EP3600676B1 - Vorrichtung zur zerkleinerung und trocknung von abfallstoffen, schlacken, gesteinen und dergleichen materialien - Google Patents

Vorrichtung zur zerkleinerung und trocknung von abfallstoffen, schlacken, gesteinen und dergleichen materialien Download PDF

Info

Publication number
EP3600676B1
EP3600676B1 EP18715475.2A EP18715475A EP3600676B1 EP 3600676 B1 EP3600676 B1 EP 3600676B1 EP 18715475 A EP18715475 A EP 18715475A EP 3600676 B1 EP3600676 B1 EP 3600676B1
Authority
EP
European Patent Office
Prior art keywords
air
appliance according
cylindrical attachment
nozzle
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18715475.2A
Other languages
English (en)
French (fr)
Other versions
EP3600676A1 (de
Inventor
Egon KOENIG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lpt AG
Original Assignee
Lpt AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lpt AG filed Critical Lpt AG
Publication of EP3600676A1 publication Critical patent/EP3600676A1/de
Application granted granted Critical
Publication of EP3600676B1 publication Critical patent/EP3600676B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • B02C19/061Jet mills of the cylindrical type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C19/00Other disintegrating devices or methods
    • B02C19/06Jet mills
    • B02C19/065Jet mills of the opposed-jet type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C21/00Disintegrating plant with or without drying of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/18Adding fluid, other than for crushing or disintegrating by fluid energy
    • B02C23/24Passing gas through crushing or disintegrating zone
    • B02C23/30Passing gas through crushing or disintegrating zone the applied gas acting to effect material separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2201/00Codes relating to disintegrating devices adapted for specific materials
    • B02C2201/06Codes relating to disintegrating devices adapted for specific materials for garbage, waste or sewage

Definitions

  • the invention relates to a device for crushing and drying waste materials, slag, rocks and similar materials according to the preamble of patent claim 1.
  • Waste and similar materials are often still disposed of in landfills. Since landfills have only a limited absorption capacity, it is desirable to shred the waste before it is deposited. However, the shredding of waste materials can also be used for processing for energy generation through subsequent incineration or a degassing plant. By crushing the waste materials or pulverizing slag and rocks, such as ore rocks, valuable raw materials can also be separated and recovered more easily.
  • a known problem in the treatment of waste materials such as municipal waste, industrial sludges such as cement, lime industry and sewage sludge is the relatively high moisture content that is often bound in these waste materials. This moisture content, which is usually difficult to separate from the waste materials, represents a problem in landfills as landfill water that should not be underestimated. In incineration plants, the high moisture content leads to a lower calorific value of the waste material used. The high moisture content in the waste materials and the size of the material generally have a negative effect on the energy and transport balance (CO 2 emissions).
  • a material crushing device is also already known from the prior art, which has an essentially funnel-shaped vessel with a cylindrical attachment. Compressed air is blown circumferentially into the cylindrical cap to create an air vortex within the funnel-shaped vessel.
  • This known device requires up to 100 m 3 of compressed air per minute, which is a major disadvantage for the energy balance and for the economy of the device.
  • At the entry openings for the baffles attached to compressed air direct the air in the circumferential direction of the boiler.
  • the material to be shredded is fed into the cylindrical attachment via a feed line and exposed to the air vortex.
  • the introduced material is to be crushed in the air vortex.
  • the baffles also serve as baffles and are intended to protect the air inlet openings from the material whirling around.
  • the crushed material falls to the bottom due to gravity and is discharged through an opening at the bottom of the hopper-shaped bowl.
  • a cylindrical chimney arranged on the opposite, larger-diameter end of the boiler on the cylindrical attachment ensures that excess air is removed. By preheating the air blown in, a certain degree of drying of the material introduced should be achievable.
  • the baffle plates are subject to high wear and have to be replaced relatively often. Since material always hits the walls of the funnel-shaped vessel or the cylindrical attachment, these device components are also subject to relatively high wear and tear and must be designed to be correspondingly robust.
  • the air vortex that can be achieved in the boiler has only a relatively small speed. As a result, the device has only a relatively small crushing effect on the material introduced.
  • a device for crushing and drying waste materials according to the preamble of claim 1 is in the documents WO2012/102619A2 and US2002/0271
  • the device should be less susceptible to wear and tear and should allow adequate comminution, even pulverization, and/or drying of the waste materials used.
  • the device should be constructed as uncomplicatedly as possible and have tested and structurally simple components, as well as be inexpensive to manufacture and operate.
  • the invention proposes a device for crushing and drying waste materials, slag, rocks and similar materials, which comprises an essentially funnel-shaped vessel with a cylindrical attachment. At least two air inlets distributed over the circumference are arranged on the cylindrical attachment for the introduction of compressed and possibly heated air.
  • the bottom of the funnel-shaped vessel is equipped with an outlet for crushed material.
  • An air outflow opening is arranged on the cylindrical attachment.
  • a feed device for the material to be shredded opens into the cylindrical attachment.
  • a supersonic nozzle with a venturi system is arranged at each of the at least two air inlets distributed over the circumference of the cylindrical attachment in such a way that the supplied air can be introduced in the circumferential direction of the cylindrical attachment and the funnel-shaped boiler.
  • the supplied, preferably heated air reaches very high flow velocities at the entry into the cylindrical attachment on the funnel-shaped boiler, which can reach the speed of sound and exceed it many times over.
  • a heated air vortex is generated in the cylindrical attachment and in particular in the tank, which narrows in the shape of a funnel in the direction of its base.
  • the high flow rates are achieved by supplying air at a pressure of approx. 4 - 6 bar.
  • the amount of air that is pushed through can be approx. 30 to 50 m 3 /min.
  • these amounts of air can be generated and promoted by means of a controllable oil-free screw compressor.
  • a supersonic nozzle is to be understood, for example, as a nozzle which has a cross-sectional profile corresponding to a Laval nozzle.
  • the design of the supersonic nozzle as a Laval nozzle makes it possible to significantly reduce the amount of air required, for example by up to 50%. This has a major impact on a positive energy balance.
  • the materials introduced are severely crushed and even pulverized.
  • valuable raw materials contained in the materials can simply be returned to the industry.
  • the loading capacity of transport facilities can also be used much better, which in turn can have a positive effect on the environment (reduction in CO 2 emissions).
  • the Venturi system serves to "break up" the air vortex generated by the supersonic nozzles.
  • the materials introduced into the air vortex cannot withstand the forces that occur during the sudden acceleration and are therefore broken down into the smallest components.
  • High centrifugal and centripetal forces, shearing and frictional forces, as well as negative pressure and cavitation occurring within the air vortex support the comminution of the materials.
  • Moisture contained in the materials for example in sewage and industrial sludge and water bound in the solid particles, is separated and transported away with the air heated in the air vortex through the air outlet opening, which can be arranged on an adjustable chimney-like extension.
  • the temperature of the exhaust air can be up to 100°C, for example.
  • An embodiment variant of the device according to the invention can provide that the supersonic nozzles with Venturi system arranged at the air inlets are arranged at the same axial height of the cylindrical attachment on the funnel-shaped boiler. As a result, the uniformity of the air vortex can be improved and higher flow speeds can be achieved with the same energy input.
  • the supersonic nozzles can have an outlet which has a cross section that deviates from the circular shape.
  • An embodiment variant of the invention can provide that the cross section of the outlet of the supersonic nozzle is rectangular. This can promote the formation of cavitation and negative pressure inside the generated air vortex.
  • the supersonic nozzles can each have a narrowest flow cross section, which can be changed if necessary. By changing the flow cross-section, the flow speeds at the outlet of the supersonic nozzles can be specifically influenced.
  • the adjusting screws or similar mechanical adjusting means can be arranged in such a way that they are also accessible to the user during operation of the device.
  • At least the narrowest flow cross section of the supersonic nozzles can be changed mechanically, for example by means of adjusting screws or the like.
  • An expedient embodiment variant of the invention can provide that the narrowest flow cross section of the supersonic nozzles can be adjusted automatically via servomotors.
  • the motorized adjustability allows the narrowest flow cross section of the nozzles to be set without, for example, having to open or even dismantle a housing accommodating the funnel-shaped vessel and the cylindrical attachment.
  • the narrowest flow cross section of the supersonic nozzles can be controllable as a function of the material to be comminuted.
  • the control data can be stored, preferably in tabular form, in an external control unit that is connected to the device.
  • the control data for adjusting the narrowest flow cross section of the nozzles can be determined and compiled empirically.
  • An advantageous embodiment variant of the invention can enable the user of the device to select the correct control data for the adjustment of the supersonic nozzles depending on the material used.
  • the control unit preferably includes an electronic data processing system. This can simplify the parameter acquisition, control and selection.
  • a further variant embodiment of the invention can provide that the supersonic nozzles at the air inlets on the cylindrical attachment each open into an air guide plate which is inserted into a recess in the inner wall of the cylindrical attachment.
  • the air guide plate delimits the outlet of the supersonic nozzle and is mounted in such a way that it covers the inner wall of the cylindrical attachment at least in the area of the outlet towers over As a result, the supplied compressed air can be introduced tangentially along the inner circumference of the cylindrical attachment.
  • the air-guiding plates can be rotated through 180° with respect to a nozzle body of the supersonic nozzle.
  • the device can be adapted very easily with regard to different conditions in the northern and southern hemispheres of the earth. While in the northern hemisphere a cyclonic, i.e. an anti-clockwise rotating air turbulence can prove to be useful, in the southern hemisphere an anticyclonic air turbulence is more desirable in the device. As a result, the efficiency of the device with regard to comminution and drying can be improved.
  • a variant embodiment of the invention can provide that the air guide plate is firmly connected to a mounting plate and the nozzle body of the supersonic nozzle can be flanged to the mounting plate.
  • the mounting plate is used to mount the supersonic nozzle on the outer wall of the cylindrical attachment.
  • the nozzle body can be flanged to the mounting plate in two positions rotated by 180°.
  • the position of the supersonic nozzle and the air ducts can remain unchanged in relation to the circumference of the cylindrical attachment.
  • the air guide plate, the mounting plate and the nozzle body can also be rigidly connected to one another. In order to change the direction of rotation of the generated air vortex, the entire supersonic nozzle unit can then be mounted rotated by 180° together with the mounting plate and air guide plate.
  • a further embodiment of the device according to the invention can be connected to a control device which is connected to a global network, for example the Internet, in such a way that the operating parameters of the device can be read remotely and the device can preferably be controlled remotely.
  • the connection of the control device, which can also include the control unit for changing the cross section of the supersonic nozzles, to the Internet can be used, for example, for maintenance purposes, for remote diagnostics and for remote control of the device.
  • Yet another embodiment variant of the device according to the invention can provide for more than two supersonic nozzles to be arranged at the same angular distance from one another on the circumference of the cylindrical attachment.
  • the number of supersonic nozzles required can be selected depending on the size and diameter of the funnel-shaped vessel including the cylindrical attachment in order to optimize the flow speeds in the air turbulence generated.
  • the device according to the invention shown schematically in axial section, bears the reference numeral 1 in its entirety.
  • the funnel-shaped tank 2 has a cylindrical attachment 4 .
  • At least two air inlets 5 for compressed and optionally heated air are provided on the cylindrical attachment 4 and are distributed over the circumference of the cylindrical attachment 4 .
  • a chimney 7 protruding through a cover 6 into the cylindrical attachment 4 has an air outflow opening.
  • the cross section of the air outlet opening on the chimney 7 can be changed if necessary, which 1 is indicated by an adjustable aperture 8 and the arrows P1.
  • a feeder 9 for materials to be crushed and dried M penetrates the cover 6 and protrudes into the cylindrical attachment 4.
  • a supersonic nozzle 10 is arranged on each of the at least two air inlets 5 distributed over the circumference of the cylindrical attachment 4 .
  • Compressed and optionally heated air L is introduced into the cylindrical attachment 4 via the supersonic nozzles 10 .
  • a supersonic nozzle 10 is to be understood as meaning a nozzle which, for example, has a cross-sectional profile corresponding to a Laval nozzle.
  • the supplied, preferably heated air L reaches very high flow velocities at the entry into the cylindrical attachment 4 and the funnel-shaped vessel 2, which can reach the speed of sound and even exceed it many times over.
  • a heated air vortex W is generated in the cylindrical attachment 4 and in particular in the tank 2 that narrows in a funnel shape in the direction of its outlet opening 3 .
  • the high flow speeds are achieved by supplying the air L under a pressure of approx. 4 - 6 bar.
  • the amount of air that is pushed through can be approx. 30 to 50 m 3 /min.
  • these amounts of air can be generated and promoted by means of a controllable oil-free screw compressor.
  • the direction of rotation of the air vortex W generated in the device 1 can be adjusted depending on the installation location in the northern or southern hemisphere.
  • an anticyclonic air vortex is to be aimed for in the device.
  • the inflow direction of the supersonic nozzles 10 at the air inlets 5 can be changed, in particular rotated by 180°. this is in 1 indicated by the curved arrows P2.
  • the materials M to be comminuted that are introduced into the device 1 via the feed device 9 are introduced into the generated air vortex with the support of a Venturi system provided on the supersonic nozzles 10 .
  • the Venturi system is used for the short-term “breaking up” of the air vortex W generated by the supersonic nozzles 10.
  • the materials M introduced into the air vortex W are accelerated very quickly after being released into the air vortex W.
  • the materials M cannot withstand the forces arising from the sudden acceleration and are therefore broken down into smaller components.
  • Within the air vortex W occurring high centrifugal and Centripetal forces, shearing and frictional forces, as well as negative pressure and cavitation support the comminution of the materials M.
  • the supersonic nozzle 10 has, for example, approximately the cross-sectional course of a Laval nozzle.
  • the supersonic nozzle 10 is connected to an air supply line 16 .
  • the amounts of air required to generate the air vortex can be generated and conveyed, for example, by means of a controllable oil-free screw compressor.
  • the supersonic nozzle 10 has a nozzle body 11 which, for example, is designed in several parts. The parts of the nozzle body 11 are connected to one another in such a way that they can be adjusted in relation to one another in order to be able to change at least one narrowest flow cross section 12 of the supersonic nozzle 10 .
  • the parts of the nozzle body 11 can be adjusted relative to one another, for example, by means of one or more adjusting screws.
  • a motorized adjustability of the narrowest flow cross section 12 with the aid of a servomotor 18 is indicated.
  • the motorized adjustability allows automatic setting of the narrowest flow cross section 12 of the supersonic nozzle 10 without, for example, having to open or even dismantle a housing that accommodates the funnel-shaped boiler and the cylindrical attachment.
  • the narrowest flow cross section 12 of the supersonic nozzle can be controllable as a function of the material to be comminuted.
  • the control data can preferably in tabular form, stored in an external control unit that is connected to the device.
  • the control data for adjusting the narrowest flow cross section 12 of the supersonic nozzle 10 nozzles can be determined and compiled empirically.
  • An advantageous embodiment variant of the invention can enable the user of the device to select the correct control data for the adjustment of the supersonic nozzles 10 depending on the material used.
  • the control unit preferably includes an electronic data processing system ( 4 ). This can simplify the parameter acquisition, control and selection.
  • the supersonic nozzle 10 has a venturi function.
  • a Venturi bore 13 is arranged at the narrowest flow cross section 12 of the nozzle body 11, which can be opened and closed again as required. Ambient air is sucked into the supersonic nozzle 10 by opening the Venturi bore 13 . As a result, the air flow within the supersonic nozzle 10 is disturbed. This effect can be used to "break up" the air vortex generated by the inflowing air within the funnel-shaped vessel and the cylindrical attachment, for example to feed materials into the air vortex.
  • the nozzle body 11 of the supersonic nozzle 10 opens into an air guide plate 14 which, in the assembled state, is essentially flush with the inner wall 41 of the cylindrical attachment 4 .
  • the air guide plate 14 is inserted into the air inlet 5 of the cylindrical attachment in such a way that it protrudes beyond the inner wall 41 of the cylindrical attachment 4 at least in the area of an air outlet 15 of the supersonic nozzle 10 .
  • the compressed air can be introduced essentially tangentially along the inner wall 41 of the cylindrical attachment 4 .
  • the air outlet 15 delimited by the air guide plate 14 has a cross section that deviates from the circular shape.
  • the air outlet 15 has a substantially rectangular cross section. Due to the non-circular flow cross-section at the outlet, the tangential and vertical components of the air flow can be influenced to improve the generation of the air vortex. This can promote the development of cavitation and negative pressure in the generated air vortex.
  • the nozzle body 11 is connected to a mounting plate 17 .
  • the mounting plate 17 is connected to the air guide plate 14 and arranged in such a way that the air guide plate 14 protrudes beyond it in the air flow direction.
  • the mounting plate 17 is attached to an outer wall 42 of the cylindrical attachment 4 by means of screws.
  • the mounting plate 17 and the air guide plate 14 connected to it can be rigidly connected to the nozzle body 11 .
  • the entire supersonic nozzle unit including nozzle body 11, mounting plate 17 and air guide plate 14 must then be rotated by 180°.
  • the mounting plate 17 and the air guide plate 14 connected to it can also, as in particular in 3 shown, relative to the nozzle body 11 can be rotated by 180°.
  • the nozzle body 11 can be flanged off the mounting plate 17 and, after the mounting plate 17 and the air guide plate 14 have been turned and mounted, flanged back onto the cylindrical attachment. Due to the rotatability of the nozzle body 11 relative to the mounting plate 17 and the air guide plate 14, the position of the supersonic nozzle 10 and the air supply lines in relation to the circumference of the cylindrical attachment 4 can remain unchanged.
  • FIG 3 shows a perspective view of a supersonic nozzle 10 according to the invention with a view of the mounting plate 17.
  • the same components have the same reference numbers as in FIG 2 .
  • the nozzle body 11 is flanged to the mounting plate 17 .
  • the air supply line 16 is indicated at the inlet end of the supersonic nozzle 10 .
  • the mounting plate 17 is surmounted in the direction of air flow by the air guide plate 14 which, in the mounted state of the supersonic nozzle 10, terminates essentially flush with the inner wall of the cylindrical attachment.
  • FIG. 4 shows the supersonic nozzle according to 4
  • the figure shows that the side of the mounting plate 17 facing the air guiding plate 14 is curved in a concave manner in order to follow the curvature of the cylindrical attachment.
  • the air outlet 15 of the supersonic nozzle 10 is arranged on the side of the air guide plate 14 facing away from the viewer. He has one of the circular shape different cross-section. Preferably, it is essentially rectangular.
  • the nozzle body of the supersonic nozzle 10 is indicated by reference number 11 .
  • FIG 5 shows a schematic perspective representation of a further exemplary embodiment of a device according to the invention for the comminution and drying of waste materials and similar materials, which in turn bears the reference numeral 1 as a whole.
  • the same components of the device 1 are provided with the same reference numbers as in FIG 1 .
  • the device in turn has a funnel-shaped tank 2 with an outlet opening 3 . At its end facing away from the outlet opening 3 , the funnel-shaped tank 2 is connected to the cylindrical attachment 4 .
  • Supersonic nozzles 10 for compressed and possibly heated air are mounted on the cylindrical attachment 4 and are preferably distributed over the circumference of the cylindrical attachment 4 at equal angular distances from one another. In the illustrated embodiment, in particular four supersonic nozzles 10 are provided, two of which are visible in the figure.
  • the supersonic nozzles 10 are mounted at the same height as the cylindrical attachment 4 .
  • a feed device 9 for materials M to be crushed and dried passes through the cover 6 and also protrudes into the cylindrical attachment 4.
  • the supersonic nozzles 10 are connected to an approximately ring-shaped air supply line 19, which in turn can be connected via a further central air line (not shown), for example to an oil-free screw compressor.
  • the air supply lines can be designed according to a Tichelmann system. This means that the pressure loss coefficients of the supply lines to the individual supersonic nozzles 10 are the same for all supersonic nozzles, so that an even flow is ensured.
  • the pressure losses of the supply lines are essentially made up of the pipe friction, i.e. the internal roughness, the diameter and the length and the pressure loss coefficients of the pipe elements.
  • the pressure loss coefficients of the pipe elements can be determined empirically and can usually be found in the literature.
  • the air can be fed to the supersonic nozzles 10 at a pressure of approx. 4 - 6 bar and with a volume of 30 to 50 m 3 /min be supplied.
  • the supersonic nozzles 10 allow flow speeds that exceed the speed of sound. As a result, an air turbulence is generated within the device 1, which in the partially cutaway representation of the device 1 in 4 is again provided with the reference symbol W.
  • the materials M to be comminuted that are introduced into the device 1 via the feed device 9 are introduced into the air vortex that is generated and are accelerated very quickly into the air vortex W immediately after delivery.
  • the materials M cannot withstand the forces arising from the sudden acceleration and are therefore broken down into smaller components.
  • High centrifugal and centripetal forces, shearing and frictional forces, as well as negative pressure and cavitation occurring within the air vortex W support the comminution, for example pulverization, of the materials M.
  • Moisture contained in the materials M for example in sewage sludge and water bound in the solid particles, is thereby separated and transported away through the chimney-like air outlet 7 with the exhaust air A that is warming up in the air vortex W.
  • the temperature of the exhaust air A can be up to 100° C., for example.
  • the air vortex W generated in the device detaches itself from the inner walls of the device 1 . This prevents the materials M from striking the inner walls of the cylindrical attachment 4 or the funnel-shaped vessel 2 . The crushed material reaches the outlet opening 3 of the device as granules G and trickles to the ground.
  • the device 1 for crushing and drying waste materials, slag, rocks and similar materials can be connected to a control device, which is indicated by reference number 100 .
  • the control device 100 can be connected to a global network, for example the Internet, in such a way that the operating parameters of the device can be read remotely and the device can preferably be controlled remotely.
  • the connection of the control device 100, which can also include the control unit for changing the cross section of the supersonic nozzle 10, to the Internet can be used, for example, for maintenance purposes, for remote diagnostics and for remote control of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Disintegrating Or Milling (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)
  • Drying Of Solid Materials (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zur Zerkleinerung und Trocknung von Abfallstoffen, Schlacken, Gesteinen und dergleichen Materialien gemäss dem Oberbegriff des Patentanspruchs 1.
  • Abfallstoffe und dergleichen Materialien werden vielfach immer noch in Deponien entsorgt. Da Deponien nur eine begrenzte Aufnahmekapazität aufweisen, ist es wünschenswert, die Abfallstoffe vor ihrer Ablagerung zu zerkleinern. Die Zerkleinerung der Abfallstoffe kann aber auch zur Aufbereitung für die Energiegewinnung durch eine anschliessende Verbrennung oder Entgasungsanlage genutzt werden. Durch die Zerkleinerung der Abfallstoffe oder die Pulverisierung von Schlacken und Gesteinen, beispielsweise Erzgesteinen, können aber auch wertvolle Rohstoffe leichter abgetrennt und zurückgewonnen werden. Ein bekanntes Problem bei der Behandlung von Abfallstoffen, wie beispielsweise Siedlungsabfällen, Industrieschlämmen, wie z.B. Zement-, Kalk- Industrie und Klärschlämmen ist der relativ hohe Feuchtigkeitsgehalt, der oft in diesen Abfallstoffen gebunden ist. Dieser meist nur schwer von den Abfallstoffen zu trennende Feuchtigkeitsgehalt stellt bei Deponien als Deponiewasser ein nicht zu unterschätzendes Problem dar. In Verbrennungsanlagen führt der hohe Feuchtigkeitsgehalt zu einem niedrigeren Heizwert des eingesetzten Abfallmaterials. Der hohe Feuchtigkeitsgehalt in den Abfallstoffen sowie die Materialgrösse wirken sich generell negativ auf die Energie- und Transportbilanz (CO2 Ausstoss) aus.
  • Die aus dem Stand der Technik bekannten Mahlwerke oder dergleichen zur Zerkleinerung der Abfallstoffe weisen einen relativ schlechten Wirkungsgrad auf und sind für eine Verringerung des Feuchtigkeitsgehalts nicht ausreichend geeignet. Aus dem Stand der Technik ist auch bereits ein Materialzerkleinerungsgerät bekannt, welches einen im wesentlichen trichterförmigen Kessel mit einem zylindrischen Aufsatz aufweist. Komprimierte Luft wird in Umfangsrichtung in den zylindrischen Aufsatz eingeblasen, um innerhalb des trichterförmigen Kessels einen Luftwirbel zu erzeugen. Diese bekannte Vorrichtung benötigt bis zu 100 m3 komprimierte Luft pro Minute, was ein großer Nachteil für die Energiebilanz und für die Wirtschaftlichkeit der Vorrichtung darstellt. An den Eintrittsöffnungen für die komprimierte Luft angebrachte Ablenkplatten leiten die Luft in Umfangsrichtung des Kessels. Das zu zerkleinernde Material wird über eine Zuführleitung in den zylindrischen Aufsatz gefördert und dem Luftwirbel ausgesetzt. In dem Luftwirbel soll das eingebrachte Material zerkleinert werden. Die Ablenkplatten dienen zugleich als Prallplatten und sollen die Lufteintrittsöffnungen vor dem herumwirbelnden Material schützen. Das zerkleinerte Material sinkt infolge der Schwerkraft zu Boden und wird durch eine Öffnung am Boden des trichterförmigen Kessels ausgeschieden. Ein am gegenüberliegenden, durchmessergrösseren Ende des Kessels am zylindrischen Aufsatz angeordneter zylindrischer Kamin sorgt für eine Abfuhr der überschüssigen Luft. Indem die eingeblasene Luft vorgeheizt wird, soll eine gewisse Trocknung des eingebrachten Materials erzielbar sein. Die Prallplatten sind einem hohen Verschleiss unterworfen und müssen relativ oft gewechselt werden. Da immer auch Material gegen die Wandungen des trichterförmigen Kessels oder des zylindrischen Aufsatzes prallt, sind auch diese Gerätekomponenten einem relativ hohen Verschleiss unterworfen und müssen entsprechend robust ausgebildet sein. Der in dem Kessel erzielbare Luftwirbel weist nur eine relativ kleine Geschwindigkeit auf. Demzufolge weist die Vorrichtung nur eine relativ geringe Zerkleinerungswirkung auf das eingebrachte Material auf. Eine Vorrichtung zur Zerkleinerung und Trocknung von Abfallstoffen gemäß dem Oberbegriff von Anspruch 1 ist in den Dokumenten WO2012/102619A2 und US2002/027173A1 offenbart.
  • Aufgabe der vorliegenden Erfindung ist es daher, eine Vorrichtung zur Zerkleinerung und Trocknung von Abfallstoffen, Schlacken, Gesteinen und dergleichen Materialien zu schaffen, welche den vorstehend geschilderten Nachteilen der Geräte des Stands der Technik Rechnung trägt. Die Vorrichtung soll weniger verschleissanfällig sein und eine ausreichende Zerkleinerung, ja sogar eine Pulverisierung, und/oder Trocknung der eingesetzten Abfallstoffe ermöglichen. Dabei soll die Vorrichtung möglichst unkompliziert aufgebaut und erprobte und konstruktiv einfache Bauteile aufweisen, sowie kostengünstig in der Herstellung und im Betrieb sein.
  • Die Lösung dieser Aufgaben besteht in einer Vorrichtung zur Zerkleinerung und Trocknung von Abfallstoffen, Schlacken, Gesteinen und dergleichen Materialien, welche die im Patentanspruch 1 aufgelisteten Merkmale aufweist. Weiterbildungen sowie vorteilhafte und bevorzugte Ausführungsvarianten der Erfindung sind Gegenstand der abhängigen Patentansprüche.
  • Die Erfindung schlägt eine Vorrichtung zur Zerkleinerung und Trocknung von Abfallstoffen, Schlacken, Gesteinen und dergleichen Materialien vor, die einen im wesentlichen trichterförmigen Kessel mit einem zylindrischen Aufsatz umfasst. An dem zylindrischen Aufsatz sind wenigstens zwei über den Umfang verteilte Lufteinlässe zum Einbringen von komprimierter und ggf. erwärmter Luft angeordnet. Der Boden des trichterförmigen Kessels ist mit einer Austrittsöffnung für zerkleinertes Material ausgestattet. An dem der Austrittsöffnung gegenüberliegenden, durchmessergrösseren Ende des Kessels ist am zylindrischen Aufsatz eine Luftausströmöffnung angeordnet. Eine Zuführeinrichtung für das zu zerkleinernde Material mündet in den zylindrischen Aufsatz. An den wenigstens zwei über den Umfang des zylindrischen Aufsatzes verteilten Lufteinlässen ist jeweils eine Überschalldüse mit Venturisystem derart angeordnet, dass die zugeführte Luft in Umfangsrichtung des zylindrischen Aufsatzes und des trichterförmigen Kessels einbringbar ist.
  • Durch den Einsatz von Überschalldüsen erreicht die zugeführte, vorzugsweise erwärmte Luft am Eintritt in den zylindrischen Aufsatz auf dem trichterförmigen Kessel sehr hohe Strömungsgeschwindigkeiten, die die Schallgeschwindigkeit erreichen und um ein Mehrfaches übertreffen können. Dadurch wird im zylindrischen Aufsatz und insbesondere im sich in Richtung seines Bodens trichterförmig verengenden Kessel ein erwärmter Luftwirbel erzeugt. Die hohen Strömungsgeschwindigkeiten werden durch die Zufuhr der Luft unter einem Druck von ca. 4 - 6 bar erreicht. Die dabei durchgesetzten Luftmengen können je nach Meereshöhe ca. 30 bis 50 m3/min betragen. Beispielsweise können diese Luftmengen mittels eines steuerbaren ölfreien Schraubenkompressors erzeugt und gefördert werden. Unter einer Überschalldüse ist dabei beispielsweise eine Düse zu verstehen, die einen Querschnittsverlauf entsprechend einer Lavaldüse aufweist. Die Ausbildung der Überschalldüse als eine Lavaldüse erlaubt es, benötigten Lufteinsatz deutlich, beispielsweise um bis zu 50%, zu reduzieren. Dies hat grossen Einfluss auf eine positive Energiebilanz. Infolge der hohen Luftgeschwindigkeiten werden die eingebrachten Materialien stark zerkleinert, ja sogar pulverisiert. Infolge der Pulverisierung der eingesetzten Materialien können in den Materialien enthaltene wertvolle Rohstoffe einfach wieder der Industrie rückgeführt werden. Infolge des hohen Zerkleinerungsgrades kann die Ladekapazität von Transporteinrichtungen auch viel besser ausgenutzt werden, was sich wiederum positiv auf die Umwelt (Reduktion des CO2 Ausstosses) auswirken kann.
  • Die zu zerkleinernden Materialien gelangen mit Unterstützung von einem Venturisystem in den erzeugten Luftwirbel und erfahren dabei eine enorme Beschleunigung. Das Venturisystem dient dabei zum "Aufbrechen" des von den Überschalldüsen erzeugten Luftwirbels. Die in den Luftwirbel eingebrachten Materialien halten den bei der plötzlichen Beschleunigung auftretenden Kräften nicht stand und werden deshalb in kleinste Bestandteile zerlegt. Innerhalb des Luftwirbels auftretende hohe Zentrifugal- und Zentripetalkräfte, Scher- und Reibungskräfte, sowie Unterdruck und Kavitation unterstützen die Zerkleinerung der Materialien. In den Materialien enthaltene Feuchtigkeit, beispielsweise in Klär,- und Industrieschlämmen enthaltenes und in den Feststoffpartikeln gebundenes Wasser wird dabei abgetrennt und mit der sich im Luftwirbel erwärmenden Luft durch die Luftaustrittsöffnung, die an einem verstellbaren kaminartigen Fortsatz angeordnet sein kann, abtransportiert. Die Temperatur der Abluft kann beispielsweise bis 100°C betragen. Durch die Anordnung von wenigstens zwei Überschalldüsen wird in der Vorrichtung ein gleichbleibender Luftstrom erzeugt, der in einem Luftwirbel resultiert, der sich von den Innenwandungen der Vorrichtung ablöst. Dadurch kann ein Aufprallen der Materialien auf die Innenwandungen des zylindrischen Aufsatzes und des trichterförmigen Kessels verhindert werden.
  • Eine Ausführungsvariante der erfindungsgemässen Vorrichtung kann vorsehen, dass die an den Lufteinlässen angeordneten Überschalldüsen mit Venturisystem in gleicher axialer Höhe des zylindrischen Aufsatzes auf den trichterförmigen Kessel angeordnet sind. Dadurch kann die Gleichmässigkeit des Luftwirbels verbessert und können bei gleichbleibendem Energieeinsatz höhere Strömungsgeschwindigkeiten erzielt werden.
  • Bei einer Ausführungsvariante der erfindungsgemässen Vorrichtung können die Überschalldüsen einen Auslass aufweisen, der einen von der Kreisform abweichenden Querschnitt besitzt. Durch die Wahl des Strömungsquerschnitts am Auslass können die Tangential- und die Vertikalkomponenten der Luftströmung im Sinne der besseren Erzeugung des Luftwirbels beeinflusst werden.
  • Eine Ausführungsvariante der Erfindung kann vorsehen, dass der Querschnitt des Auslasses der Überschalldüsen rechteckig ausgebildet ist. Dadurch kann im Inneren des erzeugten Luftwirbels die Entstehung von Kavitation und Unterdruck begünstigt werden.
  • Bei einer weiteren Ausführungsvariante der erfindungsgemässen Vorrichtung können die Überschalldüsen jeweils einen engsten Durchströmungsquerschnitt aufweisen, der bei Bedarf veränderbar ist. Durch die Veränderung des Durchströmungsquerschnitts können die Strömungsgeschwindigkeiten am Ausgang der Überschalldüsen gezielt beeinflusst werden. Die Stellschrauben oder dergleichen mechanische Verstellmittel können derart angeordnet sein, dass sie für den Anwender auch während des Betriebs der Vorrichtung zugängig sind.
  • Die Veränderung wenigstens des engsten Durchströmungsquerschnitts der Überschalldüsen kann mechanisch, beispielsweise über Stellschrauben oder dergleichen erfolgen. Eine zweckmässige Ausführungsvariante der Erfindung kann vorsehen, dass der engste Durchströmungsquerschnitt der Überschalldüsen automatisch über Stellmotore verstellbar ist. Die motorische Verstellbarkeit erlaubt eine Einstellung des engsten Durchströmungsquerschnitts der Düsen ohne beispielsweise ein den trichterförmigen Kessel und den zylindrischen Aufsatz aufnehmendes Gehäuse öffnen oder gar demontieren zu müssen.
  • In Verbindung mit einer motorischen Verstellbarkeit kann der engste Durchströmungsquerschnitt der Überschalldüsen in Abhängigkeit des eingesetzten zu zerkleinernden Materials steuerbar sein. Die Steuerdaten können dabei, vorzugsweise tabellarisch, in einer externen Steuereinheit abgespeichert sein, die mit der Vorrichtung in Verbindung steht. Die Steuerdaten zur Verstellung des engsten Durchströmungsquerschnitts der Düsen können empirisch ermittelt und zusammengestellt sein. Eine vorteilhafte Ausführungsvariante der Erfindung kann es dem Anwender der Vorrichtung ermöglichen, die korrekten Steuerdaten für die Verstellung der Überschalldüsen in Abhängigkeit des eingesetzten Material anzuwählen. Die Steuereinheit umfasst vorzugsweise eine elektronische Datenverarbeitungsanlage. Dadurch können die Parametererfassung, -kontrolle und deren Auswahl vereinfacht werden.
  • Eine weitere Ausführungsvariante der Erfindung kann vorsehen, dass die Überschalldüsen an den Lufteinlässen am zylindrischen Aufsatz jeweils in eine Luftführungsplatte münden, die in eine Ausnehmung in der Innenwandung des zylindrischen Aufsatzes eingesetzt ist. Die Luftführungsplatte begrenzt den Auslass der Überschalldüse und ist derart montiert, dass sie die Innenwandung des zylindrischen Aufsatzes wenigstens im Bereich des Auslasses überragt. Dadurch kann die zugeführte komprimierte Luft tangential entlang des Innenumfangs des zylindrischen Aufsatzes eingebracht werden.
  • Bei einer Ausführungsvariante der erfindungsgemässen können die Luftführungsplatten gegenüber einem Düsenkörper der Überschalldüse um 180° drehbar sein. Dadurch ist die Vorrichtung sehr einfach in Bezug auf unterschiedlichen Gegebenheiten auf der Nord- bzw. der Südhalbkugel der Erde adaptierbar. Während auf der Nordhalbkugel sich ein zyklonaler, d.h. ein entgegen dem Uhrzeigersinn drehender Luftwirbel als zweckmässig erweisen kann, ist auf der Südhalbkugel eher ein antizyklonaler Luftwirbel in der Vorrichtung anzustreben. Dadurch kann der Wirkungsgrad der Vorrichtung hinsichtlich Zerkleinerung und Trocknung verbessert werden. Eine Ausführungsvariante der Erfindung kann dazu vorsehen, dass die Luftführungsplatte fest mit einer Montageplatte verbunden ist und der Düsenkörper der Überschalldüse an der Montageplatte anflanschbar ist. Die Montageplatte dient zur Montage der Überschalldüse an der Aussenwandung des zylindrischen Aufsatzes. Der Düsenkörper ist in zwei um 180° gedrehten Positionen an die Montageplatte anflanschbar. Dadurch können die Lage der Überschalldüse und der Luftzuführungen in Bezug auf den Umfang des zylindrischen Aufsatzes unverändert bleiben. In einer alternativen Ausführungsform der Erfindung können die Luftführungsplatte, die Montageplatte und der Düsenkörper aber auch starr miteinander verbunden sein. Zur Veränderung der Drehrichtung des erzeugten Luftwirbels kann dann die gesamte Überschalldüseneinheit zusammen mit Montageplatte und Luftführungsplatte um 180° gedreht montiert werden.
  • Eine weitere Ausführungsvariante der erfindungsgemässen Vorrichtung kann mit einer Steuereinrichtung verbunden sein, welche derart mit einem globalen Netzwerk, beispielsweise dem Internet verbunden ist, dass die Betriebsparameter der Vorrichtung fernablesbar und vorzugsweise die Vorrichtung fernsteuerbar ist. Die Anbindung der Steuereinrichtung, welche auch die Steuereinheit für die Querschnittsveränderung der Überschalldüsen umfassen kann, an das Internet kann beispielsweise für Wartungszwecke, für Ferndiagnosen und für eine Fernsteuerung der Vorrichtung genutzt werden.
  • Eine noch weitere Ausführungsvariante der erfindungsgemässen Vorrichtung kann vorsehen, dass mehr als zwei Überschalldüsen in gleichem Winkelabstand voneinander am Umfang des zylindrischen Aufsatzes angeordnet sind. Die Anzahl der erforderlichen Überschalldüsen kann in Abhängigkeit der Grösse und des Durchmessers des trichterförmigen Kessels samt dem zylindrischen Aufsatz gewählt werden, um die Strömungsgeschwindigkeiten im erzeugten Luftwirbel zu optimieren.
  • Weitere Vorteile und Ausführungsvarianten der Erfindung ergeben sich aus der nachstehenden Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen. Es zeigen in nicht massstabsgetreuer Darstellung:
  • Fig. 1
    eine schematische Darstellung einer erfindungsgemässen Vorrichtung im Axialschnitt;
    Fig. 2
    eine vergrösserte schematische Darstellung einer an der Vorrichtung befestigten Überschalldüse;
    Fig. 3
    eine perspektivische Ansicht einer Überschalldüse mit Blick auf eine Montageplatte an ihrer Eingangsseite;
    Fig. 4
    eine perspektivische Ansicht der Überschalldüse gemäss Fig. 4 mit Blick auf eine Luftführungsplatte; und
    Fig. 5
    eine perspektivische Ansicht einer weiteren Ausführungsvariante der Erfindung.
  • Eine in Fig. 1 schematisch im Axialschnitt dargestellte Vorrichtung gemäss der Erfindung trägt gesamthaft das Bezugszeichen 1. Die Vorrichtung weist einen trichterförmigen Kessel 2 mit einer Austrittsöffnung 3 auf. An seinem der Austrittsöffnung 3 abgewandte Ende weist der trichterförmige Kessel 2 einen zylindrischen Aufsatz 4 auf. Am zylindrischen Aufsatz 4 sind wenigstens zwei Lufteinlässe 5 für komprimierte und ggf. erwärmte Luft vorgesehen und über den Umfang des zylindrischen Aufsatzes 4 verteilt. Ein durch einen Deckel 6 in den zylindrischen Aufsatz 4 ragender Kamin 7 weist eine Luftausströmöffnung auf. Der Querschnitt der Luftausströmöffnung am Kamin 7 ist bei Bedarf veränderbar, was in Fig. 1 durch eine verstellbare Blende 8 und die Pfeile P1 angedeutet ist. Eine Zuführeinrichtung 9 für zu zerkleinernde und zu trocknende Materialien M durchsetzt den Deckel 6 und ragt in den zylindrischen Aufsatz 4.
  • An den wenigstens zwei über den Umfang des zylindrischen Aufsatzes 4 verteilten Lufteinlässen 5 ist jeweils eine Überschalldüse 10 angeordnet. Komprimierte und gegebenenfalls erwärmte Luft L wird über die Überschalldüsen 10 in den zylindrischen Aufsatz 4 eingeleitet. Unter einer Überschalldüse 10 ist gemäss der Erfindung eine Düse zu verstehen, die beispielsweise einen Querschnittsverlauf entsprechend einer Lavaldüse aufweist. Durch den Einsatz von Überschalldüsen 10 erreicht die zugeführte, vorzugsweise erwärmte Luft L am Eintritt in den zylindrischen Aufsatz 4 und den trichterförmigen Kessel 2 sehr hohe Strömungsgeschwindigkeiten, die Schallgeschwindigkeit erreichen und diese sogar um ein Mehrfaches übertreffen können. Dadurch wird im zylindrischen Aufsatz 4 und insbesondere im sich in Richtung seiner Auslassöffnung 3 trichterförmig verengenden Kessel 2 ein erwärmter Luftwirbel W erzeugt. Die hohen Strömungsgeschwindigkeiten werden durch die Zufuhr der Luft L unter einem Druck von ca. 4 - 6 bar erreicht. Die dabei durchgesetzten Luftmengen können je nach Meereshöhe ca. 30 bis 50 m3/min betragen. Beispielsweise können diese Luftmengen mittels eines steuerbaren ölfreien Schraubenkompressors erzeugt und gefördert werden. Je nach Aufstellungsort auf der Nord- bzw. der Südhalbkugel der Erde ist die Drehrichtung des in der Vorrichtung 1 erzeugten Luftwirbels W anpassbar. Während auf der Nordhalbkugel sich ein zyklonaler, d.h. ein entgegen dem Uhrzeigersinn drehender Luftwirbel als zweckmässig erweisen kann, ist auf der Südhalbkugel eher ein antizyklonaler Luftwirbel in der Vorrichtung anzustreben. Dazu ist die Einströmrichtung der Überschalldüsen 10 an den Lufteinlässen 5 veränderbar, insbesondere um 180° drehbar. Dies ist in Fig. 1 durch die gekrümmten Pfeile P2 angedeutet.
  • Die über die Zuführeinrichtung 9 in die Vorrichtung 1 eingebrachten zu zerkleinernden Materialien M werden mit Unterstützung eines an den Überschalldüsen 10 vorgesehenen Venturisystems in den erzeugten Luftwirbel eingebracht. Das Venturisystem dient dabei zum kurzfristigen "Aufbrechen" des von den Überschalldüsen 10 erzeugten Luftwirbels W. Die in den Luftwirbel W eingebrachten Materialien M werden unmittelbar nach der Abgabe in den Luftwirbel W sehr hoch beschleunigt. Die Materialien M halten den bei der plötzlichen Beschleunigung auftretenden Kräften nicht stand und werden deshalb in kleinere Bestandteile zerlegt. Innerhalb des Luftwirbels W auftretende hohe Zentrifugal- und Zentripetalkräfte, Scher- und Reibungskräfte, sowie Unterdruck und Kavitation unterstützen die Zerkleinerung der Materialien M. In den Materialien M enthaltene Feuchtigkeit, beispielsweise in Klär,- und Industrieschlämmen enthaltenes und in den Feststoffpartikeln gebundenes Wasser wird dabei abgetrennt und mit der sich im Luftwirbel W erwärmenden Abluft A durch den kaminartigen Luftauslass 7, dessen Auslassquerschnitt verstellbar sein kann, abtransportiert. Die Temperatur der Abluft A kann beispielsweise bis 100°C betragen. Durch die Anordnung von wenigstens zwei Überschalldüsen 10 mit Venturifunktion wird in der Vorrichtung 1 ein gleichbleibender Luftstrom erzeugt, der in einem Luftwirbel W resultiert, der sich von den Innenwandungen der Vorrichtung 1 ablöst. Dadurch kann ein Aufprallen der Materialien M auf die Innenwandungen 41 bzw. 21 des zylindrischen Aufsatzes 4 bzw. des trichterförmigen Kessels 2 verhindert werden. Das zerkleinerte Material gelangt als Granulat G entlang der Innenwandung 21 des trichterförmigen Kessels 2 zu der Austrittsöffnung 3 der Vorrichtung und rieselt zu Boden. In Fig. 1 ist dies durch eine Anhäufung von Granulat G auf dem Untergrund F angedeutet.
  • Fig. 2 zeigt schematisch einen axialen Schnitt einer am zylindrischen Aufsatz 4 montierten Überschalldüse 10. Die Überschalldüse 10 weist beispielsweise etwa den Querschnittsverlauf einer Lavaldüse auf. Eingangsseitig ist die Überschalldüse 10 mit einer Luftzufuhrleitung 16 verbunden. Die für die Erzeugung des Luftwirbels erforderlichen Luftmengen können beispielsweise mittels eines steuerbaren ölfreien Schraubenkompressors erzeugt und gefördert werden. Die Überschalldüse 10 besitzt einen Düsenkörper 11, der beispielsweise mehrteilig ausgebildet sind. Die Teile des Düsenkörpers 11 sind derart miteinander verbunden, dass sie gegeneinander verstellbar sind, um wenigstens einen engsten Durchströmungsquerschnitt 12 der Überschalldüse 10 verändern zu können. Die Verstellung der Teile des Düsenkörpers 11 gegeneinander kann beispielsweise über eine oder mehrere Stellschrauben erfolgen. Im schematisch dargestellten Ausführungsbeispiel ist eine motorische Verstellbarkeit des engsten Durchströmungsquerschnitts 12 mit Hilfe eines Stellmotors 18 angedeutet. Die motorische Verstellbarkeit erlaubt eine automatische Einstellung des engsten Durchströmungsquerschnitts 12 der Überschalldüse 10 ohne beispielsweise ein den trichterförmigen Kessel und den zylindrischen Aufsatz aufnehmendes Gehäuse öffnen oder gar demontieren zu müssen. In Verbindung mit einer motorischen Verstellbarkeit kann der engste Durchströmungsquerschnitt 12 der Überschalldüse in Abhängigkeit des eingesetzten zu zerkleinernden Materials steuerbar sein. Die Steuerdaten können dabei, vorzugsweise tabellarisch, in einer externen Steuereinheit abgespeichert sein, die mit der Vorrichtung in Verbindung steht. Die Steuerdaten zur Verstellung des engsten Durchströmungsquerschnitts 12 der Überschalldüse 10 Düsen können empirisch ermittelt und zusammengestellt sein. Eine vorteilhafte Ausführungsvariante der Erfindung kann es dem Anwender der Vorrichtung ermöglichen, die korrekten Steuerdaten für die Verstellung der Überschalldüsen 10 in Abhängigkeit des eingesetzten Material anzuwählen. Die Steuereinheit umfasst vorzugsweise eine elektronische Datenverarbeitungsanlage (Fig. 4). Dadurch können die Parametererfassung, -kontrolle und deren Auswahl vereinfacht werden.
  • Die Überschalldüse 10 weist eine Venturifunktion auf. Zu diesem Zweck ist am engsten Durchströmungsquerschnitt 12 des Düsenkörpers 11 eine Venturibohrung 13 angeordnet, die bei Bedarf geöffnet und wieder geschlossen werden kann. Durch das Öffnen der Venturibohrung 13 wird Umgebungsluft in die Überschalldüse 10 eingesaugt. Dadurch wird die Luftströmung innerhalb der Überschalldüse 10 gestört. Dieser Effekt kann dazu genutzt werden, den durch die einströmende Luft innerhalb des trichterförmigen Kessels und des zylindrischen Aufsatzes erzeugten Luftwirbel gezielt "aufzubrechen", beispielsweise um Materialien in den Luftwirbel einzuspeisen.
  • Der Düsenkörper 11 der Überschalldüse 10 mündet in eine Luftführungsplatte 14, die im montierten Zustand im Wesentlichen bündig mit der Innenwandung 41 des zylindrischen Aufsatzes 4 abschliesst. Die Luftführungsplatte 14 ist derart in den Lufteinlass 5 des zylindrischen Aufsatzes eingesetzt, dass sie die Innenwandung 41 des zylindrischen Aufsatzes 4 wenigstens im Bereich eines Luftauslasses 15 der Überschalldüse 10 überragt. Dadurch kann die komprimierte Luft im wesentlichen tangentiale entlang der Innenwandung 41 des zylindrischen Aufsatzes 4 eingebracht werden. Der von der Luftführungsplatte 14 begrenzte Luftauslass 15 weist einen von der Kreisform abweichenden Querschnitt auf. Beispielsweise besitzt der Luftauslass 15 einen im wesentlichen rechteckigen Querschnitt. Durch den von der Kreisform abweichenden Strömungsquerschnitt am Auslass können die Tangential- und die Vertikalkomponenten der Luftströmung im Sinne der besseren Erzeugung des Luftwirbels beeinflusst werden. Dadurch kann im erzeugten Luftwirbel die Entstehung von Kavitation und Unterdruck begünstigt werden.
  • Zur Montage der Überschalldüse 10 am zylindrischen Aufsatz 4 ist der Düsenkörper 11 mit einer Montageplatte 17 verbunden. Die Montageplatte 17 ist mit der Luftführungsplatte 14 verbunden und derart angeordnet, dass sie in Luftströmungsrichtung von der Luftführungsplatte 14 überragt wird. Die Montageplatte 17 wird mittels Schrauben an einer Aussenwand 42 des zylindrischen Aufsatzes 4 befestigt.
  • Die Montageplatte 17 und die mit dieser verbundene Luftführungsplatte 14 können starr mit dem Düsenkörper 11 verbunden sein. Zur Änderung der Drehrichtung des in der Vorrichtung erzeugten Luftwirbels muss dann die gesamte Überschalldüseneinheit samt Düsenkörper 11, Montageplatte 17 und Luftführungsplatte 14 um 180° gedreht werden. Die Montageplatte 17 und die mit dieser verbundene Luftführungsplatte 14 können jedoch auch, wie insbesondere in Fig. 3 dargestellt, gegenüber dem Düsenkörper 11 um 180° drehbar sein. Dazu kann der Düsenkörper 11 von der Montageplatte 17 abgeflanscht und nach dem Drehen und Montieren der Montageplatte 17 und der Luftführungsplatte 14 am zylindrischen Aufsatz wieder angeflanscht werden. Durch die Drehbarkeit des Düsenkörpers 11 gegenüber der Montageplatte 17 und der Luftführungsplatte 14 kann die Lage der Überschalldüse 10 und der Luftzuführungen in Bezug auf den Umfang des zylindrischen Aufsatzes 4 unverändert bleiben.
  • Fig. 3 zeigt eine perspektivische Ansicht einer erfindungsgemässen Überschalldüse 10 mit Blick auf die Montageplatte 17. Gleiche Bauteile tragen dieselben Bezugszeichen wie in Fig. 2. Der Düsenkörper 11 ist an die Montageplatte 17 angeflanscht. Am eingangsseitigen Ende der Überschalldüse 10 ist die Luftzufuhrleitung 16 angedeutet. Die Montageplatte 17 wird in Luftströmungsrichtung von der Luftführungsplatte 14 überragt, die im montierten Zustand der Überschalldüse 10 im wesentlichen bündig mit der Innenwandung des zylindrischen Aufsatzes abschliesst.
  • Fig. 4 zeigt die Überschalldüse gemäss Fig. 4 in einer perspektivischen Ansicht mit Blick auf die Luftführungsplatte 14. Die Montageplatte trägt wiederum das Bezugszeichen 17. Aus der Abbildung ist ersichtlich, dass die der Luftführungsplatte 14 zugewandte Seite der Montageplatte 17 konkav gekrümmt ausgebildet ist, um der Krümmung des zylindrischen Aufsatzes zu folgen. Der Luftauslass 15 der Überschalldüse 10 ist an der vom Betrachter abgewandten Seite der Luftführungsplatte 14 angeordnet. Er weist einen von der Kreisform abweichenden Querschnitt auf. Vorzugsweise ist er im wesentlichen rechteckig ausgebildet. Der Düsenkörper der Überschalldüse 10 ist mit dem Bezugszeichen 11 angedeutet.
  • Fig. 5 zeigt eine schematische perspektivische Darstellung eines weiteren Ausführungsbeispiels einer erfindungsgemässen Vorrichtung zur Zerkleinerung und Trocknung von Abfallstoffen und dergleichen Materialien, die wiederum gesamthaft das Bezugszeichen 1 trägt. Gleiche Bestandteile der Vorrichtung 1 sind mit denselben Bezugszeichen versehen wie in Fig. 1. Die Vorrichtung weist wiederum einen trichterförmigen Kessel 2 mit einer Austrittsöffnung 3 auf. An seinem der Austrittsöffnung 3 abgewandte Ende ist der trichterförmige Kessel 2 mit dem zylindrischen Aufsatz 4 verbunden. Am zylindrischen Aufsatz 4 sind Überschalldüsen 10 für komprimierte und ggf. erwärmte Luft montiert und vorzugsweise in gleichem Winkelabstand voneinander über den Umfang des zylindrischen Aufsatzes 4 verteilt. Bei dem dargestellten Ausführungsbeispiel sind insbesondere vier Überschalldüsen 10 vorgesehen, von denen in der Abbildung zwei sichtbar sind. Die Überschalldüsen 10 sind in gleicher Höhe des zylindrischen Aufsatzes 4 montiert. Durch den Deckel 6, der den zylindrischen Aufsatz verschliesst, ragt ein kaminartiger Fortsatz 7, dessen Austrittsquerschnitt verstellbar sein kann. Eine Zuführeinrichtung 9 für zu zerkleinernde und zu trocknende Materialien M durchsetzt den Deckel 6 und ragt gleichfalls in den zylindrischen Aufsatz 4.
  • Die Überschalldüsen 10 sind mit einer etwa ringförmig verlaufenden Luftzuführleitung 19 verbunden, die ihrerseits über eine weitere zentrale Luftleitung (nicht dargestellt) beispielsweise mit einem ölfreien Schraubenkompressor verbunden sein kann. Die Luftzuführleitungen können dabei nach einem Tichelmann-System ausgebildet sein. Das bedeutet, dass die Druckverlustbeiwerte der Zuleitungen zu den einzelnen Überschalldüsen 10 für alle Überschalldüsen gleich sind, damit eine gleichmässige Durchströmung gewährleistet ist. Die Druckverluste der Zuleitungen setzen sich im wesentlichen aus der Rohrreibung, d.h. der Innenrauigkeit, dem Durchmesser und der Länge und den Druckverlustbeiwerten der Rohrelemente zusammen. Die Druckverlustbeiwerte der Rohrelemente können empirisch ermittelt werden und üblicherweise der Literatur entnommen werden.
  • Mit Hilfe des steuerbaren ölfreien Schraubenkompressors kann die Luft unter einem Druck von ca. 4 - 6 bar und mit einem Volumen von 30 bis 50 m3/min den Überschalldüsen 10 zugeführt werden. Die Überschalldüsen 10 erlauben Strömungsgeschwindigkeiten, welche die Schallgeschwindigkeit überschreitet. Dadurch wird innerhalb der Vorrichtung 1 ein Luftwirbel erzeugt, der in der teilweise aufgeschnittenen Darstellung der Vorrichtung 1 in Fig. 4 wiederum mit dem Bezugszeichen W versehen ist.
  • Die über die Zuführeinrichtung 9 in die Vorrichtung 1 eingebrachten zu zerkleinernden Materialien M werden in den erzeugten Luftwirbel eingebracht und unmittelbar nach der Abgabe in den Luftwirbel W sehr hoch beschleunigt. Die Materialien M halten den bei der plötzlichen Beschleunigung auftretenden Kräften nicht stand und werden deshalb in kleinere Bestandteile zerlegt. Innerhalb des Luftwirbels W auftretende hohe Zentrifugal- und Zentripetalkräfte, Scher- und Reibungskräfte, sowie Unterdruck und Kavitation unterstützen die Zerkleinerung, beispielsweise Pulverisierung, der Materialien M. In den Materialien M enthaltene Feuchtigkeit, beispielsweise in Klärschlämmen enthaltenes und in den Feststoffpartikeln gebundenes Wasser wird dabei abgetrennt und mit der sich im Luftwirbel W erwärmenden Abluft A durch den kaminartigen Luftauslass 7 abtransportiert. Die Temperatur der Abluft A kann beispielsweise bis 100°C betragen. Der in der Vorrichtung erzeugte Luftwirbel W löst sich von den Innenwandungen der Vorrichtung 1 ab. Dadurch kann ein Aufprallen der Materialien M auf die Innenwandungen des zylindrischen Aufsatzes 4 bzw. des trichterförmigen Kessels 2 verhindert werden. Das zerkleinerte Material gelangt als Granulat G zu der Austrittsöffnung 3 der Vorrichtung und rieselt zu Boden.
  • Die Vorrichtung 1 zur Zerkleinerung und Trocknung von Abfallstoffen, Schlacken, Gesteinen und dergleichen Materialien kann mit einer Steuereinrichtung verbunden sein, die mit dem Bezugszeichen 100 angedeutet ist. Die Steuereinrichtung 100 kann derart mit einem globalen Netzwerk, beispielsweise dem Internet verbunden sein, dass die Betriebsparameter der Vorrichtung fernablesbar und vorzugsweise die Vorrichtung fernsteuerbar ist. Die Anbindung der Steuereinrichtung 100, welche auch die Steuereinheit für eine Querschnittsveränderung der Überschalldüsen 10 umfassen kann, an das Internet kann beispielsweise für Wartungszwecke, für Ferndiagnosen und für eine Fernsteuerung der Vorrichtung genutzt werden.
  • Die vorstehende Beschreibung von konkreten Ausführungsbeispielen dient nur zur Erläuterung der Erfindung und ist nicht als einschränkend zu betrachten. Vielmehr wird die Erfindung durch die Patentansprüche und die sich dem Fachmann erschliessenden und vom allgemeinen Erfindungsgedanken umfassten Äquivalente definiert.

Claims (16)

  1. Vorrichtung zur Zerkleinerung und Trocknung von Abfallstoffen, Schlacken, Gesteinen und dergleichen Materialien (M) umfassend einen im wesentlichen trichterförmigen Kessel (2) mit einem zylindrischen Aufsatz (4), an dem wenigstens zwei über den Umfang verteilte Lufteinlässe (5) zum Einbringen von komprimierter und ggf. erwärmter Luft (L) angeordnet sind, mit einer Austrittsöffnung (3) für zerkleinertes Material (G) am Boden des trichterförmigen Kessels (2) und einem Luftausströmöffnung, der am der Austrittsöffnung (3) gegenüberliegenden, durchmessergrösseren Ende des Kessels (2) am zylindrischen Aufsatz (4) angeordnet ist, sowie mit einer Zuführeinrichtung (9) für das zu zerkleinernde Material (M), die in den zylindrischen Aufsatz (4) mündet, dadurch gekennzeichnet, dass an den wenigstens zwei über den Umfang des zylindrischen Aufsatzes (4) verteilten Lufteinlässen (5) jeweils eine Überschalldüse (10) mit einem Querschnittsverlauf entsprechend einer Lavaldüse und mit Venturifunktion derart angeordnet ist, dass die zugeführte Luft (L) in Umfangsrichtung des zylindrischen Aufsatzes (4) und des trichterförmigen Kessels (2) einbringbar ist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die an den Lufteinlässen (5) angeordneten Überschalldüsen (10) in gleicher axialer Höhe des zylindrischen Aufsatzes (4) auf dem trichterförmigen Kessel (2) angeordnet sind.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass jede Überschalldüse (10) einen Auslass (15) aufweist, der einen von der Kreisform abweichenden Querschnitt besitzt.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der Querschnitt des Auslasses (15) der Überschalldüse (10) rechteckig ausgebildet ist.
  5. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass jede Überschalldüse (10) einen engsten Durchströmungsquerschnitt (12) aufweist, der bei Bedarf veränderbar ist.
  6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass der engste Durchströmungsquerschnitt (12) der Überschalldüse (10) mechanisch über Stellschrauben oder dergleichen verstellbar ist.
  7. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass der engste Durchströmungsquerschnitt (12) der Überschalldüse (10) automatisch, vorzugsweise über einen Stellmotor, verstellbar ist.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass der engste Durchströmungsquerschnitt (12) der Überschalldüse (10) in Abhängigkeit des eingesetzten zu zerkleinernden Materials (M) gesteuert verstellbar ist, wobei die Steuerdaten, vorzugsweise tabellarisch, in einer externen Steuereinheit abgespeichert sind.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Steuerdaten zur Verstellung des engsten Durchströmungsquerschnitts (12) der Überschalldüse (10) empirisch ermittelt und zusammengestellt sind.
  10. Vorrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass die Steuereinheit eine elektronische Datenverarbeitungsanlage umfasst.
  11. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass jede Überschalldüse (10) am Lufteinlass (5) des zylindrischen Aufsatzes (4) von einer Luftführungsplatte (14) begrenzt ist, die am Lufteinlass (5) montiert ist.
  12. Vorrichtung nach Anspruch 11, dadurch gekennzeichnet, dass die Luftführungsplatte (14) mit einer Montageplatte (17) verbunden ist.
  13. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass die Luftführungsplatte (14) und die Montageplatte (17) starr mit einem Auslass eines zugehörigen Düsenkörpers (11) der Überschalldüse (10) verbunden sind.
  14. Vorrichtung nach Anspruch 12, dadurch gekennzeichnet, dass der Düsenkörper (11) der Überschalldüse (10) bei Bedarf gegenüber der Montageplatte um 180° gedreht montierbar ist.
  15. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass sie mit einer Steuereinrichtung (100) verbunden ist, welche derart mit einem internationalen Netzwerk, beispielsweise dem Internet verbunden ist, dass die Betriebsparameter der Vorrichtung fernablesbar und vorzugsweise die Vorrichtung fernsteuerbar sind.
  16. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass drei oder mehr Überschalldüsen (10) in gleichem Winkelabstand voneinander am Umfang des zylindrischen Aufsatzes (4) angeordnet sind.
EP18715475.2A 2017-03-27 2018-02-12 Vorrichtung zur zerkleinerung und trocknung von abfallstoffen, schlacken, gesteinen und dergleichen materialien Active EP3600676B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00406/17A CH713628B1 (de) 2017-03-27 2017-03-27 Vorrichtung zur Zerkleinerung und Trocknung von Abfallstoffen, Schlacken oder Gesteinen.
PCT/EP2018/053429 WO2018177644A1 (de) 2017-03-27 2018-02-12 Vorrichtung zur zerkleinerung und trocknung von abfallstoffen, schlacken, gesteinen und dergleichen materialien

Publications (2)

Publication Number Publication Date
EP3600676A1 EP3600676A1 (de) 2020-02-05
EP3600676B1 true EP3600676B1 (de) 2022-06-22

Family

ID=58765626

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18715475.2A Active EP3600676B1 (de) 2017-03-27 2018-02-12 Vorrichtung zur zerkleinerung und trocknung von abfallstoffen, schlacken, gesteinen und dergleichen materialien

Country Status (9)

Country Link
US (1) US20200016604A1 (de)
EP (1) EP3600676B1 (de)
JP (1) JP2020516443A (de)
CN (1) CN110505922B (de)
CA (1) CA3056722A1 (de)
CH (1) CH713628B1 (de)
ES (1) ES2929107T3 (de)
RU (1) RU2768402C2 (de)
WO (1) WO2018177644A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113333122B (zh) * 2021-05-31 2023-04-21 华中科技大学 一种卧式隔层沸腾床生物质微米燃料破碎机及使用方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1000706A1 (ru) * 1981-05-11 1983-02-28 Предприятие П/Я А-7815 Установка дл сушки и измельчени дисперсных материалов во взвешенном слое
US6412716B1 (en) * 1998-06-24 2002-07-02 Forrest L. Robinson Method and apparatus for processing municipal sludge waste
US20020027173A1 (en) * 1999-03-23 2002-03-07 Polifka Francis D. Apparatus and method for circular vortex air flow material grinding
PT1194242E (pt) * 1999-03-23 2009-03-24 Vortex Dehydration Technology Aparelho e método para trituração de materiais com fluxo de ar de vórtice circular
JP3973499B2 (ja) * 2002-06-28 2007-09-12 株式会社ヤマウラ 乾燥装置
JP2005230640A (ja) * 2004-02-18 2005-09-02 Hitachi Constr Mach Co Ltd 鉛弾回収システム及び方法
RU84264U1 (ru) * 2009-02-17 2009-07-10 Владимир Дмитриевич Савоськин Установка для измельчения и сушки сырья
WO2012102619A2 (en) * 2011-01-24 2012-08-02 Agroplas Asa A materials processing device and method
CN102814221B (zh) * 2011-06-09 2014-10-29 稷富国际科技有限公司 超音速撞击粉碎装置
CN203494602U (zh) * 2013-09-17 2014-03-26 青岛世纳机械设备有限公司 多转子大型超细气流粉碎分级一体机
GB2524635B (en) * 2014-02-05 2017-02-22 Acco Brands Corp Shredder network and method of shredder management
US9724703B2 (en) * 2014-06-06 2017-08-08 LLT International (Ireland) Ltd. Systems and methods for processing solid materials using shockwaves produced in a supersonic gaseous vortex
CN106076562B (zh) * 2016-08-16 2018-09-18 浙江国正安全技术有限公司 流化床气流粉碎机

Also Published As

Publication number Publication date
WO2018177644A1 (de) 2018-10-04
ES2929107T3 (es) 2022-11-24
CH713628A1 (de) 2018-09-28
CA3056722A1 (en) 2018-10-04
CN110505922A (zh) 2019-11-26
JP2020516443A (ja) 2020-06-11
RU2768402C2 (ru) 2022-03-24
CH713628B1 (de) 2022-07-29
US20200016604A1 (en) 2020-01-16
RU2019134201A3 (de) 2021-05-25
EP3600676A1 (de) 2020-02-05
RU2019134201A (ru) 2021-04-28
CN110505922B (zh) 2022-04-08

Similar Documents

Publication Publication Date Title
DE102013110352A1 (de) Zerkleinerungsvorrichtung
EP1940552A1 (de) Vorrichtung zum zerkleinern von haufwerk
WO2013167398A1 (de) Zerkleinerungsvorrichtung
EP3291915A1 (de) Zerkleinerungsmaschine mit einem rotorsystem und verfahren zum zerkleinern von aufgabegut
DE112013004298T5 (de) Dreh-Sortiermaschine und Vertikalmühle
EP3600676B1 (de) Vorrichtung zur zerkleinerung und trocknung von abfallstoffen, schlacken, gesteinen und dergleichen materialien
EP2024093B1 (de) Verfahren zur erzeugung feinster partikel mittels einer strahlmühle
DE1782130B1 (de) Schleumuehle
DE102017103956A1 (de) Prallreaktor
DE541517C (de) Zerkleinerungsvorrichtung fuer koerniges Gut, bei welcher dessen Teile durch gegeneinander gerichtete Stroeme eines gasfoermigen Druckmittels gegeneinander geschleudert werden
WO2009015851A1 (de) Strahlmühle mit einem fluidstrahl zum zerkleinern und/oder trennen eines mahlgutes
EP3791961A1 (de) Prallmühle zur zerkleinerung von feststoffen
DE543729C (de) Zerkleinerungsvorrichtung
EP0782477A1 (de) Zyklonsichter
EP3944898A2 (de) Verfahren und vorrichtung zur mechanischen desintegration von klärschlamm
DE470289C (de) Mahlvorrichtung fuer festes Mahlgut
DE2124202C3 (de) Anlage zur Zerkleinerung von Feststoffen in einem Abwasser-Belüftungsbecken
EP2155395B1 (de) Schlagmühle
DE1009900B (de) Schleudermuehle mit einem um eine senkrechte Achse umlaufenden Schleuderrad
DE1607572C (de) Vorrichtung und Verfahren zum Einspritzen von Wasser in die Austragsseite einer Zementmühle
AT330553B (de) Einrichtung zum zerkleinern von hausmull
DE202005021946U1 (de) Vorrichtung zum Zerkleinern von Haufwerk
DE102016225920A1 (de) Kreiselpumpe mit einer Zerkleinerungsanordnung
CH192407A (de) Einrichtung zum Zerkleinern von festem Gut.
DE1232443B (de) Aus einer Muehle mit nachgeschaltetem Windsichter bestehende Zerkleinerungsvorrichtung

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502018009976

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B02C0023080000

Ipc: B02C0019060000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B02C 23/30 20060101ALI20210907BHEP

Ipc: B02C 23/08 20060101ALI20210907BHEP

Ipc: B02C 19/06 20060101AFI20210907BHEP

INTG Intention to grant announced

Effective date: 20210930

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20220203

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018009976

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1499422

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220922

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220923

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220922

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2929107

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20221124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221024

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221022

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018009976

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20230323

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220622

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230212

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240301

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240213

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240213

Year of fee payment: 7

Ref country code: GB

Payment date: 20240208

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240208

Year of fee payment: 7

Ref country code: IT

Payment date: 20240220

Year of fee payment: 7

Ref country code: FR

Payment date: 20240208

Year of fee payment: 7