EP3658695A1 - Hochtemperatur-nickelbasislegierung - Google Patents
Hochtemperatur-nickelbasislegierungInfo
- Publication number
- EP3658695A1 EP3658695A1 EP18752680.1A EP18752680A EP3658695A1 EP 3658695 A1 EP3658695 A1 EP 3658695A1 EP 18752680 A EP18752680 A EP 18752680A EP 3658695 A1 EP3658695 A1 EP 3658695A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- max
- nickel
- based alloy
- alloy according
- usable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 34
- 239000000956 alloy Substances 0.000 title claims abstract description 34
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 27
- 239000012535 impurity Substances 0.000 claims abstract description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 59
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 239000000523 sample Substances 0.000 claims description 4
- 238000003723 Smelting Methods 0.000 claims description 2
- 238000002485 combustion reaction Methods 0.000 claims description 2
- 239000004020 conductor Substances 0.000 claims 1
- 229910052742 iron Inorganic materials 0.000 abstract description 5
- 229910052748 manganese Inorganic materials 0.000 abstract description 5
- 229910052750 molybdenum Inorganic materials 0.000 abstract description 5
- 229910052721 tungsten Inorganic materials 0.000 abstract description 4
- 229910052804 chromium Inorganic materials 0.000 abstract description 3
- 229910052758 niobium Inorganic materials 0.000 abstract description 3
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 3
- 229910052802 copper Inorganic materials 0.000 abstract description 2
- 238000002844 melting Methods 0.000 abstract description 2
- 230000008018 melting Effects 0.000 abstract description 2
- 229910052760 oxygen Inorganic materials 0.000 abstract description 2
- 229910052717 sulfur Inorganic materials 0.000 abstract description 2
- 229910052726 zirconium Inorganic materials 0.000 abstract description 2
- 229910052757 nitrogen Inorganic materials 0.000 abstract 1
- 229910052720 vanadium Inorganic materials 0.000 abstract 1
- 239000000463 material Substances 0.000 description 13
- 239000007789 gas Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005242 forging Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910001122 Mischmetal Inorganic materials 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- LZUGDZHBFGHVOW-UHFFFAOYSA-N [Mo].[Ni].[W].[Cr].[Co] Chemical compound [Mo].[Ni].[W].[Cr].[Co] LZUGDZHBFGHVOW-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/055—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/10—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
Definitions
- the invention relates to a high-temperature nickel-based alloy.
- the material C263 (Nicrofer 5120 CoTi) is used, among other things, as a material for heat shields in turbochargers or car engines.
- the heat shield separates the compressors from the turbine side inside the turbocharger and is directly supplied by the hot exhaust gas. Since the exhaust gas temperatures, especially in gasoline engines, are getting higher, it can lead to failure of the components, for example in the form of deformations, resulting in a considerable performance drop of the turbocharger.
- the exhaust gas temperatures can be up to 1 .050 ° C, with the temperatures arriving at the heat shield at about 900 to 950 ° C. At these temperatures, the C263 material is no longer creep resistant.
- the general composition of the material C263 is reproduced as follows (in% by weight): Cr 19.0 - 21, 0%, Fe max. 0.7%, C 0.04-0.08%, Mn max. 0.6%, Si max. 0.4%, Cu max. 0.2%, Mo 5.6-6.1%, Co 19.0-21, 0%, Al 0.3-0.6%, Ti 1, 9-2.4%, P max. 0.015%, S max. 0.007%, B max. 0.005%.
- DE 100 52 023 C1 discloses an austenitic nickel-chromium-cobalt-molybdenum-tungsten alloy comprising (in mass%) C 0.05-0.10%, Cr 21-23%, Co 10 -15 %, Mo 10 - 1 1%, Al 1, 0 - 1, 5%, W 5.1 - 8.0%, Y 0.01 - 0.1%, B 0.001 - 0.01%, Ti max. 0.5%, Si max. 0.5%, Fe max. 2%, Mn max. 0.5%, Ni remainder including unavoidable melting impurities.
- the material can be used for compressors and turbochargers of internal combustion engines, components of steam turbines, components of gas and steam turbine power plants.
- EP 1 466 027 B1 discloses a high temperature resistant and corrosion resistant Ni-Co-Cr alloy including (in wt%): Cr 23.5-25.5%, Co 15.0-22.0%, Al 0 , 2 - 2.0%, Ti 0.5 - 2.5%, Nb 0.5 - 2.5%, up to 2.0% Mo, up to 1.0% Mn, Si 0.3 - 1 , 0%, to 3.0% Fe, up to 0.3% Ta, to 0.3% W, C 0.005-0.08%, Zr 0.01-0.3%, B 0.001-0.01%, up to 0.05% rare earths as mischmetal, Mg + Ca 0.005-0.025%, optional up to 0.05% Y, balance Ni and impurities.
- the material can be used in the temperature range between 530 and 820 ° C as an exhaust valve for diesel engines as well as pipes for steam boilers.
- No. 6,258,317 B1 describes an alloy which can be used for components of gas turbines for temperatures up to 750 ° C., comprising (in% by weight): Co 10-24%, Cr 23.5-30%, Mo 2.4-6 %, Fe 0 - 9%, Al 0.2 - 3.2%, Ti 0.2 - 2.8%, Nb 0.1 - 2.5%, Mn 0 - 2%, to 0.1% Si , Zr 0.01 - 0.3%, B 0.001 - 0.01%, C 0.005 - 0.3%, W 0 - 0.8%, Ta 0 - 1%, balance Ni and unavoidable impurities.
- the invention has for its object to change a material based on C263 in terms of its composition so that the stability of the strength-increasing phase is shifted towards higher temperatures. At the same time, care must be taken that the stability limits of other phases (e.g., Eta phase) are shifted to lower temperatures. Furthermore, attempts should be made to activate additional hardening mechanisms.
- the nickel-based alloy according to the invention should preferably be usable for components which are exposed to component temperatures above 700 ° C., preferably> 900 ° C., in particular> 950 ° C.
- the goal of shifting the gamma prime phase to higher temperatures is achieved, while at the same time the stability of other phases, lower than gamma prime, and towards lower temperatures can also be realized.
- the alloy of the present invention has high hot and creep rupture strength while also having high temperature corrosion resistance (e.g., exhaust gases).
- the alloy according to the invention is fatigue-resistant at high temperatures, in particular above 900 ° C.
- Powders for additive manufacturing e.g., 3D printing
- classical powders e.g., sintering
- the ratio Ti / Al should, according to another idea of the invention, max. 3.5, in particular max. 2,0, amount.
- the high-temperature nickel-based alloy according to the invention is preferably usable for large-scale production (> 1 t).
- the advantages of the alloy according to the invention are explained in greater detail on the basis of examples:
- Table 1 compares the state of the art (Nicrofer 5120 CoTi - produced on a large scale) to a similar reference batch (laboratory) and to several alloy compositions according to the invention.
- Table 2 compares the state of the art (Nicrofer 5120 CoTi - produced on an industrial scale) with several industrially produced batches.
- Nicrofer 5120 Charge Charge Charge Charge Charge Charge CoTi 335449 334549 334547 334547
- the solution annealing was carried out at 1 .150 ° C for 30 min. Followed by water quenching.
- Precipitation hardening was carried out at temperatures of 800, 850, 900 or 950 ° C for 4/8/16 h with subsequent water quenching.
- Variants 250575 to 250577 showed a very high level of hardness compared with the state of the art, respectively variants 250573 and 250574. This means that the strength-enhancing phase (here Gamma- Prime) is still stable.
- the material is produced in a medium-frequency induction furnace, then poured as a continuous casting in slab form. Subsequently, the slabs are remelted in the electroslag remelting furnace to further slabs (respectively rods). Thereafter, the respective slab is hot rolled, for the production of strip material to thicknesses of about 6 mm. This is followed by a cold rolling process of the strip material to final thickness of about 0.4 mm.
- thermoformed or stamped products there is now a starting material for thermoformed or stamped products. If necessary, depending on the product, a thermal process can be carried out.
- VIM - VAR The product form after the VAR may be a slab or a rod.
- the forming can be done by rolling or forging.
- Figure 1 shows the creep strain of various materials as a function of time at a typical application temperature of 900 ° C and a load of 60 Mpa. Shown are the materials C-263 standard (Nicrofer 5120 CoTi), C-264 variant 76 (batch 250576) and C-264 variant 77 (batch 250577).
- the two other variants both show service lives of approx. 400 h and approx. 550 h, respectively.
- the variants 76 and 77 show improved service lives, which lead to a higher creep resistance in the operating state and thus to significantly lower component deformation.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Exhaust Silencers (AREA)
- Supercharger (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017007106.3A DE102017007106B4 (de) | 2017-07-28 | 2017-07-28 | Hochtemperatur-Nickelbasislegierung |
PCT/DE2018/100663 WO2019020145A1 (de) | 2017-07-28 | 2018-07-24 | Hochtemperatur-nickelbasislegierung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3658695A1 true EP3658695A1 (de) | 2020-06-03 |
EP3658695B1 EP3658695B1 (de) | 2021-09-01 |
Family
ID=63165131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18752680.1A Active EP3658695B1 (de) | 2017-07-28 | 2018-07-24 | Hochtemperatur-nickelbasislegierung |
Country Status (9)
Country | Link |
---|---|
US (1) | US11193186B2 (de) |
EP (1) | EP3658695B1 (de) |
JP (1) | JP6949144B2 (de) |
KR (2) | KR20200019968A (de) |
CN (1) | CN110914463A (de) |
BR (1) | BR112019022793B1 (de) |
DE (1) | DE102017007106B4 (de) |
ES (1) | ES2897323T3 (de) |
WO (1) | WO2019020145A1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020116868A1 (de) * | 2019-07-05 | 2021-01-07 | Vdm Metals International Gmbh | Pulver aus einer Nickel-Kobaltlegierung, sowie Verfahren zur Herstellung des Pulvers |
DE102020207910A1 (de) | 2020-06-25 | 2021-12-30 | Siemens Aktiengesellschaft | Nickelbasislegierung, Pulver, Verfahren und Bauteil |
CN113234964B (zh) * | 2021-05-19 | 2021-12-03 | 山西太钢不锈钢股份有限公司 | 一种镍基耐蚀合金及其加工方法 |
EP4241906A1 (de) | 2022-03-11 | 2023-09-13 | Siemens Aktiengesellschaft | Nickelbasislegierung, bauteil, pulver und verfahren |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA921733A (en) | 1967-10-16 | 1973-02-27 | Special Metals Corporation | Nickel base alloy |
US3785876A (en) | 1972-09-25 | 1974-01-15 | Special Metals Corp | Treating nickel base alloys |
US5693159A (en) * | 1991-04-15 | 1997-12-02 | United Technologies Corporation | Superalloy forging process |
US5964091A (en) * | 1995-07-11 | 1999-10-12 | Hitachi, Ltd. | Gas turbine combustor and gas turbine |
US6258317B1 (en) | 1998-06-19 | 2001-07-10 | Inco Alloys International, Inc. | Advanced ultra-supercritical boiler tubing alloy |
JP5052724B2 (ja) | 2000-01-24 | 2012-10-17 | ハンチントン、アロイス、コーポレーション | Ni‐Co‐Cr高温強度および耐蝕性合金 |
AT408665B (de) | 2000-09-14 | 2002-02-25 | Boehler Edelstahl Gmbh & Co Kg | Nickelbasislegierung für die hochtemperaturtechnik |
DE10052023C1 (de) | 2000-10-20 | 2002-05-16 | Krupp Vdm Gmbh | Austenitische Nickel-Chrom-Cobalt-Molybdän-Wolfram-Legierung und deren Verwendung |
DE102011013091A1 (de) | 2010-03-16 | 2011-12-22 | Thyssenkrupp Vdm Gmbh | Nickel-Chrom-Kobalt-Molybdän-Legierung |
EP2698215A1 (de) | 2012-08-17 | 2014-02-19 | Alstom Technology Ltd | Verfahren zum Herstellen von Hochtemperaturdampfrohren |
DE102013002483B4 (de) * | 2013-02-14 | 2019-02-21 | Vdm Metals International Gmbh | Nickel-Kobalt-Legierung |
JP6201724B2 (ja) * | 2013-12-19 | 2017-09-27 | 新日鐵住金株式会社 | Ni基耐熱合金部材およびNi基耐熱合金素材 |
DE102014001329B4 (de) | 2014-02-04 | 2016-04-28 | VDM Metals GmbH | Verwendung einer aushärtenden Nickel-Chrom-Titan-Aluminium-Legierung mit guter Verschleißbeständigkeit, Kriechfestigkeit, Korrosionsbeständigkeit und Verarbeitbarkeit |
JP6323188B2 (ja) * | 2014-06-11 | 2018-05-16 | 新日鐵住金株式会社 | Ni基耐熱合金溶接継手の製造方法 |
JP6519007B2 (ja) * | 2015-04-03 | 2019-05-29 | 日本製鉄株式会社 | Ni基耐熱合金溶接継手の製造方法 |
-
2017
- 2017-07-28 DE DE102017007106.3A patent/DE102017007106B4/de not_active Expired - Fee Related
-
2018
- 2018-07-24 JP JP2019565801A patent/JP6949144B2/ja active Active
- 2018-07-24 CN CN201880033862.0A patent/CN110914463A/zh active Pending
- 2018-07-24 KR KR1020207001546A patent/KR20200019968A/ko not_active IP Right Cessation
- 2018-07-24 EP EP18752680.1A patent/EP3658695B1/de active Active
- 2018-07-24 WO PCT/DE2018/100663 patent/WO2019020145A1/de active Application Filing
- 2018-07-24 US US16/615,615 patent/US11193186B2/en active Active
- 2018-07-24 KR KR1020227017157A patent/KR102534136B1/ko active IP Right Grant
- 2018-07-24 BR BR112019022793-8A patent/BR112019022793B1/pt active IP Right Grant
- 2018-07-24 ES ES18752680T patent/ES2897323T3/es active Active
Also Published As
Publication number | Publication date |
---|---|
KR20220070349A (ko) | 2022-05-30 |
EP3658695B1 (de) | 2021-09-01 |
BR112019022793B1 (pt) | 2022-12-20 |
DE102017007106A1 (de) | 2019-01-31 |
DE102017007106B4 (de) | 2020-03-26 |
KR102534136B1 (ko) | 2023-05-18 |
BR112019022793A2 (pt) | 2020-05-26 |
US11193186B2 (en) | 2021-12-07 |
CN110914463A (zh) | 2020-03-24 |
ES2897323T3 (es) | 2022-02-28 |
US20200172997A1 (en) | 2020-06-04 |
JP6949144B2 (ja) | 2021-10-13 |
KR20200019968A (ko) | 2020-02-25 |
JP2020521879A (ja) | 2020-07-27 |
WO2019020145A1 (de) | 2019-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3658695B1 (de) | Hochtemperatur-nickelbasislegierung | |
US2977222A (en) | Heat-resisting nickel base alloys | |
EP2956562B1 (de) | Nickel-kobalt-legierung | |
EP2547804B1 (de) | Nickel-chrom-kobalt-molybdän-legierung | |
EP3994288B1 (de) | Verfahren zur herstellung eines pulvers aus einer nickel-kobaltlegierung | |
DE3823140C2 (de) | ||
DE102015016729B4 (de) | Verfahren zur Herstellung einer Nickel-Basislegierung | |
KR20160046770A (ko) | 단조용 Ni기 합금, 그 제조 방법 및 터빈 부품 | |
DE69406511T2 (de) | Fe-Ni-Cr-Basis-Superlegierung, Motorenventil und kettengewirkter Netzwerkträgerkörper für einen Abgaskatalysator | |
WO2008138614A1 (de) | Verwendung einer al-mn-legierung für hochwarmfeste erzeugnisse | |
DE69414529T2 (de) | Superlegierung auf Fe-Basis | |
EP3269838A1 (de) | Hochwarmfeste tial-legierung und herstellungsverfahren hierfür sowie bauteil aus einer entsprechenden tial-legierung | |
US20190360078A1 (en) | Nickel-base superalloy | |
DE69106372T2 (de) | Legierung mit niedrigem wärmeausdehnungskoeffizient und daraus hergestellter gegenstand. | |
EP1341945B1 (de) | Verfahren zur herstellung von hochbelastbaren bauteilen aus tiai-legierungen | |
DE112019001491B4 (de) | Ni-BASIERTE LEGIERUNG UND HITZEBESTÄNDIGES PLATTENMATERIAL, DAS UNTER VERWENDUNG DERSELBEN ERHALTEN WIRD | |
DE10150674B4 (de) | Verfahren zur Herstellung von hochbelastbaren Bauteilen aus TiAl-Legierungen | |
WO2023208274A1 (de) | Verfahren zur herstellung einer trägerfolie für katalysatoren | |
DE102022103420A1 (de) | Nickellegierung, Pulver zur Herstellung einer Nickellegierung, Bauteil, Verfahren zur Herstellung einer Nickellegierung sowie Verfahren zur Herstellung eines Bauteils | |
EP0690140B1 (de) | Hochtemperatur-Knetlegierung | |
DE19753539C9 (de) | Hochwarmfeste, oxidationsbeständige knetbare Nickellegierung | |
WO1999028515A1 (de) | Hochwarmfeste, oxidationsbeständige knetbare nickellegierung | |
DE102009012877A1 (de) | Legierung auf Nickelbasis für einen Turbinenrotor einer Dampfturbine und Turbinenrotor einer Dampfturbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20191218 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: DE BOER, NICOLE Inventor name: KIESE, JUERGEN Inventor name: HATTENDORF, HEIKE |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210311 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1426329 Country of ref document: AT Kind code of ref document: T Effective date: 20210915 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018006878 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211202 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2897323 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220101 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220103 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018006878 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
26N | No opposition filed |
Effective date: 20220602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220724 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220724 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230724 Year of fee payment: 6 Ref country code: ES Payment date: 20230927 Year of fee payment: 6 Ref country code: AT Payment date: 20230720 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20230719 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20180724 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240719 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240725 Year of fee payment: 7 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240730 Year of fee payment: 7 |