EP3602670A1 - Batterie redox et procédé de fonctionnement d'une batterie redox - Google Patents

Batterie redox et procédé de fonctionnement d'une batterie redox

Info

Publication number
EP3602670A1
EP3602670A1 EP18730266.6A EP18730266A EP3602670A1 EP 3602670 A1 EP3602670 A1 EP 3602670A1 EP 18730266 A EP18730266 A EP 18730266A EP 3602670 A1 EP3602670 A1 EP 3602670A1
Authority
EP
European Patent Office
Prior art keywords
chamber
oxidation
reduction
redox flow
flow battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18730266.6A
Other languages
German (de)
English (en)
Inventor
Robert Fleck
Jochen FRIEDL
Barbara Schricker
Holger WOLFSCHMIDT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3602670A1 publication Critical patent/EP3602670A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a redox flow battery and a Ver ⁇ drive for operating a redox flow battery.
  • Batteries are stores for electrical energy on electro ⁇ chemical basis and suitable to store the excess energy. If it is a rechargeable supply, it is also called an accumulator.
  • a single element is also a rechargeable storage secondary element ge Nannt ⁇ .
  • the electrode-active material is liquid.
  • This liquid electrolyte is stored in a tank and pumped into a cathode compartment with a cathode and / or into an anode compartment with an anode. At the electrodes, the electrode active material is reduced or oxidized.
  • the liquid electrolyte therefore expediently comprises a reduction-oxidation pair as the electrode-active material.
  • the electrolyte comprises oxides of transition metal ⁇ len as oxidation-reduction pair.
  • the usable capacity can be obtained by unintended displacement of oxidation during operation of the flow battery due to undesirable side reactions adversely during the operation of sin ⁇ ken.
  • the object is achieved by a method according to claim 1 and egg ⁇ ner redox flow battery according to claim 14.
  • the method of operating an electrically rechargeable redox flow battery involves several steps. There is the provision of a redox flow battery comprising a first and a second chamber separated by a membrane, where ⁇ in the first chamber comprises a cathode and the second chamber comprises an anode.
  • a first electrolyte is passed as a catholyte into the first chamber and a second electrolyte is conducted as anolyte in the second chamber, wherein the first and / or second electrolyte comprises a reduction-oxidation pair.
  • the oxidation number of the reduction-oxidation pair is changed by adding a first component to the first and / or second electrolyte and / or the oxidation number of the reduction-oxidation-oxidation pair is changed electrochemically.
  • the redox flow battery further comprises a first pump for pumping the catholyte through the first chamber and ei ⁇ ne second pump for pumping the anolyte through the second Kam ⁇ mer.
  • the redox flow battery comprises a supply device suitable for supplying a first component into the first and / or second chamber. Particularly advantageously, this feed is arranged at an inlet for the electrolyte.
  • the method according to the invention and the invention Before ⁇ direction advantageously allow the start of operation of the rechargeable flow battery, or change its oxidation number during operation of the rechargeable flow battery. In particular, enabling a reduction-oxidation pair in the electrolyte prior to operation allows it to be reactivated or deactivated during operation.
  • Polyoxometalate PV14O40 possible.
  • This polyoxometalate can be reduced by means of hydrazine as a reducing agent and thus activate ⁇ or reactivate, if the redox flow battery is already operated.
  • the hydrazine addition can therefore take place before or during the operation of the redox flow battery.
  • the first electrolyte comprises a first re ⁇ dumies oxidation pair and the second electrolyte a second reduction-oxidation pair.
  • the first and / or second reduction-oxidation pair are identical to the invention.
  • Polyoxometalat used.
  • the chemical structure of the polyoxometalates can be adapted to specific application goals of a redox flow battery.
  • polyoxometalates with a fast reaction kinetics and several possible electron transitions are advantageously suitable for use in redox flow batteries.
  • the oxidation number of the first and / or second reduction-oxidation pair is reduced.
  • the oxidation number of the polyoxometalate is reduced.
  • V oxidation number five
  • V Re
  • V (V) sV (IV) 6O42] 9 ⁇ where 6 of 14 of the total vanadium atoms in this compound have the oxidation number four (IV).
  • According to the invention is as a first component for reducing the oxidation number of the first and / or second reduction-oxidation pair of hydrazine, an alkali metal, a hydride, an aldehyde, sodium sulfite, sodium dithionite or
  • hydrazine is a strong reducing agent and thus advantageously effective in activating the reduction-oxidation pairs.
  • the oxidation number of the first and / or second reduction-oxidation pair applies as oxidant hydrogen peroxide permanganate, oxygen, halogens or noble metal ions.
  • the addition of the first component for reactivation of the battery takes place in the discharged state of
  • the addition of the first component can occur in any state of the battery, from fully charged to empty.
  • the addition of the first component in the empty state is particularly advantageous, since then advantageously the amount of the first component to be added can be accurately determined and its addition thus takes place particularly effectively.
  • a residual capacity of the redox flow battery is measured for the reactivation of the battery and added a first amount of the first component in relation to the measured ⁇ nen residual capacity.
  • the remaining capacity is the usable capacity remaining at a given time.
  • the first amount of the first component to be added is determined in a portion of the theo retical ⁇ usable storage capacity of the flow battery. In particular, this proportion can be stated as a percentage.
  • the change in the oxidation state of the oxidation-reduction pair is carried out electrochemically by ei ⁇ ner first activation electrode in the first chamber
  • these activation electrodes form a pair of electrodes. It is also conceivable that the anode and cathode of the first and second chambers are used as activation electrodes. Expediently the stability of the electrodes must consider when voltage to be applied for the electrochemical reduction or oxidation ⁇ to. Are the anode and the cathode at the applied clamping voltage ⁇ stable, so it is advantageous to use this, since then the use of a second pair of electrodes is avoided.
  • the electrochemically caused change in the oxidation number of the reduction-oxidation pair takes place by means of catalysts on the first and / or second activation electrode.
  • the electrochemically induced change in the oxidation number of the reduction-oxidation pair takes place by means of additives on the first and / or second activation electrode.
  • the additives are in particular at the electrodes and in the entire electrolyte. you can in particular also detached from the electrode and then consumed.
  • the first and / or second actuation electrode are applied with a voltage in dependence on the capacity of the Restka ⁇ flow battery.
  • the control of the reaction of the redox flow battery is thus advantageously possible. Furthermore, advantageously over or under voltages can be avoided.
  • the first chamber comprises a first activation ⁇ electrode and the second electrode chamber a second activation.
  • the first and second activation electrodes are adapted to effect an electrochemical change of the reduction-oxidation pair.
  • the figure shows a rechargeable redox flow battery with a first component feeder.
  • the figure shows a rechargeable redox flow battery 1.
  • the rechargeable redox flow battery comprises a redox flow unit 2.
  • the redox flow unit 2 comprises a membrane 3, wherein the membrane 3, a first chamber 4 and a second chamber 5 separated from each other.
  • a cathode 15 is arranged in the first chamber 4, a cathode 15 is arranged in the second chamber 5, an anode 16 is arranged.
  • the cathode 15 and the anode 16 are connected via an electrical energy connection 12 to a power grid.
  • the first chamber 4 further comprises a first activation Electrode 17.
  • the second chamber 5 comprises a second Akti ⁇ administratungselektrode 18th
  • the first chamber 4 and the second chamber 5 are suitable for receiving an electrolyte.
  • a first electrolyte 10 is present in the first chamber 4.
  • a second electrolyte 11 is present in the second chamber 5.
  • the first electrolyte 10 is present in the first chamber 4.
  • a second electrolyte 11 is present in the second chamber 5.
  • Electrolyte is pumped by means of the first pump 8 and the second electrolyte 11 by means of the second pump 9 in the redox flow unit 2. From the redox flow unit 2 is the
  • Electrolyte 10, 11 then led back into the tanks.
  • the electrolyte is presented in a first tank 6 and a second tank 7.
  • the first Elect ⁇ rolyt 10 and the second electrolyte 11 comprises a Polyoxymetallat.
  • the polyoxymetalate is present in a non-active form at the beginning of the operation.
  • the polyoxometalate used in the first chamber ie the cathode space
  • the tetradecavanadophosphate [PV (V) 14O42] 9 ⁇ (abbreviated to PV14) in oxidized form.
  • the polyoxymetalate is converted into an active form which, in this example, is in the reduced form
  • the first component is added during operation to reactivate the polyoxymetalate.
  • the first component, in particular hydrazine is added as a function of a residual capacity of the redox flow unit 2.
  • the residual capacity ranges from 60% to 90% when the first component of hydrazine is added.
  • the activation, in particular of the polyoxymetalate can also be carried out electrochemically. consequences. It is possible that the first activation ⁇ electrode 17 and the second actuation electrode 18 convert the Polyoxymetallat of the non-active to the active form by ⁇ . This conversion can be accelerated by additives and catalysts.
  • polyoxymetalate as a reduction-oxidation pair in redox flow batteries and activate and reactivate them depending on the operating mode.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne une batterie redox rechargeable et un procédé de fonctionnement d'une batterie redox rechargeable électriquement. Tout d'abord, l'invention concerne une batterie redox comprenant des première et deuxième chambres séparées par une membrane, la première chambre comprenant une cathode et la deuxième chambre comprenant une anode. Un premier électrolyte est introduit sous forme de catholyte dans la première chambre et un deuxième électrolyte est introduit sous forme d'anolyte dans la deuxième chambre, le premier et/ou le deuxième électrolyte comprenant un couple d'oxydant-réducteur, et le nombre d'oxydation du couple d'oxydant-réducteur étant modifié par addition d'un premier composant au premier et/ou au deuxième électrolyte et/ou le nombre d'oxydation étant modifié de manière électrochimique.
EP18730266.6A 2017-06-09 2018-05-28 Batterie redox et procédé de fonctionnement d'une batterie redox Withdrawn EP3602670A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17275084.6A EP3413384A1 (fr) 2017-06-09 2017-06-09 Batterie à flux redox et son procédé de fonctionnement
PCT/EP2018/063891 WO2018224346A1 (fr) 2017-06-09 2018-05-28 Batterie redox et procédé de fonctionnement d'une batterie redox

Publications (1)

Publication Number Publication Date
EP3602670A1 true EP3602670A1 (fr) 2020-02-05

Family

ID=59055152

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17275084.6A Withdrawn EP3413384A1 (fr) 2017-06-09 2017-06-09 Batterie à flux redox et son procédé de fonctionnement
EP18730266.6A Withdrawn EP3602670A1 (fr) 2017-06-09 2018-05-28 Batterie redox et procédé de fonctionnement d'une batterie redox

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP17275084.6A Withdrawn EP3413384A1 (fr) 2017-06-09 2017-06-09 Batterie à flux redox et son procédé de fonctionnement

Country Status (5)

Country Link
US (1) US11769895B2 (fr)
EP (2) EP3413384A1 (fr)
JP (1) JP2020522842A (fr)
CN (1) CN110710042A (fr)
WO (1) WO2018224346A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3413384A1 (fr) 2017-06-09 2018-12-12 Siemens Aktiengesellschaft Batterie à flux redox et son procédé de fonctionnement

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4270984A (en) * 1978-11-29 1981-06-02 Nasa Catalyst surfaces for the chromous/chromic REDOX couple
JPH0227667A (ja) * 1988-07-18 1990-01-30 Sumitomo Electric Ind Ltd 電解液再生装置付レドックスフロー電池およびその電池容量維持方法
DE102007011311A1 (de) * 2006-12-22 2008-06-26 Mtu Cfc Solutions Gmbh Vanadium-Redox-Batterie und Verfahren zu ihrem Betrieb
CN102468499B (zh) * 2010-11-04 2016-01-06 新奥科技发展有限公司 全钒液流电池废液的再生方法
US20150093606A1 (en) * 2012-05-10 2015-04-02 Beijing Hawaga Power Storage Technology Company Ltd. Pump-free lithium ion liquid flow battery, battery reactor and preparation method of electrode suspension solution
GB2503653A (en) * 2012-06-26 2014-01-08 Acal Energy Ltd Redox Battery use for polyoxometallate
US20140050947A1 (en) * 2012-08-07 2014-02-20 Recapping, Inc. Hybrid Electrochemical Energy Storage Devices
JP2014135212A (ja) * 2013-01-11 2014-07-24 Toyota Motor Corp 燃料電池システム
US10586996B2 (en) * 2013-03-12 2020-03-10 Ess Tech, Inc. Electrolytes for iron flow battery
JP2016524789A (ja) 2013-05-16 2016-08-18 ハイドラレドックス テクノロジーズ ホールディングス リミテッド 参照電極不使用での作動レドックス・フロー電池セルの正の電解質溶液の帯電状態の推定
KR101609907B1 (ko) * 2013-07-11 2016-04-07 오씨아이 주식회사 레독스 흐름 전지 시스템 및 그 제어방법
JP2015049969A (ja) * 2013-08-30 2015-03-16 富士重工業株式会社 フロー蓄電デバイスの再生方法
WO2015100216A1 (fr) * 2013-12-23 2015-07-02 Robert Bosch Gmbh Système et procédé pour renvoyer un matériau depuis le côté br2 d'un arrière de batterie à flux h2/br2 après un croisement
US9548509B2 (en) * 2014-03-25 2017-01-17 Sandia Corporation Polyoxometalate active charge-transfer material for mediated redox flow battery
US9846116B2 (en) * 2014-04-21 2017-12-19 Unienergy Technologies, Llc Methods for determining and/or adjusting redox-active element concentrations in redox flow batteries
DE102014223143A1 (de) * 2014-11-13 2016-05-19 Siemens Aktiengesellschaft Redox-Fluss-Energiespeicher und Verfahren zum Betreiben eines solchen
JP2017123225A (ja) * 2016-01-05 2017-07-13 Jsr株式会社 レドックスフロー型燃料電池およびレドックスフロー型燃料電池用隔膜
EP3413384A1 (fr) 2017-06-09 2018-12-12 Siemens Aktiengesellschaft Batterie à flux redox et son procédé de fonctionnement

Also Published As

Publication number Publication date
EP3413384A1 (fr) 2018-12-12
CN110710042A (zh) 2020-01-17
US20200161689A1 (en) 2020-05-21
US11769895B2 (en) 2023-09-26
JP2020522842A (ja) 2020-07-30
WO2018224346A1 (fr) 2018-12-13

Similar Documents

Publication Publication Date Title
CN102144321B (zh) 氧化还原流通单元电池
JP6117373B2 (ja) 電圧制限装置を有するフローバッテリ
WO2011111717A1 (fr) Batterie à flux redox
US11424471B2 (en) Redox flow battery
EP2485312A1 (fr) Batterie à flux d'oxydoréduction
US10619257B2 (en) Method of treating liquid electrolyte solution
EP2025028B1 (fr) Procede de reglage de la pression dans une anode d'une pile a combustible et pile a combustible
DE60104852T2 (de) Metall-brennstoffzelle mit beweglicher kathode
WO2016030096A1 (fr) Procédé de démarrage d'une pile à combustible et système de pile à combustible
EP3625844A1 (fr) Batterie redox et procédé de fonctionnement d'une batterie redox
DE112011101064T5 (de) Brennstoffzellensystem und Steuerverfahren dafür
EP3602670A1 (fr) Batterie redox et procédé de fonctionnement d'une batterie redox
EP3281243B1 (fr) Procédé de traitement d'une électrode de carbone
EP1843418A1 (fr) Circuit de sécurité pour les cellules d' une batterie
EP3331073B1 (fr) Cellule secondaire, batterie comprenant une ou plusieurs cellules secondaires et procédé de charge et de décharge
WO2007112912A1 (fr) Circuit de sécurité d'un élément de batterie
Noack Development of an energy storage concept based on aqueous vanadium (II) sulphate solutions
WO2016092004A1 (fr) Procédé de régénération de la solution électrolytique d'un accumulateur à flux redox
EP1217679A1 (fr) Pile à combustible et procédé de son fonctionnement
KR20190032354A (ko) 전해액, 전해조용 전해액, 및 전해조 시스템
EP1779454A1 (fr) Procede pour faire fonctionner un systeme de piles a combustible
AU2022294335A1 (en) Redox flow battery system
EP3254327B1 (fr) Dispositif de stockage d'énergie bio-électrochimique et procédé de stockage d'énergie bio-électrochimique
DE102019211600A1 (de) Verfahren zum Betreiben einer Brennstoffzellenvorrichtung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191031

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20211201