EP3580216A1 - Substituierte benzyl-4-aminopicolinsäureester und pyrimidin-4-carbonsäureester, verfahren zu deren herstellung sowie deren verwendung als herbizide und pflanzenwachstumsregulatoren - Google Patents

Substituierte benzyl-4-aminopicolinsäureester und pyrimidin-4-carbonsäureester, verfahren zu deren herstellung sowie deren verwendung als herbizide und pflanzenwachstumsregulatoren

Info

Publication number
EP3580216A1
EP3580216A1 EP18702514.3A EP18702514A EP3580216A1 EP 3580216 A1 EP3580216 A1 EP 3580216A1 EP 18702514 A EP18702514 A EP 18702514A EP 3580216 A1 EP3580216 A1 EP 3580216A1
Authority
EP
European Patent Office
Prior art keywords
compounds
alkyl
hydrogen
formula
nmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18702514.3A
Other languages
German (de)
English (en)
French (fr)
Inventor
Michael Gerhard Hoffmann
Uwe Döller
Chieko Ueno
Hansjörg Dietrich
Christopher Hugh Rosinger
Anu Bheemaiah MACHETTIRA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Bayer CropScience AG
Original Assignee
Bayer AG
Bayer CropScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG, Bayer CropScience AG filed Critical Bayer AG
Publication of EP3580216A1 publication Critical patent/EP3580216A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/541,3-Diazines; Hydrogenated 1,3-diazines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/74Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
    • A01N43/781,3-Thiazoles; Hydrogenated 1,3-thiazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings

Definitions

  • the invention relates to the technical field of herbicides, in particular that of herbicides for the selective control of weeds and grass weeds in crops. It is known from various documents that substituted picolinic acid derivatives and pyrimidine-4-carboxylic acid derivatives have herbicidal properties: WO 2003/011853 A1 describes poly-substituted 6-phenylpicolinic acid derivatives having herbicidal activity. WO 2009/029735 Al and WO 2010/125332 Al describe herbicidal effects for polysubstituted 2-phenyl-4-pyrimidine-carboxylic acid derivatives.
  • Heteroaromatic-substituted picoline and pyrimidinecarboxylic acids having herbicidal properties are disclosed in WO 2009/138712 A2. Benzoheteroaromatic-substituted picoline and 4-pyrimidinecarboxylic acids are claimed as herbicides in WO 2013/014165.
  • WO 2007/080382 Al and WO 2009/007751 A2 describe heteroaromatic-substituted picoline and pyrimidinecarboxylic acids having pharmacological effects. However, the compounds described there often show insufficient herbicides
  • An object of the present invention is Benzylpicolinklare- and pyrimidine-4-carboxylic acid esters of general formula (I), their N-oxides or their agrochemically acceptable salts,
  • A is a radical of the group consisting of Al to A20,
  • R 3 is hydrogen
  • R 4 is hydrogen
  • R 5 is hydrogen, halogen, OH, NH 2 , CN, (C 1 -C 3 ) -alkyl, (C 1 -C 3 ) -alkoxy, C 1 -C 3 -alkylamino or cyclopropyl,
  • R 6 is hydrogen, halogen, OH, NH 2 , CN, (C 1 -C 3 ) -alkyl, (C 1 -C 3 ) -alkoxy, cyclopropyl or vinyl,
  • R 7 is hydrogen, halogen, (C 1 -C 3 ) -alkyl, (C 1 -C 3 ) -alkoxy, (C 1 -C 3 ) -alkylthio, cyclopropyl, (C 1 -C 3 ) -alkylamino or phenyl, R 8 Hydrogen, (C 1 -C 6 ) -alkyl, (C 1 -C 4 ) -alkylcarbonyl, (C 1 -C 6 ) -alkoxycarbonyl or
  • X is CH or CF
  • m is 1, 2, 3, 4 or 5
  • n is 0, 1 or 2.
  • a first embodiment of the present invention comprises compounds of the general formula (I) in which
  • A is preferably selected from the group consisting of Al to A3, A7 to Al 5, and Al 7 to Al 8
  • A17 A18 selected from the group consisting of residues AI to A3 and AI 3 A is most preferably A2 or Al5.
  • a second embodiment of the present invention comprises compounds of the general formula (I) in which
  • R 1 is preferably halogen, CN, NO 2 , OH, NH 2 , (C 1 -C 6 ) -alkyl, (C 1 -C 6 ) -alkoxy, (C 1 -C 6 ) -haloalkyl or (C 1 -C 6 ) -haloalkoxy , especially halogen, and most preferably fluorine.
  • a third embodiment of the present invention comprises compounds of the general formula (I) in which
  • R 2 is preferably chlorine.
  • a fourth embodiment of the present invention comprises compounds of the general formula (I) in which
  • R 3 is preferably hydrogen.
  • a fifth embodiment of the present invention comprises compounds of the general formula (I) in which
  • R 4 is preferably hydrogen.
  • a sixth embodiment of the present invention comprises compounds of the general formula (I) in which
  • R 5 is preferably hydrogen or halogen, and particularly preferably hydrogen or fluorine.
  • a seventh embodiment of the present invention comprises compounds of the general formula (I) in which
  • R 6 is preferably hydrogen or halogen, and particularly preferably hydrogen.
  • An eighth embodiment of the present invention comprises compounds of the general formula (I) in which R 7 is preferably hydrogen, halogen or (C 1 -C 3) -alkyl, and particularly preferably hydrogen.
  • a ninth embodiment of the present invention comprises compounds of the general formula (I) in which
  • R 8 is preferably hydrogen, (C 1 -C 4) -alkyl, (C 1 -C 4) -alkylcarbonyl or (C 1 -C 4) -alkoxycarbonyl, particularly preferably hydrogen, (C 1 -C 3) -alkyl, (C 1 -C 4) -alkylcarbonyl or (C 1 -C 4) alkoxycarbonyl, and most preferably hydrogen.
  • a tenth embodiment of the present invention comprises compounds of the general formula (I) in which
  • X is preferably CH or CF.
  • An eleventh embodiment of the present invention comprises compounds of the general formula (I) in which m is preferably 1, 2 or 3, more preferably 1 or 2 and most preferably 1.
  • a twelfth embodiment of the present invention comprises compounds of the general formula (I) in which n is preferably 0 or 1, and more preferably 0.
  • a thirteenth embodiment of the present invention comprises compounds of the general formula (I) in which
  • A is selected from AI to A3 and AI 3 to AI 5,
  • R 1 is halogen, CN, NO 2 , OH, NH 2 , (C 1 -C 6 ) -alkyl, (C 1 -C 6 ) -alkoxy, (C 1 -C 6 ) -haloalkyl or (C 1 -C 6 ) -haloalkoxy,
  • R 2 is chlorine
  • R 3 is hydrogen
  • R 4 is hydrogen
  • R means hydrogen or fluorine
  • R 6 is hydrogen or halogen
  • R 7 is hydrogen, halogen or (G-C3) -alkyl
  • R 8 is hydrogen, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -alkylcarbonyl or (C 1 -C 4 ) -alkoxycarbonyl,
  • X is CH or CF
  • n 0 or 1
  • a fourteenth embodiment of the present invention comprises compounds of the general formula (I) in which
  • A is selected from AI to A3 and AI 3 to AI 5,
  • R 1 is halogen
  • R 2 is chlorine
  • R 3 is hydrogen
  • R 4 is hydrogen
  • R 5 is hydrogen or fluorine
  • R 6 is hydrogen
  • R 7 is hydrogen
  • R 8 is hydrogen, (C 1 -C 3 ) -alkyl, (C 1 -C 4 ) -alkylcarbonyl or (C 1 -C 4 ) -alkoxycarbonyl,
  • X is CH or CF
  • n 0 or 1
  • a fifteenth embodiment of the present invention comprises compounds of the general formula (I) in which
  • a A2 or AI 5 means
  • R 1 is fluorine
  • R 2 is chlorine
  • R 3 is hydrogen
  • R 4 is hydrogen
  • R 5 is hydrogen or fluorine
  • R 6 is hydrogen
  • R 7 is hydrogen
  • R 8 is hydrogen, (C 1 -C 3 ) -alkyl, (C 1 -C 4) -alkylcarbonyl or (C 1 -C 4) -alkoxycarbonyl,
  • X is CH or CF
  • n 0 or 1
  • the number of C atoms refers to the alkyl radical in the alkylcarbonyl group.
  • Alkyl is saturated, straight or branched chain hydrocarbon radicals of 1 to 10 carbon atoms, e.g.
  • C 1 -C 6 -alkyl such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2, 2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1, 2 Dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1, 1, 2-trimethylpropyl, 1, 2,2-trimethylpropyl, 1-ethyl-1-
  • Haloalkyl means straight-chain or branched alkyl groups having 1 to 8 carbon atoms, in which groups the hydrogen atoms may be partially or completely replaced by halogen atoms, for example C 1 -C 2 -haloalkyl, such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl , Dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro, 2-difluoroethyl , 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoro
  • Carbon atoms and a double bond in any position e.g. C 2 -C 6 alkenyl, such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, Methyl 2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl 1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3 -butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3 -butenyl, 1-methyl-3-butenyl,
  • Alkynyl means straight-chain or branched hydrocarbon radicals having 2 to 8 carbon atoms and a triple bond in any position, e.g. C 2 -C 6 -alkynyl, such as ethynyl, 1-propynyl, 2-propynyl (or propargyl), 1-butynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3 Pentynyl, 4-pentynyl, 3-methyl-1-butynyl, 1-methyl-2-butynyl, 1-methyl-3-butynyl, 2-methyl-3-butynyl, 1, 1-dimethyl-2-propynyl, 1 - Ethyl 2-propynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 3-
  • Alkoxy means saturated, straight or branched alkoxy radicals of 1 to 8 carbon atoms, e.g. C 1 -C 6 -alkoxy, such as methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy, 1, 1-dimethylethoxy, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 2, 2-methylpropoxy, 1-ethylpropoxy, hexoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1,1-dimethylbutoxy, 1, 2
  • Haloalkoxy means straight-chain or branched alkoxy groups having 1 to 8 carbon atoms (as mentioned above), wherein in these groups some or all of the hydrogen atoms may be replaced by halogen atoms as mentioned above, e.g.
  • C 1 -C 2 -haloalkoxy such as chloromethoxy, bromomethoxy, dichloromethoxy, trichloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 1-chloroethoxy, 1-bromoethoxy, 1-fluoroethoxy, 2-fluoroethoxy, 2,2- Difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro, 2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, pentafluoroethoxy and 1, 1,1-trifluoroprop-2-oxy.
  • Alkylthio means saturated, straight-chain or branched alkylthio radicals having 1 to 8 carbon atoms, e.g. C 1 -C 6 -alkylthio, such as methylthio, ethylthio, propylthio, 1-methylethylthio, butylthio, 1-methylpropylthio, 2-methylpropylthio, 1,1-dimethylethylthio, pentylthio, 1-methylbutylthio, 2-methylbutylthio, 3-methylbutylthio, 2, 2-dimethylpropylthio, 1-ethylpropylthio, hexylthio, 1,1-dimethylpropylthio, 1,2-dimethylpropylthio, 1-methylpentylthio, 2-methylpentylthio, 3-methylpentylthio, 4-methylpentylthio, 1,1-dimethylbutylthio, 1, 2-dimethylbuty
  • Haloalkylthio means straight-chain or branched alkylthio groups having 1 to 8
  • Carbon atoms (as mentioned above), wherein in these groups, partially or completely, the hydrogen atoms may be replaced by halogen atoms as mentioned above, e.g. C 1 -C 2 -haloalkylthio, such as chloromethylthio, bromomethylthio, dichloromethylthio, trichloromethylthio, fluoromethylthio, difluoromethylthio, trifluoromethylthio, chlorofluoromethylthio, dichlorofluoromethylthio, chlorodifluoromethylthio, 1-chloroethylthio, 1-bromethylthio, 1-fluoroethylthio, 2-fluoroethylthio, 2,2-difluoroethylthio, 2,2,2-trifluoroethylthio, 2-chloro-2-fluoroethylthio, 2-chloro, 2-difluoroethylthio, 2,2-dichloro-2-flu
  • Aryl is phenyl or naphthyl.
  • the compounds of the formula (I) can be present in different compositions as geometric and / or optical isomers or isomer mixtures, which can optionally be separated in a customary manner. Both the pure isomers and the mixtures of isomers, their preparation and use and these containing agents are the subject of the present invention. However, in the following, for the sake of simplicity, compounds of the formula (I) will always be mentioned, although both the pure ones
  • a metal ion equivalent means a metal ion with a positive charge such as Na + , K + , (Mg 2+ ) 1/2, (Ca 2+ ) i / 2, MgH + , CaH + , (Al 3+ ) i / 3 (Fe 2+ ) i / 2 or (Fe 3+ ) i / 3 .
  • Halogen means fluorine, chlorine, bromine and iodine.
  • the compounds of the formula (I) have acidic or basic properties and can form salts with inorganic or organic acids or with bases or with metal ions, optionally also internal salts or adducts. If the compounds of the formula (I) bear amino, alkylamino or other basic-property-inducing groups, these compounds can be reacted with acids to form salts or are obtained directly as salts by the synthesis.
  • inorganic acids examples include hydrohalic acids such as hydrogen fluoride,
  • Nitric acid and acid salts such as NaHSC and KHSO4.
  • Suitable organic acids are, for example, formic acid, carbonic acid and alkanoic acids, such as acetic acid, trifluoroacetic acid, trichloroacetic acid and propionic acid, and also glycolic acid, thiocyanic acid, lactic acid, succinic acid, citric acid,
  • Benzoic acid cinnamic acid, oxalic acid, alkylsulfonic acids (sulfonic acids having straight-chain or branched alkyl radicals having 1 to 20 carbon atoms), arylsulfonic acids or -disulfonklaren (aromatic radicals such as phenyl and naphthyl which carry one or two sulfonic acid groups), alkylphosphonic acids (phosphonic acids with straight chain or branched alkyl radicals having 1 to 20 carbon atoms), arylphosphonic acids or - diphosphonic acids (aromatic radicals such as phenyl and naphthyl which carry one or two phosphonic acid radicals), where the alkyl or aryl radicals may carry further substituents, eg p-toluenesulfonic acid, salicylic acid, p-aminosalicylic acid, 2-phenoxybenzoic acid, 2-acetoxybenzoic acid, etc.
  • the metal ions are, in particular, the ions of the elements of the second main group, in particular calcium and magnesium, the third and fourth main groups, in particular aluminum, tin and lead, and the first to eighth transition groups, in particular chromium, manganese, iron, cobalt, nickel, copper, Zinc and others into consideration. Particularly preferred are the metal ions of the elements of the fourth period.
  • the metals can be present in the various valences that belong to them.
  • Suitable bases are, for example, hydroxides, carbonates, bicarbonates of the alkali and alkaline earth metals, in particular those of sodium, potassium, magnesium and calcium, furthermore
  • Ammonia primary, secondary and tertiary amines with (Ci-C i -) - alkyl groups, mono-, di- and trialkanolamines of (Ci-C i) alkanols, choline and chlorocholine.
  • the compounds of the general formula (I) can exist as stereoisomers. For example, if one or more asymmetrically substituted carbon atoms or sulfoxides are present, enantiomers and diastereomers may occur.
  • Stereoisomers can be prepared from the mixtures obtained in the preparation of conventional
  • stereoisomers can be selectively prepared by using stereoselective reactions using optically active starting and / or adjuvants.
  • the invention also relates to all stereoisomers and mixtures thereof which include but are not specifically defined by the general formula (I). In all of the formulas below, the substituents and symbols, unless otherwise defined, have the same meaning as described for formula (I).
  • the carboxylic acids of the formula (II) are known, for example, from WO2013 / 14165 A1, or can be prepared by methods known per se to the person skilled in the art.
  • the benzyl derivatives of the formula (III) are commercially available or can be prepared by methods known to those skilled in the art. Preference is given to the compounds of the formula (I) given in Table 1 below,
  • Collections of compounds of formula (I) and / or their salts, which may be synthesized following the above reactions, may also be prepared in a parallelized manner, which may be done in a manual, partially automated or fully automated manner. It is possible, for example, to automate the reaction procedure, the work-up or the purification of the products or intermediates. Overall, this is one
  • Chromatographieapparaturen available, for example, the company ISCO, Inc., 4700 Superior Street, Lincoln, NE 68504, USA.
  • the listed equipment leads to a modular procedure, in which the individual work steps are automated, but between the work steps, manual operations must be performed.
  • This can be circumvented by the use of partially or fully integrated automation systems in which the respective automation modules are operated, for example, by robots.
  • Such automation systems can be obtained, for example, from Caliper, Hopkinton, MA 01748, USA.
  • Solid-phase assisted synthesis methods allow a number of protocols known from the literature, which in turn can be performed manually or automatically.
  • the reactions can be carried out, for example, by means of IRORI technology in microreactors (microreactors) from Nexus Biosystems, 12140 Community Road, Poway, CA92064, USA.
  • Both solid and liquid phases may require the performance of one or more
  • the preparation according to the methods described herein provides compounds of formula (I) and their salts in the form of substance collections called libraries.
  • the present invention also provides libraries containing at least two compounds of formula (I) and their salts.
  • the compounds of the formula (I) according to the invention (and / or their salts), together referred to as “compounds according to the invention", have excellent herbicidal activity against a broad spectrum of economically important monocotyledonous and dicotyledonous harmful plants which are expelled from rhizomes, rhizomes or other long-term organs, are well detected by the active ingredients.
  • the present invention therefore also provides a method for combating
  • Plant cultures in which one or more compounds of the invention (s) on the plants eg harmful plants such as mono- or dicotyledonous weeds or undesirable crops
  • the seed eg grains, seeds or vegetative propagules such as tubers or sprouts with buds
  • the area on the plants grow eg the acreage
  • the compounds according to the invention can be applied, for example, in pre-sowing (optionally also by incorporation into the soil), pre-emergence or postemergence process.
  • the compounds according to the invention are applied to the surface of the earth before germination, then either the emergence of the weed seedlings is completely prevented or the weeds grow up to the cotyledon stage, but then cease their growth and finally die off completely after a lapse of three to four weeks.
  • the compounds according to the invention have excellent herbicidal activity against monocotyledonous and dicotyledonous weeds, crops of economically important crops, eg dicotyledonous crops of the genera Arachis, Beta, Brassica, Cucumis, Cucurbita, Helianthus, Daucus, Glycine, Gossypium, Ipomoea, Lactuca, Linum, Lycopersicon, Nicotiana, Phaseolus, Pisum, Solanum, Vicia, or monocotyledonous cultures of the genera Allium, Pineapple, Asparagus, Avena, Hordeum, Oryza, Panicum, Saccharum, Seeal, Sorghum, Triticale, Triticum, Zea, especially Zea and Triticum, depending on the structure of the respective compound of the invention and its application rate only insignificantly damaged or not at all.
  • the present compounds are suitable for these Reason very well for the selective control of undesirable plant growth in crops such as agricultural crops or ornamental plantings.
  • the compounds according to the invention (depending on their respective structure and the applied application rate) have excellent growth-regulatory properties in crop plants. They regulate the plant's metabolism and can thus be used to specifically influence plant constituents and facilitate harvesting, such as be used by triggering desiccation and stunted growth. Furthermore, they are also suitable for the general control and inhibition of undesirable vegetative growth, without killing the plants. Inhibition of vegetative growth plays an important role in many monocotyledonous and dicotyledonous crops, since, for example, storage formation can thereby be reduced or completely prevented.
  • the active compounds can also be used for controlling harmful plants in crops of known or yet to be developed genetically modified plants.
  • the transgenic plants are usually characterized by particular advantageous properties, for example by resistance to certain pesticides, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses.
  • Other special properties concern e.g. the crop in terms of quantity, quality, shelf life, composition and special ingredients. So are transgenic plants with increased starch content or altered quality of starch or those with others
  • Other particular properties may include tolerance or resistance to abiotic stressors, e.g. Heat, cold, drought, salt and ultraviolet radiation are present.
  • cereals such as wheat, barley, rye, oats, millet, rice, manioc and maize or also crops of sugar beet, cotton, soya, rapeseed, potato, tomato, pea and other vegetables.
  • the compounds of the formula (I) can be used as herbicides in crops which are resistant to the phytotoxic effects of the herbicides or have been made genetically resistant.
  • EP 0131624 In several cases, for example, genetic modifications of cultivated plants have been described for the purpose of modification in plants
  • synthesized starch eg WO 92/011376 A, WO 92/014827 A, WO 91/019806 A
  • transgenic crop plants which are resistant to certain glufosinate-type herbicides (cf., for example, EP 0242236 A, EP 0242246 A) or glyphosate (WO 92 / 000377 A) or the sulfonylureas (EP 0257993 A, US 5,013,659) or against combinations or mixtures of these herbicides by gene stacking resistant, such as transgenic crop plants such as corn or soybean with the
  • Optimum TM GAT TM Glyphosate ALS Tolerant
  • transgenic crops for example cotton
  • Bacillus thuringiensis toxins Bacillus thuringiensis toxins
  • Bacillus thuringiensis toxins Bacillus thuringiensis toxins
  • transgenic crops with modified fatty acid composition WO 91/013972 A
  • genetically engineered crops with new content or secondary substances e.g. novel phytoalexins which cause increased disease resistance (EP 0309862 A, EP 0464461 A)
  • genetically modified plants with reduced photorespiration which have higher yields and higher stress tolerance (EP 0305398 A)
  • transgenic crops characterized by higher yields or better quality transgenic crops characterized by a combination of e.g. the o. g. characterize new properties ("gene stacking")
  • nucleic acid molecules can be introduced into plasmids that allow mutagenesis or sequence alteration by recombination of DNA sequences.
  • base exchanges can be made, partial sequences removed or natural or synthetic sequences added.
  • adapters or linkers can be attached to the fragments, see eg Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; or Winnacker "Genes and Clones", VCH Weinheim 2nd edition 1996.
  • the production of plant cells having a reduced activity of a gene product can be achieved, for example, by the expression of at least one corresponding antisense RNA, a sense RNA to obtain a cosuppression effect, or the expression of at least one appropriately engineered ribozyme which specifically cleaves transcripts of the above gene product.
  • DNA molecules can be used which comprise the entire coding sequence of a gene product including any flanking sequences, as well as DNA molecules which comprise only parts of the coding sequence, which parts have to be long enough to be present in the cells to cause an antisense effect. It is also possible to use DNA sequences which have a high degree of homology to the coding sequences of a gene product, but are not completely identical.
  • the synthesized protein may be located in any compartment of the plant cell.
  • the coding region is linked to DNA sequences which ensure localization in a particular compartment.
  • sequences are known to those skilled in the art (see, for example, Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad., U.S.A. 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106).
  • the expression of the nucleic acid molecules can also take place in the organelles of the plant cells.
  • the transgenic plant cells can be regenerated to whole plants by known techniques.
  • the transgenic plants can in principle be plants of any one
  • Plant species that is, both monocotyledonous and dicotyledonous plants.
  • the compounds (I) according to the invention can be used in transgenic cultures which are resistant to growth substances, such as 2,4 D, dicamba or herbicides, the essential plant enzymes, for example acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or hydroxyphenylpyruvate dioxygenases (HPPD) inhibit, respectively against herbicides from the group of Sulfonylureas, the glyphosate, glufosinate or Benzoylisoxazole and analogous drugs, or against any combination of these agents, resistant.
  • the essential plant enzymes for example acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or hydroxyphenylpyruvate dioxygenases (HPPD) inhibit, respectively against herbicides from the group of Sulfonylureas, the glyphosate, glufosinate or Benzoylisoxazole and analogous drugs, or against
  • the compounds according to the invention can particularly preferably be employed in transgenic crop plants which are resistant to a combination of glyphosates and glufosinates, glyphosates and sulfonylureas or imidazolinones. Most preferably, the compounds of the invention in transgenic crops such. As corn or soybean with the trade name or the name Optimum TM GAT TM (Glyphosate ALS Tolerant) are used.
  • the invention therefore also relates to the use of the compounds of the formula (I) according to the invention as herbicides for controlling harmful plants in transgenic crop plants.
  • the compounds according to the invention can be used in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusts or granules in the customary formulations.
  • the invention therefore also relates to herbicidal and plant growth-regulating agents which contain the compounds according to the invention.
  • the compounds according to the invention can be formulated in various ways, depending on which biological and / or chemical-physical parameters are predetermined.
  • Formulation options are, for example: wettable powders (WP), water-soluble powders (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as
  • the safeners are preferably selected from the group consisting of:
  • nA is a natural number from 0 to 5, preferably 0 to 3;
  • R A 1 is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, nitro or (C 1 -C 4 ) haloalkyl;
  • W A is an unsubstituted or substituted divalent heterocyclic radical from the group of the unsaturated or unsaturated five-membered ring heterocycles having 1 to 3 hetero ring N and O groups, wherein at least one N atom and at most one O atom is contained in the ring, preferably a residue from the group (WA 1 ) to (WA 4 ),
  • niA is 0 or 1
  • RA is ORA, SRA or NRA RA or a saturated or unsaturated 3- to 7-membered one
  • Heterocycle having at least one N atom and up to 3 heteroatoms, preferably from the group O and S, which is connected via the N atom to the carbonyl group in (S1) and unsubstituted or by radicals from the group (Ci-C i) Alkyl, (Ci-C i) alkoxy or
  • optionally substituted phenyl is substituted, preferably a radical of the formula ORA 3 , NHR a 4 or N (CH 3 ) 2, in particular the formula ORA 3 ;
  • R A 3 is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably having a total of 1 to 18 C atoms;
  • RA 4 is hydrogen, (C 1 -C 6) alkyl, (C 1 -C 6) alkoxy or substituted or unsubstituted phenyl;
  • RA 5 is H, (C 1 -C 8 ) alkyl, (C 1 -C 8 ) haloalkyl, (C 1 -C 4 ) alkoxy (C 1 -C 8 ) alkyl, cyano or COORA 9 , in which R A 9 is hydrogen, (C 1 -C 4) C 8 ) alkyl, (C 1 -C 8 ) haloalkyl, (C 1 -C 4 ) alkoxy- (C 1 -C 4 ) -alkyl,
  • RA 6 , RA 7 , RA 8 are identical or different hydrogen, (C 1 -C 8 ) alkyl, (C 1 -C 8 ) haloalkyl, (C 3 -C 12) cycloalkyl or substituted or unsubstituted phenyl; preferably: a) compounds of the type of dichlorophenylpyrazoline-3-carboxylic acid (Sl a ), preferably
  • Fenchlorazole ethyl ester
  • related compounds as described in EP -A-174,562 and EP-A-346,620; e) compounds of the type of 5-benzyl- or 5-phenyl-2-isoxazoline-3-carboxylic acid or of 5,5-diphenyl-2-isoxazoline-3-carboxylic acid (Sl e ), preferably compounds such as
  • RB 1 is halogen, (Ci-C 4) alkyl, (Ci-C 4) alkoxy, nitro or (Ci-C 4) haloalkyl; ne is a natural number of 0 to 5, preferably 0 to 3; R B 2 is OR B 3 , SR b 3 or NR B 3 R B 4 or a saturated or unsaturated 3- to 7-membered heterocycle having at least one N atom and up to 3 heteroatoms, preferably from the group O and S, the one about the N-atom with the
  • Carbonyl group in (S2) is unsubstituted or substituted by radicals from the group (Ci-C i) alkyl, (Ci-C i) alkoxy or optionally substituted phenyl, preferably a radical of the formula ORB 3 , NHRB 4 or N ( CH3) 2, in particular of the formula ORB 3 ;
  • RB 3 is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably having a total of 1 to 18 C atoms;
  • RB 4 is hydrogen, (Ci-C6) alkyl, (Ci-Ce) alkoxy or substituted or unsubstituted phenyl;
  • TB is a (Ci or C2) alkanediyl chain which is unsubstituted or substituted by one or two (Ci-C i) alkyl radicals or by [(Ci-C3) alkoxy] carbonyl; preferably: a) compounds of the 8-quinolinoxyacetic acid type (S2 a ), preferably
  • Rc 1 is (Ci-C 4) alkyl, (Ci-C 4) haloalkyl, (C 2 -C 4) alkenyl, (C 2 -C 4) haloalkenyl, (C 3 -C 7) cycloalkyl, preferably dichloromethyl;
  • Rc 2 , Rc 3 are identical or different hydrogen, (Ci-C 4 ) alkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) alkynyl, (Ci- C 4 ) haloalkyl, (C 2 -C 4) haloalkenyl, (Ci-C 4) alkylcarbamoyl (Ci-C4) alkyl, (C 2 - C 4) Alkenylcarbamoyl- (Ci-C 4) alkyl, (Ci-C 4) alkoxy (Ci-C 4 ) alkyl, dioxolanyl- (Ci-C 4 ) alkyl, thiazolyl, furyl, furylalkyl, thienyl, piperidyl, substituted or unsubstituted phenyl, or Rc 2 and Rc 3 together form a substituted or unsubstituted heterocyclic ring, preferably an
  • Benoxacor (4-dichloroacetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazine) (S3-4),
  • PPG-1292 N-allyl-N - [(1,3-dioxolan-2-yl) -methyl] -dichloroacetamide
  • TI-35 (1-dichloroacetyl-azepane) from TRI-Chemical RT (S3-8),
  • a D is S0 2 -NR D 3 -CO or CO-NR D 3 -S0 2
  • RD 1 is CO-NRD 5 RD 6 or NHCO-RD 7 ;
  • RD 2 is halogen, (Ci-C 4) haloalkyl, (Ci-C 4) haloalkoxy, nitro, (Ci-C 4) alkyl, (Ci-C 4) alkoxy, (Ci C 4) alkylsulfonyl, (Ci- C 4 ) alkoxycarbonyl or (C 1 -C 4 ) alkylcarbonyl;
  • RD 3 is hydrogen, (C 1 -C 4 ) alkyl, (C 2 -C 4 ) alkenyl or (C 2 -C 4 ) alkynyl;
  • RD 4 is halogen, nitro, (Ci-C 4) alkyl, (Ci-C 4) haloalkyl, (Ci-C 4) haloalkoxy, (C 3 -C 6) cycloalkyl,
  • Phenyl (Ci-C 4) alkoxy, cyano, (Ci-C 4) alkylthio, (Ci-C 4) Alkylsulfmyl, (Ci-C 4) alkylsulfonyl, (Ci-C 4) alkoxycarbonyl or (Ci-C 4) alkylcarbonyl;
  • RD 5 is hydrogen, (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, (C 2 -C 6 ) alkenyl, (C 2 -C 6 ) alkynyl, (C 5 -
  • RD 6 is hydrogen, (Ci-C 6 ) alkyl, (C 2 -C 6 ) alkenyl or (C 2 -C 6 ) alkynyl, wherein the three
  • radicals are substituted by VD radicals from the group halogen, hydroxy, (Ci-C 4) alkyl, (Ci-C 4) alkoxy and (Ci-C 4) alkylthio, or RD 5 and RD 6 together with the nitrogen atom carrying them a pyrrolidinyl or
  • RD 7 is hydrogen, (Ci-C 4 ) alkylamino, di- (Ci-C 4 ) alkylamino, (Ci-C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, wherein the latter two radicals by VD substituents from the Group halogen, (Ci-C4) alkoxy, (Ci-C6) haloalkoxy and (Ci-C4) alkylthio and in the case of cyclic radicals also (Ci-C4) alkyl and (Ci-C4) haloalkyl are substituted; nD is 0, 1 or 2; niD is 1 or 2;
  • VD is 0, 1, 2 or 3; Of these, preference is given to compounds of the N-acylsulfonamide type, for example of the following formula (S4 a ), which are, for example, B. are known from WO-A-97/45016
  • RD 7 (Ci-C6) alkyl, (C3-C6) cycloalkyl, wherein the last two radicals by VD substituents selected from the group consisting of halogen, (Ci-C4) alkoxy, (Ci-C6) haloalkoxy and (Ci-C4) alkylthio and in the case of cyclic radicals also (Ci-C4) alkyl and (Ci-C4) haloalkyl are substituted;
  • RD 4 is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, CF 3; niD 1 or 2;
  • VD is 0, 1, 2 or 3; such as
  • Acylsulfamoylbenzoeklareamide for example, the following formula (S4 b ), for example, are known from WO-A-99/16744,
  • R D 8 and R D 9 independently of one another are hydrogen, (C 1 -C 6 ) alkyl, (C 3 -C 9 ) cycloalkyl, (C 3 -C 6 ) alkenyl, (C 3 -C 6 ) alkynyl,
  • RD 4 is halogen, (Ci-C 4 ) alkyl, (Ci-C 4 ) alkoxy, CF 3 , niD 1 or 2; for example
  • N-phenylsulfonylterephthalamides of the formula (S4 d ) which are known, for example, from CN 101838227, O
  • R D 4 is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, CF 3; niD 1 or 2;
  • R D 5 is hydrogen, (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, (C 2 -C 6 ) alkenyl, (C 2 -C 6 ) alkynyl, (C 5 -C 6 ) cycloalkenyl.
  • Carboxylic acid derivatives (S5) e.g.
  • RE 1 , RE 2 are each independently halogen, (Ci-C i) alkyl, (Ci-C4) alkoxy, (Ci-C4) haloalkyl,
  • a E is Coore 3 or COSR E 4,
  • RE 3 , RE 4 are, independently of one another, hydrogen, (C 1 -C 4 ) -alkyl, (C 2 -C 6 ) -alkenyl,
  • Methyl diphenylmethoxyacetate (CAS No. 41858-19-9) (S7-1).
  • RF 2 is hydrogen or (Ci-C 4 ) alkyl
  • nF is an integer from 0 to 2
  • RF 1 is halogen, (Ci-C 4) alkyl, (Ci-C 4) haloalkyl, (Ci-C 4) alkoxy, (Ci-C 4) haloalkoxy, RF 2 is hydrogen or (Ci-C 4) alkyl,
  • RF 3 is hydrogen, (Ci-Cg) alkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) alkynyl, or aryl, wherein each of the
  • Seed pickling safener for millet is known against damage from metolachlor
  • Fluorofenim (1- (4-chlorophenyl) -2,2,2-trifluoro-1-ethanone 0- (1,3-dioxolan-2-ylmethyl) -oxime) (S l 1 -2), which was used as a Seed pickling safener for millet is known against damage from metolachlor, and
  • Cyometrinil or “CGA-43089” ((Z) -cyanomethoxyimino (phenyl) acetonitrile) (Sl l -3), which is known as a seed dressing safener for millet against damage by metolachlor. ) Active substances from the class of isothiochromanones (S 12), such as. Methyl [(3-oxo-1H-2-benzothiopyran-4 (3H) -ylidene) methoxy] acetate (CAS Reg. No. 205121 -04-6) (S12-1) and related compounds of WO-A -1998 / 13361.
  • naphthalene anhydride (1,8-naphthalenedicarboxylic anhydride) (S13-1), which is known as a seed safener for corn against damage by thiocarbamate herbicides,
  • Cyanamide which is known as safener for maize against damage of imidazolinones
  • MG 191 (CAS Reg. No. 96420-72-3) (2-dichloromethyl-2-methyl-1,3-dioxolane) (S13-5) from Nitrokemia, which is known as safener for corn,
  • RH 1 is a (Ci-C6) haloalkyl radical
  • RH 2 is hydrogen or halogen
  • R 3 , R 4 independently of one another denote hydrogen, (C 1 -C 16) alkyl, (C 2 -C 6) alkenyl or (C 2 -C 6) alkynyl, where each of the last-mentioned 3 radicals is unsubstituted or substituted by one Hydroxy, cyano, (Ci-C i) alkoxy, (Ci-C i) haloalkoxy, (Ci-C 4) alkylthio, (Ci-C 4) alkylamino, di [(Ci-C 4) alkyl] amino, [(Ci-C 4) alkoxy] - carbonyl, [(Ci-C 4) haloalkoxy] -carbonyl, (C3-C6) cycloalkyl which is unsubstituted or substituted, is phenyl which is unsubstituted or substituted, and heterocyclyl which is unsubstituted or substituted substituted, or (
  • RH 3 is (C 1 -C 4 ) -alkoxy, (C 2 -C 4 ) -alkenyloxy, (C 2 -C 6) -alkinyloxy or (C 2 -C 4 ) -haloalkoxy, and RH 4 is hydrogen or (C 1 -C 4 ) -alkyl, or
  • RH 3 and RH 4 together with the directly attached N atom form a four- to eight-membered one
  • heterocyclic ring which, in addition to the N atom, may also contain further hetero ring atoms, preferably up to two further hetero ring atoms from the group consisting of N, O and S, and which may be unsubstituted or substituted by one or more radicals from the group consisting of halogen, cyano, nitro, C 4 ) alkyl, (Ci-C 4 ) haloalkyl, (Ci-C 4 ) alkoxy, (Ci-C 4 ) haloalkoxy and (Ci-C 4 ) alkylthio is substituted, means.
  • Preferred safeners are: cloquintocet-mexyl, cyprosulfamide, fenchlorazole-ethyl ester, isoxadifen-ethyl, mefenpyr-diethyl, fenclorim, cumyluron, S4-1 and S4-5, particular preference is given to:
  • Injectable powders are preparations which are uniformly dispersible in water and contain surfactants of the ionic and / or nonionic type (wetting agents, dispersants) in addition to the active ingredient except a diluent or inert substance.
  • the herbicidal active compounds are finely ground, for example, in customary apparatus such as hammer mills, blower mills and air-jet mills and mixed simultaneously or subsequently with the formulation auxiliaries.
  • Emulsifiable concentrates are prepared by dissolving the active ingredient in an organic solvent, e.g. Butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of organic solvents with the addition of one or more surfactants of ionic and / or nonionic type (emulsifiers).
  • organic solvent e.g. Butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of organic solvents
  • surfactants of ionic and / or nonionic type emulsifiers
  • alkylarylsulfonic acid calcium salts such as
  • Ca-dodecylbenzenesulfonate or nonionic emulsifiers such as fatty acid polyglycol ester
  • Alkylaryl polyglycol ethers fatty alcohol polyglycol ethers,
  • Propylene oxide-ethylene oxide condensation products alkyl polyethers, sorbitan esters, e.g.
  • Sorbitan fatty acid esters or polyoxethylenesorbitan esters such as e.g. Polyoxyethylene.
  • Dusts are obtained by milling the active ingredient with finely divided solids, e.g.
  • Talc natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • Suspension concentrates may be water or oil based. They can be prepared, for example, by wet grinding by means of commercially available bead mills and, if appropriate, addition of surfactants, as already listed above, for example, in the other formulation types.
  • Emulsions for example oil-in-water emulsions (EW)
  • EW oil-in-water emulsions
  • Solvents and optionally surfactants such as those listed above, for example, in the other types of formulation produce.
  • Water-dispersible granules are generally prepared by the usual methods such as spray drying, fluidized bed granulation, plate granulation, mixing with high-speed mixers and extrusion without solid inert material.
  • spray drying e.g., spray drying, fluidized bed granulation, plate granulation, mixing with high-speed mixers and extrusion without solid inert material.
  • plate, fluid bed, extruder and spray granules see e.g. Procedure in
  • the agrochemical preparations generally contain from 0.1 to 99% by weight, in particular from 0.1 to 95% by weight, of compounds according to the invention.
  • the drug concentration is e.g. about 10 to 90 wt .-%, the remainder to 100% by weight consists of conventional formulation ingredients.
  • the active ingredient concentration may be about 1 to 90, preferably 5 to 80 wt .-%.
  • Formulations contain 1 to 30 wt .-% of active ingredient, preferably usually 5 to 20 wt .-% of active ingredient, sprayable solutions contain about 0.05 to 80, preferably 2 to 50 wt .-% active ingredient.
  • the active ingredient content depends, in part, on whether the active compound is liquid or solid and which granulating aids, fillers, etc. are used.
  • the content of active ingredient is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight.
  • the active substance formulations mentioned optionally contain the customary adhesion, wetting, dispersing, emulsifying, penetrating, preserving, antifreezing and solvent, fillers, carriers and dyes, antifoams, evaporation inhibitors and the pH and the Viscosity-influencing agent.
  • combinations with other pesticidally active substances e.g. Insecticides, acaricides, herbicides, fungicides, as well as with safeners, fertilizers and / or growth regulators, e.g. in the form of a ready-made formulation or as a tank mix.
  • pesticidally active substances e.g. Insecticides, acaricides, herbicides, fungicides, as well as with safeners, fertilizers and / or growth regulators, e.g. in the form of a ready-made formulation or as a tank mix.
  • safeners e.g. in the form of a ready-made formulation or as a tank mix.
  • fertilizers and / or growth regulators e.g. in the form of a ready-made formulation or as a tank mix.
  • combination partners for the compounds according to the invention in mixture formulations or in the tank mix for example, known active compounds which are based on an inhibition of, for example
  • Acetolactate synthase acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate-3-phosphate synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase,
  • Photosystem I, photosystem II, protoporphyrinogen oxidase can be used, as e.g. from Weed Research 26 (1986) 441-445 or "The Pesticide Manual", 15th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2009 and cited therein.
  • herbicides or plant growth regulators which can be combined with the compounds according to the invention are e.g. the following active ingredients (the compounds are either with the "common name” according to the International Organization for Standardization (ISO) or with the chemical name or with the code number called) and always include all
  • flucarbazone flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazine, fluometuron, flurenol, flurenol-butyl, - dimethylammonium and -methyl, fluoroglycofen, fluoroglycofen-ethyl, flupropanate, flupyrsulfuron, flupyrsulfuron-methyl-sodium, fluridone, flurochloridone, fluroxypyr, fluroxypyr-meptyl, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, fomesafen-sodium, foramsulfuron, fosamine, glufosinate, glufosinate-ammonium, glufosinate-p-s
  • met.zothiazuron metambazothiazuron, metam, metamifop, metamitron, metazachlor, metazosulfuron, methabenzthiazuron, methiopyrsulfuron, methiozoline, methyl isothiocyanate, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, molinate, monolinuron, monosulfuron, monosulfuron ester, MT-5950, ie N- [3-chloro -4- (1-methylethyl) phenyl] -2-methylpentanamide, NGGC-011, napropamide, NC-310, ie 4- (2,4-dichlorobenzoyl) -l-methyl-5-benzyloxypyrazole, neburon, nicosulfuron, nonanoic acid
  • plant growth regulators as possible mixing partners are:
  • Salicylic acid strigolactone, tecnazene, thidiazuron, triacontanol, trinexapac, trinexapac-ethyl, tsitodef, uniconazole, uniconazole-P.
  • the formulations present in commercial form are optionally diluted in a customary manner, e.g. for wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules by means of water. Dust-like preparations, soil or
  • Spreading granulates and sprayable solutions are usually no longer diluted with other inert substances before use.
  • the type of herbicide used u.a. varies the required application rate of the compounds of formula (I). It can vary within wide limits, e.g. between 0.001 and 1.0 kg / ha or more of active substance, but is preferably between 0.005 and 750 g / ha.
  • Benzothiophene 7.20 (s, 1H, pyridine), 5.50 (s, 2H, CH 2 -phenyl), 4.70 (bs, 2H, NH 2).
  • the 1H NMR data of selected examples are noted in terms of 1H NMR peak lists. For each signal peak, first the ⁇ value in ppm and then the signal intensity in round brackets are listed. The ⁇ -value signal intensity number pairs of different signal peaks are listed separated by semicolons.
  • the peak list of an example therefore has the form: ⁇ (intensity ⁇ ; 82 (intensity 2);; ⁇ ; (intensity ⁇ ;; ⁇ ⁇ (intensity n )
  • the intensity of sharp signals correlates with the height of the signals in a printed example of an NMR spectrum in cm and shows the true ratios of the signal intensities. In broad
  • Signals can show multiple peaks or the center of the signal and their relative intensity compared to the most intense signal in the spectrum.
  • peaks of stereoisomers of the target compounds and / or peaks of impurities usually have on average a lower intensity than the peaks of the target compounds (for example with a purity of> 90%).
  • Such stereoisomers and / or impurities may be typical of each
  • An expert calculating the peaks of the target compounds by known methods can isolate the peaks of the target compounds as needed, using additional intensity filters if necessary. This isolation would be similar to peak picking in classical 1H NMR interpretation.
  • 8,203 (1.0); 8,200 (1.0); 7,877 (0.6); 7,872 (0.6); 7,855 (0.8); 7,851 (0.7); 7,829 (0.7); 7,655 (1.4); 7,650 (1.4); 7,558 (0.7); 7,556 (0.9); 7,554 (0.6); 7,536 (0.9); 7,535 (1.0); 7,533 (0.6); 7,518 (0.9); 7,259 (49.0); 7,163 (4.0); 6.82 6 (1.0); 6,823 (1.0); 6,820 (1.1); 6,818 (1.0); 5,513 (3.1); 4,786 (0.8); 1,538 (16.0); 0008 (0.6); 0,000 (19.9); -
  • a dust is obtained by mixing 10 parts by weight of a compound of general formula (I) and 90 parts by weight of talc as an inert material and comminuting in a hammer mill.
  • a wettable powder readily dispersible in water is obtained by mixing 25 parts by weight of a compound of the general formula (I), 64 parts by weight of kaolin-containing quartz as an inert substance, 10 parts by weight of potassium lignosulfonate and 1 part by weight of oleoylmethyltaurine sodium as a wetting and dispersing agent, and grinded in a pin mill. 3. Dispersion concentrate
  • a dispersion concentrate readily dispersible in water is obtained by reacting 20 parts by weight of a compound of the general formula (I), 6 parts by weight of alkylphenol polyglycol ether (®Triton X 207), 3 parts by weight of isotridecanol polyglycol ether (8 EO) and 71% by weight.
  • Parts of paraffinic mineral oil (boiling range, for example, about 255 to about 277 ° C) mixed and ground in a ball mill to a fineness of less than 5 microns.
  • An emulsifiable concentrate is obtained from 15 parts by weight of a compound of general formula (I), 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of ethoxylated nonylphenol as emulsifier. 5.
  • Water-dispersible granules are obtained from 15 parts by weight of a compound of general formula (I), 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of ethoxylated nonylphenol as emulsifier. 5.
  • a water-dispersible granule is obtained by
  • a water-dispersible granule is also obtained by
  • Seeds of monocotyledonous or dicotyledonous weed or crop plants are laid out in sandy loam in wood fiber pots and covered with soil.
  • the compounds of the invention formulated in the form of wettable powders (WP) or as emulsion concentrates (EC) are then applied to the surface of the cover soil as an aqueous suspension or emulsion having a water application rate of 600 to 800 l / ha with the addition of 0.2% wetting agent applied.
  • WP wettable powders
  • EC emulsion concentrates
  • compounds according to the invention leave gramineous crops such as barley, wheat, rye, millet, maize or rice in the pre-emergence process practically undamaged even at high doses of active ingredient.
  • some substances also protect dicotyledonous crops such as soya, cotton, rapeseed, sugar beet or potatoes.
  • Some of the compounds according to the invention show high selectivity and are therefore suitable in the pre-emergence process for controlling undesirable plants ECHC Gwuchs in agricultural crops.
  • the following tables show by way of example the herbicidal action of the compounds according to the invention in the pre-emergence, wherein the
  • herbicidal activity is given in percent.
  • PE Pre-emergence herbicidal action
EP18702514.3A 2017-02-13 2018-02-06 Substituierte benzyl-4-aminopicolinsäureester und pyrimidin-4-carbonsäureester, verfahren zu deren herstellung sowie deren verwendung als herbizide und pflanzenwachstumsregulatoren Withdrawn EP3580216A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17155824 2017-02-13
PCT/EP2018/052911 WO2018146079A1 (de) 2017-02-13 2018-02-06 Substituierte benzyl-4-aminopicolinsäureester und pyrimidin-4-carbonsäureester, verfahren zu deren herstellung sowie deren verwendung als herbizide und pflanzenwachstumsregulatoren

Publications (1)

Publication Number Publication Date
EP3580216A1 true EP3580216A1 (de) 2019-12-18

Family

ID=58018003

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18702514.3A Withdrawn EP3580216A1 (de) 2017-02-13 2018-02-06 Substituierte benzyl-4-aminopicolinsäureester und pyrimidin-4-carbonsäureester, verfahren zu deren herstellung sowie deren verwendung als herbizide und pflanzenwachstumsregulatoren

Country Status (13)

Country Link
US (1) US20200187499A1 (zh)
EP (1) EP3580216A1 (zh)
JP (1) JP2020508293A (zh)
KR (1) KR20190116987A (zh)
CN (1) CN110267951A (zh)
AR (1) AR110972A1 (zh)
AU (1) AU2018219470A1 (zh)
BR (1) BR112019016541A2 (zh)
CA (1) CA3053214A1 (zh)
EA (1) EA201991887A1 (zh)
MX (1) MX2019009311A (zh)
UY (1) UY37602A (zh)
WO (1) WO2018146079A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023044364A1 (en) 2021-09-15 2023-03-23 Enko Chem, Inc. Protoporphyrinogen oxidase inhibitors
WO2023137309A2 (en) 2022-01-14 2023-07-20 Enko Chem, Inc. Protoporphyrinogen oxidase inhibitors

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MA19709A1 (fr) 1982-02-17 1983-10-01 Ciba Geigy Ag Application de derives de quinoleine a la protection des plantes cultivees .
DE3382743D1 (de) 1982-05-07 1994-05-11 Ciba Geigy Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen.
JPS60500438A (ja) 1983-01-17 1985-04-04 モンサント カンパニ− 植物細胞を形質転換するためのプラスミド
BR8404834A (pt) 1983-09-26 1985-08-13 Agrigenetics Res Ass Metodo para modificar geneticamente uma celula vegetal
JPS6087254A (ja) 1983-10-19 1985-05-16 Japan Carlit Co Ltd:The 新規尿素化合物及びそれを含有する除草剤
DE3525205A1 (de) 1984-09-11 1986-03-20 Hoechst Ag, 6230 Frankfurt Pflanzenschuetzende mittel auf basis von 1,2,4-triazolderivaten sowie neue derivate des 1,2,4-triazols
BR8600161A (pt) 1985-01-18 1986-09-23 Plant Genetic Systems Nv Gene quimerico,vetores de plasmidio hibrido,intermediario,processo para controlar insetos em agricultura ou horticultura,composicao inseticida,processo para transformar celulas de plantas para expressar uma toxina de polipeptideo produzida por bacillus thuringiensis,planta,semente de planta,cultura de celulas e plasmidio
DE3680212D1 (de) 1985-02-14 1991-08-22 Ciba Geigy Ag Verwendung von chinolinderivaten zum schuetzen von kulturpflanzen.
EP0221044B1 (en) 1985-10-25 1992-09-02 Monsanto Company Novel plant vectors
EP0242236B2 (en) 1986-03-11 1996-08-21 Plant Genetic Systems N.V. Plant cells resistant to glutamine synthetase inhibitors, made by genetic engineering
DE3773384D1 (de) 1986-05-01 1991-10-31 Honeywell Inc Verbindungsanordnung fuer mehrere integrierte schaltungen.
IL83348A (en) 1986-08-26 1995-12-08 Du Pont Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
DE3633840A1 (de) 1986-10-04 1988-04-14 Hoechst Ag Phenylpyrazolcarbonsaeurederivate, ihre herstellung und verwendung als pflanzenwachstumsregulatoren und safener
DE3775527D1 (de) 1986-10-22 1992-02-06 Ciba Geigy Ag 1,5-diphenylpyrazol-3-carbonsaeurederivate zum schuetzen von kulturpflanzen.
DE3733017A1 (de) 1987-09-30 1989-04-13 Bayer Ag Stilbensynthase-gen
DE3808896A1 (de) 1988-03-17 1989-09-28 Hoechst Ag Pflanzenschuetzende mittel auf basis von pyrazolcarbonsaeurederivaten
DE3817192A1 (de) 1988-05-20 1989-11-30 Hoechst Ag 1,2,4-triazolderivate enthaltende pflanzenschuetzende mittel sowie neue derivate des 1,2,4-triazols
ES2054088T3 (es) 1988-10-20 1994-08-01 Ciba Geigy Ag Sulfamoilfenilureas.
DE3939010A1 (de) 1989-11-25 1991-05-29 Hoechst Ag Isoxazoline, verfahren zu ihrer herstellung und ihre verwendung als pflanzenschuetzende mittel
DE3939503A1 (de) 1989-11-30 1991-06-06 Hoechst Ag Neue pyrazoline zum schutz von kulturpflanzen gegenueber herbiziden
DE69133261D1 (de) 1990-03-16 2003-06-26 Calgene Llc Davis Dnas, die für pflanzliche desaturasen kodieren und deren anwendungen
JP3325022B2 (ja) 1990-06-18 2002-09-17 モンサント カンパニー 植物中の増加された澱粉含量
EP0536330B1 (en) 1990-06-25 2002-02-27 Monsanto Technology LLC Glyphosate tolerant plants
DE4107396A1 (de) 1990-06-29 1992-01-02 Bayer Ag Stilbensynthase-gene aus weinrebe
EP0492366B1 (de) 1990-12-21 1997-03-26 Hoechst Schering AgrEvo GmbH Neue 5-Chlorchinolin-8-oxyalkancarbonsäurederivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Antidots von Herbiziden
SE467358B (sv) 1990-12-21 1992-07-06 Amylogene Hb Genteknisk foeraendring av potatis foer bildning av staerkelse av amylopektintyp
DE4104782B4 (de) 1991-02-13 2006-05-11 Bayer Cropscience Gmbh Neue Plasmide, enthaltend DNA-Sequenzen, die Veränderungen der Karbohydratkonzentration und Karbohydratzusammensetzung in Pflanzen hervorrufen, sowie Pflanzen und Pflanzenzellen enthaltend dieses Plasmide
TW259690B (zh) 1992-08-01 1995-10-11 Hoechst Ag
DE4331448A1 (de) 1993-09-16 1995-03-23 Hoechst Schering Agrevo Gmbh Substituierte Isoxazoline, Verfahren zu deren Herstellung, diese enthaltende Mittel und deren Verwendung als Safener
DE19621522A1 (de) 1996-05-29 1997-12-04 Hoechst Schering Agrevo Gmbh Neue N-Acylsulfonamide, neue Mischungen aus Herbiziden und Antidots und deren Verwendung
WO1998013361A1 (en) 1996-09-26 1998-04-02 Novartis Ag Herbicidal composition
DE19652961A1 (de) 1996-12-19 1998-06-25 Hoechst Schering Agrevo Gmbh Neue 2-Fluoracrylsäurederivate, neue Mischungen aus Herbiziden und Antidots und deren Verwendung
US6071856A (en) 1997-03-04 2000-06-06 Zeneca Limited Herbicidal compositions for acetochlor in rice
DE19727410A1 (de) 1997-06-27 1999-01-07 Hoechst Schering Agrevo Gmbh 3-(5-Tetrazolylcarbonyl)-2-chinolone und diese enthaltende nutzpflanzenschützende Mittel
DE19742951A1 (de) 1997-09-29 1999-04-15 Hoechst Schering Agrevo Gmbh Acylsulfamoylbenzoesäureamide, diese enthaltende nutzpflanzenschützende Mittel und Verfahren zu ihrer Herstellung
AR031027A1 (es) 2000-10-23 2003-09-03 Syngenta Participations Ag Composiciones agroquimicas
AR037228A1 (es) * 2001-07-30 2004-11-03 Dow Agrosciences Llc Compuestos del acido 6-(aril o heteroaril)-4-aminopicolinico, composicion herbicida que los comprende y metodo para controlar vegetacion no deseada
KR20060002857A (ko) 2003-03-26 2006-01-09 바이엘 크롭사이언스 게엠베하 독성 완화제로서의 방향족 하이드록시 화합물의 용도
DE10335726A1 (de) 2003-08-05 2005-03-03 Bayer Cropscience Gmbh Verwendung von Hydroxyaromaten als Safener
DE10335725A1 (de) 2003-08-05 2005-03-03 Bayer Cropscience Gmbh Safener auf Basis aromatisch-aliphatischer Carbonsäuredarivate
DE102004023332A1 (de) 2004-05-12 2006-01-19 Bayer Cropscience Gmbh Chinoxalin-2-on-derivate, diese enthaltende nutzpflanzenschützende Mittel und Verfahren zu ihrer Herstellung und deren Verwendung
WO2007023719A1 (ja) 2005-08-22 2007-03-01 Kumiai Chemical Industry Co., Ltd. 薬害軽減剤及び薬害が軽減された除草剤組成物
WO2007023764A1 (ja) 2005-08-26 2007-03-01 Kumiai Chemical Industry Co., Ltd. 薬害軽減剤及び薬害が軽減された除草剤組成物
US20110034454A1 (en) 2006-01-11 2011-02-10 Allan Paul Dishington Morpholino pyrimidine derivatives and their use in therapy
GB0600483D0 (en) * 2006-01-11 2006-02-22 Astrazeneca Ab Novel compounds
EP1987718A1 (de) 2007-04-30 2008-11-05 Bayer CropScience AG Verwendung von Pyridin-2-oxy-3-carbonamiden als Safener
EP1987717A1 (de) 2007-04-30 2008-11-05 Bayer CropScience AG Pyridoncarboxamide, diese enthaltende nutzpflanzenschützende Mittel und Verfahren zu ihrer Herstellung und deren Verwendung
US20100227858A1 (en) 2007-07-09 2010-09-09 Astrazeneca Ab Trisubstituted pyrimidine derivatives for the treatment of proliferative diseases
BRPI0816075A2 (pt) 2007-08-30 2015-02-24 Dow Agrosciences Llc 2-(fenil substituído)-6-amino-5-alcóxi, tioalcóxi e aminoalquil-4-pirimidinacarboxilatos e seus usos como herbicidas
GB0808664D0 (en) 2008-05-13 2008-06-18 Syngenta Ltd Chemical compounds
GB0907625D0 (en) * 2009-05-01 2009-06-10 Syngenta Ltd Method of controlling undesired vegetation
CN101838227A (zh) 2010-04-30 2010-09-22 孙德群 一种苯甲酰胺类除草剂的安全剂
HUE028580T2 (en) * 2011-07-27 2016-12-28 Bayer Ip Gmbh Substituted Picolinic Acids and Pyrimidine Carboxylic Acids, Process for their Preparation and Use as Herbicides and Plant Growth Regulators
EP3193607A4 (en) * 2014-09-15 2018-05-02 Dow AgroSciences LLC Synergistic weed control from applications of pyridine carboxylic acid herbicides and photosystem ii inhibitors
TWI689251B (zh) * 2014-09-15 2020-04-01 美商陶氏農業科學公司 源自於施用吡啶羧酸除草劑與合成生長素除草劑及/或生長素轉運抑制劑的協同性雜草控制
TWI694770B (zh) * 2014-09-15 2020-06-01 美商陶氏農業科學公司 包含吡啶羧酸除草劑之安全的除草組成物(二)
TWI685302B (zh) * 2014-09-15 2020-02-21 美商陶氏農業科學公司 包含吡啶羧酸除草劑之安全的除草組成物
TWI689252B (zh) * 2014-09-15 2020-04-01 美商陶氏農業科學公司 源自於施用吡啶羧酸除草劑與乙醯乳酸合成酶(als)抑制劑的協同性雜草控制

Also Published As

Publication number Publication date
WO2018146079A1 (de) 2018-08-16
JP2020508293A (ja) 2020-03-19
AR110972A1 (es) 2019-05-22
CN110267951A (zh) 2019-09-20
MX2019009311A (es) 2019-10-04
UY37602A (es) 2018-08-31
BR112019016541A2 (pt) 2020-03-31
KR20190116987A (ko) 2019-10-15
AU2018219470A1 (en) 2019-08-22
CA3053214A1 (en) 2018-08-16
EA201991887A1 (ru) 2020-02-20
US20200187499A1 (en) 2020-06-18

Similar Documents

Publication Publication Date Title
WO2018228985A1 (de) Herbizid wirksame 3-phenylisoxazolin-5-carboxamide von tetrahydro- und dihydrofurancarbonsäuren und -estern
EP3793977A1 (de) 2-brom-6-alkoxyphenyl-substituierte pyrrolin-2-one und deren verwendung als herbizide
EP3975720A1 (de) 1-phenyl-5-azinylpyrazolyl-3-oxyalkylsäuren und deren verwendung zur bekämpfung unerwünschten pflanzenwachstums
WO2019219584A1 (de) Neue spirocyclohexylpyrrolin-2-one und deren verwendung als herbizide
EP3853219B1 (de) Herbizid wirksame substituierte phenylpyrimidinhydrazide
EP3580216A1 (de) Substituierte benzyl-4-aminopicolinsäureester und pyrimidin-4-carbonsäureester, verfahren zu deren herstellung sowie deren verwendung als herbizide und pflanzenwachstumsregulatoren
WO2020187627A1 (de) Neue 3-(2-brom-4-alkinyl-6-alkoxyphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2019228788A1 (de) 2-brom-6-alkoxyphenyl-substituierte pyrrolin-2-one und deren verwendung als herbizide
WO2019228787A1 (de) Speziell substituierte 2-alkyl-6-alkoxyphenyl-3-pyrrolin-2-one und deren verwendung als herbizide
EP3810588A1 (de) Substituierte 4-heteroaryloxypyridine sowie deren salze und ihre verwendung als herbizide wirkstoffe
EP3606915A1 (de) 2-amino-5-oxyalkyl-pyrimidinderivate und deren verwendung zur bekämpfung unerwünschten pflanzenwachstums
EP3898612B1 (de) Substituierte pyridinyloxybenzole sowie deren salze und ihre verwendung als herbizide wirkstoffe
WO2020187628A1 (de) Speziell substituierte 3-(2-alkoxy-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2020187626A1 (de) Speziell substituierte 3-phenyl-5-spirocyclopentyl-3-pyrrolin-2-one und deren verwendung als herbizide
WO2020187629A1 (de) 3-(2-brom-4-alkinyl-6-alkoxyphenyl)-substituierte 5-spirocyclohexyl-3-pyrrolin-2-one und deren verwendung als herbizide
EP3360872A1 (de) Unsubstituierte benzyl-4-aminopicolinsäureester und pyrimidin-4-carbonsäureester, verfahren zu deren herstellung sowie deren verwendung als herbizide und pflanzenwachstumsregulatoren
EP3938346A1 (de) Speziell substituierte 3-(2-halogen-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2023274869A1 (de) 3-(4-alkenyl-phenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2019219588A1 (de) Speziell substituierte 2-alkyl-6-alkoxyphenyl-3-pyrroliin-2-one und deren verwendung als herbizide
WO2021028419A1 (de) Substituierte 3-(2-heteroaryloxyphenyl)isoxazoline sowie deren salze und ihre verwendung als herbizide wirkstoffe
WO2020245097A1 (de) Substituierte pyridinyloxypyridine sowie deren salze und ihre verwendung als herbizide wirkstoffe
WO2019219585A1 (de) Neue 3-(4-alkinyl-6-alkoxy-2-chlorphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
EP3720853A1 (de) 3-amino-[1,2,4]-triazolderivate und deren verwendung zur bekämpfung unerwünschten pflanzenwachstums
WO2024078871A1 (de) 1-pyridyl-5-phenylpyrazolyl-3-oxy- und -3-thioalkylsäuren und derivate und deren verwendung zur bekämpfung unerwünschten pflanzenwachstums
EP3802516A1 (de) Herbizid wirksame substituierte phenylpyrimidine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190913

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210602

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20210810