism operably coupled to the first plunger to at least partially relieve the first plunger from being urged towards the end of the container.
  • a drive assembly for a wearable drug delivery device includes a container having a first end, a second end, an inner surface, and an outer surface, a first plunger being disposed in the first end of the container, a pressure chamber at least partially surrounding the container to define a pressure equalizing chamber therebetween, and a drive mechanism.
  • An inner volume of the container is adapted to contain a medicament to be administered to a user.
  • the first plunger has a first surface and a second surface. The first surface of the first plunger and the inner surface of the container cooperate to form a fluid tight seal that encapsulates the medicament within the container.
  • the pressure chamber is sealed and in fluid communication with the second surface of the first plunger such that the pressure chamber is subject to equal pressure as an inner volume of the container.
  • the drive mechanism includes a drive container that contains a drive fluid and a drive connection that fluidly connects the drive container and the container. Upon actuating the drive mechanism, the drive fluid exerts on the second surface of the first plunger to urge the medicament through the container and exerts an equalizing pressure on the outer surface of the container that is approximately equal to the force exerted on the first plunger.
  • the fluid activation mechanism consists of a torsional spring that drives a pressurized gas capsule towards a fixed spike to provide the driving force for the medicament dispensing.
  • the torsional spring drives the capsule axially forward toward a fixed spike where a thin metal film sealing the capsule is punctured to release the gas from the capsule.
  • the released gas is routed to the back of the plunger in the primary container to initiate drug dispensing.
  • the released gas envelops the primary container through a secondary enclosure to equalize the inner and outer pressure of the primary container. This will prevent potential failure of the primary container regardless of materials makeup in the case of over pressurization or in situations requiring large pressures to expel high viscosity medicament through narrow gauge needles.
  • a pressure drive system for a wearable drug delivery device includes a primary container for storing a medicament to be administered to a user, a sealed pressure chamber at least partially surrounding the primary container, a cannula insertion mechanism in fluid connection with the primary container, and an activation mechanism in fluid connection with the cannula insertion mechanism and the primary container.
  • the cannula insertion mechanism is adapted to insert a cannula into the user to inject the medicament.
  • the activation mechanism is adapted to cause the cannula insertion mechanism to insert the cannula into the user, and is further adapted to cause the medicament to be dispensed.
  • a pressure is delivered to the cannula insertion mechanism to displace the cannula.
  • the pressure is further delivered to 1) the primary container to urge the medicament to the cannula insertion mechanism; and 2) the pressure chamber to exert an opposing pressure on an outer sidewall of the primary container.
  • FIG. 1 illustrates a schematic representation of an example arrangement of a drug delivery device having a hydraulic- pneumatic pressurized chamber drug delivery system in accordance with various embodiments
  • FIGs. 2a and 2b illustrate an example pneumatically driven drive assembly for a wearable drug delivery device in a first, starting position in accordance with various embodiments
  • FIGs. 3a-3c illustrate the example drive assembly of Figs. 2a and 2b during the drug administration process in accordance with various embodiments
  • FIGs. 4a and 4b illustrate the example drive assembly of Figs. 2a-3c upon completion of the drug being administered in accordance with various embodiments
  • Figs. 5a and 5b illustrate an example pressure driven drive assembly for a wearable drug delivery device in a first, starting position in accordance with various embodiments
  • Fig. 6 illustrates the example pressure driven drive assembly of Figs. 5a and 5b having an inflatable urging component in accordance with various embodiments
  • FIG. 7 illustrates the example pressure driven drive assembly of Figs. 5a and 5b having an elastomeric pusher member in accordance with various embodiments
  • FIG. 8 illustrates the example pressure driven drive assembly of Fig. 7 upon being actuated in accordance with various embodiments
  • FIG. 9 illustrates the example pressure driven drive assembly of Figs. 7 and 8 during delivery of the drug in accordance with various embodiments
  • FIG. 10 illustrates an example pressure driven drive assembly that uses a glass syringe in accordance with various embodiments
  • FIG. 11 illustrates an example pressure drive system for a wearable drug delivery device in accordance with various embodiments
  • Figs. 12a-12c illustrate an example actuation process of the pressure drive system of Fig. 11 in accordance with various embodiments
  • FIGs. 13a and 13b illustrate an example cannula insertion process of the pressure drive system of Figs. 11-12c in accordance with various embodiments
  • Fig. 14 illustrates an example drug delivery process of the pressure drive system of Figs. 11-13b in accordance with various embodiments
  • FIGs. 15a and 15b illustrate an example pressure relief process of the pressure drive system of Figs. 11-14 in accordance with various embodiments
  • FIG. 16 illustrates an example cannula retraction process of the pressure drive system of Figs. 11-15b in accordance with various embodiments
  • FIGs. 17a and 17b illustrate an alternate arrangement where a movable plug is urged away from a stopper to allow medicament to be distributed in accordance with various embodiments
  • FIGs. 18a and 18b illustrate an alternate arrangement where a movable plug is pierced by a spike to allow medicament to be distributed in accordance with various embodiments
  • FIGs. 19a and 19b illustrate an alternate arrangement having an indirect insertion mechanism coupling in accordance with various embodiments.
  • FIG. 20 illustrates a further alternate arrangement having an indirect insertion mechanism coupling in accordance with various embodiments.
  • a general wearable drug delivery device 10 may include any number of aspects of the hydraulic-pneumatic pressurized chamber drug delivery system herein described.
  • the drug delivery device 10 may be configured as a wearable drug delivery device, such as an on-body injector, that may be attached to a patient's tissue 11 (e.g., the patient's skin) to administer delivery of a drug treatment.
  • the drug delivery device 10 may automatically deliver a subcutaneous injection of a fixed or a patient/operator-settable dose of a drug over a controlled or selected period of time.
  • the drug delivery device 10 may be intended for self-administration by the patient, but may also be used by a caregiver or a formally trained healthcare provider to administer an injection.
  • the drug delivery device 10 has a needle insertion assembly 12, a container 14 coupled to the needle insertion assembly 12 by a fluid pathway connector 22, a drive assembly 24, and a controller 26, each of which may be disposed in a main housing 30 defining a shell of the drug delivery device 10.
  • An actuator 28 e.g., a depressible button
  • the fluid pathway connector 22 defines a sterile fluid flow path 38 between the container 14 and the needle insertion assembly 12.
  • the fluid pathway connector 22 may include a container access mechanism 29 configured to insert a container needle 31 through a septum 32 associated with and covering the container 14 to establish fluid communication between the container 14 and the sterile fluid flow path 38 in response to activation of the drug delivery device 10, for example, via the actuator 28.
  • the needle insertion assembly 12 and the container 14 may be integrated into a single unit, and thus the fluid pathway connector 22 may not be incorporated into the drug delivery device 10.
  • the main housing 30 may include a bottom wall 36 to be releasably attached (e.g., adhered with an adhesive) to the patient's skin 11 , and a top wall 40 including one or more indicator lights 42 and/or a window (not illustrated) for viewing the container 14.
  • An opening 44 may be formed in the bottom wall 36, and optionally a septum 48 may extend across the opening 44 to seal the interior of the main housing 30 prior to use.
  • the exterior of the needle insertion assembly 12 may be defined by an insertion/retraction mechanism housing separate from the main housing 30, as explained more below relative to each example needle insertion assembly 12.
  • the drug delivery device 10 may enable, connect, or open necessary connections to establish fluid communication between the container 14 and the fluid pathway connector 22.
  • the needle insertion assembly 12 may insert a needle 34 into the patient 11 , which may be a rigid or a flexible needle.
  • the flexible needle may be made of a super-elastic material such as nitinol, a polymer, or another material that allows the needle to follow a curved path without sustaining damage.
  • the drive mechanism 24 may force a drug 46 stored in the container 14 through the sterile fluid flow path 38 of the fluid pathway connector 22 and into the needle insertion assembly 12 for subcutaneous delivery to the patient.
  • a hydraulic and/or pneumatic drive force is used to achieve needle piercing of the primary container septum as well as penetration into the skin to establish a complete fluidic path for drug delivery.
  • the illustrated device 100 can include the housing 30 of Fig. 1 defining a shell, a needle assembly 110 at least partially disposed within the housing, and a drive assembly 140 that includes a drive mechanism 150 (i.e., a spring driven driving mechanism) also at least partially disposed within the housing that is operably coupled to the needle assembly 110.
  • a drive mechanism 150 i.e., a spring driven driving mechanism
  • needle and drive assemblies 110, 140 are separate components that are compatible with a variety of drug delivery devices not herein described.
  • the needle assembly 110 includes a needle or cannula 112 and a sterile barrier 114 disposed proximal or near the needle or cannula 112.
  • the device uses direct pressure to pressurize the chamber.
  • the drive assembly 140 includes a container 142 having a first end 142a, a second end 142b, an inner surface 142c, and an outer surface 142d.
  • the container 142 defines an inner volume to contain a medicament 143 to be delivered to a user.
  • the drive assembly 140 further includes a first plunger 144 which is disposed within the container 142 at the first end 142a thereof.
  • the first plunger 144 has a first surface 144a and a second surface 144b.
  • the first surface 144a of the first plunger 144 and the inner surface 142c of the container 142 cooperate to encapsulate the medicament 143 within the container 142.
  • the first plunger 144 acts as a seal that restricts the medicament 143 from exiting the first end 142a of the container 142.
  • the drive assembly 140 includes a drive mechanism 150 that exerts an urging force on the first plunger 144.
  • the drive mechanism 150 includes a drive container 152 containing a hydraulic fluid 153, a drive plunger 154, and a drive connection 156.
  • the drive connection 156 provides a fluid flow path between the container 142 and the drive container 152.
  • the drive connection 156 is a hose or tube that couples to the container 142 and the drive container 152 via respective openings 142e, 152a.
  • Other examples of suitable connectors and respective connections are possible
  • the needle assembly 110 is at least partially disposed within the container 142.
  • the needle or cannula 112 is coupled to a second plunger 116 at or near the second end 142b of the container 140.
  • the needle or cannula 112 is in fluid communication with the medicament 143 via an opening 116a on the second plunger 116.
  • the first plunger 144 and the second plunger 1 16 both act as seals to restrict movement of the medicament 143 inside the container 142.
  • the needle or cannula 112 is disposed near the sterile barrier 114, thus the medicament 143 is restricted from entering the void 118 between the second plunger 116 and the first end 142b of the container.
  • the needle or cannula 112 and the sterile barrier 144 are movable relative to each other.
  • the sterile barrier 114 is disposed at a second opening 142f of the container 142. In some examples, the sterile barrier 114 is disposed on the outer surface 142d of the container 142, and in other examples, the sterile barrier 114 is disposed on the inner surface 142c of the container 142. Other examples of suitable locations and/or configurations of the sterile barrier 114 are possible, and will be discussed with relation to various embodiments below.
  • the hydraulic fluid 153 has no external forces acting on it, thus the drive assembly 140 is in a starting state where the needle or cannula 112 is fully retracted.
  • the drive mechanism 150 has been actuated via any number of suitable approaches.
  • the first plunger 144 urges the medicament 143 towards the second end 142b of the container 142.
  • an external drive mechanism such as a resilient member or spring 158 exerts a force on the drive plunger 154 that pressurizes the hydraulic fluid 153. This pressure is transmitted via the drive connection 156 to the first plunger 144, which then exerts a force on the medicament 143.
  • the medicament 143 is urged towards the second plunger 116.
  • the hydraulic fluid 153 is continually urged towards and against the first plunger 144, and thereby enters an area between the first plunger 144 and the first end 142a of the container 142. Further, the continued urging by the first plunger 144 causes the medicament 143 to exert a force on the second plunger 116, to which the needle or cannula 112 is coupled. When a substantial force is exerted on the second plunger 116, the second plunger 116 (and the needle or cannula 112) will advance towards the second end 142b of the container 142.
  • the needle or cannula 112 and the sterile barrier 114 move relative to each other to a second configuration where the needle or cannula 112 punctures or breaks the sterile barrier 114, thereby allowing the needle or cannula 112 to be injected into a user and the medicament 143 to be administered via the needle or cannula 112.
  • the first plunger 144 continues to advance towards the second end 142b of the container 142, thus continues to the medicament 143 through the needle or cannula 112 to be delivered.
  • the first plunger 144 reaches the end of its stroke (and is in contact with the second plunger 116, thus the full volume of the medicament 143 is delivered.
  • the drive assembly 140 may further include a release mechanism that exerts an opposing force on the first plunger 144 that causes the first plunger 144 and the second plunger 116 to move towards the first end 142a of the container 142. Accordingly, the needle or cannula 112 will be retracted and removed from the user.
  • an alternate drug delivery device 200 is provided.
  • the drug delivery device 200 includes similar features and elements as the drug delivery device 100, and thus has reference numerals with identical two-digit suffixes as those in the drug delivery device 100 of Figs. 2-4b. As such, for the sake of brevity, similar components will not be described in detail.
  • the drug delivery device 200 may include additional components not illustrated in the Figures. In the illustrated examples of Figs. 5a- 11 (and 14-15b), the device uses indirect pressure to pressurize the chamber.
  • the drug delivery device 200 includes the pressure chamber 270, and a drive assembly 240 that includes a drive mechanism 250 (e.g., a pneumatic, hydraulic, and/or spring driven driving mechanism).
  • the pressure chamber 270 includes a needle assembly 210, which includes a needle or cannula 212 and a sterile barrier 214.
  • a container 242 Inside the pressure chamber 270 is a container 242 having a first end 242a, a second end 242b, an inner surface 242c, and an outer surface 242d and is adapted to store a medicament 243 in an inner volume thereof.
  • the medicament container 242 further includes a first plunger or stopper 244 having a first surface 244a and a second surface 244b and an insert 246.
  • the plunger 244 is at least partially disposed in the container 242.
  • the pressure chamber 270 is in the form of an outer shell that at least partially surrounds the container 242 to define a pressure equalizing chamber therebetween, and allows lateral movement of the container 242 within a volume or gap 272 of the pressure chamber 270.
  • the pressure chamber 270 is dimensioned to create a gap between the outer surface 242d of the container 242 and the pressure chamber 270.
  • the gap 272 may be filled with water or a different fluid to allow pressure to be applied to the liquid, thereby forcing the plunger to dispense them medicament and resulting in a combination pneumatic-hydraulic application.
  • the pressure chamber 270 is sealed and in fluid communication with the second surface 244b of the first plunger 244 such that the pressure chamber 270 is subject to equal pressure as an inner volume of the container 242.
  • the insert 246 is disposed at the first end 242a of the container 242 and includes an opening or channel 246a disposed through the insert 246, a sealing member 246b (e.g., an O-ring), and a gas inlet or passageway 246c.
  • the insert 246 is inserted in a first end 270a of the pressure chamber 270 such that the insert seal 246b contacts an inner surface of the pressure chamber 270 to create a seal.
  • the drive assembly 240 includes a pneumatic drive mechanism 250 in the form of a gas source that creates an urging force, and includes an actuator button or screw 251 , a drive container 252 coupled to the actuator screw 251 that contains a gas cartridge 253 that stores a drive fluid such as compressed gas 253a, a gas cartridge spike portion 254, and a drive connection 256 (e.g., a gas outlet) formed between the drive mechanism 250 and the container 240 and includes a compressed gas spike 256a.
  • the gas can be a compressed gas, such as nitrogen or argon, or a liquefied gas, such as CO2 or SFs.
  • the gas can also be a liquefied propellant, such as HFC-134a (hydrofluorocarbon).
  • the needle or cannula 212 is fixedly disposed through an opening 270b on a first end 270a of the pressure chamber 270.
  • the drive fluid 253a exerts a force on the second surface 244b of the first plunger 244 to urge the medicament 243 through the container 242, and exerts an equalizing pressure on the outer surface 242d of the container 242 that is approximately equal to the force exerted on the first plunger 244.
  • the drive fluid 253a causes the container 242 to advance towards the first end 270a of the pressure chamber 270, where the needle or cannula 212 punctures the sterile barrier 214.
  • the first plunger 244 then urges the medicament 243 through the needle or cannula 212 to be administered to the user.
  • the actuator screw 251 is first turned.
  • turning of the actuator screw 251 occurs by pressing or depressing the actuator screw 251 in a direction towards the gas cartridge 253.
  • This movement in turn causes the gas cartridge 253 to be urged towards the compressed gas spike 256a, which will pierce the gas cartridge spike portion 254, thereby causing the compressed gas 253a to flow through the drive connection 256 towards the pressure chamber 270.
  • the pressurized gas 253a then flows through the insert 246 and contacts an urging component 248.
  • the urging component 248 is an inflatable balloon.
  • the urging component 248 inflates and exerts a force on the first plunger 244 that causes the container 242 to advance towards the first end 270a of the pressure chamber (and thus advance toward the needle or cannula 212).
  • the first plunger 244 then pushes the container 242 onto the needle or cannula 212 to break the sterile barrier 214.
  • the compressed gas 253a continues to urge the first plunger 244 towards the second end 242b of the container 242, thereby continuing delivery of the medicament 243. Accordingly, the medicament 243 may flow through the needle or cannula 212 to be administered to a user.
  • the urging component 248 may not be used, and the pressurized gas 253a may directly contact the first plunger 244.
  • the equalizing pressure allows for large volume delivery of medicament 243 since it allows for high pressure gases to be used to deliver the volume of the medicament 243.
  • Compressed gas 253a also can allow for slower delivery rate of the medicament 243 if desired.
  • the delivery state of the pressure chamber 253 upon delivery of the medicament 243 can be determined using the distinct pressure profile during various stages of delivery (e.g., during septum penetration, needle insertion into the skin, delivery initiation, sustenance, and delivery completion). These distinct pressure profiles can be readily detected by a pressure transducer disposed along gas channels and/or hydraulic-pneumatic chambers and fluidic channels.
  • a drug delivery device 200' is provided that includes similar features as the drug delivery device 200 of Figs. 5a-6. These features are depicted with identical reference characters as those provided with regards to Figs. 5a-6 and have a prime symbol (') appended thereto.
  • the drug delivery device 200' may include additional components not illustrated in the Figures. However, in this example, the urging component 248' is in the form of an elastomeric pusher member. As with the drug delivery device 200 of Figs. 5a-6 and as illustrated in Fig.
  • the gas cartridge 253a' advances towards the compressed gas spike 256a' which spikes the gas cartridge spike portion 254' to allow the gas cartridge 253' to advance through the drive connection 256'.
  • the urging component 248' (shown before use in Fig. 7) forces the container 242' onto the needle or cannula 212' (as illustrated in Fig. 8), thereby breaking the sterile barrier 214', and subsequently or simultaneously allows the pressurized gas 253a' to flow into the pressure chamber volume 272'. As illustrated in Fig. 9, the urging component 248' follows the first plunger 244' and provides an additional gas seal via an outer sealing surface 248a' to ensure the compressed gas 253a' does not come into contact with the medicament 243'
  • an alternate drug delivery device 200" is provided that includes similar features as the drug delivery device 200.
  • the drug delivery device 200" may include additional components not illustrated in the Figures.
  • the container 242" is in the form of a conventional glass syringe which may be readily available. Accordingly, Fig. 10 illustrates how the alternate drug delivery device 200" may be incorporated into a number of available devices and designs.
  • an alternate pressure drive system for a wearable drug delivery device 300 is provided.
  • the system 300 includes similar features and elements as the drug delivery devices 100, 200, 200', and 200", and thus have reference numerals with identical two-digit suffixes as those in the drug delivery devices of Figs. 2-10. As such, for the sake of brevity, similar components will not be described in detail.
  • the system 300 may include additional components not illustrated in the Figures.
  • the system 300 includes a primary container 342 for storing a medicament 343 to be administered by a user, a sealed pressure chamber 370 at least partially surrounding the primary container 342, a cannula insertion mechanism 310 in fluid connection with the primary container 342, and an activation mechanism 340in fluid connection with the cannula insertion mechanism 310 and the primary container 342.
  • the activation mechanism 350 is adapted to cause the cannula insertion mechanism 310 to insert the needle or cannula 312 into the user and to cause the medicament 343 to be dispersed. As illustrated in Figs. 12a-12c, the activation mechanism 350 includes an actuator button 351 , a drive container 352 having a threaded portion 352a, a gas cartridge 353 disposed within the drive container 352 that stores a compressed gas 353a, a gas cartridge spike portion 354, and a first connection 356 having a cartridge spike 356a.
  • the activation mechanism 350 further includes a locking tab 357, a gear 358 having a number of catches 358a, a threaded drive screw 359 coupled to the gear 358, and a pretensioned spring 360 also operably coupled to the gear 358.
  • the spring 360, the gear 358, and the threaded drive screw 359 cooperate to that advance the gas cartridge 353 towards the cartridge spike 356a.
  • the activation mechanism 350 can include any number of additional features to assist in actuating the system 300.
  • the spring 360 In operation, in a resting configuration, the spring 360 maintains a wound, loaded, or pretensioned state when the locking tab 357 engages one of the catches. This configuration prevents the threaded drive screw 359 from advancing into the drive container 352 until activation.
  • the actuator button 351 Upon depressing the actuator button 351 , the actuator button 351 urges the locking tab 357 downwards and away from one of the catches 358a. The locking tab 357 then releases from the catch 358a, thereby allowing the spring 360 to unwind. As the spring 360 unwinds, the gear 358 and the threaded drive screw 359 rotate relative to the threaded portion 352a of the drive container 352.
  • the cannula insertion mechanism 310 is adapted to insert a needle or cannula 312 into the user to inject the medicament 343.
  • the cannula insertion mechanism 310 includes a housing 311 defining a shell that includes an opening 311a to receive the first connection 356, a sliding plunger assembly 316 to which the cannula or needle 312 is attached, and a resilient member 318 that urges the sliding plunger assembly 316 in a first, non-inserted position.
  • the sliding plunger assembly 316 includes a sealing surface 316a that seals the housing 311.
  • the cannula insertion mechanism 310 further includes a second connection 320 that allows the medicament 343 to flow from the container 342 to the needle or cannula 312 and a third connection 322 to allow the compressed gas 353a to flow from the cannula insertion mechanism 310 to the pressure chamber 370.
  • the sliding plunger assembly 316 overcomes a resistive force from the resilient member 318 and is urged downwards to eventually puncture the sterile barrier 314. This pressure is maintained by the compressed gas 353a, thus the sliding plunger assembly 316 remains in a second position where the needle or cannula 312 is inserted into a user.
  • the sealing surface 316a becomes positioned below an opening corresponding to the third connection 322.
  • the sliding plunger assembly 316 further includes a cutout or channel 316b to accommodate the third connection 322. Once the sealing surface 316a of the sliding plunger assembly 316 is positioned below the third connection 322, the compressed gas 353a may then pass through the third connection 322 and advance to the pressure chamber 370 and container 342.
  • the pressure chamber 370 includes a first opening 370a that accommodates the third connection 322. This opening allows the compressed gas 353a to enter the pressure chamber and surround the container 342. The compressed gas 353a then advances towards a first end 342a of the container 342 and begins to urge the plunger 344 forward towards the second end 342b of the container 342. This urging by the plunger 344 causes the medicament 343 to flow through the second connection 320 disposed in a second opening 370b and back to the cannula insertion mechanism 310 as illustrated in Fig. 13b. Accordingly, the medicament 343 is delivered to the user via the needle or cannula 312.
  • the compressed gas 353a exerts an equalizing force on an outer surface 342c of the container 342 that opposes a force exerted on an inner surface 342d by the plunger 344 advancing the medicament 343. Accordingly, the container 342 does not experience substantial stresses that may be potentially damaging to the system 300.
  • a relief mechanism 380 is provided in the pressure chamber 370. As illustrated in Fig. 15a, as the plunger 344 nears the second end 342b of the container 342, thereby signifying near-completion of delivery of the medicament 343, a cable 382 coupled to the plunger 344 becomes tensioned.
  • the cable 382 is coupled to a release 384 having a plug 386 that is disposed in a relief opening 372 of the pressure chamber 370.
  • tension on the cable 382 causes the pressure relief mechanism 380 to be activated.
  • the plug 386 is suitably displaced from the relief opening 372 to allow pressure from the compressed gas 353a to be relieved through the relief opening 372.
  • the resilient member 318 of the cannula insertion mechanism 310 urges the sliding plunger assembly 316 upwards, thereby removing or retracting the needle or cannula 312 from the user.
  • the relief opening 372 may also include a flow restriction element such as a porous filter.
  • This element may act as a "muffler” that reduces the noise of the venting gas. Additionally this element may assist in slowing down pressure decay, thus ensuring that all of the medicament is delivered to the user.
  • a system 400 may include similar features and elements as the drug delivery devices and systems 100, 200, 200', 200", and 300, and thus have reference numerals with identical two-digit suffixes as those in the drug delivery devices of Figs. 2-16. As such, for the sake of brevity, similar components will not be described in detail.
  • the system 400 may include additional components not illustrated in the Figures.
  • a first end 442a of a container 442 containing medicament 443 may include a volume 442b to accommodate an elastomeric stopper 444 having an inner bore 444a.
  • a manifold cap 446 is positioned adjacent to the elastomeric stopper 444, and includes a bore 446a to accommodate a connection 420 that allows medicament to flow.
  • the manifold cap 446 further includes a volume 446b in fluid connection with the bore 446a.
  • a movable pin 448 is initially disposed in the inner bore 444a and acts as a plug to restrict medicament flow through the connection 420.
  • fluid pressure urges the movable pin 448 into the volume 446b. Accordingly, medicament 442 may flow from the inner bore 444a of the elastomeric stopper and through the manifold cap 446.
  • a system 500 may include similar features and elements as the drug delivery devices and systems 100, 200, 200', 200", 300, and 400, and thus have reference numerals with identical two-digit suffixes as those in the drug delivery devices of Figs. 2-17b. As such, for the sake of brevity, similar components will not be described in detail.
  • the system 500 may include additional components not illustrated in the Figures.
  • a first end 542a of a container 542 containing medicament 543 may be temporarily sealed by a movable elastomeric stopper 544 (Fig. 18a).
  • the elastomeric stopper may include a bore 544a at one end and may have an embedded spike 546 disposed at an opposite end.
  • the system 500 further includes a manifold 548 that surrounds the spike 546 and includes a volume 548a. As illustrated in Fig. 18b, during delivery, fluid pressure urges the elastomeric stopper 544 into the volume 548a, which causes the spike 546 to further pierce the elastomeric stopper 544 such that the spike 546 enters the bore 544a. As such, medicament 542 may flow from the bore 544a and though the spike 546.
  • a system 600 may include similar features and elements as the drug delivery devices and systems 100, 200, 200', 200", 300, 400, and 500, and thus have reference numerals with identical two-digit suffixes as those in the drug delivery devices of Figs. 2-18b. As such, for the sake of brevity, similar components will not be described in detail.
  • the system 600 may include additional components not illustrated in the Figures.
  • the needle insertion/retraction process also known as cannulation, is achieved via a hydraulic and/or pneumatic needle insertion/retraction module 650.
  • the module 650 may be directly coupled with the cannula connected to a piston, or alternatively, may be indirectly coupled through the illustrated mechanism.
  • the module 650 is pressurized at the same time as the primary container 642 by the same gas driving a stopper in the primary container 642 and has a movable piston 652 at a proximal end connected to a spring 654 at a distal end.
  • the piston 652 moves forward when module is pressurized and compresses the spring 654 at distal end.
  • the piston 652 likewise is connected to a cam mechanism 658 containing the needle hub or assembly 610 as a follower. As the piston 652 moves, the needle hub 610 is driven downwards via the cam mechanism 658 to penetrate the skin.
  • the cam mechanism 658 includes a shaft 658a that is inserted into a slot 650a of the module 650. Further, the needle hub 610 is slidably disposed in a channel 658b of the cam mechanism 658 via a protrusion (not illustrated) that corresponds to the shape of the channel 658b. As illustrated in Fig. 19a, in a first position, the cam mechanism 658 is in a first configuration where the needle hub 610 is not inserted into the skin. In Fig. 19b, the piston 652 moves forward, and advances the module 650 relative to the cam mechanism 658. Accordingly, the shaft 658a advances downwards through the slot, which in turn causes the needle hub 610 to move downwards in the channel 658b to be inserted into the skin.
  • a movable septa-plug in the distal end of the primary container is moved forward to be penetrated by a fixed cannula at the distal end of the primary container.
  • the fluidic path from the primary drug container to the skin is established. This process is fairly rapid, but it ensures a delay before the fluidic path is established to allow for the needle in the needle insertion/retraction module to penetrate the skin first.
  • the cannula stays in the skin until pressure drops in the needle insertion/retraction or cannulation module.
  • the pressure may drop when the stopper in the primary drug container reaches the end of travel. This may occur when all drug contents have been delivered to the patient and stopper reached the neck area of the primary drug container. At this point, the chamber pressure drops via a pressure relief plug at proximal end of the primary drug container. As the stopper in the primary drug container moves forward, a plug at proximal end of the pressure chamber that is tethered to the stopper by a Kevlar string or similarly known material to art is pulled to open a relief valve to relieve any residual gas pressure in drive mechanism.
  • the drop in pressure also allows for the previously compressed spring 654 at the distal end of the pneumatic needle insertion/retraction module 650 to relax and push the piston 652 back, thereby resulting in the needle being retracted from the skin.
  • the speed of needle retraction can be tuned.
  • the retraction speed is also affected by the friction of the piston and sliding elements such as a cam-follower assembly in the module.
  • a system 700 may include similar features and elements as the drug delivery devices and systems 100, 200, 200', 200", 300, 400, 500, and 600, and thus have reference numerals with identical two-digit suffixes as those in the drug delivery devices of Figs. 2-19b. As such, for the sake of brevity, similar components will not be described in detail.
  • the system 700 may include additional components not illustrated in the Figures. In the system 700, which closely resembles the system 600, the needle insertion/retraction process is achieved via a hydraulic and/or pneumatic needle insertion/retraction module 750.
  • the module 750 may be directly coupled with the cannula connected to a piston, or alternatively, may be indirectly coupled through the illustrated mechanism.
  • the module 750 is pressurized at substantially the same time as the primary container 742 by the same gas driving a stopper in the primary container 742 and has a movable piston 752 at a proximal end connected to a spring 754 at a distal end.
  • the piston 752 includes a break-away protrusion 753 disposed at the proximal end to assist in the rapid release of gas for high speed needle or cannula insertion.
  • the protrusion 753 includes one or more grooves 753a that form weak points, yet restrain the movement of the piston 752 until sufficient pressure has accumulated to break the protrusion 753. Upon the pressure increasing beyond the break-point, the needle is inserted much more rapidly.
  • the protrusion 753 additionally partially blocks the gas path to the chamber with the drug vial to ensure that the needle hub 710 fires before drug delivery begins.
  • the piston 752 moves forward when module is sufficiently pressurized and compresses the spring 754 at the distal end.
  • the piston 752 likewise is connected to a cam mechanism 758 containing the needle hub or assembly 710 as a follower. As the piston 752 moves, the needle hub 710 is driven downwards via the cam mechanism 758 to penetrate the skin.
  • the cam mechanism 758 includes a shaft 758a that is inserted into a slot 750a of the module 750.
  • a movable septa-plug in the distal end of the primary container is moved forward to be penetrated by a fixed cannula at the distal end of the primary container.
  • the fluidic path from the primary drug container to the skin is established. This process is fairly rapid due to the breakaway protrusion 753, which, as previously noted, also ensures a delay before the fluidic path is established to allow for the needle in the needle insertion/retraction module 710 to first penetrate the skin.
  • the cannula remains in the skin until pressure drops in the needle insertion/retraction or cannulation module.
  • the above description describes various assemblies, devices, and methods for use with a drug delivery device. It should be clear that the assemblies, drug delivery devices, or methods can further comprise use of a medicament listed below with the caveat that the following list should neither be considered to be all inclusive nor limiting.
  • the medicament will be contained in a reservoir.
  • the reservoir is a primary container that is either filled or pre-filled for treatment with the medicament.
  • the primary container can be a cartridge or a pre-filled syringe.
  • the drug delivery device or more specifically the reservoir of the device may be filled with colony stimulating factors, such as granulocyte colony-stimulating factor (G-CSF).
  • G-CSF agents include, but are not limited to, Neupogen® (filgrastim) and Neulasta® (pegfilgrastim).
  • the drug delivery device may be used with various pharmaceutical products, such as an erythropoiesis stimulating agent (ESA), which may be in a liquid or a lyophilized form.
  • ESA erythropoiesis stimulating agent
  • An ESA is any molecule that stimulates erythropoiesis, such as Epogen® (epoetin alfa), Aranesp® (darbepoetin alfa), Dynepo® (epoetin delta), Mircera® (methyoxy polyethylene glycol-epoetin beta), Hematide®, MRK-2578, INS-22, Retacrit® (epoetin zeta), Neorecormon® (epoetin beta), Silapo® (epoetin zeta), Binocrit® (epoetin alfa), epoetin alfa Hexal, Abseamed® (epoetin alfa), Ratioepo® (epoetin theta), Eporatio® (epoetin theta), Biopoin® (epoetin theta), epoetin alfa
  • An ESA can be an erythropoiesis stimulating protein.
  • erythropoiesis stimulating protein means any protein that directly or indirectly causes activation of the erythropoietin receptor, for example, by binding to and causing dimerization of the receptor.
  • Erythropoiesis stimulating proteins include erythropoietin and variants, analogs, or derivatives thereof that bind to and activate erythropoietin receptor; antibodies that bind to erythropoietin receptor and activate the receptor; or peptides that bind to and activate erythropoietin receptor.
  • Erythropoiesis stimulating proteins include, but are not limited to, epoetin alfa, epoetin beta, epoetin delta, epoetin omega, epoetin iota, epoetin zeta, and analogs thereof, pegylated erythropoietin, carbamylated erythropoietin, mimetic peptides (including EMP1/hematide), and mimetic antibodies.
  • Exemplary erythropoiesis stimulating proteins include erythropoietin, darbepoetin, erythropoietin agonist variants, and peptides or antibodies that bind and activate erythropoietin receptor (and include compounds reported in U.S. Publication Nos. 2003/0215444 and 2006/0040858, the disclosures of each of which is incorporated herein by reference in its entirety) as well as erythropoietin molecules or variants or analogs thereof as disclosed in the following patents or patent applications, which are each herein incorporated by reference in its entirety: U.S. Patent Nos.
  • Examples of other pharmaceutical products for use with the device may include, but are not limited to, antibodies such as Vectibix® (panitumumab), XgevaTM (denosumab) and ProliaTM (denosamab); other biological agents such as Enbrel® (etanercept, TNF-receptor /Fc fusion protein, TNF blocker), Neulasta® (pegfilgrastim, pegylated filgastrim, pegylated G-CSF, pegylated hu-Met-G-CSF), Neupogen® (filgrastim , G-CSF, hu-MetG-CSF), and Nplate® (romiplostim); small molecule drugs such as Sensipar® (cinacalcet).
  • antibodies such as Vectibix® (panitumumab), XgevaTM (denosumab) and ProliaTM (denosamab); other biological agents such as Enbrel® (e
  • the device may also be used with a therapeutic antibody, a polypeptide, a protein or other chemical, such as an iron, for example, ferumoxytol, iron dextrans, ferric glyconate, and iron sucrose.
  • a therapeutic antibody for example, ferumoxytol, iron dextrans, ferric glyconate, and iron sucrose.
  • the pharmaceutical product may be in liquid form, or reconstituted from lyophilized form.
  • proteins are the specific proteins set forth below, including fusions, fragments, analogs, variants or derivatives thereof:
  • OPGL specific antibodies, peptibodies, and related proteins, and the like also referred to as RANKL specific antibodies, peptibodies and the like
  • fully humanized and human OPGL specific antibodies particularly fully humanized monoclonal antibodies, including but not limited to the antibodies described in PCT Publication No.
  • WO 03/002713 which is incorporated herein in its entirety as to OPGL specific antibodies and antibody related proteins, particularly those having the sequences set forth therein, particularly, but not limited to, those denoted therein: 9H7; 18B2; 2D8; 2E11 ; 16E1 ; and 22B3, including the OPGL specific antibodies having either the light chain of SEQ ID NO:2 as set forth therein in Figure 2 and/or the heavy chain of SEQ ID NO:4, as set forth therein in Figure 4, each of which is individually and specifically incorporated by reference herein in its entirety fully as disclosed in the foregoing publication;
  • WO 2004/058988 which are incorporated by reference herein in their entirety particularly in parts pertinent to myostatin specific peptibodies, including but not limited to peptibodies of the mTN8-19 family, including those of SEQ ID NOS:305-351 , including TN8-19-1 through TN8-19-40, TN8-19 conl and TN8-19 con2; peptibodies of the mL2 family of SEQ ID NOS:357-383; the mL15 family of SEQ ID NOS:384- 409; the mL17 family of SEQ ID NOS:410-438; the mL20 family of SEQ ID NOS:439-446; the mL21 family of SEQ ID NOS:447- 452; the mL24 family of SEQ ID NOS:453-454; and those of SEQ ID NOS:615-631 , each of which is individually and specifically incorporated by reference herein in their entirety fully as disclosed in the foregoing publication;
  • IL-4 receptor specific antibodies include those described in PCT Publication No. WO 2005/047331 or PCT Application No. PCT/US2004/37242 and in U.S. Publication No.
  • Interleukin 1-receptor 1 (“IL1-R1”) specific antibodies, peptibodies, and related proteins, and the like, including but not limited to those described in U.S. Publication No. 2004/097712, which is incorporated herein by reference in its entirety in parts pertinent to IL1-R1 specific binding proteins, monoclonal antibodies in particular, especially, without limitation, those designated therein: 15CA, 26F5, 27F2, 24E12, and 10H7, each of which is individually and specifically incorporated by reference herein in its entirety fully as disclosed in the aforementioned publication;
  • Ang2 specific antibodies, peptibodies, and related proteins, and the like including but not limited to those described in PCT Publication No. WO 03/057134 and U.S. Publication No. 2003/0229023, each of which is incorporated herein by reference in its entirety particularly in parts pertinent to Ang2 specific antibodies and peptibodies and the like, especially those of sequences described therein and including but not limited to: L1 (N); L1 (N) WT; L1 (N) 1 K WT; 2xL1 (N); 2xL1 (N) WT; Con4 (N), Con4 (N) 1 K WT, 2xCon4 (N) 1 K; L1 C; L1 C 1 K; 2xL1 C; Con4C; Con4C 1 K; 2xCon4C 1 K; Con4-L1 (N); Con4-L1 C; TN-12-9 (N); C17 (N); TN8-8(N); TN8-14 (N); Con 1 (N),
  • WO 2003/030833 which is incorporated herein by reference in its entirety as to the same, particularly Ab526; Ab528; Ab531 ; Ab533; Ab535; Ab536; Ab537; Ab540; Ab543; Ab544; Ab545; Ab546; A551 ; Ab553; Ab555; Ab558; Ab559; Ab565; AbFIAbFD; AbFE; AbFJ; AbFK; AbG1 D4; AbGC1 E8; AbH1 C12; AblA1 ; AblF; AblK, AblP; and AblP, in their various permutations as described therein, each of which is individually and specifically incorporated by reference herein in its entirety fully as disclosed in the foregoing publication;
  • NGF specific antibodies, peptibodies, and related proteins, and the like including, in particular, but not limited to those described in U.S. Publication No. 2005/0074821 and U.S. Patent No. 6,919,426, which are incorporated herein by reference in their entirety particularly as to NGF-specific antibodies and related proteins in this regard, including in particular, but not limited to, the NGF-specific antibodies therein designated 4D4, 4G6, 6H9, 7H2, 14D10 and 14D11 , each of which is individually and specifically incorporated by reference herein in its entirety fully as disclosed in the foregoing publication;
  • CD22 specific antibodies, peptibodies, and related proteins, and the like such as those described in U.S. Patent No. 5,789,554, which is incorporated herein by reference in its entirety as to CD22 specific antibodies and related proteins, particularly human CD22 specific antibodies, such as but not limited to humanized and fully human antibodies, including but not limited to humanized and fully human monoclonal antibodies, particularly including but not limited to human CD22 specific IgG antibodies, such as, for instance, a dimer of a human-mouse monoclonal hl_L2 gamma-chain disulfide linked to a human-mouse monoclonal hl_L2 kappa-chain, including, but limited to, for example, the human CD22 specific fully humanized antibody in Epratuzumab, CAS registry number 501423-23-0;
  • IGF-1 receptor specific antibodies such as those described in PCT Publication No. WO 06/069202, which is incorporated herein by reference in its entirety as to IGF-1 receptor specific antibodies and related proteins, including but not limited to the IGF-1 specific antibodies therein designated L1 H1 , L2H2, L3H3, L4H4, L5H5, L6H6, L7H7, L8H8, L9H9, L10H10, L11 H11 , L12H12, L13H13, L14H14, L15H15, L16H16, L17H17, L18H18, L19H19, L20H20, L21 H21 , L22H22, L23H23, L24H24, L25H25, L26H26, L27H27, L28H28, L29H29, L30H30, L31 H31 , L32H32, L33H33, L34H34, L35H35, L31 H31 , L32H32, L33H33, L34H34
  • anti-IGF-1 R antibodies for use in the methods and compositions of the present invention are each and all of those described in:
  • B-7 related protein 1 specific antibodies, peptibodies, related proteins and the like (“B7RP-1 ,” also is referred to in the literature as B7H2, ICOSL, B7h, and CD275), particularly B7RP-specific fully human monoclonal lgG2 antibodies, particularly fully human lgG2 monoclonal antibody that binds an epitope in the first immunoglobulin-like domain of B7RP-1 , especially those that inhibit the interaction of B7RP-1 with its natural receptor, ICOS, on activated T cells in particular, especially, in all of the foregoing regards, those disclosed in U.S. Publication No. 2008/0166352 and PCT Publication No.
  • WO 07/011941 which are incorporated herein by reference in their entireties as to such antibodies and related proteins, including but not limited to antibodies designated therein as follow: 16H (having light chain variable and heavy chain variable sequences SEQ ID NO:1 and SEQ ID NO:7 respectively therein); 5D (having light chain variable and heavy chain variable sequences SEQ ID NO:2 and SEQ ID NO:9 respectively therein); 2H (having light chain variable and heavy chain variable sequences SEQ ID NO:3 and SEQ ID NO: 10 respectively therein); 43H (having light chain variable and heavy chain variable sequences SEQ ID NO:6 and SEQ ID NO: 14 respectively therein); 41 H (having light chain variable and heavy chain variable sequences SEQ ID NO:5 and SEQ ID N0:13 respectively therein); and 15H (having light chain variable and heavy chain variable sequences SEQ ID N0:4 and SEQ ID NO: 12 respectively therein), each of which is individually and specifically incorporated by reference herein in its entirety fully as disclosed in the foregoing publication
  • IL-15 specific antibodies such as, in particular, humanized monoclonal antibodies, particularly antibodies such as those disclosed in U.S. Publication Nos. 2003/0138421 ; 2003/023586; and
  • IFN gamma specific antibodies peptibodies, and related proteins and the like, especially human IFN gamma specific antibodies, particularly fully human anti-IFN gamma antibodies, such as, for instance, those described in U.S. Publication No. 2005/0004353, which is incorporated herein by reference in its entirety as to IFN gamma specific antibodies, particularly, for example, the antibodies therein designated 1118; 1118*; 1119; 1121 ; and 1121*.
  • Specific antibodies include those having the heavy chain of SEQ ID NO: 17 and the light chain of SEQ ID NO: 18; those having the heavy chain variable region of SEQ ID NO:6 and the light chain variable region of SEQ ID NO:8; those having the heavy chain of SEQ ID NO: 19 and the light chain of SEQ ID NO:20; those having the heavy chain variable region of SEQ ID NO: 10 and the light chain variable region of SEQ ID NO: 12; those having the heavy chain of SEQ ID NO:32 and the light chain of SEQ ID NO:20; those having the heavy chain variable region of SEQ ID NO:30 and the light chain variable region of SEQ ID NO: 12; those having the heavy chain sequence of SEQ ID NO:21 and the light chain sequence of SEQ ID NO:22; those having the heavy chain variable region of SEQ ID NO:14 and the light chain variable region of SEQ ID NO:16; those having the heavy chain of SEQ ID NO:21 and the light chain of SEQ ID NO:33; and those having the heavy chain variable region of SEQ ID NO: 14 and the
  • TALL-1 specific antibodies include peptibodies, and the related proteins, and the like, and other TALL specific binding proteins, such as those described in U.S. Publication Nos. 2003/0195156 and 2006/0135431 , each of which is incorporated herein by reference in its entirety as to TALL-1 binding proteins, particularly the molecules of Tables 4 and 5B, each of which is individually and specifically incorporated by reference herein in its entirety fully as disclosed in the foregoing publications;
  • PTH Parathyroid hormone
  • TPO-R Thrombopoietin receptor
  • Hepatocyte growth factor (“HGF”) specific antibodies, peptibodies, and related proteins, and the like, including those that target the HGF/SF:cMet axis (HGF/SF:c-Met), such as the fully human monoclonal antibodies that neutralize hepatocyte growth factor/scatter (HGF/SF) described in U.S. Publication No. 2005/0118643 and PCT Publication No. WO 2005/017107, huL2G7 described in U.S. Patent No. 7,220,410 and OA-5d5 described in U.S. Patent Nos. 5,686,292 and 6,468,529 and in PCT Publication No. WO 96/38557, each of which is incorporated herein by reference in its entirety, particularly in parts pertinent to proteins that bind HGF;
  • TRAIL-R2 specific antibodies, peptibodies, related proteins and the like such as those described in U.S. Patent No. 7,521 ,048, which is herein incorporated by reference in its entirety, particularly in parts pertinent to proteins that bind TRAIL-R2;
  • Activin A specific antibodies, peptibodies, related proteins, and the like, including but not limited to those described in U.S. Publication No. 2009/0234106, which is herein incorporated by reference in its entirety, particularly in parts pertinent to proteins that bind Activin A;
  • TGF-beta specific antibodies, peptibodies, related proteins, and the like including but not limited to those described in U.S. Patent No. 6,803,453 and U.S. Publication No. 2007/0110747, each of which is herein incorporated by reference in its entirety, particularly in parts pertinent to proteins that bind TGF-beta;
  • Amyloid-beta protein specific antibodies including but not limited to those described in PCT Publication No. WO 2006/081171 , which is herein incorporated by reference in its entirety, particularly in parts pertinent to proteins that bind amyloid-beta proteins.
  • One antibody contemplated is an antibody having a heavy chain variable region comprising SEQ ID NO:8 and a light chain variable region having SEQ ID NO:6 as disclosed in the foregoing publication;
  • OX40L specific antibodies, peptibodies, related proteins, and the like including but not limited to those described in U.S. Publication No. 2006/0002929, which is incorporated herein by reference in its entirety, particularly in parts pertinent to proteins that bind OX40L and/or other ligands of the OX40 receptor; and
  • Activase® (alteplase, tPA); Aranesp® (darbepoetin alfa); Epogen® (epoetin alfa, or erythropoietin); GLP-1 , Avonex® (interferon beta-1a); Bexxar® (tositumomab, anti-CD22 monoclonal antibody); Betaseron® (interferon-beta); Campath® (alemtuzumab, anti-CD52 monoclonal antibody); Dynepo® (epoetin delta); Velcade® (bortezomib); MLN0002 (anti- ⁇ 4 ⁇ 7 mAb); MLN1202 (anti-CCR2 chemokine receptor mAb); Enbrel® (etanercept, TNF-receptor /Fc fusion protein, TNF blocker); Eprex® (epoetin alfa)
  • hBNP human B-type natriuretic peptide
  • Kineret® anakinra
  • Leukine® sargamostim, rhuGM-CSF
  • LymphoCide® epratuzumab, anti-CD22 mAb
  • BenlystaTM lymphostat B, belimumab, anti-BlyS mAb
  • Metalyse® tenecteplase, t-PA analog
  • Mircera® methoxy polyethylene glycol-epoetin beta
  • Mylotarg® gemtuzumab ozogamicin
  • efalizumab Cimzia® (certolizumab pegol, CDP 870); SolirisTM (eculizumab); pexelizumab (anti-C5 complement); Numax® (MEDI-524); Lucentis® (ranibizumab); Panorex® (17-1A, edrecolomab); Trabio® (lerdelimumab); TheraCim hR3 (nimotuzumab); Omnitarg (pertuzumab, 2C4); Osidem® (IDM-1); OvaRex® (B43.13); Nuvion® (visilizumab); cantuzumab mertansine (huC242- DM1); NeoRecormon® (epoetin beta); Neumega® (oprelvekin, human interleukin-11); Neulasta® (pegylated filgastrim, pegylated G-CSF, pegylated hu-Met-G
  • Tysabri® (natalizumab, anti-a4integrin mAb); Valortim® (MDX-1303, anti-B. anthracis protective antigen mAb); ABthraxTM; Vectibix® (panitumumab); Xolair® (omalizumab); ETI211 (anti-MRSA mAb); IL-1 trap (the Fc portion of human lgG1 and the extracellular domains of both IL-1 receptor components (the Type I receptor and receptor accessory protein)); VEGF trap (Ig domains of VEGFR1 fused to lgG1 Fc); Zenapax® (daclizumab); Zenapax® (daclizumab, anti-IL-2Ra mAb); Zevalin®
  • Toxin A and Toxin B C mAbs MDX-066 (CDA-1) and MDX-1388); anti- CD22 dsFv-PE38 conjugates (CAT-3888 and CAT-8015); anti-CD25 mAb (HuMax-TAC); anti-CD3 mAb (NI-0401);
  • adecatumumab anti-CD30 mAb (MDX-060); MDX-1333 (anti-IFNAR); anti-CD38 mAb (HuMax CD38); anti-CD40L mAb; anti- Cripto mAb; anti-CTGF Idiopathic Pulmonary Fibrosis Phase I Fibrogen (FG-3019); anti-CTLA4 mAb; anti-eotaxinl mAb (CAT- 213); anti-FGF8 mAb; anti-ganglioside GD2 mAb; anti-ganglioside GM2 mAb; anti-GDF-8 human mAb (MYO-029); anti-GM-CSF Receptor mAb (CAM-3001); anti-HepC mAb (HuMax HepC); anti-IFNa mAb (MEDI-545, MDX-1103); anti-IGF1 R mAb; anti-IGF- 1 R mAb (HuMax-lnflam); anti-IL12 mAb (A
  • sclerostin antibody such as but not limited to romosozumab, blosozumab, or BPS 804 (Novartis).
  • therapeutics such as rilotumumab, bixalomer, trebananib, ganitumab, conatumumab, motesanib diphosphate, brodalumab, vidupiprant, panitumumab, denosumab, NPLATE, PROLIA, VECTIBIX or XGEVA.
  • PCSK9 monoclonal antibody
  • PCSK9 specific antibodies include, but are not limited to, Repatha® (evolocumab) and Praluent® (alirocumab), as well as molecules, variants, analogs or derivatives thereof as disclosed in the following patents or patent applications, each of which is herein incorporated by reference in its entirety for all purposes: U.S. Patent No. 8,030,547, U.S. Publication No.
  • talimogene laherparepvec or another oncolytic HSV for the treatment of melanoma or other cancers.
  • oncolytic HSV include, but are not limited to talimogene laherparepvec (U.S. Patent Nos. 7,223,593 and 7,537,924); OncoVEXGALV/CD (U.S. Pat. No. 7,981 ,669); OrienX010 (Lei et al. (2013), World J. Gastroenterol., 19:5138-5143); G207, 1716; NV1020; NV12023; NV1034 and NV1042 (Vargehes et al. (2002), Cancer Gene Then, 9(12):967-978).
  • TIMPs are endogenous tissue inhibitors of metal loproteinases (TIMPs) and are important in many natural processes.
  • TIMP-3 is expressed by various cells or and is present in the extracellular matrix; it inhibits all the major cartilage-degrading metalloproteases, and may play a role in role in many degradative diseases of connective tissue, including rheumatoid arthritis and osteoarthritis, as well as in cancer and cardiovascular conditions.
  • the amino acid sequence of TIMP-3, and the nucleic acid sequence of a DNA that encodes TIMP-3 are disclosed in U.S. Patent No. 6,562,596, issued May 13, 2003, the disclosure of which is incorporated by reference herein. Description of TIMP mutations can be found in U.S. Publication No. 2014/0274874 and PCT Publication No. WO 2014/152012.
  • CGRP human calcitonin gene-related peptide
  • bispecific antibody molecule that target the CGRP receptor and other headache targets. Further information concerning these molecules can be found in PCT Application No. WO 2010/075238.
  • bispecific T cell engager (BiTE®) antibodies e.g. BLINCYTO® (blinatumomab)
  • BLINCYTO® blindatumomab
  • APJ large molecule agonist e.g., apelin or analogues thereof in the device.
  • Information relating to such molecules can be found in PCT Publication No. WO 2014/099984.
  • the medicament comprises a therapeutically effective amount of an anti-thymic stromal lymphopoietin (TSLP) or TSLP receptor antibody.
  • TSLP anti-thymic stromal lymphopoietin
  • anti-TSLP antibodies include, but are not limited to, those described in U.S. Patent Nos. 7,982,016, and 8,232,372, and U.S. Publication No.
  • anti-TSLP receptor antibodies include, but are not limited to, those described in U.S. Patent No. 8,101 , 182.
  • the medicament comprises a therapeutically effective amount of the anti-TSLP antibody designated as A5 within U.S. Patent No. 7,982,016.
EP18759213.4A 2017-08-09 2018-08-07 Hydraulisch-pneumatisches druckkammer-arzneimittelabgabesystem Pending EP3664863A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762543058P 2017-08-09 2017-08-09
PCT/US2018/045467 WO2019032482A2 (en) 2017-08-09 2018-08-07 HYDRAULIC-PNEUMATIC PRESSURE CHAMBER DELIVERY SYSTEM

Publications (1)

Publication Number Publication Date
EP3664863A2 true EP3664863A2 (de) 2020-06-17

Family

ID=63350609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18759213.4A Pending EP3664863A2 (de) 2017-08-09 2018-08-07 Hydraulisch-pneumatisches druckkammer-arzneimittelabgabesystem

Country Status (4)

Country Link
US (1) US20200164155A1 (de)
EP (1) EP3664863A2 (de)
MA (1) MA49838A (de)
WO (1) WO2019032482A2 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3791919A1 (de) 2015-03-10 2021-03-17 Regeneron Pharmaceuticals, Inc. Aseptisches durchstechsystem
IL269571B (en) 2017-05-05 2022-08-01 Regeneron Pharma Automatic injector
US20220288305A1 (en) * 2019-07-18 2022-09-15 Amgen Inc. Pressure relief valve for drug delivery device
WO2021011716A1 (en) * 2019-07-18 2021-01-21 Amgen Inc. Drug delivery device having pressurized vessel
WO2021011717A1 (en) * 2019-07-18 2021-01-21 Amgen Inc. Sealing arrangement for drug delivery device
CN110711869A (zh) * 2019-10-21 2020-01-21 上海中船三井造船柴油机有限公司 一种用于大型镗排的安装架及快速安装方法
US11904084B2 (en) * 2020-12-12 2024-02-20 Medhat N. Elmasry Ultraportable and adjustable nose, ear, and wound aspirator and irrigator device and related methods
JP2024502004A (ja) * 2020-12-31 2024-01-17 リジェネロン・ファーマシューティカルズ・インコーポレイテッド 自動注射器および関連する使用方法
US11464902B1 (en) 2021-02-18 2022-10-11 Fresenius Kabi Deutschland Gmbh Wearable medicament delivery device with compressible reservoir and method of use thereof
US11311666B1 (en) 2021-02-18 2022-04-26 Fresenius Kabi Deutschland Gmbh Modular wearable medicament delivery device and method of use thereof
US11872369B1 (en) 2021-02-18 2024-01-16 Fresenius Kabi Deutschland Gmbh Wearable medicament delivery device with leakage and skin contact sensing and method of use thereof
US11344682B1 (en) * 2021-02-19 2022-05-31 Fresenius Kabi Deutschland Gmbh Drug supply cartridge with visual use indicator and delivery devices that use the same
US11497847B1 (en) 2021-02-19 2022-11-15 Fresenius Kabi Deutschland Gmbh Wearable injector with adhesive substrate
US11426523B1 (en) 2021-02-19 2022-08-30 Fresenius Kabi Deutschland Gmbh Drug delivery assembly including a removable cartridge
US11607505B1 (en) 2021-02-19 2023-03-21 Fresenius Kabi Deutschland Gmbh Wearable injector with sterility sensors
US11406755B1 (en) 2021-02-19 2022-08-09 Fresenius Kabi Deutschland Gmbh Sensing fluid flow irregularities in an on-body injector
US11413394B1 (en) 2021-02-19 2022-08-16 Fresenius Kabi Deutschland Gmbh Display for wearable drug delivery device
US11633537B1 (en) 2021-02-19 2023-04-25 Fresenius Kabi Deutschland Gmbh Drug delivery assembly including a pre-filled cartridge
US11351300B1 (en) 2021-04-30 2022-06-07 Fresenius Kabl Deutschland GmbH Drug dispensing system with replaceable drug supply cartridges
US11419976B1 (en) 2021-04-30 2022-08-23 Fresenius Kabi Deutschland Gmbh Wearable drug delivery device with pressurized fluid dispensing
US11504470B1 (en) 2021-04-30 2022-11-22 Fresenius Kabi Deutschland Gmbh Deformable drug reservoir for wearable drug delivery device
US11529459B1 (en) 2021-04-30 2022-12-20 Fresenius Kabi Deutschland Gmbh Wearable injector with adhesive module
US11717608B1 (en) 2021-05-03 2023-08-08 Fresenius Kabi Deutschland Gmbh Drug delivery assembly including an adhesive pad
US11484646B1 (en) 2021-05-04 2022-11-01 Fresenius Kabi Deutschland Gmbh Sealing systems for a reservoir of an on-body injector
US11918778B2 (en) * 2021-08-19 2024-03-05 Innovative Health Strategies Llc Smart self-activating wearable device for automatically injecting medicines
USD1007676S1 (en) 2021-11-16 2023-12-12 Regeneron Pharmaceuticals, Inc. Wearable autoinjector
WO2023232496A1 (en) * 2022-06-03 2023-12-07 Shl Medical Ag On-body injection device
EP4338770A1 (de) * 2022-09-14 2024-03-20 Sensile Medical AG Arzneimittelabgabevorrichtung

Family Cites Families (167)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4031889A (en) * 1975-03-25 1977-06-28 William Floyd Pike Power operated aspirating hypodermic syringe
KR850004274A (ko) 1983-12-13 1985-07-11 원본미기재 에리트로포이에틴의 제조방법
NZ210501A (en) 1983-12-13 1991-08-27 Kirin Amgen Inc Erythropoietin produced by procaryotic or eucaryotic expression of an exogenous dna sequence
US4703008A (en) 1983-12-13 1987-10-27 Kiren-Amgen, Inc. DNA sequences encoding erythropoietin
US7217689B1 (en) 1989-10-13 2007-05-15 Amgen Inc. Glycosylation analogs of erythropoietin
US5856298A (en) 1989-10-13 1999-01-05 Amgen Inc. Erythropoietin isoforms
WO1991005867A1 (en) 1989-10-13 1991-05-02 Amgen Inc. Erythropoietin isoforms
EP0600754A3 (de) * 1992-12-03 1995-05-24 Kato Hatsujo Kaisha Ltd Pharmazeutische Infusionseinrichtung mit konstantem Durchfluss.
CN1057534C (zh) 1993-08-17 2000-10-18 柯瑞英-艾格公司 促红细胞生成素类似物
US6562596B1 (en) 1993-10-06 2003-05-13 Amgen Inc. Tissue inhibitor of metalloproteinase type three (TIMP-3) composition and methods
US5773569A (en) 1993-11-19 1998-06-30 Affymax Technologies N.V. Compounds and peptides that bind to the erythropoietin receptor
US5830851A (en) 1993-11-19 1998-11-03 Affymax Technologies N.V. Methods of administering peptides that bind to the erythropoietin receptor
US5885574A (en) 1994-07-26 1999-03-23 Amgen Inc. Antibodies which activate an erythropoietin receptor
AU3272695A (en) 1994-08-12 1996-03-07 Immunomedics Inc. Immunoconjugates and humanized antibodies specific for b-cell lymphoma and leukemia cells
US5686292A (en) 1995-06-02 1997-11-11 Genentech, Inc. Hepatocyte growth factor receptor antagonist antibodies and uses thereof
US5767078A (en) 1995-06-07 1998-06-16 Johnson; Dana L. Agonist peptide dimers
US5858001A (en) * 1995-12-11 1999-01-12 Elan Medical Technologies Limited Cartridge-based drug delivery device
EP1881005B1 (de) 1997-07-14 2013-04-03 Bolder Biotechnology, Inc. Derivate von G-CSF und damit zusammenhängende Proteine
US6753165B1 (en) 1999-01-14 2004-06-22 Bolder Biotechnology, Inc. Methods for making proteins containing free cysteine residues
US6391633B1 (en) 1997-07-23 2002-05-21 Roche Diagnostics Gmbh Production of erythropoietin by endogenous gene activation
US6030086A (en) 1998-03-02 2000-02-29 Becton, Dickinson And Company Flash tube reflector with arc guide
US6310078B1 (en) 1998-04-20 2001-10-30 Ortho-Mcneil Pharmaceutical, Inc. Substituted amino acids as erythropoietin mimetics
DE69933216T2 (de) 1998-06-15 2007-09-20 GTC Biotherapeutics, Inc., Framingham Erythropoietin-analog-menschliches serum-albumin fusionsprotein
US20050181482A1 (en) 2004-02-12 2005-08-18 Meade Harry M. Method for the production of an erythropoietin analog-human IgG fusion proteins in transgenic mammal milk
MEP42108A (en) 1998-10-23 2011-02-10 Kiren Amgen Inc Dimeric thrombopoietin peptide mimetics binding to mp1 receptor and having thrombopoietic activity
AR020848A1 (es) 1998-10-23 2002-05-29 Amgen Inc Metodos y composiciones para la prevencion y el tratamiento de anemia
IL143266A0 (en) 1998-11-27 2002-04-21 Darwin Discovery Ltd Transforming growth factor-beta binding proteins and pharmaceutical compositions for increasing bone mineral content utilizing the same
EP1006184A1 (de) 1998-12-03 2000-06-07 F. Hoffmann-La Roche Ag Mit dem IGF-1 Rezeptor wechselwirkende Proteine (IIPs), Gene, die für diese kodieren, und deren Verwendungen
JP2002544123A (ja) 1999-04-14 2002-12-24 スミスクライン・ビーチャム・コーポレイション エリトロポイエチン受容体抗体
US7297680B2 (en) 1999-04-15 2007-11-20 Crucell Holland B.V. Compositions of erythropoietin isoforms comprising Lewis-X structures and high sialic acid content
CZ299516B6 (cs) 1999-07-02 2008-08-20 F. Hoffmann-La Roche Ag Konjugát erythropoetinového glykoproteinu, zpusobjeho výroby a použití a farmaceutická kompozice sjeho obsahem
AU1099601A (en) 1999-10-22 2001-05-08 Millennium Pharmaceuticals, Inc. Nucleic acid molecules derived from rat brain and programmed cell death models
JP2003514552A (ja) 1999-11-12 2003-04-22 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 改善された性質を有するエリトロポエチンの形態
US20050202538A1 (en) 1999-11-12 2005-09-15 Merck Patent Gmbh Fc-erythropoietin fusion protein with improved pharmacokinetics
ES2233600T5 (es) 2000-01-21 2009-06-22 Biovex Limited Cepas de virus del herpes.
AUPQ599700A0 (en) 2000-03-03 2000-03-23 Super Internet Site System Pty Ltd On-line geographical directory
US6586398B1 (en) 2000-04-07 2003-07-01 Amgen, Inc. Chemically modified novel erythropoietin stimulating protein compositions and methods
AU5551601A (en) 2000-04-21 2001-11-07 Amgen Inc Methods and compositions for the prevention and treatment of anemia
US6756480B2 (en) 2000-04-27 2004-06-29 Amgen Inc. Modulators of receptors for parathyroid hormone and parathyroid hormone-related protein
US7078376B1 (en) 2000-08-11 2006-07-18 Baxter Healthcare S.A. Therapeutic methods for treating subjects with a recombinant erythropoietin having high activity and reduced side effects
AU2001273385B2 (en) 2000-09-08 2005-04-07 Gryphon Therapeutics, Inc. Polymer-modified synthetic proteins
US7271689B1 (en) 2000-11-22 2007-09-18 Fonar Corporation Magnet structure
ATE505204T1 (de) 2000-12-20 2011-04-15 Hoffmann La Roche Konjugate von erythropoietin (epo) mit polyethylenglykol (peg)
HUP0302525A2 (hu) 2001-01-05 2003-10-28 Abgenix, Inc. Az inzulinszerű növekedési faktor I receptor elleni ellenanyagok
JP2005503127A (ja) 2001-04-04 2005-02-03 ジェンオディセ エリスロポエチン遺伝子の新規ポリヌクレオチド及びポリペプチド
CA2446189C (en) 2001-05-11 2011-10-18 Amgen, Inc. Peptides and related molecules that bind to tall-1
CA2451955C (en) 2001-06-26 2015-09-29 Abgenix, Inc. Antibodies to opgl
US6900292B2 (en) 2001-08-17 2005-05-31 Lee-Hwei K. Sun Fc fusion proteins of human erythropoietin with increased biological activities
AU2002332628B2 (en) 2001-08-23 2007-07-26 Genmab A/S Human antibodies specific for interleukin 15 (IL-15)
US7247304B2 (en) 2001-08-23 2007-07-24 Genmab A/S Methods of treating using anti-IL-15 antibodies
US7195610B1 (en) * 2001-09-17 2007-03-27 Cardinal Health 303, Inc. Pneumatic syringe driver
US6930086B2 (en) 2001-09-25 2005-08-16 Hoffmann-La Roche Inc. Diglycosylated erythropoietin
US7214660B2 (en) 2001-10-10 2007-05-08 Neose Technologies, Inc. Erythropoietin: remodeling and glycoconjugation of erythropoietin
US7521053B2 (en) 2001-10-11 2009-04-21 Amgen Inc. Angiopoietin-2 specific binding agents
US7138370B2 (en) 2001-10-11 2006-11-21 Amgen Inc. Specific binding agents of human angiopoietin-2
WO2003055526A2 (en) 2001-12-21 2003-07-10 Maxygen Aps Erythropoietin conjugates
CA2473039C (fr) 2002-01-18 2014-09-23 Pierre Fabre Medicament Nouveaux anticorps anti-igf-ir et leurs applications
US7241444B2 (en) 2002-01-18 2007-07-10 Pierre Fabre Medicament Anti-IGF-IR antibodies and uses thereof
GB0202252D0 (en) 2002-01-31 2002-03-20 Oxford Biomedica Ltd Anemia
EP1470232A1 (de) 2002-01-31 2004-10-27 Oxford Biomedica (UK) Limited Physiologisch regulierter erythropoietin-exprimierender vektor zur behandlung von anämie
JP4109204B2 (ja) 2002-03-26 2008-07-02 レツク・フアーマシユーテイカルズ・デー・デー 所望エリスロポエチングリコアイソフォームプロフィールの製造方法
WO2003084477A2 (en) 2002-03-29 2003-10-16 Centocor, Inc. Mammalian cdr mimetibodies, compositions, methods and uses
CN102212537B (zh) 2002-03-29 2013-08-14 组合化学工业株式会社 编码乙酰乳酸合酶的基因
US20050256035A1 (en) 2002-05-13 2005-11-17 Irving Boime Ctp-extended erythropoietin
NZ571508A (en) 2002-05-24 2010-05-28 Schering Corp Neutralizing human anti-IGFR antibody
US8034904B2 (en) 2002-06-14 2011-10-11 Immunogen Inc. Anti-IGF-I receptor antibody
US7538195B2 (en) 2002-06-14 2009-05-26 Immunogen Inc. Anti-IGF-I receptor antibody
AU2003280130B2 (en) 2002-06-28 2009-06-11 Centocor, Inc. Mammalian CH1 deleted mimetibodies, compositions, methods and uses
US7241733B2 (en) 2002-06-28 2007-07-10 Centocor, Inc. Mammalian EPO mimetic CH1 deleted mimetibodies, compositions, methods and uses
AU2003246486A1 (en) 2002-07-19 2004-02-09 Cangene Corporation Pegylated erythropoietic compounds
JP4406607B2 (ja) 2002-08-26 2010-02-03 オンコセラピー・サイエンス株式会社 ペプチド及びこれを含む医薬
DK2213685T3 (en) 2002-09-06 2014-03-03 Medarex Llc Therapeutic anti-IL-1R1 monoclonal antibody
WO2005025606A1 (en) 2003-09-09 2005-03-24 Warren Pharmaceuticals, Inc. Long acting erythropoietins that maintain tissue protective activity of endogenous erythropoietin
WO2004024776A1 (en) 2002-09-11 2004-03-25 Fresenius Kabi Deutschland Gmbh Method of producing hydroxyalkyl starch derivatives
WO2004024211A2 (en) * 2002-09-12 2004-03-25 Children's Hospital Medical Center Method and device for painless injection of medication
US6919426B2 (en) 2002-09-19 2005-07-19 Amgen Inc. Peptides and related molecules that modulate nerve growth factor activity
US7396913B2 (en) 2002-10-14 2008-07-08 Abbott Laboratories Erythropoietin receptor binding antibodies
US20040071694A1 (en) 2002-10-14 2004-04-15 Devries Peter J. Erythropoietin receptor binding antibodies
TWI320716B (en) 2002-10-14 2010-02-21 Abbott Lab Erythropoietin receptor binding antibodies
WO2004034988A2 (en) 2002-10-16 2004-04-29 Amgen Inc. Human anti-ifn-ϝ neutralizing antibodies as selective ifn-ϝ pathway inhibitors
US20040091961A1 (en) 2002-11-08 2004-05-13 Evans Glen A. Enhanced variants of erythropoietin and methods of use
ATE496938T1 (de) 2002-12-20 2011-02-15 Amgen Inc Myostatin hemmende bindungsstoffe
BRPI0408317A (pt) 2003-03-14 2006-03-07 Pharmacia Corp anticorpos do receptor de igf-i para o tratamento de cáncer
JP4473257B2 (ja) 2003-04-02 2010-06-02 エフ.ホフマン−ラ ロシュ アーゲー インスリン様成長因子i受容体に対する抗体及びその使用
US7220410B2 (en) 2003-04-18 2007-05-22 Galaxy Biotech, Llc Monoclonal antibodies to hepatocyte growth factor
CA2820537C (en) * 2003-04-23 2015-10-20 Valeritas, Inc. Hydraulically actuated pump for fluid administration
EP1622942B1 (de) 2003-05-01 2014-11-19 ImClone LLC Komplett menschliche antikörper gegen den rezeptor des insulin-ähnlichen wachstumsfaktor i
TWI353991B (en) 2003-05-06 2011-12-11 Syntonix Pharmaceuticals Inc Immunoglobulin chimeric monomer-dimer hybrids
DE602004028725D1 (de) 2003-05-12 2010-09-30 Affymax Inc Neue poly(ethylenglycol) modifizierte erythropoietinagonisten und deren verwendungen
MXPA05012313A (es) 2003-05-12 2006-04-18 Affymax Inc Peptidos que se unen al receptor de eritropoyetina.
KR101163683B1 (ko) 2003-05-12 2012-07-10 아피맥스, 인크. 에리스로포이에틴 수용체에 결합하는 신규의 펩티드
US7074755B2 (en) 2003-05-17 2006-07-11 Centocor, Inc. Erythropoietin conjugate compounds with extended half-lives
KR20060032140A (ko) 2003-05-30 2006-04-14 센토코 인코포레이티드 트랜스글루타미나아제를 이용한 신규 에리트로포이에틴접합체의 형성
US20050037390A1 (en) 2003-06-04 2005-02-17 Irm Llc, A Delaware Limited Liability Company Methods and compositions for modulating erythropoietin expression
US7579157B2 (en) 2003-07-10 2009-08-25 Hoffmann-La Roche Inc. Antibody selection method against IGF-IR
NZ599196A (en) 2003-07-15 2014-01-31 Amgen Inc Human anti-ngf neutralizing antibodies as selective ngf pathway inhibitors
RS53476B (en) 2003-07-18 2014-12-31 Amgen Fremont Inc. Hepatocyte Growth Factor Binders
US20050019914A1 (en) 2003-07-24 2005-01-27 Aventis Pharma Deutschland Gmbh Perfusion process for producing erythropoietin
GB0317511D0 (en) 2003-07-25 2003-08-27 Biovex Ltd Viral vectors
JP2007512001A (ja) 2003-08-28 2007-05-17 バイオレクシス ファーマシューティカル コーポレイション Epoミメティックペプチドおよび融合タンパク質
EP1687452A4 (de) 2003-09-30 2008-08-06 Centocor Inc Menschliche hinge core mimetibodies, zusammensetzungen, verfahren und verwendungen
UA89481C2 (uk) 2003-09-30 2010-02-10 Центокор, Инк. Еритропоетинові міметичні шарнірно-серцевинні міметитіла людини, композиції, способи та застосування
GB0324848D0 (en) 2003-10-23 2003-11-26 Bespak Plc Agitation of a suspension product within a container of fluid having no head space
TWI356064B (en) 2003-11-07 2012-01-11 Immunex Corp Antibodies that bind interleukin-4 receptor
TW200526684A (en) 2003-11-21 2005-08-16 Schering Corp Anti-IGFR1 antibody therapeutic combinations
US8633157B2 (en) 2003-11-24 2014-01-21 Novo Nordisk A/S Glycopegylated erythropoietin
KR20060120141A (ko) 2003-11-24 2006-11-24 네오스 테크놀로지스, 인크. 글리코페질화 에리트로포이에틴
WO2005058967A2 (en) 2003-12-16 2005-06-30 Pierre Fabre Medicament Novel anti-insulin/igf-i hybrid receptor or anti-insulin/igf-i hybrid receptor and igf-ir antibodies and uses thereof
EP1548031A1 (de) 2003-12-22 2005-06-29 Dubai Genetics FZ-LLC Naturidentischer Erythropoietin
ES2387028T3 (es) 2003-12-31 2012-09-12 Merck Patent Gmbh Proteína de fusión de Fc-eritropoyetina con farmacocinética mejorada
WO2005065239A2 (en) 2003-12-31 2005-07-21 Centocor, Inc. Novel recombinant proteins with n-terminal free thiol
US7423139B2 (en) 2004-01-20 2008-09-09 Insight Biopharmaceuticals Ltd. High level expression of recombinant human erythropoietin having a modified 5′-UTR
WO2005070451A1 (en) 2004-01-22 2005-08-04 Zafena Aktiebolag Pharmaceutical composition comprising non-glycosylated erythropoietin
WO2005084711A1 (fr) 2004-03-02 2005-09-15 Chengdu Institute Of Biological Products Erythropoietine recombinante pegylee a activite in vivo
TW200603818A (en) 2004-03-11 2006-02-01 Fresenius Kabi De Gmbh Conjugates of hydroxyethyl starch and erythropoietin
JP2007530045A (ja) 2004-03-23 2007-11-01 アムジエン・インコーポレーテツド ヒトox40l(cd134l)特異性モノクローナル抗体
US20050227289A1 (en) 2004-04-09 2005-10-13 Reilly Edward B Antibodies to erythropoietin receptor and uses thereof
US20080194475A1 (en) 2004-04-23 2008-08-14 Andrew Buchanan Erythropoietin Protein Variants
PT1781697E (pt) 2004-07-07 2009-06-25 Lundbeck & Co As H Nova epo carbamilada e método para a sua produção
FR2873699B1 (fr) 2004-07-29 2009-08-21 Pierre Fabre Medicament Sa Nouveaux anticorps anti igf ir rt leurs utilisations
US20060073563A1 (en) 2004-09-02 2006-04-06 Xencor, Inc. Erythropoietin derivatives with altered immunogenicity
CA2586915A1 (en) 2004-11-10 2006-05-18 Aplagen Gmbh Molecules which promote hematopoiesis
MY146381A (en) 2004-12-22 2012-08-15 Amgen Inc Compositions and methods relating relating to anti-igf-1 receptor antibodies
US7906625B2 (en) 2005-01-24 2011-03-15 Amgen Inc. Humanized anti-amyloid antibody
GB2456245B (en) * 2005-02-01 2009-12-16 Intelliject Llc Devices,systems and methods for medicament delivery
US7592429B2 (en) 2005-05-03 2009-09-22 Ucb Sa Sclerostin-binding antibody
US8128929B2 (en) 2005-06-17 2012-03-06 Imclone Llc Antibodies against PDGFRa
WO2007000328A1 (en) 2005-06-27 2007-01-04 Istituto Di Ricerche Di Biologia Molecolare P Angeletti Spa Antibodies that bind to an epitope on insulin-like growth factor 1 receptor and uses thereof
JP5142998B2 (ja) 2005-07-18 2013-02-13 アムジエン・インコーポレーテツド ヒト抗b7rp1中和抗体
FR2888850B1 (fr) 2005-07-22 2013-01-11 Pf Medicament Nouveaux anticorps anti-igf-ir et leurs applications
PE20071101A1 (es) 2005-08-31 2007-12-21 Amgen Inc Polipeptidos y anticuerpos
AU2006310807B2 (en) * 2005-11-02 2012-08-02 Medicaltree Patent Ltd Implantable infusion device with advanceable and retractable needle
GB0603683D0 (en) 2006-02-23 2006-04-05 Novartis Ag Organic compounds
TWI395754B (zh) 2006-04-24 2013-05-11 Amgen Inc 人類化之c-kit抗體
US7851438B2 (en) 2006-05-19 2010-12-14 GlycoFi, Incorporated Erythropoietin compositions
CL2007002567A1 (es) 2006-09-08 2008-02-01 Amgen Inc Proteinas aisladas de enlace a activina a humana.
US7547293B2 (en) * 2006-10-06 2009-06-16 Bioject, Inc. Triggering mechanism for needle-free injector
JP5588175B2 (ja) 2006-11-07 2014-09-10 メルク・シャープ・アンド・ドーム・コーポレーション Pcsk9のアンタゴニスト
US20100040611A1 (en) 2006-11-07 2010-02-18 Sparrow Carl P Antagonists of pcsk9
CA2667989A1 (en) 2006-11-07 2008-11-06 Merck & Co., Inc. Antagonists of pcsk9
US20100150937A1 (en) 2006-11-07 2010-06-17 Sparrow Carl P Antagonists of pcsk9
CA2671538A1 (en) 2006-12-14 2008-06-26 Leonard G. Presta Engineered anti-tslp antibody
CN101679527A (zh) 2007-04-13 2010-03-24 诺瓦提斯公司 用于调节前蛋白转化酶枯草杆菌蛋白酶/kexin9型(pcsk9)的分子和方法
KR20100034015A (ko) 2007-06-20 2010-03-31 아이알엠 엘엘씨 알레르기 질환 치료를 위한 방법 및 조성물
US7982016B2 (en) 2007-09-10 2011-07-19 Amgen Inc. Antigen binding proteins capable of binding thymic stromal lymphopoietin
SG2013014352A (en) 2007-10-26 2014-09-26 Merck Sharp & Dohme Anti-pcsk9 and methods for treating lipid and cholesterol disorders
AR070315A1 (es) 2008-02-07 2010-03-31 Merck & Co Inc Anticuerpos 1b20 antagonistas de pcsk9
AR070316A1 (es) 2008-02-07 2010-03-31 Merck & Co Inc Antagonistas de pcsk9 (proproteina subtilisina-kexina tipo 9)
TWI516501B (zh) 2008-09-12 2016-01-11 禮納特神經系統科學公司 Pcsk9拮抗劑類
JO3672B1 (ar) 2008-12-15 2020-08-27 Regeneron Pharma أجسام مضادة بشرية عالية التفاعل الكيماوي بالنسبة لإنزيم سبتيليسين كنفرتيز بروبروتين / كيكسين نوع 9 (pcsk9).
JO3382B1 (ar) 2008-12-23 2019-03-13 Amgen Inc أجسام مضادة ترتبط مع مستقبل cgrp بشري
EP2480576A4 (de) 2009-09-25 2013-04-10 Merck Sharp & Dohme Pcsk9-antagonisten
JP2013509191A (ja) 2009-10-30 2013-03-14 メルク・シャープ・エンド・ドーム・コーポレイション Ax1およびax189pcsk9アンタゴニストおよびバリアント
WO2011053783A2 (en) 2009-10-30 2011-05-05 Merck Sharp & Dohme Corp. Ax213 and ax132 pcsk9 antagonists and variants
AR079336A1 (es) 2009-12-11 2012-01-18 Irm Llc Antagonistas de la pro-proteina convertasa-subtilisina/quexina tipo 9 (pcsk9)
CN102844332B (zh) 2010-03-11 2015-08-19 瑞纳神经科学公司 呈pH依赖性抗原结合的抗体
EA032537B1 (ru) * 2010-06-07 2019-06-28 Эмджен Инк. Способ работы устройства для доставки лекарственного средства
EA201390929A1 (ru) 2010-12-22 2013-12-30 Дженентек, Инк. Антитела к pcsk9 и способы их применения
PL3395836T3 (pl) 2011-01-28 2021-12-13 Sanofi Biotechnology Ludzkie przeciwciała przeciwko pcsk9 do zastosowania w sposobach leczenia konkretnych grup osobników
KR20140006022A (ko) 2011-02-11 2014-01-15 아이알엠 엘엘씨 Pcsk9 길항제
JOP20200043A1 (ar) 2011-05-10 2017-06-16 Amgen Inc طرق معالجة أو منع الاضطرابات المختصة بالكوليسترول
ES2729166T3 (es) * 2012-05-24 2019-10-30 Altaviz Llc Inyector de fluido viscoso
JP6426107B2 (ja) 2012-12-20 2018-11-21 アムジエン・インコーポレーテツド Apj受容体アゴニストおよびその使用
CN111499733A (zh) 2013-03-14 2020-08-07 美国安进公司 三型金属蛋白酶(timp-3)组织抑制剂的变体、组合物和方法
US20140274874A1 (en) 2013-03-14 2014-09-18 Amgen Inc. Variants of tissue inhibitor of metalloproteinase type three (timp-3), compositions and methods
US20150335817A1 (en) * 2014-05-24 2015-11-26 Bio Health Frontiers, Incorporated Pump apparatus, system and method of use
EP3258995A4 (de) * 2015-02-20 2018-12-12 Regeneron Pharmaceuticals, Inc. Spritzensysteme, kolbendichtungssysteme, stopfensysteme und verfahren zur verwendung und anordnung

Also Published As

Publication number Publication date
US20200164155A1 (en) 2020-05-28
MA49838A (fr) 2020-06-17
WO2019032482A2 (en) 2019-02-14
WO2019032482A3 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
US20200164155A1 (en) Hydraulic-pneumatic pressurized chamber drug delivery system
JP7371158B2 (ja) 近接センサ付き薬物送達装置
US20230372607A1 (en) Drug delivery device with sterile fluid flowpath and related method of assembly
EP3691717B1 (de) Durchflussadapter für arzneimittelabgabevorrichtung
US11191904B2 (en) Plungers for drug delivery devices
AU2018230546B2 (en) Needle insertion by overpressure
AU2018221351B2 (en) Insertion mechanism for drug delivery device
US11464903B2 (en) Drug delivery device with drive assembly and related method of assembly
AU2015284463B2 (en) Autoinjector with low energy plunger loading
JP2024026369A (ja) 薬物送達デバイスの逆流防止機構
AU2018288604A1 (en) Device activation impact/shock reduction
US10835685B2 (en) Thermal spring release mechanism for a drug delivery device
US20220362462A1 (en) Backflow Prevention Mechanism for Drug Delivery Device
US20220362474A1 (en) Drug delivery device having pressurized vessel

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200218

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

17Q First examination report despatched

Effective date: 20230619