EP3580618B1 - Organe moteur d'horlogerie - Google Patents

Organe moteur d'horlogerie Download PDF

Info

Publication number
EP3580618B1
EP3580618B1 EP18706317.7A EP18706317A EP3580618B1 EP 3580618 B1 EP3580618 B1 EP 3580618B1 EP 18706317 A EP18706317 A EP 18706317A EP 3580618 B1 EP3580618 B1 EP 3580618B1
Authority
EP
European Patent Office
Prior art keywords
drive member
units
hub
rim
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18706317.7A
Other languages
German (de)
English (en)
Other versions
EP3580618A1 (fr
Inventor
Jean-Baptiste LE BRIS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Patek Philippe SA Geneve
Original Assignee
Patek Philippe SA Geneve
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patek Philippe SA Geneve filed Critical Patek Philippe SA Geneve
Publication of EP3580618A1 publication Critical patent/EP3580618A1/fr
Application granted granted Critical
Publication of EP3580618B1 publication Critical patent/EP3580618B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • G04B1/18Constructions for connecting the ends of the mainsprings with the barrel or the arbor
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • G04B1/12Driving mechanisms with mainspring with several mainsprings
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • G04B1/14Mainsprings; Bridles therefor
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B1/00Driving mechanisms
    • G04B1/10Driving mechanisms with mainspring
    • G04B1/22Compensation of changes in the motive power of the mainspring
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/04Oscillators acting by spring tension

Definitions

  • the present invention relates to a motor member for watchmaking, in particular a motor member with a substantially constant moment of force.
  • the clockwork drive unit can be either a drive unit for a watch movement arranged to drive a going train, or a drive unit for an additional mechanism such as a striking mechanism or a chronograph.
  • a barrel is traditionally used as the driving member of a watch mechanism.
  • a barrel is an assembly of at least three elements: a barrel spring consisting of a leaf spring in the form of a spiral, a barrel drum serving as a housing for said spring, said drum being able to rotate freely on a barrel arbor (axis pivoting between bridge and plate), and a barrel cover for closing the barrel drum, said cover also being able to rotate freely on the barrel arbor.
  • the leaf spring has the shape of an upturned S. The unwinding of the blade, wound against the diameter of the bung of the barrel arbor and seeking to return to its initial shape, produces the energy necessary for the operation of the watch mechanism.
  • a disadvantage of such a motor member is that its performance is affected by the friction of the coils of the spiral spring against each other and against the inside of the barrel drum, during the unwinding of the barrel. To reduce this friction, it is customary to lubricate the coils of the spring and to deposit an anti-friction coating in the drum. Despite this, such a motor member undergoes energy losses of approximately 15% due to friction.
  • Such a motor member is therefore expensive and difficult to manufacture.
  • the object of the present invention is to provide an alternative motor member to the barrel comprising a spiral spring traditionally used, and also alternative to the motor members disclosed by the documents CH699988A2 and EP2455820A2 .
  • the object of the present invention is also that of providing a motor member making it possible to overcome, at least in part, the aforementioned drawbacks.
  • the invention proposes for this purpose a clockwork motor member according to appended claim 1.
  • the present invention also proposes a timepiece mechanism comprising such a timepiece motor member.
  • the motor member according to the invention has the advantage of significantly improving the efficiency (average energy loss of between 0 and 3% only against approximately 15% for a traditional spiral spring barrel). Indeed, the monolithic units that compose it do not undergo or very little friction.
  • the motor member according to the invention also has the advantage of delivering a substantially constant moment of force, thus improving the isochronism of the watch movement with which it is associated, without requiring an intermediate spring between the motor member and the 'exhaust.
  • the figures 1 and 2 represent a part of a timepiece mechanism, more precisely of a timepiece movement, comprising a clockwork motor member 1 according to a particular embodiment of the invention, this motor member 1 being held in position by means of a axis 2 of said watch movement.
  • This watch movement further comprises, in particular, a gear train 3, an escapement 4 and a winding mechanism 5a, 5b, as illustrated in figures 1 and 2 .
  • the winding mechanism comprises a winding stem 5a and a winding wheel 5b. In a variant, it could be of the automatic type, with an oscillating mass.
  • the motor member 1 comprises several monolithic units 110, 210, 310, stacked on top of each other and connected in series, as illustrated in picture 3 .
  • Each of these units 110, 210, 310 comprises a hub 120, 220, 320 and a rim 130, 230, 330 connected by several elastic arms 140, 240, 340 uniformly distributed around its hub 120, 220, 320, as illustrated in figures 4a, 4b and 4c .
  • the first 110 of said units is associated with a toothing 160 allowing the connection with the winding wheel 5b.
  • This toothing 160 which meshes with the winding wheel 5b is typically carried by a winding wheel 170 coaxial with and integral with the hub 120 of the said first unit 110, as shown in figures 1, 2, 3 and 4a .
  • the toothing 160 can be fixed to the rim 130 of the first unit 110. That or that of the hub 120 or of the rim 130 of the first unit 110 which is fixed to the toothing 160, and therefore by which between the energy, constitutes an input element of the stack of units 110, 210, 310.
  • the last 310 of said units is associated with another toothing 360 which meshes with the going train 3 to deliver a moment of force to it.
  • This other toothing 360 is typically integral with the rim 330 of this last unit 310, as shown in figures 1, 2, 3 and 4c .
  • the toothing 360 can be integral with the hub 320 of the last unit 310. That or that of the hub 320 or the rim 330 of the last unit 310 which is integral with said other toothing 360, and therefore through which the energy exits, constitutes an output element of the stack of units 110, 210, 310.
  • the intermediate units 210 placed between said first 110 and last 310 units are not associated with a toothing, as shown in figures 1, 3 and 4b .
  • each of the units 110, 210, 310 is unidirectional, that is to say that it has, due to the shape of its elastic arms 140, 240, 340, a privileged direction of rotation. of its rim 130, 230, 330 relative to its hub 120, 220, 320, this direction being defined as that which allows, from the rest state of the unit in question, the greatest relative angular displacement of its serge 130, 230, 330 with respect to its hub 120, 220, 320.
  • the arrows A, B and C represented respectively on the figures 4a, 4b and 4c , illustrate this preferred direction of rotation of the edges 130, 230, 330 with respect to the hubs 120, 220, 320 for the units 110, 210, 310 of the motor member 1 represented.
  • all the units 110, 210, 310 are identical (in particular the arms 140, 240, 340 have the same shape) and are stacked coaxially and head to tail, two successive units having different directions of rotation. privileged opposites.
  • the motor member comprises three units 110, 210, 310, it can comprise a first unit 110 whose preferred direction of rotation is clockwise (as shown in figure 4a ), a single intermediate unit 210 whose preferred direction of rotation is counterclockwise (corresponding to a unit 210 as shown in figure 4b turned over) and a last unit 310 whose preferred direction of rotation is clockwise (as shown in figure 4c ).
  • the units 110, 210, 310 are also connected in series, these units 110, 210, 310 being two by two connected alternately by their edges 130, 230, 330 and by their hubs 120, 220, 320.
  • rim 130 of first unit 110 is integral with rim 231 of first intermediate unit 211
  • hub 221 of this first intermediate unit 211 is integral with hub 222 of second intermediate unit 212 and so on, hub of the last intermediate unit being integral with the hub 320 of the last unit 310.
  • the privileged direction of rotation of the first 110 and of the last 310 unit and the choice of the input and output elements (serge or hub) depends on the position of the driving member 1 in the watch mechanism and depends on the mechanism of crown 5a, 5b and of the going train 3.
  • the preferred direction of rotation of the intermediate units 210 is granted according to their number and according to the direction of the first 110 and last 310 units.
  • the hubs 120, 220, 320 of the units 110, 210, 310 of the motor member 1 comprise holes 150, 250, 350, for example circular, these holes 150, 250, 350 being traversed by the axis 2 of the movement watchmaker, said axis 2 preferably being mounted fixed relative to the movement, for example in the plate of the movement.
  • This axis 2 positions the motor member 1 and helps to keep the hubs 120, 220, 320 of all the units 110, 210, 310 aligned, the hubs 120, 220, 320 being free to rotate around the axis 2 .
  • the hubs 120, 220, 320 of the units 110, 210, 310 of the drive member 1 may not include holes 150, 250, 350.
  • the drive member may, in this case, be held in position , for example, by means of two axes mounted on the hubs 120, 320 respectively of the first 110 and last 310 units, these axes being, respectively, integral in rotation with said hubs 120, 320 and free in rotation with respect to a fixed part of the movement, typically in relation to the plate.
  • This driving member can also be placed in a drum.
  • the very structure of the drive member 1 involves the centering of the hub 120, 220, 320 of each unit 110, 210, 310 with respect to its rim 130, 230, 330.
  • the motor member 1 can comprise one or more hub centering devices aimed at reinforcing the centering of the hubs 120, 220, 320.
  • Such devices typically comprise a rigid junction element 6, on the one hand, fixed integrally to two diametrically opposed zones of the rim 130, 230, 330 of a unit 110, 210, 310 and on the other hand, positioned free in rotation on the axis 2.
  • the figures 5a and 5b are respectively bottom and top views of a unit 110, 210, 310 of the drive member 1 equipped with such a centering device.
  • the set of elastic arms 140, 240, 340 of each unit 110, 210, 310 of the motor member 1 is designed, in particular by its shape, to exert, in this unit 110, 210, 310, a substantially constant elastic return moment over a range of angular displacement of the rim 130, 230 330 of said unit 110, 210, 310 relative to its hub 120, 220, 320 of at least 10°, preferably d at least 15°, for example approximately 21°.
  • “Substantially constant” moment is understood to mean a moment not varying by more than 10%, preferably 5%, more preferably 3%, typically 1.5%, it being understood that this percentage can be further reduced.
  • Mmin and Mmax respectively be the values of the minimum and maximum moments exerted in a unit 110, 210, 310 of the engine member 1 over a given range of angular displacement of its rim 130, 230, 330 with respect to its hub 120, 220, 320
  • be the angular displacement of the rim 130, 230, 330 of a unit 110, 210, 310 of the motor member 1 relative to the hub 120, 220, 320 of this same unit 110, 210, 310 in its direction of rotation privileged, ⁇ being equal to zero when said unit 110, 210, 310 is at rest, that is to say when all its elastic arms 140, 240, 340 are at rest, the figure 6 illustrates the evolution M( ⁇ ) of the elastic restoring moment exerted by the set of elastic arms 140, 240, 340 of a unit 110, 210, 310 in this unit as a function of the angular displacement ⁇ .
  • the monolithic units 110, 210, 310 exhibiting a curve M( ⁇ ) of the type of that shown in figure 6 differ from conventional elastic structures. Their properties are based on a sinuous shape of their elastic arms which deform in such a way as to generate a substantially constant elastic restoring moment (the curve M( ⁇ ) has a plateau). In addition, due to their sinuous shape, the elastic arms 140, 240, 340 of a given unit 110, 210, 310 have the advantage of being able to be relatively long without the risk of rubbing against each other during rotation. of the rim 130, 230, 330 of said unit 110, 210, 310 with respect to its hub 120, 220, 320.
  • the topological optimization discussed in the aforementioned article uses parametric polynomial curves such as Bézier curves to determine the geometric shape of the elastic arms.
  • each of the elastic arms 140, 240, 340 of the motor member 1 is a Bézier curve whose control points have been optimized to take into account, in particular, the dimensions of the unit 110, 210, 310 to be designed as well as the constraint "(M max -M min )/((M max +M min )/2) ⁇ 0.05" sought.
  • the inequality “(Mmax-Mmin)/((Mmax+Mmin)/2) ⁇ 0.05” corresponds to a constancy of the elastic restoring moment of 5% over an angular range [ ⁇ min_5% , ⁇ max_5% ].
  • the applicant has designed a particular unit of a motor member, said particular unit comprising twenty-three elastic arms distributed uniformly around the hub.
  • the dimensions of this particular unit are as follows: External diameter of the serge: 12mm Outside diameter of the hub: 2mm Inner diameter of the serge: 10mm Height: 0.15mm Thickness of the elastic arms: 60 ⁇ m
  • control points Q 0 , Q 1 , Q 2 , Q 3 , Q 4 , Q 5 , Q 6 were used.
  • the coordinates of these control points are shown in Table 1 below.
  • Table 1 Coordinates of control points Q ⁇ sub>0 ⁇ /sub> to Q ⁇ sub>6 ⁇ /sub>.
  • the Bézier curve was broken down into two segments, a first segment corresponding to a curve of Bézier of order 4 based on control points Q 0 to Q 3 and a second segment corresponding to a Bézier curve of order 4 based on control points Q 3 to Q 6 .
  • the graph of the figure 7 shows the geometry of the external diameter of the hub, of the internal diameter of the serge and of one of the elastic arms of the particular unit that the applicant has designed, the geometry of said arm being defined by a curve passing through the set of coordinates of points defined in Table 2 above. This graph is produced in an orthonormal frame.
  • the figure 8a represents the results of a simulation of the evolution of the elastic return moment of the particular unit thus produced as a function of the angular displacement of its rim relative to its hub.
  • the angular range of operation allowing the delivery of a substantially constant moment being a constant linked to the shape of the elastic arms, it is important to take into account the ratio between the elastic limit and the Young's modulus of the material to choose the material.
  • a motor member 1 comprising eleven units identical to the particular unit studied in figure 8a , stacked and connected in series, was also designed.
  • a simulation made it possible to graphically represent the moment of force delivered by the rim 330 (output element) of the last unit 310 of this motor member 1 as a function of the angular displacement of the rim 330 of the last unit 310 with respect to the hub 120 (input element) of the first unit 110.
  • the results of this simulation are presented in figure 8b (curve C2).
  • the figure 8b also represents the elastic restoring moment of a single particular unit identical to that studied in figure 8a as a function of the angular displacement of its rim relative to its hub (curve C1).
  • a drive member 1 comprising p units 110, 210, 310, p being an integer greater than or equal to two, allows the delivery of a moment of force that is substantially constant over a range of angular displacement of the output element, rim 330 or hub 320, of its last unit 310 relative to the input element, rim 130 or hub 120, of its first unit 110 of at least (p ⁇ 10) °, preferably at least (p ⁇ 15)°, for example approximately (p ⁇ 21)°.
  • the motor member 1 does not include an intermediate unit 210 but only includes a first unit 110 and a last unit 310 stacked and connected by their respective edges or by their respective hubs.
  • the timepiece mechanism incorporating the motor member 1 can comprise stops making it possible to maintain said motor member 1 in the range of angular displacement of the output element of its last unit 310 with respect to the input element of its first unit 110 allowing the delivery of a substantially constant moment of force.
  • the motor member 1 can be made of any suitable material, in particular as regards its elastic limit and its Young's modulus.
  • Units 110, 210, 310 can be manufactured separately and then assembled. They can for example be manufactured by machining, in particular in the case where they are made of metal or an alloy such as Nivaflex ® , by DRIE etching in the case of silicon for example, or even by molding, in particular in the case where they are made of plastic or metallic glass. The units 110, 210, 310 obtained can then be assembled together, typically by gluing, welding or brazing.
  • the motor member 1 can be produced in a single monolithic part, for example by using 3-dimensional printing techniques or laser cutting techniques, typically in mineral glass.
  • the units 110, 210, 310 stacked coaxially are arranged so that the elastic arms 140, 240, 340 of the units whose preferred direction of rotation is the same align, which makes it possible to obtain an advantageous aesthetic effect. , as illustrated in figures 1 and 2 .
  • the motor member 1 can comprise monolithic units of different shape from that illustrated in figures 1, 2 and 4 . They may in particular take a form as shown in figure 9 .
  • the monolithic unit 10 shown in figure 9 comprises elastic arms 40 exerting a substantially constant elastic restoring moment over a range of angular displacement of the rim 30 of said unit relative to its hub 20 of at least 10°, preferably at least 15°, for example around 21°.
  • a motor member 1 comprising a number of monolithic units different from that represented in the figures and/or comprising units with elastic arms of different shapes from those represented in the figures and/or whose the number of elastic arms is different from that shown in the figures, it being possible in particular for a monolithic unit to have only one elastic arm.
  • the value of the moment of force reached in the stable phase of the driving member can in particular be adjusted by acting on the number of elastic arms that comprise the units which constitute it, on the thickness of the elastic arms and/or on the material used. .
  • q being an integer greater than or equal to 2
  • the moment of force exerted by all of these q elastic arms in the monolithic unit in its stable phase is typically equal to q times the moment of force exerted, in a similar monolithic unit comprising only one of these elastic arms, by said single elastic arm in this unit, in its stable phase.
  • the angular range [ ⁇ min, ⁇ max ] over which the moment of force delivered is substantially constant can, for its part, be adjusted by adjusting the number of units stacked and connected in series.
  • At least one or each of the elastic arms of the units according to the invention could have a variable section, for example a variable thickness.
  • the section could typically be larger on the hub side than on the rim side.
  • the toothing 360 associated with the last unit 310 of the motor member 1 according to the invention can, as desired, be integral with the hub 320 or rim 330 of this unit 310. In particular, it can be carried directly by said rim 330 or by said hub 320.
  • the toothing 160 associated with the first unit 110 of the motor member 1 according to the invention can, as desired, be secured to the hub 120 or to the rim 130 of this unit 110. In particular, it can be carried directly by said rim 130 or by said hub 120.
  • the person skilled in the art can also easily adjust, according to his needs (that is to say for example according to the number of units that the motor member 1 comprises, according to whether the toothing 360 is integral with the hub 320 or the rim 330 of the last unit 310, depending on whether the toothing 160 is integral with the hub 120 or the rim 130 of the first unit 110, depending on the preferred direction of rotation chosen for any of the units, etc.) , the arrangement of the serge-serge and hub-hub connections of a motor member 1 according to the invention.
  • the moment of force delivered by the driving member 1 can allow the setting in motion of another type of gear train than a finishing gear train 3 or of an additional mechanism such as a striking or chronograph mechanism. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Micromachines (AREA)
  • Measurement Of Unknown Time Intervals (AREA)
  • Gears, Cams (AREA)
  • Transmission Devices (AREA)

Description

  • La présente invention concerne un organe moteur pour l'horlogerie, en particulier un organe moteur à moment de force sensiblement constant.
  • L'organe moteur d'horlogerie selon l'invention peut être soit un organe moteur d'un mouvement horloger agencé pour entraîner un rouage de finissage, soit un organe moteur d'un mécanisme additionnel tel qu'un mécanisme de sonnerie ou un mécanisme de chronographe.
  • En horlogerie, on a traditionnellement recours à un barillet comme organe moteur d'un mécanisme horloger. Un barillet est un assemblage d'au moins trois éléments : un ressort de barillet consistant en une lame ressort en forme de spirale, un tambour de barillet servant de logement audit ressort, ledit tambour pouvant tourner librement sur un arbre de barillet (axe pivotant entre pont et platine), et un couvercle de barillet pour fermer le tambour de barillet, ledit couvercle pouvant également tourner librement sur l'arbre de barillet. Hors du tambour de barillet, la lame ressort a la forme d'un S retourné. Le déroulement de la lame, enroulée contre le diamètre de la bonde de l'arbre de barillet et cherchant à reprendre sa forme initiale, produit l'énergie nécessaire au fonctionnement du mécanisme horloger.
  • Un inconvénient d'un tel organe moteur est que son rendement est affecté par les frottements des spires du ressort en spirale les unes contre les autres et contre l'intérieur du tambour de barillet, lors du dévidement du barillet. Pour atténuer ces frottements, il est habituel de lubrifier les spires du ressort et de déposer un revêtement anti-frottements dans le tambour. Malgré cela, un tel organe moteur subit des pertes d'énergie d'environ 15% dues aux frottements.
  • Un autre inconvénient d'un tel organe moteur est que la fabrication et la mise en forme de la lame ressort qu'il contient, de sa forme en S retourné à sa forme en spirale, doit fortement tenir compte de la limite d'élasticité du matériau constituant la lame ressort. De plus, la mise en place du ressort en spirale logé dans le tambour de barillet est basée sur une longue expérience de l'horloger et nécessite de nombreuses étapes de manipulation. Il s'agit en outre d'un assemblage de plusieurs éléments.
  • Un tel organe moteur est donc coûteux et difficile à fabriquer.
  • En outre, le moment de force délivré par un tel organe moteur n'est pas constant, ce qui affecte l'isochronisme du mécanisme horloger. Pour atténuer ce problème, certains mouvements horlogers emploient un ressort intermédiaire de type spiral entre l'organe moteur et l'échappement. Un inconvénient de cette solution est qu'elle complexifie le mouvement en introduisant un élément supplémentaire.
  • Le but de la présente invention est de fournir un organe moteur alternatif au barillet comprenant un ressort en spirale traditionnellement utilisé, et alternatif également aux organes moteurs divulgués par les documents CH699988A2 et EP2455820A2 . Le but de la présente invention est également celui de fournir un organe moteur permettant de pallier, au moins en partie, les inconvénients précités.
  • L'invention propose à cette fin un organe moteur d'horlogerie selon la revendication 1 annexée.
  • La présente invention propose également un mécanisme horloger comprenant un tel organe moteur d'horlogerie.
  • L'organe moteur selon l'invention présente l'avantage d'améliorer nettement le rendement (perte d'énergie moyenne comprise entre 0 et 3% seulement contre 15% environ pour un barillet à ressort en spirale traditionnel). En effet, les unités monolithiques qui le composent ne subissent pas ou très peu de frottements.
  • En outre, l'organe moteur selon l'invention présente également l'avantage de délivrer un moment de force sensiblement constant, améliorant ainsi l'isochronisme du mouvement horloger auquel il est associé, sans nécessiter de ressort intermédiaire entre l'organe moteur et l'échappement.
  • D'autres caractéristiques et avantages de la présente invention apparaîtront à la lecture de la description détaillée suivante faite en référence aux dessins annexés dans lesquels :
    • la figure 1 est une vue en perspective d'une partie d'un mécanisme horloger intégrant un organe moteur d'horlogerie selon un mode de réalisation particulier de l'invention ;
    • la figure 2 est une vue de dessus du mécanisme représenté à la figure 1 ;
    • la figure 3 est une coupe transversale de l'organe moteur de la figure 1 ;
    • les figures 4a, 4b et 4c représentent respectivement, en vue de dessus, une première unité, une unité intermédiaire et une dernière unité de l'organe moteur de la figure 1 ;
    • les figures 5a et 5b sont des vues respectivement de dessous et de dessus d'une unité de l'organe moteur équipée d'un dispositif de centrage ;
    • la figure 6 est une représentation graphique schématique du moment de rappel élastique exercé dans une unité de l'organe moteur ;
    • la figure 7 représente les coordonnées de points définissant une forme particulière de bras élastique pour chaque unité de l'organe moteur ;
    • la figure 8a est une représentation graphique du moment de rappel élastique exercé dans une unité donnée de l'organe moteur comprenant des bras élastiques ayant la forme telle que représentée à la figure 7 ;
    • la figure 8b est une représentation graphique du moment de force délivré par un organe moteur comprenant onze unités telles que celle étudiée à la figure 8a, empilées et reliées en série ;
    • la figure 9 représente, en vue de dessus, une variante d'une unité de l'organe moteur d'horlogerie selon l'invention.
  • Les figures 1 et 2 représentent une partie d'un mécanisme horloger, plus précisément d'un mouvement horloger, comprenant un organe moteur d'horlogerie 1 selon un mode de réalisation particulier de l'invention, cet organe moteur 1 étant maintenu en position par le biais d'un axe 2 dudit mouvement horloger. Ce mouvement horloger comprend en outre, notamment, un rouage de finissage 3, un échappement 4 et un mécanisme de remontoir 5a, 5b, tels qu'illustrés aux figures 1 et 2. Dans l'exemple illustré, le mécanisme de remontoir comprend une tige de remontoir 5a et un rouage de remontoir 5b. Dans une variante, il pourrait être de type automatique, à masse oscillante.
  • L'organe moteur 1 comprend plusieurs unités monolithiques 110, 210, 310, empilées les unes sur les autres et reliées en série, comme illustré à la figure 3. Chacune de ces unités 110, 210, 310 comprend un moyeu 120, 220, 320 et une serge 130, 230, 330 reliés par plusieurs bras élastiques 140, 240, 340 uniformément répartis autour de son moyeu 120, 220, 320, comme illustré aux figures 4a, 4b et 4c.
  • La première 110 desdites unités est associée à une denture 160 permettant la liaison avec le rouage de remontoir 5b. Cette denture 160 qui engrène avec le rouage de remontoir 5b est typiquement portée par une roue de remontoir 170 coaxiale et solidaire du moyeu 120 de ladite première unité 110, comme représenté aux figures 1, 2, 3 et 4a. En variante, la denture 160 peut être solidaire de la serge 130 de la première unité 110. Celui ou celle du moyeu 120 ou de la serge 130 de la première unité 110 qui est solidaire de la denture 160, et donc par lequel entre l'énergie, constitue un élément d'entrée de l'empilement des unités 110, 210, 310.
  • La dernière 310 desdites unités est associée à une autre denture 360 qui engrène avec le rouage de finissage 3 pour lui délivrer un moment de force. Cette autre denture 360 est typiquement solidaire de la serge 330 de cette dernière unité 310, comme représenté aux figures 1, 2, 3 et 4c. En variante, la denture 360 peut être solidaire du moyeu 320 de la dernière unité 310. Celui ou celle du moyeu 320 ou de la serge 330 de la dernière unité 310 qui est solidaire de ladite autre denture 360, et donc par lequel sort l'énergie, constitue un élément de sortie de l'empilement des unités 110, 210, 310.
  • Les unités intermédiaires 210 placées entre lesdites première 110 et dernière 310 unités ne sont pas associées à une denture, comme représenté aux figures 1, 3 et 4b.
  • En outre, chacune des unités 110, 210, 310 selon l'invention est unidirectionnelle, c'est-à-dire qu'elle présente, en raison de la forme de ses bras élastiques 140, 240, 340, un sens de rotation privilégié de sa serge 130, 230, 330 par rapport à son moyeu 120, 220, 320, ce sens étant défini comme celui qui permet, à partir de l'état de repos de l'unité considérée, le plus grand déplacement angulaire relatif de sa serge 130, 230, 330 par rapport à son moyeu 120, 220, 320. Les flèches A, B et C, représentées respectivement sur les figures 4a, 4b et 4c, illustrent ce sens de rotation privilégié des serges 130, 230, 330 par rapport aux moyeux 120, 220, 320 pour les unités 110, 210, 310 de l'organe moteur 1 représentées.
  • De préférence, toutes les unités 110, 210, 310 (dentures non comprises) sont identiques (en particulier les bras 140, 240, 340 ont la même forme) et sont empilées coaxialement et tête-bêche, deux unités successives ayant des sens de rotation privilégiés opposés. Par exemple, lorsque l'organe moteur comprend trois unités 110, 210, 310, il peut comprendre une première unité 110 dont le sens de rotation privilégié est le sens horaire (comme représenté à la figure 4a), une unique unité intermédiaire 210 dont le sens de rotation privilégié est le sens antihoraire (correspondant à une unité 210 telle que représentée à la figure 4b retournée) et une dernière unité 310 dont le sens de rotation privilégié est le sens horaire (comme représenté à la figure 4c).
  • Comme déjà indiqué, les unités 110, 210, 310 sont en outre reliées en série, ces unités 110, 210, 310 étant deux à deux reliées alternativement par leurs serges 130, 230, 330 et par leurs moyeux 120, 220, 320.
  • Dans l'exemple de la figure 3, la serge 130 de la première unité 110 est solidaire de la serge 231 de la première unité intermédiaire 211, le moyeu 221 de cette première unité intermédiaire 211 est solidaire du moyeu 222 de la seconde unité intermédiaire 212 et ainsi de suite, le moyeu de la dernière unité intermédiaire étant solidaire du moyeu 320 de la dernière unité 310.
  • Le sens de rotation privilégié de la première 110 et de la dernière 310 unité et le choix des éléments d'entrée et de sortie (serge ou moyeu) dépend de la position de l'organe moteur 1 dans le mécanisme horloger et dépend du mécanisme de remontoir 5a, 5b et du rouage de finissage 3. Le sens de rotation privilégié des unités intermédiaires 210 est accordé selon leur nombre et selon le sens des première 110 et dernière 310 unités.
  • Comme illustré aux figures 1 à 4c, les moyeux 120, 220, 320 des unités 110, 210, 310 de l'organe moteur 1 comprennent des perçages 150, 250, 350, par exemple circulaires, ces perçages 150, 250, 350 étant traversés par l'axe 2 du mouvement horloger, ledit axe 2 étant de préférence monté fixe par rapport au mouvement, par exemple dans la platine du mouvement. Cet axe 2 positionne l'organe moteur 1 et aide à maintenir alignés les moyeux 120, 220, 320 de l'ensemble des unités 110, 210, 310, les moyeux 120, 220, 320 étant libres en rotation autour de l'axe 2.
  • Dans des variantes, les moyeux 120, 220, 320 des unités 110, 210, 310 de l'organe moteur 1 peuvent ne pas comprendre de perçages 150, 250, 350. L'organe moteur peut, dans ce cas, être maintenu en position, par exemple, par le biais de deux axes montés sur les moyeux 120, 320 respectivement des première 110 et dernière 310 unités, ces axes étant, respectivement, solidaires en rotation desdits moyeux 120, 320 et libres en rotation par rapport à une partie fixe du mouvement, typiquement par rapport à la platine. Cet organe moteur peut, en outre, être placé dans un tambour.
  • La structure même de l'organe moteur 1 implique le centrage du moyeu 120, 220, 320 de chaque unité 110, 210, 310 par rapport à sa serge 130, 230, 330. Cependant, l'organe moteur 1 peut comprendre un ou plusieurs dispositifs de centrage des moyeux visant à renforcer le centrage des moyeux 120, 220, 320. De tels dispositifs comprennent typiquement un élément rigide de jonction 6, d'une part, fixé solidairement à deux zones diamétralement opposées de la serge 130, 230, 330 d'une unité 110, 210, 310 et d'autre part, positionné libre en rotation sur l'axe 2. Les figures 5a et 5b sont des vues respectivement de dessous et de dessus d'une unité 110, 210, 310 de l'organe moteur 1 équipée d'un tel dispositif de centrage.
  • D'une manière générale, l'ensemble des bras élastiques 140, 240, 340 de chaque unité 110, 210, 310 de l'organe moteur 1 est conçu, notamment de par sa forme, pour exercer, dans cette unité 110, 210, 310, un moment de rappel élastique sensiblement constant sur une plage de déplacement angulaire de la serge 130, 230 330 de ladite unité 110, 210, 310 par rapport à son moyeu 120, 220, 320 d'au moins 10°, de préférence d'au moins 15°, par exemple de 21° environ.
  • On entend par moment « sensiblement constant » un moment ne variant pas de plus de 10%, de préférence 5%, de préférence encore 3%, typiquement 1,5% étant entendu que ce pourcentage peut être diminué davantage.
  • Plus précisément, soient respectivement Mmin et Mmax les valeurs des moments minimum et maximum exercés dans une unité 110, 210, 310 de l'organe moteur 1 sur une plage donnée de déplacement angulaire de sa serge 130, 230, 330 par rapport à son moyeu 120, 220, 320, le moment exercé dans cette unité 110, 210, 310 est sensiblement constant dès lors que l'inéquation « (Mmax-Mmin)/((Mmax+Mmin)/2) ≤ 0,1 » est vérifiée, plus précisément, dès lors que l'inéquation « (Mmax-Mmin)/((Mmax+Mmin)/2) ≤ y% », avec y=10, de préférence 5, de préférence encore 3, par exemple 1,5, est vérifiée.
  • Soit θ le déplacement angulaire de la serge 130, 230, 330 d'une unité 110, 210, 310 de l'organe moteur 1 par rapport au moyeu 120, 220, 320 de cette même unité 110, 210, 310dans son sens de rotation privilégié, θ étant égal à zéro lorsque ladite unité 110, 210, 310 est au repos, c'est-à-dire lorsque tous ses bras élastiques 140, 240, 340 sont au repos, la figure 6 illustre l'évolution M(θ) du moment de rappel élastique exercé par l'ensemble des bras élastiques 140, 240, 340 d'une unité 110, 210, 310 dans cette unité en fonction du déplacement angulaire θ.
  • Comme cela est visible sur la courbe M(θ) de la figure 6, ce moment de rappel élastique suit une évolution en trois phases :
    • pour un angle θ compris entre 0 et une première valeur θ1, le moment de rappel élastique augmente rapidement avec le déplacement angulaire θ, cette phase correspond à la phase d'armage ;
    • au-delà de cette première valeur θ1, l'unité 110, 210, 310 est dans une phase stable. En effet, entre cette première valeur θ1 et une seconde valeur θ2, le moment de rappel élastique est sensiblement constant par rapport au déplacement angulaire θ ;
    • au-delà de cette deuxième valeur θ2, le moment de rappel élastique augmente à nouveau jusqu'à atteindre une valeur limite Mlimite, pour un déplacement angulaire θ=θ3. Cette valeur Mlimite dépend des propriétés du matériau dans lequel l'unité 110, 210, 310 est réalisée et correspond à la contrainte maximale que peut subir une unité 110, 210, 310.
  • Pour une unité monolithique donnée, il est possible de définir des valeurs limites d'angles θmin_y% et θmax_y% entre lesquelles le moment de rappel élastique est sensiblement constant, avec une constance de y%. Par exemple, si l'on veut obtenir une constance du moment de rappel élastique de 5%, on définit à l'aide de la courbe M(θ), les valeurs des angles θmin_5% et θmax_5% pour que l'inéquation : « (Mmax-Mmin) / ((Mmax+Mmin)/2) < 0,05 » soit vérifiée ; avec Mmax le moment de rappel élastique maximum sur l'intervalle d'angles [θmin_5%, θmax_5%] et Mmin le moment de rappel élastique minimum sur ce même intervalle.
  • Les unités monolithiques 110, 210, 310 présentant une courbe M(θ) du type de celle représentée à la figure 6 diffèrent des structures élastiques classiques. Leurs propriétés reposent sur une forme sinueuse de leurs bras élastiques qui se déforment de manière à générer un moment de rappel élastique sensiblement constant (la courbe M(θ) présente un plateau). De plus, du fait de leur forme sinueuse, les bras élastiques 140, 240, 340 d'une unité 110, 210, 310 donnée présentent l'avantage de pouvoir être relativement longs sans risquer de frotter les uns contre les autres lors de la rotation de la serge 130, 230, 330 de ladite unité 110, 210, 310 par rapport à son moyeu 120, 220, 320.
  • L'obtention de tels bras élastiques requiert une conception spécifique et paramétrée. Ils peuvent par exemple être obtenus par optimisation topologique en appliquant l'enseignement de la publication « Design of adjustable constant-force forceps for robot-assisted surgical manipulation », Chao-Chieh Lan et al., 2011 - IEEE International Conference on robotics and automation Shanghai International Conference Center May 9-13, China .
  • L'optimisation topologique dont il est question dans l'article précité utilise des courbes polynomiales paramétriques telles que les courbes de Bézier pour déterminer la forme géométrique des bras élastiques.
  • Les courbes de Bézier se définissent, conjointement à une série de m=(n+1) points de contrôle (Q0, Q1, ... Qn), par un ensemble de points dont les coordonnées sont données par des sommes de polynômes de Bernstein pondérées par les coordonnées desdits points de contrôle.
  • La forme géométrique de chacun des bras élastiques 140, 240, 340 de l'organe moteur 1 est une courbe de Bézier dont les points de contrôle ont été optimisés pour prendre en compte, notamment, les dimensions de l'unité 110, 210, 310 à concevoir ainsi que la contrainte « (Mmax-Mmin)/((Mmax+Mmin)/2) ≤ 0,05 » recherchée. L'inéquation « (Mmax-Mmin)/((Mmax+Mmin)/2) ≤ 0,05 » correspond à une constance du moment de rappel élastique de 5% sur une plage angulaire [θmin_5%, θmax_5%].
  • Plus précisément, la forme géométrique de chacun des bras élastiques 140, 240, 340 de l'organe moteur 1 est définie par l'ensemble des points i = 0 n B i n t . Q i , avec t 0,1 ,
    Figure imgb0001
    où les B i n
    Figure imgb0002
    sont les polynômes de Bernstein donnés par la fonction B i t = m 1 ! i ! m 1 i ! t i 1 t m i 1 avec t 0,1 ,
    Figure imgb0003
    et où les Qi sont les points de contrôle Q0 à Qn. Elle correspond à la représentation graphique dans un repère orthonormé de l'ensemble des points définis par les couples de coordonnées (x ; y) définis respectivement par les fonctions x(t) et y(t), t ∈ [0, 1], ci-dessous : x t = i = 0 m 1 Q ix B i t
    Figure imgb0004
    y t = i = 0 m 1 Q iy B i t
    Figure imgb0005
    dans lesquelles Qix et Qiy sont respectivement les coordonnées x et y des points de contrôle Qi.
  • Les formules indiquées ci-dessus donnent les coordonnées d'une courbe de Bézier d'ordre m, c'est-à-dire une courbe de Bézier basée sur m points de contrôle. Pour des raisons pratiques, une telle courbe de Bézier peut être décomposée en une succession de courbes de Bézier d'ordre inférieur à m, auquel cas la forme géométrique de chacun des bras élastiques est une succession de courbes de Bézier.
  • En utilisant ce principe, la demanderesse a conçu une unité particulière d'un organe moteur, ladite unité particulière comprenant vingt-trois bras élastiques répartis uniformément autour du moyeu. Les dimensions de cette unité particulière sont les suivantes :
    Diamètre extérieur de la serge : 12 mm
    Diamètre extérieur du moyeu : 2 mm
    Diamètre intérieur de la serge : 10 mm
    Hauteur: 0,15 mm
    Epaisseur des bras élastiques : 60 µm
  • Dans le cadre de cette conception, sept points de contrôle Q0, Q1, Q2, Q3, Q4, Q5, Q6 ont été utilisés. Les coordonnées de ces points de contrôle sont indiquées dans le tableau 1 ci-dessous. Tableau 1 : Coordonnées des points de contrôle Q0 à Q6.
    Variables Coordonnées x [mm] Coordonnées y [mm]
    Q0 0,756625 0,653875
    Q1 1,87325 1,619
    Q2 2,8125 -0,59125
    Q3 3,4375 0,4535
    Q4 3,75 1,032875
    Q5 4,375 0
    Q6 5 0
  • Avec ces sept points de contrôle il aurait été possible de réaliser une courbe de Bézier d'ordre sept. Cependant, selon le principe indiqué ci-dessus, la courbe de Bézier a été décomposée en deux segments, un premier segment correspondant à une courbe de Bézier d'ordre 4 basée sur les points de contrôle Q0 à Q3 et un second segment correspondant à une courbe de Bézier d'ordre 4 basée sur les points de contrôle Q3 à Q6.
  • En utilisant les coordonnées des points de contrôle Q0 à Q6 ci-dessus dans les fonctions x(t) et y(t) précitées, la demanderesse a obtenu les coordonnées des points définissant la forme géométrique d'un bras élastique de l'unité particulière. Un certain nombre de ces couples de coordonnées sont donnés dans le tableau 2 ci-après. Tableau 2 : Coordonnées de points de passage du bras élastique optimisé
    x [mm] y [mm]
    0,756625 0,653875
    1,086132 0,854582
    1,404044 0,903348
    1,709407 0,838756
    2,001267 0,699389
    2,278672 0,523828
    2,540668 0,350656
    2,786302 0,218455
    3,014621 0,165807
    3,224671 0,231295
    3,4155 0,4535
    3,524275 0,58159
    3,648736 0,628816
    3,787142 0,611048
    3,937748 0,544158
    4,098813 0,444016
    4,268592 0,326492
    4,445344 0,207458
    4,627324 0,102784
    4,812791 0,028341
    5 0
  • Le graphique de la figure 7 fait apparaître la géométrie du diamètre externe du moyeu, du diamètre interne de la serge et d'un des bras élastique de l'unité particulière que la demanderesse a conçue, la géométrie dudit bras étant définie par une courbe passant par l'ensemble des coordonnées de points défini dans le tableau 2 ci-dessus. Ce graphique est réalisé dans un repère orthonormé.
  • La figure 8a représente les résultats d'une simulation de l'évolution du moment de rappel élastique de l'unité particulière ainsi réalisée en fonction du déplacement angulaire de sa serge par rapport à son moyeu.
  • La simulation effectuée considère une unité particulière réalisée dans un alliage à base de cobalt, nickel et chrome, plus précisément en Nivaflex® 45/18 (module de Young E= 220 GPa) mais tout matériau approprié peut être utilisé. Par exemple des matériaux tels que le silicium (E=130 GPa), typiquement revêtu d'oxyde de silicium, le verre métallique, le plastique ou le CK101 (acier de construction non-allié) conviennent également et permettent l'obtention d'unités monolithiques dont le moment de rappel élastique est sensiblement constant sur les mêmes plages angulaires [θmin, θmax].
  • La plage angulaire de fonctionnement permettant la délivrance d'un moment sensiblement constant étant une constante liée à la forme des bras élastiques, il est important de tenir compte du rapport entre la limite élastique et le module de Young du matériau pour choisir le matériau.
  • Il ressort de l'analyse des résultats présentés à la figure 8a qu'une constance de 3% du moment de rappel élastique est obtenue pour un déplacement angulaire de la serge de l'unité particulière étudiée par rapport à son moyeu compris entre θmin_3%, soit 13°, et θmax_3%, soit 34°, soit sur une plage de fonctionnement de 21 °.
  • En augmentant le nombre de points de contrôle lors de la conception des bras élastiques 140, 240, 340, on devrait pouvoir augmenter la précision de la forme de ces bras élastiques et améliorer ainsi la constance du moment de force.
  • Un organe moteur 1 comprenant onze unités identiques à l'unité particulière étudiée à la figure 8a, empilées et reliées en série, a également été conçu. Une simulation a permis de représenter graphiquement le moment de force délivré par la serge 330 (élément de sortie) de la dernière unité 310 de cet organe moteur 1 en fonction du déplacement angulaire de la serge 330 de la dernière unité 310 par rapport au moyeu 120 (élément d'entrée) de la première unité 110. Les résultats de cette simulation sont présentés à la figure 8b (courbe C2).
  • La figure 8b représente également le moment de rappel élastique d'une seule unité particulière identique à celle étudiée à la figure 8a en fonction du déplacement angulaire de sa serge par rapport à son moyeu (courbe C1).
  • Comme on peut le voir sur cette figure 8b, la valeur du moment de force exercé par l'organe moteur 1 comprenant onze unités, lorsqu'il est dans sa phase stable, (environ 5 N.mm) est inchangée par rapport à la valeur du moment de rappel élastique exercé par l'ensemble des bras élastiques d'une unité monolithique isolée, dans cette unité, dans sa phase stable. Chaque angle θmin_3% et θmax_3% pour l'organe moteur 1 est égal à onze (c'est-à-dire le nombre d'unités placées en série) fois l'angle correspondant θmin_3% et θmax_3% pour une unité. En effet, θmin_3% et θmax_3% pour onze unités valent respectivement 143° et 374°.
  • L'agencement en série de telles unités permet donc d'augmenter l'amplitude du déplacement angulaire associé à la délivrance d'un moment sensiblement constant tout en conservant l'intensité de ce moment.
  • De manière générale, la demanderesse a pu constater qu'un organe moteur 1 comprenant p unités 110, 210, 310, p étant un nombre entier supérieur ou égal à deux, permet la délivrance d'un moment de force sensiblement constant sur une plage de déplacement angulaire de l'élément de sortie, serge 330 ou moyeu 320, de sa dernière unité 310 par rapport à l'élément d'entrée, serge 130 ou moyeu 120, de sa première unité 110 d'au moins (p × 10)°, de préférence d'au moins (p × 15)°, par exemple de (p × 21)° environ.
  • Lorsque p=2, l'organe moteur 1 ne comprend pas d'unité intermédiaire 210 mais comprend uniquement une première unité 110 et une dernière unité 310 empilées et reliées par leurs serges respectives ou par leurs moyeux respectifs.
  • De manière avantageuse, le mécanisme horloger intégrant l'organe moteur 1 peut comprendre des butées permettant de maintenir ledit organe moteur 1 dans la plage de déplacement angulaire de l'élément de sortie de sa dernière unité 310 par rapport à l'élément d'entrée de sa première unité 110 permettant la délivrance d'un moment de force sensiblement constant.
  • Comme indiqué précédemment, l'organe moteur 1 peut être réalisé en tout matériau approprié, notamment en ce qui concerne sa limite d'élasticité et son module de Young.
  • Les unités 110, 210, 310 peuvent être fabriquées séparément puis assemblées. Elles peuvent par exemple être fabriquées par usinage, notamment dans le cas où elles sont faites de métal ou d'un alliage tel que le Nivaflex®, par gravure DRIE dans le cas du silicium par exemple, ou encore par moulage, notamment dans le cas où elles sont fabriquées en plastique ou en verre métallique. Les unités 110, 210, 310 obtenues peuvent ensuite être assemblées entre elles, typiquement par collage, soudure ou brasage.
  • En variante, l'organe moteur 1 peut être réalisé en une seule pièce monolithique, par exemple en utilisant des techniques d'impression en 3 dimensions ou des techniques de découpe laser, typiquement dans du verre minéral.
  • Avantageusement, les unités 110, 210, 310 empilées coaxialement sont agencées pour que les bras élastiques 140, 240, 340 des unités dont le sens de rotation privilégié est le même s'alignent, ce qui permet l'obtention d'un effet esthétique avantageux, comme illustré aux figures 1 et 2.
  • Dans des variantes, l'organe moteur 1 peut comprendre des unités monolithiques de forme différente de celle illustrée aux figures 1, 2 et 4. Elles peuvent notamment prendre une forme telle que représentée à la figure 9.
  • L'unité monolithique 10 représentée à la figure 9 comprend des bras élastiques 40 exerçant un moment de rappel élastique sensiblement constant sur une plage de déplacement angulaire de la serge 30 de ladite unité par rapport à son moyeu 20 d'au moins 10°, de préférence d'au moins 15°, par exemple de 21° environ.
  • Un moyen d'obtenir de tels bras élastiques 40 est notamment décrit dans l'article « Functional joint mechanisms with constant torque outputs », Mechanism and machine theory 62 (2013) 166-181, Chia-Wen Hou et al.
  • Il apparaîtra clairement à l'homme du métier que la présente invention n'est limitée que par la revendication 1 annexée et n'est ainsi pas limitée aux modes de réalisation présentés ci-dessus et illustrés aux figures.
  • Il est par exemple très bien envisageable de réaliser un organe moteur 1 comprenant un nombre d'unités monolithiques différent de celui représenté dans les figures et/ou comprenant des unités avec des bras élastiques de formes différentes de celles représentées dans les figures et/ou dont le nombre de bras élastiques est différent de celui représenté aux les figures, une unité monolithique pouvant en particulier n'avoir qu'un seul bras élastique.
  • La valeur du moment de force atteint dans la phase stable de l'organe moteur peut notamment être ajustée en jouant sur le nombre de bras élastiques que comprennent les unités qui le constituent, sur l'épaisseur des bras élastiques et/ou sur le matériau utilisé. En particulier, dans une unité monolithique comprenant q bras élastiques, q étant un nombre entier supérieur ou égal à 2, le moment de force exercé par l'ensemble de ces q bras élastiques dans l'unité monolithique dans sa phase stable est typiquement égal à q fois le moment de force exercé, dans une unité monolithique similaire comprenant un seul de ces bras élastiques, par ledit seul bras élastique dans cette unité, dans sa phase stable.
  • La plage angulaire [θmin, θmax] sur laquelle le moment de force délivré est sensiblement constant peut, quant à elle, se régler en ajustant le nombre d'unités empilées et reliées en série.
  • Il est également possible qu'au moins un ou que chacun des bras élastiques des unités selon l'invention ait une section variable, par exemple une épaisseur variable. La section pourrait typiquement être plus grande du côté du moyeu que du côté de la serge.
  • En outre, comme déjà indiqué, la denture 360 associée à la dernière unité 310 de l'organe moteur 1 selon l'invention peut, au choix, être solidaire du moyeu 320 ou de la serge 330 de cette unité 310. En particulier, elle peut être portée directement par ladite serge 330 ou par ledit moyeu 320.
  • De la même façon, la denture 160 associée à la première unité 110 de l'organe moteur 1 selon l'invention peut, au choix, être solidaire du moyeu 120 ou de la serge 130 de cette unité 110. En particulier, elle peut être portée directement par ladite serge 130 ou par ledit moyeu 120.
  • L'homme du métier peut en outre ajuster aisément, en fonction de ses besoins (c'est-à-dire par exemple selon le nombre d'unités que comprend l'organe moteur 1, selon que la denture 360 est solidaire du moyeu 320 ou de la serge 330 de la dernière unité 310, selon que la denture 160 est solidaire du moyeu 120 ou de la serge 130 de la première unité 110, selon le sens de rotation privilégié choisi pour l'une quelconque des unités...), l'agencement des liaisons serge-serge et moyeu-moyeu d'un organe moteur 1 selon l'invention.
  • De plus, le moment de force délivré par l'organe moteur 1 peut permettre la mise en mouvement d'un autre type de rouage qu'un rouage de finissage 3 ou d'un mécanisme additionnel tel qu'un mécanisme de sonnerie ou de chronographe.

Claims (14)

  1. Organe moteur (1) d'horlogerie comprenant au moins deux unités monolithiques (110, 210, 310) empilées et reliées en série, chacune de ces unités comprenant un moyeu (120, 220, 320) et une serge (130, 230, 330) reliés par au moins un bras élastique (140, 240, 340), le ou chacun des bras élastiques (140, 240, 340) de l'une quelconque desdites unités (110, 210, 310) étant de forme sinueuse.
  2. Organe moteur (1) selon la revendication 1, caractérisé en ce qu'il comprend une première denture (160) permettant la liaison entre lesdites unités monolithiques (110, 210, 310) et un mécanisme de remontoir (5a, 5b) et une deuxième denture (360) permettant la délivrance d'un moment de force par lesdites unités monolithiques (110, 210, 310).
  3. Organe moteur (1) selon la revendication 2, caractérisé en ce que la première denture (160) est solidaire du moyeu (120) ou de la serge (130) d'une première (110) desdites unités monolithiques (110, 210, 310).
  4. Organe moteur (1) selon l'une des revendications 2 ou 3, caractérisé en ce que la deuxième denture (360) est solidaire du moyeu (320) ou de la serge (330) d'une dernière (310) desdites unités monolithiques (110, 210, 310).
  5. Organe moteur (1) selon l'une des revendications précédentes, caractérisé en ce que la forme de l'au moins un bras élastique (140, 240, 340) est la même pour toutes les unités monolithiques (110, 210, 310) et en ce que les unités monolithiques (110, 210, 310) sont unidirectionnelles et sont placées deux à deux tête-bêche.
  6. Organe moteur (1) selon l'une des revendications précédentes, caractérisé en ce que chacune desdites unités monolithiques (110, 210, 310) comprend plusieurs bras élastiques (140, 240, 340) uniformément répartis autour de son moyeu (120, 220, 320).
  7. Organe moteur (1) selon l'une des revendications précédentes, caractérisé en ce qu'il comprend au moins un dispositif (6) de centrage des moyeux (120, 220, 320).
  8. Organe moteur (1) selon l'une des revendications précédentes, caractérisé en ce que l'au moins un bras élastique (140, 240, 340) de chaque unité monolithique (110, 210, 310) est conçu pour exercer un moment de rappel élastique ne variant pas de plus de 10%, de préférence 5%, sur une plage de déplacement angulaire de la serge (130, 230, 330) de ladite unité monolithique (110, 210, 310) par rapport à son moyeu (120, 220, 320) d'au moins 10°, de préférence d'au moins 15°.
  9. Organe moteur (1) selon l'une des revendications précédentes, caractérisé en ce qu'il comprend p unités monolithiques (110, 210, 310), p étant un entier supérieur ou égal à deux, et en ce que les bras élastiques (140, 240, 340) sont conçus pour que l'organe moteur (1) délivre un moment de force ne variant pas de plus de 10%, de préférence 5%, sur une plage de déplacement angulaire d'un élément de sortie, serge (330) ou moyeu (320), de l'empilement des unités monolithiques (110, 210, 310) par rapport à un élément d'entrée, serge (130) ou moyeu (120), dudit empilement d'au moins (p × 10)°, de préférence d'au moins (p × 15)°.
  10. Organe moteur (1) selon l'une des revendications précédentes, caractérisé en ce que la forme géométrique du ou de chaque bras élastique (140, 240, 340) de l'une quelconque desdites unités monolithiques (110, 210, 310) est une courbe de Bézier ou une succession de courbes de Bézier.
  11. Mécanisme horloger caractérisé en ce qu'il comprend un organe moteur (1) selon l'une quelconque des revendications 1 à 10.
  12. Mécanisme horloger selon la revendication 11, caractérisé en ce qu'il comprend un axe (2) traversant les moyeux (120, 220, 320) des unités monolithiques (110, 210, 310).
  13. Mécanisme horloger selon la revendication 11 ou 12, caractérisé en ce qu'il comprend des butées permettant de maintenir l'organe moteur (1) dans une plage de déplacement angulaire d'un élément de sortie, serge (330) ou moyeu (320), de l'empilement des unités monolithiques (110, 210, 310) par rapport à un élément d'entrée, serge (130) ou moyeu (120), dudit empilement permettant la délivrance d'un moment de force sensiblement constant.
  14. Mécanisme horloger selon l'une des revendications 11 à 13, caractérisé en ce qu'il comprend un mécanisme de remontoir (5a, 5b) agencé pour armer l'organe moteur (1) et un rouage (3) agencé pour être entraîné par l'organe moteur (1).
EP18706317.7A 2017-02-13 2018-02-12 Organe moteur d'horlogerie Active EP3580618B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17155883 2017-02-13
PCT/IB2018/050834 WO2018146639A1 (fr) 2017-02-13 2018-02-12 Organe moteur d'horlogerie

Publications (2)

Publication Number Publication Date
EP3580618A1 EP3580618A1 (fr) 2019-12-18
EP3580618B1 true EP3580618B1 (fr) 2022-01-26

Family

ID=58018023

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18706317.7A Active EP3580618B1 (fr) 2017-02-13 2018-02-12 Organe moteur d'horlogerie

Country Status (4)

Country Link
US (1) US11543775B2 (fr)
EP (1) EP3580618B1 (fr)
JP (1) JP7100650B2 (fr)
WO (1) WO2018146639A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024121313A1 (fr) 2022-12-09 2024-06-13 Rolex Sa Système de stockage d'énergie pour une montre mécanique

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3882714A1 (fr) 2020-03-19 2021-09-22 Patek Philippe SA Genève Procédé de fabrication d'un composant horloger en silicium
CH718066A2 (fr) 2020-11-17 2022-05-31 Patek Philippe Sa Geneve Organe horloger comprenant au moins une lame ressort.
WO2022106433A1 (fr) 2020-11-17 2022-05-27 Patek Philippe Sa Geneve Procede de fabrication d'une lame ressort d'un organe horloger et ladite lame ressort
WO2024175797A1 (fr) 2023-02-24 2024-08-29 Rolex Sa Assemblage horloger et procédé de fabrication d'un assemblage horloger

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH343897A (fr) 1959-04-06 1959-12-31 Rolex Montres Pièce d'horlogerie
JPS60119385A (ja) * 1983-12-02 1985-06-26 Keisebun:Kk 渦巻ばね連鎖体
CH685582B5 (fr) 1993-10-13 1996-02-29 Piguet Frederic Sa Barillet a ressort delivrant un couple constant et piece d'horlogerie comportant un tel barillet.
JPH0989084A (ja) * 1995-09-28 1997-03-31 Nec Corp 歯車のバックラッシ取り機構
EP1084459A1 (fr) 1998-06-08 2001-03-21 Manufacture des Montres Rolex S.A. Procede pour transmettre des impulsions d'energie mecanique d'une source motrice a un regulateur oscillant
CH696211A5 (fr) * 2002-12-11 2007-02-15 Franck Muller Watchland Sa Dispositif destiné à permettre une rotation dans un sens et de l'exclure dans le sens contraire.
CH705112B1 (fr) * 2007-11-07 2012-12-31 Manuf Et Fabrique De Montres Et Chronometres Ulysse Nardin Le Locle Sa Palier amortisseur de chocs pour pièce d'horlogerie.
EP2104006B1 (fr) * 2008-03-20 2010-07-14 Nivarox-FAR S.A. Double spiral monobloc et son procédé de fabrication
EP2105806B1 (fr) 2008-03-27 2013-11-13 Sowind S.A. Mécanisme d'échappement
EP2141555B1 (fr) * 2008-07-04 2011-04-06 The Swatch Group Research and Development Ltd. Résonateurs couplés pour pièce d'horlogerie
CH699988A2 (fr) 2008-11-28 2010-05-31 Patek Philippe Sa Geneve Organe moteur pour mouvement horloger.
CH701421B1 (fr) 2009-07-10 2014-11-28 Manuf Et Fabrique De Montres Et Chronomètres Ulysse Nardin Le Locle Sa Oscillateur mécanique.
CH702062B1 (fr) * 2009-10-26 2022-01-31 Mft Dhorlogerie Audemars Piguet Sa Organe régulateur comportant au moins deux balanciers, un mouvement de montre ainsi qu'une pièce d'horlogerie comportant un tel organe.
HK1146455A2 (en) * 2010-03-12 2011-06-03 Microtechne Res & Dev Ct Ltd An oscillator system
CH703464B1 (fr) 2010-07-19 2013-11-29 Nivarox Sa Mécanisme oscillant à pivot élastique.
CH704150A2 (fr) * 2010-11-17 2012-05-31 Cartier Creation Studio Sa Organe moteur pour mouvement d'horlogerie.
CH704147B1 (fr) 2010-11-18 2014-02-28 Nivarox Sa Mobile de transmission d'énergie monobloc à géométrie variable.
CH704237B1 (fr) 2010-12-17 2015-03-13 Manuf Et Fabrique De Montres Et Chronomètres Ulysse Nardin Le Locle Sa Ressort de barillet et barillet contenant un tel ressort.
EP2645189B1 (fr) 2012-03-29 2016-02-03 Nivarox-FAR S.A. Mécanisme d'échappement flexible
CH706924A2 (fr) 2012-09-07 2014-03-14 Nivarox Sa Ancre flexible à force constante et échappement muni d'une telle ancre.
CH707171A2 (fr) 2012-11-09 2014-05-15 Nivarox Sa Mécanisme horloger de limitation ou transmission.
CH708043B1 (fr) 2013-05-08 2018-02-15 Mft Et Fabrique De Montres Et Chronometres Ulysse Nardin Le Locle S A Roue d'échappement.
EP2871534B1 (fr) * 2013-11-06 2017-01-04 ETA SA Manufacture Horlogère Suisse Mobile d'horlogerie à roues unidirectionnelles
CH709914A2 (fr) 2014-07-23 2016-01-29 Nivarox Sa Mécanisme d'échappement à force constante.
CH710188A2 (fr) 2014-09-26 2016-03-31 Eta Sa Manufacture Horlogère Suisse Résonateur d'horlogerie paraxial et isochrone.
CH710662A1 (de) 2015-01-16 2016-07-29 Creaditive Ag Regelorgan und Verfahren zum Betreiben eines Regelorgans mit konstanter Energie.
EP3081996B1 (fr) * 2015-04-16 2019-02-27 Montres Breguet S.A. Spiral en materiau micro-usinable avec correction d'isochronisme

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024121313A1 (fr) 2022-12-09 2024-06-13 Rolex Sa Système de stockage d'énergie pour une montre mécanique
NL2033701B1 (en) * 2022-12-09 2024-06-14 Rolex Sa Energy storage system for a mechanical watch

Also Published As

Publication number Publication date
EP3580618A1 (fr) 2019-12-18
JP7100650B2 (ja) 2022-07-13
WO2018146639A1 (fr) 2018-08-16
US20200004202A1 (en) 2020-01-02
JP2020509358A (ja) 2020-03-26
US11543775B2 (en) 2023-01-03

Similar Documents

Publication Publication Date Title
EP3580618B1 (fr) Organe moteur d&#39;horlogerie
EP2927756A1 (fr) Mouvement horloger muni d&#39;un mécanisme d&#39;entraînement d&#39;un indicateur analogique à déplacement périodique ou intermittent
EP3182213B2 (fr) Mécanisme de réglage d&#39;une vitesse moyenne dans un mouvement d&#39;horlogerie et mouvement d&#39;horlogerie
EP4009115A1 (fr) Ressort-spiral pour mécanisme résonateur d horlogerie muni de moyens d&#39;ajustement de la rigidité
WO2020016818A1 (fr) Mecanisme horloger a came
EP0587031B1 (fr) Pièce d&#39;horlogerie pourvue de moyens d&#39;entraînement formés par un moteur piézo-électrique
CH709329A2 (fr) Echappement, mouvement de pièce d&#39;horlogerie et pièce d&#39;horlogerie.
WO2017157870A1 (fr) Dispositif pour pièce d&#39;horlogerie, mouvement horloger et pièce d&#39;horlogerie comprenant un tel dispositif
EP3598243B1 (fr) Mecanisme horloger a organe sautant
EP3707565B1 (fr) Dispositif pour guidage en rotation d&#39;un composant mobile
EP3182214A1 (fr) Oscillateur mécanique pour pièce d&#39;horlogerie, mécanisme de réglage comportant cet oscillateur mécanique, et mouvement d&#39;horlogerie
CH713787A2 (fr) Dispositif horloger à organe de positionnement.
EP3629102B1 (fr) Mécanisme d&#39;affichage à guichet unique
EP2138912B1 (fr) Spiral d&#39;horlogerie à développement concentrique
EP3042250B1 (fr) Mobile horloger a rattrapage de jeu
EP3598241B1 (fr) Mecanisme horloger a dispositif a force constante
CH713456A2 (fr) Organe moteur d&#39;horlogerie.
EP3619579B1 (fr) Dispositif horloger a organe de positionnement.
EP3707563B1 (fr) Organe moteur d&#39;horlogerie
CH718124A2 (fr) Ressort-spiral pour mécanisme résonateur d&#39;horlogerie muni de moyens d&#39;ajustement de la rigidité.
EP3907563B1 (fr) Mécanisme horloger comprenant un organe pivot
EP3851919B1 (fr) Dispositif de repositionnement pour l&#39;horlogerie
EP4325301A1 (fr) Mécanisme horloger comprenant un organe horloger rotatif et un dispositif à raideur angulaire prédéfinie
WO2023025630A1 (fr) Pièce d&#39;horlogerie comprenant un cadran présentant au moins une fenêtre et un dispositif d&#39;obturation de ladite fenêtre
CH714318A2 (fr) Organe moteur d&#39;horlogerie délivrant une force sensiblement constante.

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20211110

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602018030045

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1465758

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1465758

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220526

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220426

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220426

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220427

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602018030045

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220526

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220212

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220426

26N No opposition filed

Effective date: 20221027

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220212

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220426

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220326

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240301

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220126