WO2020187628A1 - Speziell substituierte 3-(2-alkoxy-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide - Google Patents

Speziell substituierte 3-(2-alkoxy-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide Download PDF

Info

Publication number
WO2020187628A1
WO2020187628A1 PCT/EP2020/056206 EP2020056206W WO2020187628A1 WO 2020187628 A1 WO2020187628 A1 WO 2020187628A1 EP 2020056206 W EP2020056206 W EP 2020056206W WO 2020187628 A1 WO2020187628 A1 WO 2020187628A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
plants
alkoxy
methyl
haloalkyl
Prior art date
Application number
PCT/EP2020/056206
Other languages
English (en)
French (fr)
Inventor
Alfred Angermann
Guido Bojack
Estella Buscato Arsequell
Hartmut Ahrens
Elisabeth ASMUS
Elmar Gatzweiler
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to CA3133190A priority Critical patent/CA3133190A1/en
Priority to EP20707681.1A priority patent/EP3938349A1/de
Priority to EA202192468A priority patent/EA202192468A1/ru
Priority to AU2020244063A priority patent/AU2020244063A1/en
Priority to US17/437,996 priority patent/US20220177428A1/en
Priority to JP2021555318A priority patent/JP2022525174A/ja
Priority to BR112021011965-5A priority patent/BR112021011965A2/pt
Priority to CN202080020612.0A priority patent/CN113557232A/zh
Publication of WO2020187628A1 publication Critical patent/WO2020187628A1/de
Priority to IL286325A priority patent/IL286325A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/54Spiro-condensed
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/36Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
    • A01N43/38Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P13/00Herbicides; Algicides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/96Spiro-condensed ring systems

Definitions

  • the present invention relates to new herbicidally active 3-phenylpyrrolin-2-ones according to the general formula ( I) or agrochemically acceptable salts thereof, and their use for controlling weeds and grass weeds in crops of useful plants.
  • the class of compounds of the 3-arylpyrrolidine-2,4-diones and their preparation and use as herbicides are well known from the prior art.
  • 96/82395, WO 98/05638, WO 01/74770, WO 15/032702, WO 15/040114 or WO 17/060203 are known.
  • the effectiveness of these herbicides against harmful plants depends on numerous parameters, for example on the application rate used, the preparation form (formulation), the harmful plants to be controlled, the range of harmful plants, the climatic and soil conditions and the duration of the action or the rate of degradation of the herbicide.
  • the object of the present invention is therefore to provide new compounds which do not have the disadvantages mentioned.
  • the present invention therefore relates to new substituted 3-phenylpyrrolin-2-ones of the general formula (I),
  • X is C 1 -C 6 alkoxy or C 1 -C 6 haloalkoxy
  • Y is C 1 -C 6 -alkyl, C 1 -C 6 -haloalkyl or C 3 -C 6 -cycloalkyl
  • R 1 C 3 -C 6 -alkoxy, C 1 -C 4 -alkoxy-C 1 -C 4 -alkyl, C 3 -C 6 -cycloalkyl, C 1 -C 6 -haloalkyl, C 2 -C 6 -alkenyloxy or Is C 2 -C 6 haloalkenyloxy,
  • R 2 is hydrogen, C 1 -C 6 -alkyl, C 1 -C 4 -alkoxy-C 2 -C 4 -alkyl, C 1 -C 6 -haloalkyl, C 3 -C 6 -cycloalkyl, C 2 -C 6 - Is alkenyl, C 2 -C 6 alkynyl, C 1 -C 6 alkoxy or C 1 -C 6 haloalkoxy,
  • G is hydrogen, a leaving group L or a cation E, where
  • R 3 is C 1 -C 4 -alkyl or C 1 -C 3 -alkoxy-C 1 -C 4 -alkyl
  • R 4 is C 1 -C 4 alkyl
  • R 5 C 1 -C 4 alkyl, an unsubstituted phenyl or one or more times with halogen, C 1 -C 4 alkyl, C 1 -C 4 haloalkyl, C 1 -C 4 alkoxy, C 1 -C 4 -Halogenalkoxy, nitro or cyano substituted phenyl,
  • R 6 , R 6 ' are independently methoxy or ethoxy
  • R 7, R 8 are each independently methyl, ethyl, phenyl, or together form a saturated 5-, 6- or 7-membered ring, where a ring carbon atom can optionally be replaced by an oxygen or sulfur atom, E an alkali metal ion An ion equivalent of an alkaline earth metal, an ion equivalent of aluminum, an ion equivalent of a transition metal, a magnesium-halogen cation or an ammonium ion, in which one, two, three or all four hydrogen atoms are optionally replaced by identical or different radicals from the groups C 1 -C 10 -alkyl or C 3 -C 7 -cycloalkyl, which, independently of one another, can each be substituted one or more times with fluorine, chlorine, bromine, cyano, hydroxy or interrupted by one or more oxygen or sulfur atoms, 3
  • a cyclic secondary or tertiary aliphatic or heteroaliphatic ammonium ion for example morpholinium, thiomorpholinium, piperidinium, pyrrolidinium or in each case protonated 1,4-diazabicyclo [1.1.2] octane (DABCO) or 1,5-diazabicyclo [4.3.0] undec-7 -en (DBU), is a heteroaromatic ammonium cation, for example in each case protonated pyridine, 2-methylpyridine, 3-methylpyridine, 4-methylpyridine, 2,4-dimethylpyridine, 2,5-dimethylpyridine, 2,6-dimethylpyridine, 5- Ethyl-2-methylpyridine, collidine, pyrrole, imidazole, quinoline, quinoxaline, 1,2-dimethylimidazole, 1,3-dimethylimidazolium methyl sulfate or, furthermore, also represents a trimethylsulfonium i
  • Alkyl means saturated, straight-chain or branched hydrocarbon radicals with the specified number of carbon atoms, for example C 1 -C 6 -alkyl such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1 -Dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl , 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl , 2-
  • Haloalkyl denotes straight-chain or branched alkyl groups, some or all of the hydrogen atoms in these groups being replaced by halogen atoms, for example C 1 -C 2 -haloalkyl such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl , 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro, 2-difluoroethyl, 2.2 -Dichlor-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl and 1,1,
  • Alkenyl means unsaturated, straight-chain or branched hydrocarbon radicals with the specified number of carbon atoms and a double bond in any position, e.g. C 2 -C 6 -alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3- Pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl- 2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3-butenyl, 1,1-dimethyl-2-propeny
  • Cycloalkyl means a carbocyclic, saturated ring system with preferably 3-8 ring carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
  • cyclic systems with substituents are included, with substituents with a double bond on the cycloalkyl radical, e.g. B. an alkylidene group such as methylidene are included.
  • Alkoxy denotes saturated, straight-chain or branched alkoxy radicals as indicated in each case
  • C 1 -C 6 alkoxy such as methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy, 1,1-dimethylethoxy, pentoxy, 1-methylbutoxy, 2-methylbutoxy , 3-methylbutoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1,1 -Dimethylbutoxy, 1,2-dimethylbutoxy, 1,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy, 1,1,2-trimethylpropoxy, 1 , 2,2-trimethylpropoxy, 1-ethyl-1-methylpropoxy and 1-ethyl-2-methylpropoxy.
  • Alkoxy substituted by halogen means straight-chain or branched alkoxy radicals with the specified number of carbon atoms, it being possible for some or all of the hydrogen atoms in these groups to be replaced by halogen atoms as mentioned above, for example C 1 -C 2 -haloalkoxy such as chloromethoxy, bromomethoxy, dichloromethoxy, Trichloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 1-chloroethoxy, 1-bromoethoxy, 1-fluoroethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro 2-fluoroethoxy, 2-chloro-1,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloro
  • the compounds of the formula (I) can be present as geometric and / or optical isomers or isomer mixtures in various compositions.
  • substituent R 1 is not hydrogen
  • both enantiomers and cis / trans isomers can occur, depending on the linkage of the substituent R 1 .
  • the latter are defined as follows:
  • the present invention relates to both the pure isomers or tautomers and the tautomer and isomer mixtures, their preparation and use, and agents containing them.
  • the following text always refers to compounds of the formula (I), although both the pure compounds and, if appropriate, mixtures with different proportions of isomeric and tautomeric compounds are meant.
  • the compounds according to the invention are generally defined by the formula (I). Preferred substituents or ranges of the radicals listed in the formulas mentioned above and below are explained below: Preferred are compounds of the general formula (I) in which
  • X is C 1 -C 4 alkoxy or C 1 -C 4 haloalkoxy
  • Y isC 1 -C 4 -alkyl, C 1 -C 4 -haloalkyl or C 3 -C 6 -cycloalkyl
  • R 1 C 3 -C 6 -alkoxy, C 1 -C 4 -alkoxy-C 1 -C 2 -alkyl, cyclopropyl, C 1 -C 6 -haloalkyl, C 3 -C 6 -alkenyloxy or C 3 -C 6 - Is haloalkenyloxy
  • R 2 is hydrogen, C 1 -C 6 -alkyl, C 1 -C 2 -haloalkyl, cyclopropyl, C 2 -C 4 -alkenyl, C 2 -C 4 -alkynyl,
  • G is hydrogen, a leaving group L or a cation E, where
  • R 3 is C 1 -C 4 -alkyl or C1-C3-alkoxy-C 1 -C 4 -alkyl
  • R 4 is C 1 -C 4 -alkyl
  • R 5 is C 1 -C 4 -alkyl, an unsubstituted phenyl or a phenyl which is mono- or polysubstituted by halogen, C 1 -C 4 -alkyl or C 1 -C 4 -haloalkyl
  • E is an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent of aluminum, an ion equivalent of a transition metal, a magnesium halogen -Cation or an ammonium ion in which one, two, three or all four hydrogen atoms are optionally replaced by identical or different radicals from the groups C1-C10-alkyl or C3-C7-cycloalkyl, which are each independently or several times with Fluorine, chlorine,
  • X is C 1 -C 4 alkoxy or C 1 -C 4 -haloalkoxy
  • Y is C 1 -C 4 alkyl, C 1 -C 4 haloalkyl or cyclopropyl
  • R 1 C 3 -C 6 alkoxy, C 1 -C 4 alkoxy, C 1 -C 2 alkyl, cyclopropyl, C 3 -C 6 haloalkyl, C 3 -C 4 alkenyloxy or C 3 -C 4 haloalkenyloxy
  • R 2 is hydrogen, C 1 -C 6 alkyl, C 1 -C 2 haloalkyl, C 2 -C 4 alkenyl, C 2 -C 4 alkynyl, C 1 -C 2 alkoxy or C 1 -C 4 -Haloalkoxy
  • G is hydrogen, a leaving group L or a cation E, where L is one of the following radicals
  • R 3 is C 1 -C 4 -alkyl or C1-C3-alkoxy-C 1 -C 4 -alkyl
  • R 4 is C 1 -C 4 -alkyl
  • E is an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent of aluminum, an ion equivalent of a transition metal, a magnesium-halogen cation or a Is ammonium ion in which one, two, three or all four hydrogen atoms have optionally been replaced by identical or different radicals from the groups C1-C10-alkyl or C3-C7-cycloalkyl.
  • R 3 is methyl, ethyl, i-propyl or t-butyl
  • R 4 is methyl or ethyl
  • E is a sodium ion or a potassium ion.
  • R 1 , R 2 , X, and Y have the meanings given above, and R 9 is alkyl, preferably methyl or ethyl, optionally in the presence of a suitable solution or
  • R 1 , R 2 , X and Y have the meanings given above, for example with a compound of the general formula (III), Hal-L (III) in which L has the meaning given above and Hal is a halogen, preferably chlorine or bromine or a sulfonic acid group, optionally in the presence of a suitable solvent or diluent and a suitable base, to react.
  • Hal-L (III) in which L has the meaning given above and Hal is a halogen, preferably chlorine or bromine or a sulfonic acid group, optionally in the presence of a suitable solvent or diluent and a suitable base, to react.
  • the precursors of the general formula (II) can be prepared in analogy to known processes, for example by reacting an amino acid ester of the general formula (IV) with a phenylacetic acid of the general formula (V) in which X and Y have the meaning described above, optionally by addition a dehydrating agent and optionally in the presence of a suitable solvent or diluent.
  • Amino esters of the general formula (IV) are known from the literature, for example from WO 2006/000355.
  • Phenylacetic acids of the general formula (V) are also known, inter alia, from WO 2015/040114 or can be prepared in analogy to processes known from the literature.
  • the compounds of the formula (I) according to the invention (and / or their salts), hereinafter referred to collectively as “compounds according to the invention”, have excellent herbicidal activity against a broad spectrum of economically important monocotyledonous and dicotyledonous annual harmful plants.
  • the present invention therefore also provides a method for controlling undesired plants or for regulating the growth of plants, preferably in
  • Plant crops in which one or more compound (s) according to the invention are applied to the plants e.g.
  • Harmful plants such as monocotyledon or dicotyledon weeds or undesired crop plants), the seeds (e.g. grains, seeds or vegetative reproductive organs such as tubers or sprouts with buds) or the area on which the plants grow (e.g. the cultivated area).
  • the compounds according to the invention can e.g. in the pre-sowing (if necessary also by incorporation into the
  • the compounds according to the invention are applied to the surface of the earth before germination, either the emergence of the weed seedlings is completely prevented or the weeds grow to the cotyledon stage, but then stop growing.
  • the active ingredients are applied to the green parts of the plant using the post-emergence method, growth arrests after the treatment and the harmful plants remain in the growth stage present at the time of application or die completely after a certain time, so that in this way competition from weeds that is harmful to the crop plants is very early and is permanently eliminated.
  • the compounds according to the invention can have selectivities in useful crops and can also be used as non-selective herbicides.
  • the active compounds can also be used for combating harmful plants in crops of known or still to be developed genetically modified plants.
  • the transgenic plants are generally distinguished by particularly advantageous properties, for example by
  • Plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses.
  • Other special properties concern e.g. the crop in terms of quantity, quality, shelf life, composition and special ingredients.
  • transgenic plants with an increased starch content or a changed quality of the starch or those with a different fatty acid composition of the harvested material are known.
  • Other special properties are tolerance or resistance to abiotic stressors e.g. Heat, cold, drought, salt and ultraviolet radiation.
  • the use of the compounds of the formula (I) according to the invention or their salts in economically important transgenic crops of useful and ornamental plants is preferred,
  • the compounds of the formula (I) can be used as herbicides in crops of useful plants which are resistant or have been made resistant by genetic engineering to the phytotoxic effects of the herbicides.
  • Plants have modified properties, exist for example in classical
  • EP 0221044 EP 0131624
  • genetic modifications of crop plants for the purpose of modifying the starch synthesized in the plants e.g. WO 92/011376 A, WO 92/014827 A, WO 91/019806 A
  • transgenic crop plants which are resistant to certain herbicides of the glufosinate type See, for example, EP 0242236 A, EP 0242246 A) or glyphosate (WO 92/000377 A) or the sulfonylureas (EP 0257993 A, US 5,013,659) or are resistant to combinations or mixtures of these herbicides by “gene stacking”, such as transgenic crops e.g. . B. corn or soy with the trade name or designation
  • Optimum TM GAT TM (Glyphosate ALS Tolerant).
  • Bt toxins thuringiensis toxins
  • nucleic acid molecules can be introduced into plasmids which allow mutagenesis or a sequence change by recombining DNA sequences. With the help of standard procedures, e.g. Base exchanges carried out, partial sequences removed or natural or synthetic sequences added.
  • adapters or linkers can be attached to the fragments, see e.g. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2.
  • DNA molecules can be used that comprise the entire coding sequence of a gene product including any flanking sequences that may be present, as well as DNA molecules that only comprise parts of the coding sequence, these parts being long must be enough to produce an antisense effect in the cells. It is also possible to use DNA sequences that have a high degree of homology to the coding
  • the synthesized protein can be localized in any desired compartment of the plant cell.
  • the coding region can be made with DNA sequences
  • the expression of the nucleic acid molecules can also take place in the organelles of the plant cells.
  • the transgenic plant cells can be regenerated into whole plants using known techniques. In principle, the transgenic plants can be any plant
  • the compounds (I) according to the invention can preferably be used in transgenic crops which are resistant to growth substances such as e.g. 2,4-D, dicamba or against herbicides, the essential plant enzymes, e.g.
  • Acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or hydoxyphenylpyruvate dioxygenases (HPPD) inhibit or are resistant to herbicides from the group of sulfonylureas, glyphosates, glufosinates or benzoylisoxazoles and analogous active ingredients, or to any combination of these active ingredients.
  • the compounds according to the invention can particularly preferably be used in transgenic crop plants which are resistant to a combination of glyphosates and glufosinates, glyphosates and
  • Sulfonylureas or imidazolinones are resistant.
  • the compounds according to the invention can very particularly preferably be used in transgenic crop plants such as. B. corn or soy with the
  • OptimumTM GATTM Glyphosate ALS Tolerant
  • active ingredients according to the invention are used in transgenic crops, in addition to the effects on harmful plants observed in other crops, effects that are specific to the application in the respective transgenic crop, for example a modified or specially expanded weed spectrum that can be controlled, often occur
  • Application rates which can be used for the application preferably good compatibility with the herbicides to which the transgenic culture is resistant, and influencing the growth and yield of the transgenic crop plants.
  • the invention therefore also relates to the use of the compounds of the formula (I) according to the invention as herbicides for controlling harmful plants in transgenic crop plants.
  • the compounds according to the invention can be emulsifiable in the form of wettable powders
  • the invention therefore also relates to herbicidal and plant growth regulating agents which contain the compounds according to the invention.
  • the compounds according to the invention can be formulated in various ways, depending on which biological and / or chemico-physical parameters are given. Possible formulation options include, for example: wettable powders (WP), water-soluble powders (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions , Suspension concentrates (SC), oil- or water-based dispersions, oil-miscible solutions, capsule suspensions (CS), dusts (DP), dressings, granules for litter and soil application, granules (GR) in
  • Tank mixes are, for example, known active ingredients which are based on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate-3-phosphate synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I. , Photosystem II or protoporphyrinogen oxidase based, can be used, such as out
  • herbicidal mixture partners are: Acetochlor, acifluorfen, acifluorfen-sodium, aclonifen, alachlor, allidochlor, alloxydim, alloxydim-sodium, ametryn, amicarbazone, amidochlor, amidosulfuron, 4-amino-3-chloro-5-fluoro-6- ( 7-fluoro-1H- indol-6-yl) pyridine-2-carboxylic acid, aminocyclopyrachlor, aminocyclopyrachlor-potassium, aminocyclopyrachlor-methyl, aminopyralid, amitrole, ammoniumsulfamate, anilofamidos, asulam, atrazine, azafenidin, beazubolin, benflutazolin, -ethyl, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone
  • fenoxaprop fenoxaprop-P, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenoxasulfone, fenquinotrione, fentrazamide, flamprop, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, florasulam, florpyrauxifen, florpyrauxifazif-benzopyl, fluazifazif-benzopyl, P, fluazifop-butyl, fluazifop-P-butyl, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flurenolethyl-butylammolium,
  • plant growth regulators as possible mixing partners are: acibenzolar, acibenzolar-S-methyl, 5-aminolevulinic acid, ancymidol, 6-benzylaminopurine, brassinolide, catechin, chlormequat chloride, cloprop, cyclanilide, 3- (cycloprop-1-enyl) propionic acid, dazomet, n-decanol, dikegulac, dikegulac-sodium, endothal, endothal-dipotassium, -disodium, and mono (N, N-dimethylalkylammonium), ethephon, flumetralin, flurenol, flurenol-butyl, flurprimidol, forchlorfenuron, gibberellic, acid, indol-3-acetic acid (IAA), 4-indol-3-ylbutyric acid, isoprothiolane, probenazole, jasmonic acid, jasmonic acid
  • Safeners which are used in combination with the compounds of the formula (I) according to the invention and optionally in combinations with other active ingredients such as e.g. Insecticides, acaricides, herbicides, fungicides as listed above, are preferably selected from the group consisting of: S1) compounds of the formula (S1),
  • n A is a natural number from 0 to 5, preferably 0 to 3; R 1
  • A is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, nitro or (C 1 -C 4 ) haloalkyl;
  • WA is an unsubstituted or substituted divalent heterocyclic radical from the group of partially unsaturated or aromatic five-membered ring heterocycles with 1 to 3 hetero ring atoms from the group N and O, with at least one N atom and at most one O atom in the ring, preferably one Remainder from the group (W 1
  • n A is 0 or 1; R 2
  • A is OR 3
  • A is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably with a total of 1 to 18 carbon atoms;
  • A is hydrogen, (C 1 -C 6 ) alkyl, (C 1 -C 6 ) alkoxy or substituted or unsubstituted phenyl; R 5
  • A is H, (C 1 -C 8 ) alkyl, (C 1 -C 8 ) haloalkyl, (C 1 -C 4 ) alkoxy (C 1 -C 8 ) alkyl, cyano, or COOR 9
  • A is hydrogen, (C 1 -C 8 ) alkyl, (C 1 -C 8 ) haloalkyl, (C 1 -C 4 ) alkoxy- (C 1 -C 4 ) alkyl, (C 1 -C 6 ) hydroxyalkyl, (C 3 -C 12 ) cycloalkyl or tri- (C 1 -C 4 ) alkyl-silyl; R 6
  • A are identically or differently hydrogen, (C1-C8) alkyl, (C1-C8) haloalkyl, (C3-C12) cycloalkyl or substituted or unsubstituted phenyl; preferably: a) compounds of the dichlorophenylpyrazoline-3-carboxylic acid type (S1 a ), preferably compounds such as 1- (2,4-dichlorophenyl) -5- (ethoxycarbonyl) -5-methyl-2-pyrazoline-3-carboxylic acid, 1 - (2,4-Dichlorophenyl) -5- (ethoxycarbonyl) -5-methyl-2-pyrazoline-3-carboxylic acid ethyl ester (S1-1) ("Mefenpyr-diethyl”), and related compounds, as described in WO-A -91/07874 are described; b) Derivatives of dichlorophenylpyrazole carboxylic acid (S1 b ),
  • n B is a natural number from 0 to 5, preferably 0 to 3;
  • B or a saturated or unsaturated 3 to 7-membered heterocycle with at least one N atom and up to 3 heteroatoms, preferably from the group O and S, which is connected to the carbonyl group in (S2) via the N atom and is unsubstituted or is substituted by radicals from the group (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy or optionally substituted phenyl, preferably a radical of the formula OR 3
  • B is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably with a total of 1 to 18 carbon atoms;
  • B is hydrogen, (C 1 -C 6 ) alkyl, (C 1 -C 6 ) alkoxy or substituted or unsubstituted phenyl;
  • TB is a (C1 or C2) -alkanediyl chain which is unsubstituted or substituted by one or two (C1-C4) alkyl radicals or by [(C1-C3) -alkoxy] -carbonyl; preferably: a) compounds of the 8-quinolinoxyacetic acid type (S2 a ), preferably (5-chloro-8-quinolinoxy) acetic acid (1-methylhexyl) ester ("Cloquintocet-mexyl") (S2-1), 25 (5 -Chlor-8-quinolinoxy) acetic acid- (1,3-dimethyl-but-1-yl) ester (S2-2),
  • C is (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) haloalkenyl, (C 3 -C 7 ) cycloalkyl, preferably dichloromethyl;
  • R 2 is (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) haloalkenyl, (C 3 -C 7 ) cycloalkyl, preferably dichloromethyl;
  • R 2 is (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) haloalkenyl, (C 3 -C 7 ) cycloalkyl,
  • C are identical or different hydrogen, (C 1 -C 4 ) alkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) alkynyl, (C 1 -C 4 ) haloalkyl, (C 2 -C 4 ) haloalkenyl, (C 1 -C 4) alkylcarbamoyl (C 1 -C 4) alkyl, (C 2 - C 4) Alkenylcarbamoyl- (C 1 -C 4) alkyl, (C 1 -C 4) alkoxy- (C 1 -C 4 ) alkyl, dioxolanyl- (C 1 -C 4 ) alkyl, thiazolyl, furyl, furylalkyl, thienyl, piperidyl, substituted or unsubstituted phenyl, or R 2
  • C together form a substituted or unsubstituted heterocyclic ring, preferably an oxazolidine, thiazolidine, piperidine, morpholine, hexahydropyrimidine or benzoxazine ring; preferably:
  • AD is SO 2 -NR 3
  • D is halogen, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) haloalkoxy, nitro, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) alkylsulfonyl , (C 1 -C 4 ) alkoxycarbonyl or (C 1 -C 4 ) alkylcarbonyl; R 3
  • D is hydrogen, (C 1 -C 4 ) alkyl, (C 2 -C 4 ) alkenyl or (C 2 -C 4 ) alkynyl; R 4
  • D is halogen, nitro, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) haloalkoxy, (C 3 -C 6 ) cycloalkyl, phenyl, (C 1 -C 4 ) Alkoxy, cyano, (C 1 -C 4 ) alkylthio, (C 1 -C 4 ) alkylsulfinyl, (C 1 -C 4 ) alkylsulfonyl, (C 1 -
  • D is hydrogen, (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, (C 2 -C 6 ) alkenyl, (C 2 -C 6 ) alkynyl, (C 5 -C 6 ) cycloalkenyl, phenyl or 3- to 6-membered heterocyclyl containing vD heteroatoms from the group nitrogen, oxygen and sulfur, the last seven radicals being replaced by vD substituents from the group halogen, (C 1 -C 6 ) alkoxy, (C 1 -C 6 ) haloalkoxy , (C 1 -C 2 ) alkylsulfinyl, (C 1 -C 2 ) alkylsulfonyl, (C 3 -C 6 ) cycloalkyl, (C 1 -C 4 ) alkoxycarbonyl, (C 1 -C 4 ) alkylcarbonyl and phenyl and in
  • D is hydrogen, (C 1 -C 6 ) alkyl, (C 2 -C 6 ) alkenyl or (C 2 -C 6 ) alkynyl, the last three radicals mentioned by vD radicals from the group halogen, hydroxy, (C 1 - C 4 ) alkyl, (C 1 -C 4 ) alkoxy and (C 1 -C 4 ) alkylthio are substituted, or R 5
  • D is hydrogen, (C 1 -C 4 ) alkylamino, di- (C 1 -C 4 ) alkylamino, (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, the last two radicals mentioned by vD substituents from the group halogen, (C 1 -C 4 ) alkoxy, (C 1 -C 6 ) haloalkoxy and (C 1 -C 4 ) alkylthio and in the case of cyclic radicals also (C 1 -C 4 ) alkyl and (C 1 - C 4 ) haloalkyl are substituted; n D is 0, 1 or 2; m D is 1 or 2; v D is 0, 1, 2 or 3; Preferred of these are compounds of the N-acylsulfonamide type, for example of the following formula (S4 a ), which z. B. are known from WO-A-97/45016
  • acylsulfamoylbenzoic acid amides for example of the following formula (S4 b ), which are known, for example from WO-A-99/16744,
  • R D and R D independently of one another are hydrogen, (C 1 -C 8 ) alkyl, (C 3 -C 8 ) cycloalkyl, (C 3 -C 6 ) alkenyl, (C 3 -C 6 ) alkynyl, R 4
  • D is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, CF 3 m D is 1 or 2;
  • D is hydrogen, (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, (C 2 -C 6 ) alkenyl, (C 2 -C 6 ) alkynyl, (C 5 -C 6 ) cycloalkenyl.
  • R E are independently halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) alkylamino, di- (C 1 -C 4 ) alkylamino, nitro;
  • a 3 is independently halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) alkylamino, di- (C 1 -C 4 ) alkylamino, nitro;
  • E are independently hydrogen, (C 1 -C 4 ) alkyl, (C 2 -C 6 ) alkenyl, (C 2 -C 4 ) alkynyl, cyanoalkyl, (C 1 -C 4 ) haloalkyl, phenyl, nitrophenyl, benzyl, Halobenzyl, pyridinylalkyl and alkylammonium, n 1
  • E is 0 or 1 n 2
  • E are independently 0, 1 or 2, preferably:
  • F is hydrogen, (C1-C8) alkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) alkynyl, or aryl, where each of the aforementioned C-containing radicals is unsubstituted or by one or more, preferably up to three identical or different radicals from the group consisting of halogen and alkoxy is substituted; or their salts, preferably compounds in which X F is CH, n F is an integer from 0 to 2, R 1
  • F is hydrogen or (C 1 -C 4 ) alkyl
  • F is hydrogen, (C 1 -C 8 ) alkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) alkynyl, or aryl, where each of the aforementioned C-containing radicals is unsubstituted or by one or more, preferably up to to three identical or different radicals from the group consisting of halogen and alkoxy is substituted, or their salts.
  • n G is an integer from 0 to 4, R 2
  • G is hydrogen or (C 1 -C 6 ) alkyl.
  • Oxabetrinil ((Z) -1,3-Dioxolan-2-ylmethoxyimino (phenyl) acetonitrile) (S11-1), which is known as a seed dressing safener for millet against damage from metolachlor, "Fluxofenim” (1- (4 -Chlorophenyl) -2,2,2-trifluoro-1-ethanon-O- (1,3-dioxolan-2-ylmethyl) -oxime) (S11-2), which is known as a seed dressing safener for millet against damage from metolachlor and "Cyometrinil” or “CGA-43089” ((Z) -Cyanomethoxyimino (phenyl) acetonitrile) (S11-3) which is known as a seed dressing safener for millet against damage from metolachlor.
  • S12 Active ingredients from the class of isothiochromanones (S12), such as e.g. Methyl - [(3-oxo-1H-2- benzothiopyran-4 (3H) -ylidene) methoxy] acetate (CAS reg. No. 205121-04-6) (S12-1) and related compounds from WO-A- 1998/13361.
  • S12 isothiochromanones
  • S13 One or more compounds from group (S13): “Naphthalic anhydride” (1,8-naphthalenedicarboxylic acid anhydride) (S13-1), which is known as a seed dressing safener for maize against damage from thiocarbamate herbicides, "Fenclorim” (4.6 -Dichlor-2-phenylpyrimidine) (S13-2), which acts as a safener for pretilachlor in sown
  • MG 191 (CAS reg. No. 96420-72-3) (2-dichloromethyl-2-methyl-1,3-dioxolane) (S13-5) from Nitrokemia, which is known as a safener for maize, " MG 838 "(CAS reg. No.
  • H is a (C 1 -C 6 ) haloalkyl radical and R 2
  • H is hydrogen or halogen
  • H independently of one another hydrogen, (C 1 -C 16 ) alkyl, (C 2 -C 16 ) alkenyl or (C2-C16) alkynyl, each of the last-mentioned 3 radicals being unsubstituted or substituted by one or more radicals from the group consisting of halogen, hydroxy, Cyano, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkoxy, (C 1 -C 4 ) alkylthio, (C 1 -C 4 ) alkylamino, di [(C 1 -C 4 ) alkyl] - amino, [(C 1 -C 4 ) alkoxy] carbonyl, [(C 1 -C 4 ) haloalkoxy] carbonyl, (C 3 -C 6 ) cycloalkyl which is unsubstituted or substituted, phenyl which is unsubstituted or substituted , and hetero
  • H is (C 1 -C 4 ) -alkoxy, (C 2 -C 4 ) alkenyloxy, (C 2 -C 6 ) alkynyloxy or (C 2 -C 4 ) haloalkoxy and R 4
  • H is hydrogen or (C 1 -C 4 ) -alkyl or R 3
  • N atom H together with the directly bonded N atom forms a four- to eight-membered heterocyclic ring which, in addition to the N atom, can also contain further hetero ring atoms, preferably up to two further hetero ring atoms from the group N, O and S and which is unsubstituted or by one or several radicals from the group halogen, cyano, nitro, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) haloalkyl, (C 1 -C 4 ) alkoxy, (C 1 -C 4 ) haloalkoxy and (C 1 -C 4 ) alkylthio is substituted.
  • Dicamba 3,6-dichloro-2-methoxybenzoic acid
  • 1- (ethoxycarbonyl) ethyl-3,6-dichloro-2-methoxybenzoate lactidichloro-ethyl
  • Particularly preferred safeners are Mefenpyr-diethyl, Cyprosulfamid, Isoxadifen-ethyl, Cloquintocet-Mexyl, Dichlormid and Metcamifen.
  • Wettable powders are preparations that are uniformly dispersible in water which, in addition to the active ingredient, besides a diluent or inert substance, also tensides of an ionic and / or nonionic type (wetting agents, dispersants), e.g.
  • polyoxyethylated alkylphenols polyoxethylated fatty alcohols, polyoxethylated fatty amines, fatty alcohol polyglycol ether sulfates, alkane sulfonates, alkylbenzenesulfonates, sodium lignosulfonic acid, 2,2'-dinaphthylmethane-6,6'-disulfonic acid sodium, dibutylnaphthalene-sulfonic acid sodium or also contain sodium dibutylnaphthalene sulfonic acid sodium.
  • the herbicidally active ingredients are finely ground, for example, in customary apparatus such as hammer mills, blower mills and air jet mills, and simultaneously or subsequently mixed with the formulation auxiliaries.
  • Emulsifiable concentrates are made by dissolving the active ingredient in an organic solvent
  • Solvents e.g. Butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling ones
  • emulsifiers examples include: alkylarylsulfonic acid calcium salts such as calcium dodecylbenzenesulfonate or nonionic emulsifiers such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers, sorbitan esters such as e.g. Sorbitan fatty acid esters or polyoxethylene sorbitan esters such as e.g. Polyoxyethylene sorbitan fatty acid ester. Dusts are obtained by grinding the active ingredient with finely divided solid substances, e.g.
  • Talc natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • Suspension concentrates can be water or oil based. For example, you can go through
  • Emulsions e.g. Oil-in-water emulsions (EW) can be prepared, for example, by means of stirrers, colloid mills and / or static mixers using aqueous organic solvent
  • Granules can either be produced by spraying the active ingredient onto adsorptive, granulated inert material or by applying active ingredient concentrates using adhesives, e.g. polyvinyl alcohol, sodium polyacrylate or mineral oils, to the surface of carrier materials such as sand, kaolinite or granulated inert material.
  • adhesives e.g. polyvinyl alcohol, sodium polyacrylate or mineral oils
  • Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules - if desired as a mixture with fertilizers.
  • Water-dispersible granules are generally produced by the customary processes such as spray drying, fluidized bed granulation, plate granulation, mixing with high-speed mixers and extrusion without solid inert material.
  • spray drying fluidized bed granulation
  • plate granulation mixing with high-speed mixers and extrusion without solid inert material.
  • the agrochemical preparations generally contain 0.1 to 99% by weight, in particular 0.1 to 95% by weight, of compounds according to the invention.
  • the active ingredient concentration is e.g. about 10 to 90% by weight, the remainder to 100% by weight consists of the usual
  • Formulation ingredients In the case of emulsifiable concentrates, the active ingredient concentration can be about 1 to 90, preferably 5 to 80% by weight. Dust-like formulations contain 1 to 30
  • sprayable solutions contain about 0.05 to 80, preferably 2 to 50% by weight of active ingredient.
  • the active ingredient content depends in part on whether the active compound is liquid or solid and which granulating aids, fillers, etc. are used.
  • the content of active ingredient is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight.
  • the active ingredient formulations mentioned may contain the usual adhesive, wetting, dispersing, emulsifying, penetration, preservation, antifreeze and solvents,
  • Fillers carriers and dyes, defoamers, evaporation inhibitors and agents that influence the pH value and viscosity.
  • combinations with other pesticidally active substances such as insecticides, acaricides, herbicides, fungicides, and with safeners, fertilizers and / or growth regulators, for example in the form of a finished formulation or as a tank mix, can also be produced.
  • the formulations which are available in commercially available form are, if appropriate, diluted in the customary manner, for example with wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules using water. Dust-like preparations, soil or
  • Scatter granules and sprayable solutions are usually no longer diluted with other inert substances before use. With the external conditions such as temperature, humidity, the type of herbicide used, etc.
  • Carrier means a natural or synthetic, organic or inorganic substance with which the active ingredients for better applicability, especially for application to plants or parts of plants or seeds, mixed or combined.
  • the carrier which can be solid or liquid, is generally inert and should be agriculturally useful. Possible solid or liquid carriers are: e.g.
  • Ammonium salts and natural rock flour such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock flour, such as highly dispersed silica, aluminum oxide and natural or synthetic silicates, resins, waxes, solid fertilizers, water, alcohols, in particular Butanol, organic solvents, mineral and vegetable oils and derivatives thereof.
  • Solid carriers for granulates are: e.g. broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granulates made from inorganic and organic
  • Flours and granulates made from organic material such as sawdust, coconut shells, corn on the cob and tobacco stalks.
  • Liquefied gaseous extenders or carriers are liquids which are gaseous at normal temperature and under normal pressure, for example aerosol propellants such as halogenated hydrocarbons, as well as butane, propane, nitrogen and carbon dioxide.
  • Adhesives such as carboxymethylcellulose and natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, and also natural phospholipids such as cephalins and lecithins and synthetic phospholipids can be used in the formulations.
  • Further additives can be mineral and vegetable oils. If water is used as an extender, it is also possible, for example, to use organic solvents as auxiliary solvents.
  • the main liquid solvents that can be used are:
  • Aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chlorethylene or dichloromethane, aliphatic hydrocarbons such as cyclohexane or paraffins, e.g. Petroleum fractions, mineral and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • the agents according to the invention can additionally contain further components, such as e.g.
  • surface-active substances As surface-active substances emulsifiers and / or foam-generating agents, dispersants or wetting agents with ionic or non-ionic ones come
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • the active ingredients can be combined with any solid or liquid additive commonly used for formulation purposes.
  • the agents and formulations according to the invention contain between 0.05 and 99% by weight, 0.01 and 98% by weight, preferably between 0.1 and 95% by weight, particularly preferably between 0.5 and 90% Active ingredient, very particularly preferably between 10 and 70
  • the active ingredients or agents according to the invention can be used as such or in
  • Granules water-soluble granules or tablets, water-soluble powders for seed treatment, wettable powders, active ingredient-impregnated natural and synthetic substances as well as fine encapsulation in polymeric substances and in coating compounds for seeds, as well as ULV cold and warm mist formulations can be used.
  • Said formulations can be prepared in a manner known per se, e.g. by
  • the agents according to the invention not only include formulations which are already ready to use and can be applied to the plant or the seed with a suitable apparatus, but also commercial concentrates which have to be diluted with water before use.
  • the active compounds according to the invention can be used as such or in their (commercially available) formulations and in the use forms prepared from these formulations as a mixture with other (known) active compounds, such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides , Fertilizers, safeners or semiochemicals are present.
  • the treatment according to the invention of the plants and plant parts with the active ingredients or agents is carried out directly or by acting on their surroundings, living space or storage room using the customary treatment methods, for example by dipping, spraying, spraying, sprinkling, evaporating, Atomization, misting, scattering, foaming, brushing, spreading, watering (drenching), drip irrigation and, in the case of propagation material, especially in the case of seeds, also by dry dressing, wet dressing, slurry dressing, encrusting, single or multilayer coating, etc. It it is also possible to apply the active ingredients by the ultra-low-volume method or to inject the active ingredient preparation or the active ingredient itself into the soil. As also described further below, the treatment of transgenic seeds with the active ingredients or agents according to the invention is of particular importance. This concerns the seeds of
  • the heterologous gene in transgenic seeds can e.g. originate from microorganisms of the species Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
  • This heterologous gene is preferably derived from Bacillus sp., The gene product having an effect against the European corn borer and / or Western corn rootworm.
  • the heterologous gene is particularly preferably derived from Bacillus thuringiensis.
  • the agent according to the invention is applied to the seed alone or in a suitable formulation.
  • the seed is preferably treated in a state in which it is so stable that no damage occurs during the treatment. In general, the seed can be treated at any point in time between harvest and sowing.
  • seeds are used that have been separated from the plant and freed from cobs, peels, stems, husks, wool or pulp.
  • seeds can be used that have been harvested, cleaned and dried to a moisture content of less than 15% by weight.
  • seeds can also be used which, after drying, e.g. treated with water and then dried again.
  • care must be taken to ensure that the amount of the agent according to the invention and / or further additives applied to the seed is selected so that the germination of the seed is not impaired or the resulting plant is not damaged. This is especially important for active ingredients that are used in certain
  • Application rates can show phytotoxic effects.
  • the agents according to the invention can be applied immediately, that is to say without containing further components and without having been diluted.
  • suitable Formulations and methods for seed treatment are known to the person skilled in the art and are described, for example, in the following documents: US 4,272,417 A, US 4,245,432 A, US 4,808,430, US 5,876,739, US 2003/0176428 A1, WO 2002/080675 A1, WO 2002/028186 A2 .
  • the active compounds according to the invention can be converted into the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating materials for seeds, and also ULV formulations.
  • These formulations are prepared in a known manner by mixing the active ingredients with customary additives, such as customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and also Water.
  • customary additives such as customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and also Water.
  • Suitable dyes which can be contained in the seed dressing formulations which can be used according to the invention are all dyes customary for such purposes. Both in
  • Water-sparingly soluble pigments as well as water-soluble dyes can be used. Examples are those under the names Rhodamine B, C.I. Pigment Red 112 and C.I. Solvent Red
  • Suitable wetting agents which can be contained in the seed dressing formulations which can be used according to the invention are all substances which are customary for the formulation of agrochemical active ingredients and which promote wetting.
  • Alkylnaphthalene sulfonates such as diisopropyl or diisobutyl naphthalene sulfonates, can preferably be used.
  • dispersants and / or emulsifiers which can be contained in the seed dressing formulations which can be used according to the invention, all of the formulations used are agrochemical
  • Nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants can preferably be used.
  • Suitable nonionic dispersants are, in particular, ethylene oxide-propylene oxide block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ethers and their phosphated or sulfated derivatives.
  • Suitable anionic dispersants are, in particular, lignin sulfonates, polyacrylic acid salts and aryl sulfonate-formaldehyde condensates.
  • the seed dressing formulations which can be used according to the invention can contain all foam-inhibiting substances customary for the formulation of agrochemical active ingredients as defoamers.
  • Silicone defoamers and magnesium stearate can preferably be used.
  • All substances which can be used in agrochemical compositions for such purposes can be present as preservatives in the seed dressing formulations which can be used according to the invention.
  • Examples include dichlorophene and benzyl alcohol hemiformal.
  • Secondary thickeners which can be contained in the seed dressing formulations which can be used according to the invention are all substances which can be used in agrochemical compositions for such purposes. Cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and highly disperse silicic acid are preferred.
  • Suitable adhesives which can be contained in the seed dressing formulations which can be used according to the invention are all conventional binders which can be used in seed dressings. Polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and Tylose may be mentioned as preferred.
  • the seed dressing formulations which can be used according to the invention can be used either directly or after prior dilution with water for the treatment of seeds of the most varied of types, including
  • Plant organs to increase crop yields, improve the quality of the crop. They can preferably be used as crop protection agents. They are effective against normally sensitive and resistant species and against all or individual stages of development.
  • the following main crops may be mentioned as plants which can be treated according to the invention: maize, soybean, cotton, Brassica oil seeds such as Brassica napus (e.g. canola), Brassica rapa, B. juncea (e.g. (field) mustard) and Brassica carinata, rice, wheat
  • Peaches and berries such as strawberries
  • Ribesioidae sp. Juglandaceae sp.
  • Betulaceae sp. Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (e.g. banana trees and plantations), Rubiaceae sp. (e.g. coffee), Theaceae sp., Sterculiceae sp., Rutaceae sp. (for example lemons, organs and
  • Solanaceae sp. for example tomatoes, potatoes, pepper, eggplant
  • Liliaceae sp. Compositae sp.
  • Umbelliferae sp. e.g., carrot, parsley, celery and celeriac
  • Cucurbitaceae sp. e.g. cucumber - including
  • plants and their parts can be treated according to the invention.
  • plant species and plant cultivars occurring in the wild or obtained by conventional biological breeding methods such as crossing or protoplast fusion, as well as their parts are treated.
  • transgenic plants and plant cultivars obtained by genetic engineering methods, if appropriate in combination with conventional methods (genetically modified organisms), and their parts are treated.
  • the term “parts” or “parts of plants” or “plant parts” has been explained above.
  • Plant varieties in use are treated. Plant cultivars are understood to be plants with new properties (“traits”) that have been bred by conventional breeding, by mutagenesis or by recombinant DNA techniques. This can be varieties, races, organic and
  • the treatment method according to the invention can be used for the treatment of genetically modified
  • Organisms e.g. B. plants or seeds can be used.
  • Genetically modified plants are plants in which a heterologous gene has been stably integrated into the genome.
  • heterologous gene means essentially a gene which is provided or assembled outside the plant and which, when introduced into the nucleus genome, the chloroplast genome or the mitochondrial genome of the transformed plant, gives new or improved agronomic or other properties that it gives an interesting protein
  • Genes that are present in the plant are downregulated or switched off (for example using antisense technology, cosuppression technology or RNAi technology [RNA interference]).
  • a heterologous gene that is present in the genome is also called a transgene.
  • a transgene that is defined by its specific presence in the plant genome is called a transformation or transgenic event. Depending on the plant species or plant varieties, their location and theirs
  • the treatment according to the invention can also lead to superadditive (“synergistic”) effects for growth conditions (soils, climate, vegetation period, diet). So are the
  • Plants and plant cultivars which are preferably treated according to the invention include all plants which have genetic material which gives these plants particularly advantageous, useful characteristics (regardless of whether this was achieved by breeding and / or biotechnology).
  • Examples of nematode-resistant plants are e.g.
  • Such plants are typically produced by crossing an inbred male sterile parent line (the female cross partner) with another inbred male fertile parent line (the male cross partner).
  • the hybrid seeds are typically harvested from the male-sterile plants and sold to propagators.
  • Male-sterile plants can sometimes (e.g. in maize) by detasseling (i.e.
  • male sterility is based on genetic determinants in the
  • Plant genome In this case, especially if the desired product, since one wants to harvest from the hybrid plants, is the seeds, it is usually beneficial to ensure that the pollen fertility in hybrid plants that contain the genetic determinants responsible for male sterility , will be completely restored. This can be achieved by ensuring that the male mating partners have appropriate fertility restorer genes capable of restoring male fertility in hybrid plants that contain the genetic determinants responsible for male sterility.
  • CMS cytoplasmic male sterility
  • genetic determinants for male sterility can also be located in the nucleus genome.
  • Male-sterile plants can also be obtained using methods of plant biotechnology, such as genetic engineering.
  • a particularly favorable means for producing male-sterile plants is in WO
  • ribonuclease such as a barnase selectively in the
  • Tapetum cells is expressed in the stamens. Fertility can then be restored by expressing a ribonuclease inhibitor such as barstar in the tapetum cells.
  • Plants or plant cultivars which are obtained using methods of plant biotechnology, such as genetic engineering) which can be treated according to the invention are herbicide-tolerant plants;
  • Plants that have been made tolerant to one or more specified herbicides can be obtained either through genetic transformation or through selection of
  • Herbicide tolerant plants are, for example, glyphosate tolerant plants; H. Plants that have been made tolerant to the herbicide glyphosate or its salts. Plants can be made tolerant to glyphosate using various methods. For example, glyphosate-tolerant plants can be obtained by transforming the plant with a gene which codes for the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium
  • Glyphosate-tolerant plants can also be obtained by expressing a gene which codes for a glyphosate oxidoreductase enzyme. Glyphosate-tolerant plants can also be obtained by having a gene
  • Plants expressing EPSPS genes that confer glyphosate tolerance are described. Plants that confer other genes that confer glyphosate tolerance, e.g. Decarboxylase genes are described.
  • Other herbicide-resistant plants are, for example, plants which have been made tolerant to herbicides which inhibit the enzyme glutamine synthase, such as bialaphos, phosphinotricin or glufosinate. Such plants can be obtained by expressing an enzyme that detoxifies the herbicide or a mutant of the enzyme glutamine synthase that is resistant to inhibition. Such an effective detoxifying enzyme is, for example
  • Enzyme that codes for a phosphinotricin acetyltransferase (such as the bar or pat protein from Streptomyces species). Plants expressing an exogenous phosphinotricin acetyltransferase have been described. Other herbicide-tolerant plants are also plants that are resistant to the herbicides that use the enzyme
  • HPPD hydroxyphenylpyruvate dioxygenase
  • Hydroxyphenylpyruvate dioxygenases are enzymes that catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is converted to homogenate.
  • Plants that are tolerant of HPPD inhibitors can be transformed with a gene encoding a naturally occurring resistant HPPD enzyme or a gene encoding a mutated or chimeric HPPD enzyme, as in WO 96/38567 , WO 99/24585, WO 99/24586, WO 2009/144079, WO 2002/046387 or US 6,768,044.
  • Tolerance to HPPD inhibitors can also be achieved by transforming plants with genes which code for certain enzymes that enable the formation of homogenate despite the inhibition of the native HPPD enzyme by the HPPD inhibitor. Such plants are in WO
  • the tolerance of plants to HPPD inhibitors can also be improved by transforming plants, in addition to a gene that codes for an HPPD-tolerant enzyme, with a gene that codes for a prephenate dehydrogenase enzyme, as in WO 2004/024928 is described. In addition, plants can be even more tolerant of
  • HPPD inhibitors can be made by inserting into their genome a gene which codes for an enzyme that metabolizes or degrades HPPD inhibitors, such as B. CYP450 enzymes (see WO 2011/001100, a gene which codes for an enzyme that metabolizes or degrades HPPD inhibitors, such as B. CYP450 enzymes (see WO 2011/001100, a gene which codes for an enzyme that metabolizes or degrades HPPD inhibitors, such as B. CYP450 enzymes (see WO
  • ALS inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinyloxy (thio) benzoates and / or sulfonylaminocarbonyltriazolinone herbicides. It is known that various mutations in the
  • Enzyme ALS also known as acetohydroxy acid synthase, AHAS
  • AHAS acetohydroxy acid synthase
  • Plants and imidazolinone tolerant plants are described. Other sulfonylurea and imidazolinone tolerant plants are also described. Other plants that are tolerant of imidazolinones and / or sulfonylureas can be induced by mutagenesis, selection in cell cultures in the presence of the herbicide or by
  • Plants or plant varieties (which were obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are tolerant of abiotic stress factors. Such plants can be obtained by genetic transformation or by selection of plants which contain a mutation which confers such stress resistance. Particularly useful plants with stress tolerance include the following: a.
  • PARP poly (ADP-ribose) polymerase
  • nicotinamidase nicotinate phosphoribosyl transferase
  • nicotinic acid mononucleotide adenyl transferase or nicotinamide adenine phosphide dinucleotide synthase.
  • Plants or plant varieties (which were obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, have a changed quantity, quality and / or shelf life of the harvested product and / or changed properties of certain components of the harvested product, such as: 1) Transgenic plants that synthesize a modified starch, the chemical-physical properties, in particular the amylose content or the amylose / amylopectin ratio, the degree of branching, the average chain length, the distribution of the side chains, the viscosity behavior , the gel strength, the starch grain size and / or Starch grain morphology is changed in comparison with the synthesized starch in wild-type plant cells or plants, so that this modified starch is better suited for certain applications.
  • the chemical-physical properties in particular the amylose content or the amylose / amylopectin ratio, the degree of branching, the average chain length, the distribution of the side chains, the viscosity behavior , the gel strength, the starch grain size and / or
  • Transgenic plants that synthesize non-starch carbohydrate polymers or non-starch carbohydrate polymers whose properties are changed compared to wild-type plants without genetic modification. Examples are plants that produce polyfructose, especially of the inulin and levan types, plants that produce alpha-1,4-glucans, plants that produce alpha-1,6-branched alpha-1,4-glucans and plants that produce Produce alternan. 3) Transgenic Plants That Produce Hyaluronan. 4) Transgenic plants or hybrid plants such as onions with certain properties such as “high soluble solids content”, low pungency (LP) and / or long storage life (“long storage”, LS ).
  • LP low pungency
  • long storage life long storage
  • Plants or plant cultivars are plants such as cotton plants with modified fiber properties. Such plants can be obtained by genetic transformation or by selection of plants which contain a mutation which confers such altered fiber properties; these include: a) plants such as cotton plants which contain a modified form of cellulose synthase genes, b) plants such as cotton plants which contain a modified form of rsw2- or rsw3-homologous nucleic acids, such as cotton plants with an increased expression of sucrose phosphate synthase; c) Plants such as cotton plants with an increased expression of sucrose synthase; d) Plants such as cotton plants in which the timing of the flow control of the plasmodesmata is changed at the base of the fiber cell, e.g.
  • Plants such as cotton plants with fibers with modified reactivity, e.g. B. by expression of the N-acetylglucosamine transferase gene, including nodC, and of chitin synthase genes.
  • Plants or plant cultivars which were obtained by methods of plant biotechnology, such as genetic engineering) which can likewise be treated according to the invention are plants such as rapeseed or related Brassica plants with modified properties of the
  • Oil composition Such plants can be obtained by genetic transformation or by selection of plants which contain a mutation which confers such altered oil properties; these include: a) Plants such as rape plants that produce oil with a high oleic acid content; b) Plants, such as rape plants, that produce oil with a low linolenic acid content. c) Plants such as rape plants that produce oil with a low content of saturated fat. Plants or plant varieties (which can be obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are plants such as potatoes, which are virus-resistant, e.g.
  • Plants or plant cultivars obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are plants such as oilseed rape or related Brassica plants with changed properties in the case of seed shattering.
  • Such plants can, by genetic transformation or by selection of plants that contain a mutation, confer such altered properties and include plants such as oilseed rape with delayed or reduced seed loss.
  • Particularly useful transgenic plants that can be treated according to the invention are plants with transformation events or combinations of transformation events which are the subject of petitions issued or pending in the USA at the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) are for the non-regulated status. Information on this is available at any time from APHIS (4700 River Road Riverdale, MD 20737, USA), for example via the website http://www.aphis.usda.gov/brs/not_reg.html.
  • APHIS 700 River Road Riverdale, MD 20737, USA
  • - Extension of a petition reference to a previous petition for which an extension or extension is requested.
  • Institution Name of the person submitting the petition.
  • Regulated article the plant species concerned.
  • Transgenic phenotype the trait given to the plant by the transformation event.
  • Transformation event or line the name of the event or events (sometimes referred to as line (s)) for which non-regulated status is requested.
  • APHIS documents various documents that are published by APHIS regarding the petition or can be obtained from APHIS on request.
  • transgenic plants which can be treated according to the invention are plants with one or more genes which code for one or more toxins, are the transgenic plants which are sold under the following trade names: YIELD GARD ® (for example maize, cotton, Soybeans), KnockOut® (for example corn), BiteGard® (for example corn), BT-Xtra®
  • YIELD GARD ® for example maize, cotton, Soybeans
  • KnockOut® for example corn
  • BiteGard® for example corn
  • Herbicide-tolerant plants to be mentioned are, for example, maize varieties, cotton varieties and soybean varieties, which are sold under the following trade names: Roundup Ready®
  • Example D1 4-Hydroxy-3- [2-methoxy-6-methyl-4- (prop-1-yn-1-yl) phenyl] -7-propoxy-1-azaspiro [4.5] dec-3-en- 2-on
  • reaction solution was then concentrated to dryness, twice more with 50 ml of dichloromethane each time and again concentrated in order finally to be taken up in 30 ml of dichloromethane (solution 1). 3.46 g (27.4 mmol) of 1- (methoxycarbonyl) -3-propoxycyclohexanaminium chloride and 8 ml of triethylamine were placed in 80 ml of dichloromethane and solution 1 was introduced within 20 minutes.
  • a dusting agent is obtained by mixing 10 parts by weight of a compound of the formula (I) and / or its salts and 90 parts by weight of talc as an inert substance and comminuting it in a hammer mill.
  • a wettable powder which is easily dispersible in water is obtained by adding 25 parts by weight of a compound of the formula (I) and / or its salts, 64 parts by weight of kaolin-containing quartz as an inert substance, 10 parts by weight of potassium lignosulfonate and 1 part by weight of sodium oleoylmethyltaurinate as a wetting agent and dispersant and grinds in a pin mill.
  • a dispersion concentrate which is easily dispersible in water is obtained by adding 20 wt.
  • alkylphenol polyglycol ether ® Triton X 207
  • isotridecanol polyglycol ether 8 EO
  • paraffinic mineral oil oil
  • ground in an attrition ball mill to a fineness of less than 5 microns.
  • An emulsifiable concentrate is obtained from 15 parts by weight of a compound of the formula (I) and / or its salts, 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of ethoxylated nonylphenol as emulsifier.
  • a water-dispersible granulate is obtained by adding 75 parts by weight of a compound of the formula (I) and / or its salts, 10 parts by weight of calcium lignosulfonate, 5 parts by weight of sodium lauryl sulfate, 3 parts by weight of polyvinyl alcohol and 7 parts by weight.
  • a water-dispersible granulate is also obtained by adding 25 parts by weight of a compound of the formula (I) and / or its salts, 5 parts by weight of 2,2 'dinaphthylmethane 6,6' sodium disulphonic acid,
  • the compounds each show an 80-100% activity against, among others, Alopecurus myosuroides, Avena fatua, Digitaria sanguinalis, Echinochloa crus-galli, Lolium rigidum, Setaria viridis , Amaranthus retroflexus, Matricaria inodora, Stellaria medi, Viola tricolor, Veronica persica and Hordeum murinum.
  • the compounds according to the invention are therefore suitable in
  • Table 2 Pre-emergence effectiveness at 80 g ai / ha 2. Herbicidal effect or crop plant tolerance in post-emergence. Seeds of monocotyledonous or dicotyledonous weed and crop plants are placed in wood fiber pots in
  • Table 3 Post-emergence activity at 80 g ai / ha As the results from Table 3 show, the compounds according to the invention have good herbicidal post-emergence activity against a broad spectrum of grass weeds and weeds.
  • the examples listed show an 80-100% effect against, among others, Alopecurus myosuroides, Avena fatua, Digitaria sanguinalis, Echinochloa crus-galli, Lolium rigidum, Setaria viridis and Hordeum murinum.
  • the compounds according to the invention are therefore suitable for combating undesirable vegetation by the post-emergence method.

Abstract

Die vorliegende Erfindung betrifft neue herbizid wirksame 3-Phenylpyrrolin-2-one gemäß der allgemeinen Formel (I) oder agrochemisch akzeptable Salze davon, sowie deren Verwendung zur Bekämpfung von Unkräutern und Ungräsern in Nutzpflanzenkultur.

Description

Speziell substituierte 3-(2-Alkoxy-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-one und deren Verwendung als Herbizide Beschreibung Die vorliegende Erfindung betrifft neue herbizid wirksame 3-Phenylpyrrolin-2-one gemäß der allgemeinen Formel (I) oder agrochemisch akzeptable Salze davon, sowie deren Verwendung zur Bekämpfung von Unkräutern und Ungräsern in Nutzpflanzenkulturen. Die Verbindungsklasse der 3-Arylpyrrolidin-2,4-dione sowie deren Herstellung und Verwendung als Herbizide sind aus dem Stand der Technik wohl bekannt. Darüber hinaus sind aber auch zum Beispiel bicyclische 3-Aryl-pyrrolidin-2,4-dion-Derivate (EP-A- 355599, EP-A-415211 und JP-A-12-053670) sowie substituierte monocyclische 3-Aryl-pyrrolidin- 2,4-dion-Derivate (EP-A-377893 und EP-A-442077) mit herbizider, insektizider oder fungizider Wirkung beschrieben. 4-Alkinyl-substituierte-3-Phenylpyrrolidin-2,4-dione mit herbizider Wirkung sind ferner aus WO
96/82395, WO 98/05638, WO 01/74770, WO 15/032702, WO 15/040114 oder WO 17/060203 bekannt. Die Wirksamkeit dieser Herbizide gegen Schadpflanzen ist von zahlreichen Parametern abhängig, beispielsweise von der verwendeten Aufwandmenge, der Zubereitungsform (Formulierung), den jeweils zu bekämpfenden Schadpflanzen, dem Schadpflanzenspektrum, den Klima- und Bodenverhältnissen sowie der Dauer der Wirkung bzw. der Abbaugeschwindigkeit des Herbizids.
Zahlreiche Herbizide aus der Gruppe der 3-Arylpyrrolidin-2,4-dione erfordern, um eine ausreichende herbizide Wirkung zu entfalten, hohe Aufwandmengen und/oder sie haben ein zu schmales Unkrautspektrun, was deren Anwendung ökonomisch unattraktiv macht. Es besteht daher der Bedarf an alternativen Herbiziden, die verbesserte Eigenschaften aufweisen sowie ökonomisch attraktiv und gleichzeitig effizient sind. Aufgabe der vorliegenden Erfindung ist folglich die Bereitstellung von neuen Verbindungen, die die genannten Nachteile nicht aufweisen. Die vorliegende Erfindung betrifft daher neue substituierte 3-Phenylpyrrolin-2-one der allgemeinen Formel (I),
 
Figure imgf000003_0001
oder ein agrochemisch akzeptables Salz davon,
wobei
X C1-C6-Alkoxy oder C1-C6-Halogenalkoxy ist,
Y C1-C6-Alkyl, C1-C6-Halogenalkyl oder C3-C6-Cycloalkyl ist,
R1 C3-C6-Alkoxy, C1-C4-Alkoxy-C1-C4-Alkyl, C3-C6-Cycloalkyl, C1-C6-Halogenalkyl, C2-C6- Alkenyloxy oder C2-C6-Halogenalkenyloxy ist,
R2 Wasserstoff, C1-C6-Alkyl, C1-C4-Alkoxy-C2-C4-Alkyl, C1-C6-Halogenalkyl, C3-C6-Cycloalkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C1-C6-Alkoxy oder C1-C6 Halogenalkoxy ist,
G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei
L einer der folgenden Reste ist
Figure imgf000003_0002
worin R3 C1-C4-Alkyl oder C1-C3-Alkoxy-C1-C4-Alkyl ist,
R4 C1-C4-Alkyl ist,
R5 C1-C4-Alkyl, ein unsubstituiertes Phenyl oder ein einfach oder mehrfach mit Halogen, C1-C4- Alkyl, C1-C4-Haloalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl ist,
R6, R6‘ unabhängig voneinander Methoxy oder Ethoxy ist,
R7, R8 jeweils unabhängig voneinander Methyl, Ethyl, Phenyl ist, oder gemeinsam einen gesättigten 5-, 6- oder 7-gliedrigen Ring bilden, wobei ein Ringkohlenstoffatom gegebenenfalls durch ein Sauerstoff- oder Schwefelatom ersetzt sein kann, E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion ist, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen C1-C10-Alkyl oder C3-C7-Cycloalkyl, die unabhängig voneinander jeweils ein- oder mehrfach mit Fluor, Chlor, Brom, Cyano, Hydroxy substituiert oder durch ein- oder mehrere Sauerstoff- oder Schwefelatome unterbrochen sein können,   3
ein cyclisches sekundäres oder tertiäres aliphatisches oder heteroaliphatisches Ammoniumion ist, beispielsweise Morpholinium, Thiomorpholinium, Piperidinium, Pyrrolidinium oder jeweils protoniertes 1,4-Diazabicyclo[1.1.2]octane (DABCO) oder 1,5-Diazabicyclo[4.3.0]undec-7-en (DBU), ein heteroaromatisches Ammoniumkation ist, beispielsweise jeweils protoniertes Pyridin, 2- Methylpyridin, 3-Methylpyridin, 4-Methylpyridin, 2,4-Dimethylpyridin, 2,5-Di-methylpyridin, 2,6- Dimethylpyridin, 5-Ethyl-2-methylpyridin, Collidin, Pyrrol, Imidazol, Chinolin, Chinoxalin, 1,2- Dimethylimidazol, 1,3-Dimethylimidazolium-methylsulfat oder weiterhin auch für ein Trimethylsulfoniumion steht. Alkyl bedeutet gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen, z.B. C1-C6-Alkyl wie Methyl, Ethyl, Propyl, 1- Methylethyl, Butyl, 1-Methyl-propyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2- Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2- Dimethylpropyl,1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethyl- butyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3- Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl- 1-methylpropyl und 1-Ethyl-2-methylpropyl. Halogenalkyl bedeutet geradkettige oder verzweigte Alkylgruppen, wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome ersetzt sein können, z.B. C1- C2-Halogenalkyl wie Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1- Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor- 2-fluorethyl, 2-Chlor,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl und 1,1,1-Trifluorprop-2-yl. Alkenyl bedeutet ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z.B. C2-C6-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3- Butenyl, 1-Methyl-1-propenyl, 2-Methyl-1-propenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1- Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-1-butenyl, 2-Methyl-1-butenyl, 3-Methyl-1- butenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2- Methyl-3-butenyl, 3-Methyl-3-butenyl, 1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-1-propenyl, 1,2- Dimethyl-2-propenyl, 1-Ethyl-1-propenyl, 1-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4- Hexenyl, 5-Hexenyl, 1-Methyl-1-pentenyl, 2-Methyl-1-pentenyl, 3-Methyl-1-pentenyl, 4-Methyl-1- pentenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1- Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl-4-
  pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl, 1,2-Dimethyl-1-butenyl, 1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-1-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-1-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-1-butenyl, 3,3-Dimethyl-2-butenyl, 1-Ethyl-1-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-1- butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Trimethyl-2-propenyl, 1-Ethyl-1-methyl-2- propenyl, 1-Ethyl-2-methyl-1-propenyl und 1-Ethyl-2-methyl-2-propenyl. Cycloalkyl bedeutet ein carbocyclisches, gesättigtes Ringsystem mit vorzugsweise 3-8 Ring- C-Atomen, z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl. Im Falle von gegebenenfalls substituiertem Cycloalkyl werden cyclische Systeme mit Substituenten umfasst, wobei auch Substituenten mit einer Doppelbindung am Cycloalkylrest, z. B. eine Alkylidengruppe wie Methyliden, umfasst sind. Alkoxy bedeutet gesättigte, geradkettige oder verzweigte Alkoxyreste mit der jeweils angegebenen
Anzahl von Kohlenstoffatomen, z.B. C1-C6-Alkoxy wie Methoxy, Ethoxy, Propoxy, 1- Methylethoxy, Butoxy, 1-Methyl-propoxy, 2-Methylpropoxy, 1,1-Dimethylethoxy, Pentoxy, 1- Methylbutoxy, 2-Methylbutoxy, 3-Methylbutoxy, 2,2-Di-methylpropoxy, 1-Ethylpropoxy, Hexoxy, 1,1-Dimethylpropoxy, 1,2-Dimethylpropoxy,1-Methylpentoxy, 2-Methylpentoxy, 3-Methylpentoxy, 4-Methylpentoxy, 1,1-Dimethylbutoxy, 1,2-Dimethylbutoxy, 1,3-Dimethylbutoxy, 2,2- Dimethylbutoxy, 2,3-Dimethylbutoxy, 3,3-Dimethylbutoxy, 1-Ethylbutoxy, 2-Ethylbutoxy, 1,1,2- Trimethylpropoxy, 1,2,2-Trimethylpropoxy, 1-Ethyl-1-methylpropoxy und 1-Ethyl-2-methyl- propoxy. Durch Halogen substitiertes Alkoxy bedeutet geradkettige oder verzweigte Alkoxyreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen, wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können, z.B. C1-C2-Halogenalkoxy wie Chlormethoxy, Brommethoxy, Dichlormethoxy, Trichlormethoxy, Fluormethoxy, Difluormethoxy, Trifluormethoxy, Chlorfluormethoxy, Dichlor-fluormethoxy, Chlordifluormethoxy, 1-Chlorethoxy, 1-Bromethoxy, 1-Fluorethoxy, 2-Fluorethoxy, 2,2- Difluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-1,2-difluorethoxy, 2,2-Dichlor- 2-fluorethoxy, 2,2,2-Trichlorethoxy, Pentafluor-ethoxy und 1,1,1-Trifluorprop-2-oxy. Die Verbindungen der Formel (I) können als geometrische und/oder optische Isomere oder Isomerengemische in unterschiedlicher Zusammensetzung vorliegen. Beispielsweise für den Fall, daß der Substituent R1 ungleich Wasserstoff ist, können - abhängig von der Verknüpfung des Substituenten R1 - sowohl Enantiomere als auch cis-/trans-Isomere auftreten. Letztere sind folgendermaßen definiert:
  5
Figure imgf000006_0001
Die gegebenfalls bei der Synthese anfallenden Isomerengemische können mit den üblichen technischen Methoden getrennt werden. Sowohl die reinen Isomeren bzw. Tautomere als auch die Tautomeren- und Isomerengemische, deren Herstellung und Verwendung sowie diese enthaltende Mittel sind Gegenstand der vorliegenden Erfindung. Im Folgenden wird der Einfachheit halber jedoch stets von Verbindungen der Formel (I) gesprochen, obwohl sowohl die reinen Verbindungen als auch gegebenenfalls Gemische mit unterschiedlichen Anteilen an isomeren und tautomeren Verbindungen gemeint sind. Die erfindungsgemäßen Verbindungen sind durch die Formel (I) allgemein definiert. Bevorzugte Substituenten bzw. Bereiche der in der oben und nachstehend erwähnten Formeln aufgeführten Reste werden im Folgenden erläutert: Bevorzugt sind Verbindungen der allgemeinen Formel (I), in denen
X C1-C4-Alkoxy oder C1-C4-Halogenalkoxy ist,
Y C1-C4-Alkyl, C1-C4-Halogenalkyl oder C3-C6-Cycloalkyl ist,
R1 C3-C6-Alkoxy, C1-C4-Alkoxy-C1-C2-Alkyl, Cyclopropyl, C1-C6-Halogenalkyl, C3-C6- Alkenyloxy oder C3-C6-Halogenalkenyloxy ist
R2 Wasserstoff, C1-C6-Alkyl, C1-C2-Halogenalkyl, Cyclopropyl, C2-C4-Alkenyl, C2-C4-Alkinyl,
C1-C4-Alkoxy oder C1-C4-Halogenalkoxy ist,
G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei
L einer der folgenden Reste ist
Figure imgf000006_0002
  6
worin R3 C1-C4-Alkyl oder C1-C3-Alkoxy-C1-C4-Alkyl ist, R4 C1-C4-Alkyl ist, R5 C1-C4-Alkyl, ein unsubstituiertes Phenyl oder ein einfach oder mehrfach mit Halogen, C1-C4- Alkyl oder C1-C4-Haloalkyl, substituiertes Phenyl ist, E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion ist, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen C1-C10-Alkyl oder C3-C7-Cycloalkyl, die unabhängig voneinander jeweils ein- oder mehrfach mit Fluor, Chlor, Brom, Cyano, Hydroxy substituiert sind. Besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), in denen X C1-C4-Alkoxy oder C1-C4-Halogenalkoxy ist, Y C1-C4-Alkyl, C1-C4-Halogenalkyl oder Cyclopropyl ist, R1 C3-C6-Alkoxy, C1-C4-Alkoxy- C1-C2-Alkyl, Cyclopropyl, C3-C6-Halogenalkyl, C3-C4- Alkenyloxy oder C3-C4-Halogenalkenyloxy ist R2 Wasserstoff, C1-C6-Alkyl, C1-C2-Halogenalkyl, C2-C4-Alkenyl, C2-C4-Alkinyl, C1-C2-Alkoxy oder C1-C4-Halogenalkoxy ist, G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei L einer der folgenden Reste ist
Figure imgf000007_0001
worin R3 C1-C4-Alkyl oder C1-C3-Alkoxy-C1-C4-Alkyl ist, R4 C1-C4-Alkyl ist, E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein   Ammoniumion ist, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen C1-C10-Alkyl oder C3-C7-Cycloalkyl substituiert sind. Ganz besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), in denen X Methoxy oder Ethoxy, Y Methyl, Ethyl oder Cyclopropyl ist, R1 n-Propoxy, i-Propoxy, n-Butoxy, Allyloxy, Methoxymethyl oder Ethoxymethyl ist, R2 Wasserstoff oder Methyl ist, G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei L einer der folgenden Reste ist
Figure imgf000008_0002
worin R3 Methyl, Ethyl, i-Propyl oder t-Butyl ist, R4 Methyl oder Ethyl ist, E ein Natriumion oder ein Kaliumion ist. Die Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) ist im Prinzip bekannt bzw. kann in Anlehnung an literaturbekannte Verfahren erfolgen, beispielsweise indem man a) eine Verbindung der allgemeinen Formel (II),
Figure imgf000008_0001
in welcher R1, R2, X, und Y die oben angegebenen Bedeutungen haben, und R9 für Alkyl, bevorzugt für Methyl oder Ethyl steht, gegebenenfalls in Anwesenheit eines geeigneten Lösungs- oder
  8
Verdünnungsmittels, mit einer geeigneten Base unter formaler Abspaltung der Gruppe R9OH cyclisiert, oder b) eine Verbindung der allgemeinen Formel (Ia),
Figure imgf000009_0001
in der R1, R2, X und Y die oben angegebenen Bedeutungen haben, beispielsweise mit einer Verbindung der allgemeinen Formel (III), Hal-L (III) in der L die oben angegebene Bedeutung hat und Hal für ein Halogen, vorzugsweise Chlor oder Brom oder auch eine Sulfonsäuregruppe stehen kann, gegebenenfalls in Anwesenheit eines geeigneten Lösungs- oder Verdünnungsmittels sowie einer geeigneten Base, zur Reaktion bringt. Die Vorstufen der allgemeinen Formel (II) können in Analogie zu bekannten Verfahren, beispielsweise durch Umsetzung eines Aminosäureesters der allgemeinen Formel (IV) mit einer Phenylessigsäure der allgemeinen Formel (V), in der X und Y die oben beschriebene Bedeutung haben, gegebenenfalls durch Zusatz eines wasserentziehenden Mittels und gegebenenfalls in Anwesenheit eines geeigneten Lösungs- bzw. Verdünnungsmittels, hergestellt werden.
Figure imgf000009_0002
(IV) (V)
Aminoester der allgemeinen Formel (IV) sind literaturbekannt, beispielsweise aus WO 2006/000355.
Phenylessigsäuren der allgemeinen Formel (V) sind ebenfalls unter anderem aus WO 2015/040114 bekannt oder können in Analogie zu literaturbekannten Verfahren hergestellt werden. Die erfindungsgemäßen Verbindungen der Formel (I) (und/oder deren Salze), im folgenden zusammen als„erfindungsgemäße Verbindungen“ bezeichnet, weisen eine ausgezeichnete herbizide Wirksamkeit gegen ein breites Spektrum wirtschaftlich wichtiger mono- und dikotyler annueller Schadpflanzen auf.
  Gegenstand der vorliegenden Erfindung ist daher auch ein Verfahren zur Bekämpfung von unerwünschten Pflanzen oder zur Wachstumsregulierung von Pflanzen, vorzugsweise in
Pflanzenkulturen, worin eine oder mehrere erfindungsgemäße Verbindung(en) auf die Pflanzen (z.B.
Schadpflanzen wie mono- oder dikotyle Unkräuter oder unerwünschte Kulturpflanzen), das Saatgut (z.B. Körner, Samen oder vegetative Vermehrungsorgane wie Knollen oder Sprossteile mit Knospen) oder die Fläche, auf der die Pflanzen wachsen (z.B. die Anbaufläche), ausgebracht werden. Dabei können die erfindungsgemäßen Verbindungen z.B. im Vorsaat- (ggf. auch durch Einarbeitung in den
Boden), Vorauflauf- oder Nachauflaufverfahren ausgebracht werden. Im einzelnen seien beispielhaft einige Vertreter der mono- und dikotylen Unkrautflora genannt, die durch die erfindungsgemäßen
Verbindungen kontrolliert werden können, ohne dass durch die Nennung eine Beschränkung auf bestimmte Arten erfolgen soll. Monokotyle Schadpflanzen der Gattungen: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata, Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum. Dikotyle Unkräuter der Gattungen: Abutilon, Amaranthus, Ambrosia, Anoda, Anthemis, Aphanes, Artemisia, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erysimum, Euphorbia, Galeopsis, Galinsoga, Galium, Hibiscus, Ipomoea, Kochia, Lamium, Lepidium, Lindernia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio, Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium. Werden die erfindungsgemäßen Verbindungen vor dem Keimen auf die Erdoberfläche appliziert, so wird entweder das Auflaufen der Unkrautkeimlinge vollständig verhindert oder die Unkräuter wachsen bis zum Keimblattstadium heran, stellen jedoch dann ihr Wachstum ein. Bei Applikation der Wirkstoffe auf die grünen Pflanzenteile im Nachauflaufverfahren tritt nach der Behandlung Wachstumsstop ein und die Schadpflanzen bleiben in dem zum Applikationszeitpunkt vorhandenen Wachstumsstadium stehen oder sterben nach einer gewissen Zeit ganz ab, so dass auf diese Weise eine für die Kulturpflanzen schädliche Unkrautkonkurrenz sehr früh und nachhaltig beseitigt wird. Die erfindungsgemäßen Verbindungen können in Nutzkulturen Selektivitäten aufweisen und können auch als nichtselektive Herbizide eingesetzt werden.
  Aufgrund ihrer herbiziden und pflanzenwachstumsregulatorischen Eigenschaften können die Wirkstoffe auch zur Bekämpfung von Schadpflanzen in Kulturen von bekannten oder noch zu entwickelnden gentechnisch veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch
Resistenzen gegenüber bestimmten in der Agrarindustrie verwendeten Wirkstoff , vor allem bestimmten Herbiziden, Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von
Pflanzenkrankheiten wie bestimmten Insekten oder Mikroorganismen wie Pilzen, Bakterien oder Viren. Andere besondere Eigenschaften betreffen z.B. das Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Ernteguts bekannt. Weitere besondere Eigenschaften liegen in einer Toleranz oder Resistenz gegen abiotische Stressoren z.B. Hitze, Kälte, Trockenheit, Salz und ultraviolette Strahlung. Bevorzugt ist die Anwendung der erfindungsgemäßen Verbindungen der Formel (I) oder deren Salze in wirtschaftlich bedeutenden transgenen Kulturen von Nutz-und Zierpflanzen,
Die Verbindungen der Formel (I) können als Herbizide in Nutzpflanzenkulturen eingesetzt werden, welche gegenüber den phytotoxischen Wirkungen der Herbizide resistent sind bzw. gentechnisch resistent gemacht wurden. Herkömmliche Wege zur Herstellung neuer Pflanzen, die im Vergleich zu bisher vorkommenden
Pflanzen modifizierte Eigenschaften aufweisen, bestehen beispielsweise in klassischen
Züchtungsverfahren und der Erzeugung von Mutanten. Alternativ können neue Pflanzen mit veränderten Eigenschaften mit Hilfe gentechnischer Verfahren erzeugt werden (siehe z.B.
EP 0221044, EP 0131624). Beschrieben wurden beispielsweise in mehreren Fällen gentechnische Veränderungen von Kulturpflanzen zwecks Modifikation der in den Pflanzen synthetisierten Stärke (z.B. WO 92/011376 A, WO 92/014827 A, WO 91/019806 A), transgene Kulturpflanzen, welche gegen bestimmte Herbizide vom Typ Glufosinate (vgl. z.B. EP 0242236 A, EP 0242246 A) oder Glyphosate (WO 92/000377 A) oder der Sulfonylharnstoffe (EP 0257993 A, US 5,013,659) oder gegen Kombinationen oder Mischungen dieser Herbizide durch„gene stacking“ resistent sind, wie transgenen Kulturpflanzen z. B. Mais oder Soja mit dem Handelsnamen oder der Bezeichnung
OptimumTM GATTM (Glyphosate ALS Tolerant).
- transgene Kulturpflanzen, beispielsweise Baumwolle, mit der Fähigkeit Bacillus
thuringiensis-Toxine (Bt-Toxine) zu produzieren, welche die Pflanzen gegen bestimmte
Schädlinge resistent machen (EP 0142924 A, EP 0193259 A).
- transgene Kulturpflanzen mit modifizierter Fettsäurezusammensetzung (WO 91/013972 A).
- gentechnisch veränderte Kulturpflanzen mit neuen Inhalts- oder Sekundärstoffen z.B. neuen
 
Phytoalexinen, die eine erhöhte Krankheitsresistenz verursachen (EP 0309862 A, EP 0464461
A)
- gentechnisch veränderte Pflanzen mit reduzierter Photorespiration, die höhere Erträge und
höhere Stresstoleranz aufweisen (EP 0305398 A)
- transgene Kulturpflanzen, die pharmazeutisch oder diagnostisch wichtige Proteine
produzieren („molecular pharming“)
- transgene Kulturpflanzen, die sich durch höhere Erträge oder bessere Qualitat auszeichnen
- transgene Kulturpflanzen die sich durch eine Kombinationen z.B. der o. g. neuen
Eigenschaften auszeichnen („gene stacking“) Zahlreiche molekularbiologische Techniken, mit denen neue transgene Pflanzen mit veränderten
Eigenschaften hergestellt werden können, sind im Prinzip bekannt; siehe z.B. I. Potrykus und G.
Spangenberg (eds.) Gene Transfer to Plants, Springer Lab Manual (1995), Springer Verlag Berlin, Heidelberg. oder Christou, "Trends in Plant Science" 1 (1996) 423-431). Für derartige gentechnische Manipulationen können Nucleinsäuremoleküle in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA- Sequenzen erlauben. Mit Hilfe von Standardverfahren können z.B. Basenaustausche vorgenommen, Teilsequenzen entfernt oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden, siehe z.B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2.
Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; oder Winnacker "Gene und
Klone", VCH Weinheim 2. Auflage 1996 Die Herstellung von Pflanzenzellen mit einer verringerten Aktivität eines Genprodukts kann beispielsweise erzielt werden durch die Expression mindestens einer entsprechenden antisense-RNA, einer sense-RNA zur Erzielung eines Cosuppressionseffektes oder die Expression mindestens eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte des obengenannten Genprodukts spaltet. Hierzu können zum einen DNA-Moleküle verwendet werden, die die gesamte codierende Sequenz eines Genprodukts einschließlich eventuell vorhandener flankierender Sequenzen umfassen, als auch DNA-Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense-Effekt zu bewirken. Möglich ist auch die Verwendung von DNA-Sequenzen, die einen hohen Grad an Homologie zu den codiereden
Sequenzen eines Genprodukts aufweisen, aber nicht vollkommen identisch sind. Bei der Expression von Nucleinsäuremolekülen in Pflanzen kann das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein. Um aber die Lokalisation in einem bestimmten Kompartiment zu erreichen, kann z.B. die codierende Region mit DNA-Sequenzen  
verknüpft werden, die die Lokalisierung in einem bestimmten Kompartiment gewährleisten.
Derartige Sequenzen sind dem Fachmann bekannt (siehe beispielsweise Braun et al., EMBO J. 11
(1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106). Die Expression der Nukleinsäuremoleküle kann auch in den Organellen der Pflanzenzellen stattfinden. Die transgenen Pflanzenzellen können nach bekannten Techniken zu ganzen Pflanzen regeneriert werden. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen
Pflanzenspezies handeln, d.h., sowohl monokotyle als auch dikotyle Pflanzen. So sind transgene Pflanzen erhältlich, die veränderte Eigenschaften durch Überexpression, Suppression oder Inhibierung homologer (= natürlicher) Gene oder Gensequenzen oder Expression heterologer (= fremder) Gene oder Gensequenzen aufweisen. Vorzugsweise können die erfindungsgemäßen Verbindungen (I) in transgenen Kulturen eingesetzt werden, welche gegen Wuchsstoffe, wie z.B. 2,4-D, Dicamba oder gegen Herbizide, die essentielle Pflanzenenzyme, z.B. Acetolactatsynthasen (ALS), EPSP Synthasen, Glutaminsynthasen (GS) oder Hydoxyphenylpyruvat Dioxygenasen (HPPD) hemmen, respektive gegen Herbizide aus der Gruppe der Sulfonylharnstoffe, der Glyphosate, Glufosinate oder Benzoylisoxazole und analogen Wirkstoffe, oder gegen beliebige Kombinationen dieser Wirkstoffe, resistent sind. Besonders bevorzugt können die erfindungsgemäßen Verbindungen in transgenen Kulturpflanzen eingesetzt werden, die gegen eine Kombination von Glyphosaten und Glufosinaten, Glyphosaten und
Sulfonylharnstoffen oder Imidazolinonen resistent sind. Ganz besonders bevorzugt können die erfindungsgemäßen Verbindungen in transgenen Kulturpflanzen wie z. B. Mais oder Soja mit dem
Handelsnamen oder der Bezeichnung OptimumTM GATTM (Glyphosate ALS Tolerant) eingesetzt werden. Bei der Anwendung der erfindungsgemäßen Wirkstoffe in transgenen Kulturen treten neben den in anderen Kulturen zu beobachtenden Wirkungen gegenüber Schadpflanzen oftmals Wirkungen auf, die für die Applikation in der jeweiligen transgenen Kultur spezifisch sind, beispielsweise ein verändertes oder speziell erweitertes Unkrautspektrum, das bekämpft werden kann, veränderte Aufwandmengen, die für die Applikation eingesetzt werden können, vorzugsweise gute Kombinierbarkeit mit den Herbiziden, gegenüber denen die transgene Kultur resistent ist, sowie Beeinflussung von Wuchs und Ertrag der transgenen Kulturpflanzen. Gegenstand der Erfindung ist deshalb auch die Verwendung der erfindungsgemäßen Verbindungen der Formel (I) als Herbizide zur Bekämpfung von Schadpflanzen in transgenen Kulturpflanzen.
  3
Die erfindungsgemäßen Verbindungen können in Form von Spritzpulvern, emulgierbaren
Konzentraten, versprühbaren Lösungen, Stäubemitteln oder Granulaten in den üblichen
Zubereitungen angewendet werden. Gegenstand der Erfindung sind deshalb auch herbizide und pflanzenwachstumsregulierende Mittel, welche die erfindungsgemäßen Verbindungen enthalten. Die erfindungsgemäßen Verbindungen können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch-physikalischen Parameter vorgegeben sind. Als Formulierungsmöglichkeiten kommen beispielsweise in Frage: Spritzpulver (WP), wasserlösliche Pulver (SP), wasserlösliche Konzentrate, emulgierbare Konzentrate (EC), Emulsionen (EW), wie Öl-in-Wasser- und Wasser-in-Öl-Emulsionen, versprühbare Lösungen, Suspensionskonzentrate (SC), Dispersionen auf Öl- oder Wasserbasis, ölmischbare Lösungen, Kapselsuspensionen (CS), Stäubemittel (DP), Beizmittel, Granulate für die Streu- und Bodenapplikation, Granulate (GR) in
Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), wasserlösliche Granulate (SG), ULV-Formulierungen, Mikrokapseln und Wachse. Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in:
Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl.1986, Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker, N.Y., 1973, K. Martens, "Spray
Drying" Handbook, 3rd Ed.1979, G. Goodwin Ltd. London. Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J., H.v. Olphen, "Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y., C. Marsden, "Solvents Guide", 2nd Ed., Interscience, N.Y.1963, McCutcheon's "Detergents and Emulsifiers Annual", MC
Publ. Corp., Ridgewood N.J., Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem.
Publ. Co. Inc., N.Y. 1964, Schönfeldt, "Grenzflächenaktive Äthylenoxid-addukte", Wiss.
Verlagsgesell., Stuttgart 1976, Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl.1986. Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen Wirkstoffen, wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix. Als Kombinationspartner für die erfindungsgemäßen Verbindungen in Mischungsformulierungen oder im
Tank-Mix sind beispielsweise bekannte Wirkstoffe, die auf einer Inhibition von beispielsweise Acetolactat-Synthase, Acetyl-CoA-Carboxylase, Cellulose-Synthase, Enolpyruvylshikimat-3-phosphat- Synthase, Glutamin-Synthetase, p-Hydroxyphenylpyruvat-Dioxygenase, Phytoendesaturase, Photosystem I, Photosystem II oder Protoporphyrinogen-Oxidase beruhen, einsetzbar, wie sie z.B. aus
 
Weed Research 26 (1986) 441-445 oder "The Pesticide Manual", 16th edition, The British Crop Protection Council und the Royal Soc. of Chemistry, 2006 und dort zitierter Literatur beschrieben sind. Nachfolgend werden beispielhaft bekannte Herbizide oder Pflanzenwachstumsregulatoren genannt, die mit den erfindungsgemäßen Verbindungen kombiniert werden können, wobei diese Wirkstoffe entweder mit ihrem "common name" in der englischsprachigen Variante gemäß International Organization for Standardization (ISO) oder mit dem chemischen Namen bzw. mit der Codenummer bezeichnet sind. Dabei sind stets sämtliche Anwendungsformen wie beispielsweise Säuren, Salze, Ester sowie auch alle isomeren Formen wie Stereoisomere und optische Isomere umfaßt, auch wenn diese nicht explizit erwähnt sind. Beispiele für solche herbiziden Mischungspartner sind: Acetochlor, acifluorfen, acifluorfen-sodium, aclonifen, alachlor, allidochlor, alloxydim, alloxydim- sodium, ametryn, amicarbazone, amidochlor, amidosulfuron, 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1H- indol-6-yl)pyridine-2-carboxylic acid, aminocyclopyrachlor, aminocyclopyrachlor-potassium, aminocyclopyrachlor-methyl, aminopyralid, amitrole, ammoniumsulfamate, anilofos, asulam, atrazine, azafenidin, azimsulfuron, beflubutamid, benazolin, benazolin-ethyl, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone, benzobicyclon, benzofenap, bicyclopyron, bifenox, bilanafos, bilanafos-sodium, bispyribac, bispyribac-sodium, bixlozone, bromacil, bromobutide, bromofenoxim, bromoxynil, bromoxynil-butyrate, -potassium, -heptanoate und -octanoate, busoxinone, butachlor, butafenacil, butamifos, butenachlor, butralin, butroxydim, butylate, cafenstrole, carbetamide, carfentrazone, carfentrazone-ethyl, chloramben, chlorbromuron, 1-{2-Chlor-3-[(3-cyclopropyl-5- hydroxy-1-methyl-1H-pyrazol-4-yl)carbonyl]-6-(trifluormethyl)phenyl}piperidin-2-on, 4-{2-Chlor-3- [(3,5-dimethyl-1H-pyrazol-1-yl)methyl]-4-(methylsulfonyl)benzoyl}-1,3-dimethyl-1H-pyrazol-5-yl-1,3- dimethyl-1H-pyrazol-4-carboxylat, chlorfenac, chlorfenac-sodium, chlorfenprop, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, 2-[2-Chlor-4-(methylsulfonyl)-3- (morpholin-4-ylmethyl)benzoyl]-3-hydroxycyclohex-2-en-1-on, 4-{2-Chlor-4-(methylsulfonyl)-3- [(2,2,2-trifluorethoxy)methyl]benzoyl}-1-ethyl-1H-pyrazol-5-yl-1,3-dimethyl-1H-pyrazol-4-carboxylat, chlorophthalim, chlorotoluron, chlorthal-dimethyl, chlorsulfuron, 3-[5-Chlor-4-(trifluormethyl)pyridin-2- yl]-4-hydroxy-1-methylimidazolidin-2-on, cinidon, cinidon-ethyl, cinmethylin, cinosulfuron, clacyfos, clethodim, clodinafop, clodinafop-propargyl, clomazone, clomeprop, clopyralid, cloransulam, cloransulam-methyl, cumyluron, cyanamide, cyanazine, cycloate, cyclopyranil, cyclopyrimorate, cyclosulfamuron, cycloxydim, cyhalofop, cyhalofop-butyl, cyprazine, 2,4-D, 2,4-D-butotyl, -butyl, - dimethylammonium, -diolamin, -ethyl, 2-ethylhexyl, -isobutyl, -isooctyl, -isopropylammonium, - potassium, -triisopropanolammonium und -trolamine, 2,4-DB, 2,4-DB-butyl, -dimethylammonium, isooctyl, -potassium und -sodium, daimuron (dymron), dalapon, dazomet, n-decanol, desmedipham, detosyl-pyrazolate (DTP), dicamba, dichlobenil, dichlorprop, dichlorprop-P, diclofop, diclofop-methyl, diclofop-P-methyl, diclosulam, difenzoquat, diflufenican, diflufenzopyr, diflufenzopyr-sodium, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, 3-(2,6-
  Dimethylphenyl)-6-[(2-hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl]-1-methylchinazolin-2,4(1H,3H)- dion, 1,3-Dimethyl-4-[2-(methylsulfonyl)-4-(trifluormethyl)benzoyl]-1H-pyrazol-5-yl-1,3-dimethyl-1H- pyrazol-4-carboxylat, dimetrasulfuron, dinitramine, dinoterb, diphenamid, diquat, diquat-dibromid, dithiopyr, diuron, DMPA, DNOC, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron, ethamet- sulfuron-methyl, ethiozin, ethofumesate, ethoxyfen, ethoxyfen-ethyl, ethoxysulfuron, etobenzanid, Ethyl- [(3-{2-chlor-4-fluor-5-[3-methyl-2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-1(2H)- yl]phenoxy}pyridin-2-yl)oxy]acetat, F-9960, F-5231, i.e. N-[2-Chlor-4-fluor-5-[4-(3-fluorpropyl)-4,5- dihydro-5-oxo-1H-tetrazol-1-yl]-phenyl]-ethansulfonamid, F-7967, i.e. 3-[7-Chlor-5-fluor-2- (trifluormethyl)-1H-benzimidazol-4-yl]-1-methyl-6-(trifluormethyl)pyrimidin-2,4(1H,3H)-dion,
fenoxaprop, fenoxaprop-P, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenoxasulfone, fenquinotrione, fentrazamide, flamprop, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, florasulam, florpyrauxifen, florpyrauxifen-benzyl, fluazifop, fluazifop-P, fluazifop-butyl, fluazifop-P-butyl, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazin, fluometuron, flurenol, flurenol-butyl, - dimethylammonium und -methyl, fluoroglycofen, fluoroglycofen-ethyl, flupropanate, flupyrsulfuron, flupyrsulfuron-methyl-sodium, fluridone, flurochloridone, fluroxypyr, fluroxypyr-meptyl, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, fomesafen-sodium, foramsulfuron, fosamine, glufosinate, glufosinate-ammonium, glufosinate-P-sodium, glufosinate-P-ammonium, glufosinate-P-sodium, glyphosate, glyphosate-ammonium, -isopropylammonium, -diammonium, -dimethylammonium, - potassium, -sodium und -trimesium, H-9201, i.e. O-(2,4-Dimethyl-6-nitrophenyl)-O-ethyl- isopropylphosphoramidothioat, halauxifen, halauxifen-methyl, halosafen, halosulfuron, halosulfuron- methyl, haloxyfop, haloxyfop-P, haloxyfop-ethoxyethyl, haloxyfop-P-ethoxyethyl, haloxyfop-methyl, haloxyfop-P-methyl, hexazinone, HW-02, i.e. 1-(Dimethoxyphosphoryl)-ethyl-(2,4- dichlorphenoxy)acetat, 4-Hydroxy-1-methoxy-5-methyl-3-[4-(trifluormethyl)pyridin-2-yl]imidazolidin- 2-on, 4-Hydroxy-1-methyl-3-[4-(trifluormethyl)pyridin-2-yl]imidazolidin-2-on, (5-Hydroxy-1-methyl- 1H-pyrazol-4-yl)(3,3,4-trimethyl-1,1-dioxido-2,3-dihydro-1-benzothiophen-5-yl)methanon, 6-[(2- Hydroxy-6-oxocyclohex-1-en-1-yl)carbonyl]-1,5-dimethyl-3-(2-methylphenyl)chinazolin-2,4(1H,3H)- dion, imazamethabenz, Imazamethabenz-methyl, imazamox, imazamox-ammonium, imazapic, imazapic- ammonium, imazapyr, imazapyr-isopropylammonium, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-immonium, imazosulfuron, indanofan, indaziflam, iodosulfuron, iodosulfuron-methyl- sodium, ioxynil, ioxynil-octanoate, -potassium und sodium, ipfencarbazone, isoproturon, isouron, isoxaben, isoxaflutole, karbutilate, KUH-043, i.e. 3-({[5-(Difluormethyl)-1-methyl-3-(trifluormethyl)- 1H-pyrazol-4-yl]methyl}sulfonyl)-5,5-dimethyl-4,5-dihydro-1,2-oxazol, ketospiradox, lactofen, lenacil, linuron, MCPA, MCPA-butotyl, -dimethylammonium, -2-ethylhexyl, -isopropylammonium, -potassium und -sodium, MCPB, MCPB-methyl, -ethyl und -sodium, mecoprop, mecoprop-sodium, und -butotyl, mecoprop-P, mecoprop-P-butotyl, -dimethylammonium, -2-ethylhexyl und -potassium, mefenacet, mefluidide, mesosulfuron, mesosulfuron-methyl, mesotrione, methabenzthiazuron, metam, metamifop, metamitron, metazachlor, metazosulfuron, methabenzthiazuron, methiopyrsulfuron, methiozolin, 2-   ({2-[(2-Methoxyethoxy)methyl]-6-(trifluormethyl)pyridin-3-yl}carbonyl)cyclohexan-1,3-dion, methyl isothiocyanate, 1-Methyl-4-[(3,3,4-trimethyl-1,1-dioxido-2,3-dihydro-1-benzothiophen-5-yl)carbonyl]- 1H-pyrazol-5-ylpropan-1-sulfonat, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, molinat, monolinuron, monosulfuron, monosulfuron-ester, MT-5950, i.e. N-[3-chlor-4-(1-methylethyl)-phenyl]-2-methylpentanamid, NGGC-011, napropamide, NC-310, i.e.4-(2,4-Dichlorbenzoyl)-1-methyl-5-benzyloxypyrazol, neburon, nicosulfuron, nonanoic acid (Pelargonsäure), norflurazon, oleic acid (fatty acids), orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefon, oxotrione (lancotrione), oxyfluorfen, paraquat, paraquat dichloride, pebulate, pendimethalin, penoxsulam, pentachlorphenol, pentoxazone, pethoxamid, petroleum oils, phenmedipham, picloram, picolinafen, pinoxaden, piperophos, pretilachlor, primisulfuron, primisulfuron-methyl, prodiamine, profoxydim, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propoxycarbazone-sodium, propyrisulfuron, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen, pyraflufen-ethyl, pyrasulfotole, pyrazolynate (pyrazolate), pyrazosulfuron, pyrazosulfuron-ethyl, pyrazoxyfen, pyribambenz, pyribambenz-isopropyl, pyribambenz-propyl, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobac, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, pyroxasulfone, pyroxsulam, quinclorac, quinmerac, quinoclamine, quizalofop, quizalofop-ethyl, quizalofop-P, quizalofop-P-ethyl, quizalofop-P-tefuryl, QYM-201, QYR-301, rimsulfuron, saflufenacil, sethoxydim, siduron, simazine, simetryn, sulcotrion, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosulfuron, , SYN-523, SYP-249, i.e. 1-Ethoxy-3-methyl-1-oxobut-3-en-2-yl-5-[2-chlor-4- (trifluormethyl)phenoxy]-2-nitrobenzoat, SYP-300, i.e.1-[7-Fluor-3-oxo-4-(prop-2-in-1-yl)-3,4-dihydro- 2H-1,4-benzoxazin-6-yl]-3-propyl-2-thioxoimidazolidin-4,5-dion, 2,3,6-TBA, TCA (Trifluoressigsäure), TCA-sodium, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbucarb, terbumeton, terbuthylazin, terbutryn, tetflupyrolimet, thenylchlor, thiazopyr, thiencarbazone, thiencarbazone-methyl, thifensulfuron, thifensulfuron-methyl, thiobencarb, tiafenacil, tolpyralate, topramezone, tralkoxydim, triafamone, tri-allate, triasulfuron, triaziflam, tribenuron, tribenuron-methyl, triclopyr, trietazine, trifloxysulfuron, trifloxysulfuron-sodium, trifludimoxazin, trifluralin, triflusulfuron, triflusulfuron- methyl, tritosulfuron, urea sulfate, vernolate, ZJ-0862, i.e. 3,4-Dichlor-N-{2-[(4,6-dimethoxypyrimidin- 2-yl)oxy]benzyl}anilin. Beispiele für Pflanzenwachstumsregulatoren als mögliche Mischungspartner sind: Acibenzolar, acibenzolar-S-methyl, 5-Aminolävulinsäure, ancymidol, 6-benzylaminopurine, Brassinolid, Catechin, chlormequat chloride, cloprop, cyclanilide, 3-(Cycloprop-1-enyl)propionsäure, daminozide, dazomet, n-decanol, dikegulac, dikegulac-sodium, endothal, endothal-dipotassium, -disodium, und mono(N,N-dimethylalkylammonium), ethephon, flumetralin, flurenol, flurenol-butyl, flurprimidol, forchlorfenuron, gibberellic acid, inabenfide, indol-3-acetic acid (IAA), 4-indol-3-ylbutyric acid, isoprothiolane, probenazole, Jasmonsäure, Jasmonsäuremethylester, maleic hydrazide, mepiquat chloride,
 
1-methylcyclopropene, 2-(1-naphthyl)acetamide, 1-naphthylacetic acid, 2- naphthyloxyacetic acid, nitrophenolate-mixture, 4-Oxo-4[(2-phenylethyl)amino]buttersäure, paclobutrazol, N-phenylphthalamic acid, prohexadione, prohexadione-calcium, prohydrojasmone, Salicylsäure, Strigolacton, tecnazene, thidiazuron, triacontanol, trinexapac, trinexapac-ethyl, tsitodef, uniconazole, uniconazole-P. Safener, die in Kombination mit den erfindungsgemäßen Verbindungen der Formel (I) und ggf. in Kombinationen mit weiteren Wirkstoffen wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden wie oben aufgelistet, eingesetzt werden können, sind vorzugsweise ausgewählt aus der Gruppe bestehend aus: S1) Verbindungen der Formel (S1),
Figure imgf000018_0001
wobei die Symbole und Indizes folgende Bedeutungen haben: nA ist eine natürliche Zahl von 0 bis 5, vorzugsweise 0 bis 3; R 1
A ist Halogen, (C1-C4)Alkyl, (C1-C4)Alkoxy, Nitro oder (C1-C4)Haloalkyl; WA ist ein unsubstituierter oder substituierter divalenter heterocyclischer Rest aus der Gruppe der teilungesättigten oder aromatischen Fünfring-Heterocyclen mit 1 bis 3 Heteroringatomen aus der Gruppe N und O, wobei mindestens ein N-Atom und höchstens ein O-Atom im Ring enthalten ist, vorzugsweise ein Rest aus der Gruppe (W 1
A ) bis (W 4
A ),
Figure imgf000018_0002
mA ist 0 oder 1; R 2
A ist OR 3
A , SR 3
A oder NR 3
A R 4
A oder ein gesättigter oder ungesättigter 3- bis 7-gliedriger Heterocyclus mit mindestens einem N-Atom und bis zu 3 Heteroatomen, vorzugsweise aus der Gruppe O und S, der über das N-Atom mit der Carbonylgruppe in (S1) verbunden ist und unsubstituiert oder durch Reste aus der Gruppe (C1-C4)Alkyl, (C1-C4)Alkoxy oder gegebenenfalls substituiertes Phenyl substituiert ist, vorzugsweise ein Rest der Formel OR 3
A , NHR 4
A oder N(CH3)2,
  insbesondere der Formel OR 3
A ; R 3
A ist Wasserstoff oder ein unsubstituierter oder substituierter aliphatischer Kohlenwasserstoffrest, vorzugsweise mit insgesamt 1 bis 18 C-Atomen; R 4
A ist Wasserstoff, (C1-C6)Alkyl, (C1-C6)Alkoxy oder substituiertes oder unsubstituiertes Phenyl; R 5
A ist H, (C1-C8)Alkyl, (C1-C8)Haloalkyl, (C1-C4)Alkoxy(C1-C8)Alkyl, Cyano oder COOR 9
A , worin R 9
A Wasserstoff, (C1-C8)Alkyl, (C1-C8)Haloalkyl, (C1-C4)Alkoxy-(C1-C4)alkyl, (C1-C6)Hydroxyalkyl, (C3-C12)Cycloalkyl oder Tri-(C1-C4)-alkyl-silyl ist; R 6
A , R 7
A , R 8
A sind gleich oder verschieden Wasserstoff, (C1-C8)Alkyl, (C1-C8)Haloalkyl, (C3- C12)Cycloalkyl oder substituiertes oder unsubstituiertes Phenyl; vorzugsweise: a) Verbindungen vom Typ der Dichlorphenylpyrazolin-3-carbonsäure (S1a), vorzugsweise Verbindungen wie 1-(2,4-Dichlorphenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazolin-3-carbonsäure, 1-(2,4-Dichlorphenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazolin-3-carbonsäureethylester (S1-1) ("Mefenpyr-diethyl"), und verwandte Verbindungen, wie sie in der WO-A-91/07874 beschrieben sind; b) Derivate der Dichlorphenylpyrazolcarbonsäure (S1b), vorzugsweise Verbindungen wie 1-(2,4-Dichlorphenyl)-5-methyl-pyrazol-3-carbonsäureethylester (S1-2), 1-(2,4-Dichlorphenyl)-5-isopropyl-pyrazol-3-carbonsäureethylester (S1-3), 1-(2,4-Dichlorphenyl)-5-(1,1-dimethyl-ethyl)pyrazol-3-carbonsäureethyl-ester (S1-4) und verwandte Verbindungen, wie sie in EP-A-333131 und EP-A-269806 beschrieben sind; c) Derivate der 1,5-Diphenylpyrazol-3-carbonsäure (S1c), vorzugsweise Verbindungen wie 1-(2,4-Dichlorphenyl)-5-phenylpyrazol-3-carbonsäureethylester (S1-5), 1-(2-Chlorphenyl)-5-phenylpyrazol-3-carbonsäuremethylester (S1-6) und verwandte Verbindungen wie sie beispielsweise in der EP-A-268554 beschrieben sind; d) Verbindungen vom Typ der Triazolcarbonsäuren (S1d), vorzugsweise Verbindungen wie Fenchlorazol(-ethylester), d.h. 1-(2,4-Dichlorphenyl)-5-trichlormethyl-(1H)-1,2,4-triazol-3-carbon- säureethylester (S1-7), und verwandte Verbindungen wie sie in EP-A-174562 und EP-A-346620 beschrieben sind; e) Verbindungen vom Typ der 5-Benzyl- oder 5-Phenyl-2-isoxazolin-3- carbonsäure oder der 5,5- 30 Diphenyl-2-isoxazolin-3-carbonsäure (S1e), vorzugsweise Verbindungen wie
  5-(2,4-Dichlorbenzyl)-2-isoxazolin-3-carbonsäureethylester (S1-8) oder 5-Phenyl-2-isoxazolin-3- carbonsäureethylester (S1-9) und verwandte Verbindungen, wie sie in WO-A-91/08202 beschrieben sind, bzw. 5,5-Diphenyl-2-isoxazolin-3-carbonsäure (S1-10) oder 5,5-Diphenyl-2-isoxazolin-3- carbonsäureethylester (S1-11) ("Isoxadifen-ethyl") oder -n-propylester (S1-12) oder der 5-(4-Fluorphenyl)-5-phenyl-2-isoxazolin-3-carbonsäureethylester (S1-13), wie sie in der Patentanmeldung WO-A-95/07897 beschrieben sind. S2) Chinolinderivate der Formel (S2),
Figure imgf000020_0001
wobei die Symbole und Indizes folgende Bedeutungen haben: R 1
B ist Halogen, (C1-C4)Alkyl, (C1-C4)Alkoxy, Nitro oder (C1-C4)Haloalkyl; nB ist eine natürliche Zahl von 0 bis 5, vorzugsweise 0 bis 3; R 2
B ist OR 3
B , SR 3
B oder NR 3
B R 4
B oder ein gesättigter oder ungesättigter 3- bis 7-gliedriger Heterocyclus mit mindestens einem N-Atom und bis zu 3 Heteroatomen, vorzugsweise aus der Gruppe O und S, der über das N-Atom mit der Carbonylgruppe in (S2) verbunden ist und unsubstituiert oder durch Reste aus der Gruppe (C1-C4)Alkyl, (C1-C4)Alkoxy oder gegebenenfalls substituiertes Phenyl substituiert ist, vorzugsweise ein Rest der Formel OR 3
B , NHR 4
B oder N(CH3)2, insbesondere der Formel OR 3
B ; R 3
B ist Wasserstoff oder ein unsubstituierter oder substituierter aliphatischer Kohlenwasserstoffrest, vorzugsweise mit insgesamt 1 bis 18 C-Atomen; R 4
B ist Wasserstoff, (C1-C6)Alkyl, (C1-C6)Alkoxy oder substituiertes oder unsubstituiertes Phenyl; TB ist eine (C1 oder C2)-Alkandiylkette, die unsubstituiert oder mit einem oder zwei (C1- C4)Alkylresten oder mit [(C1-C3)-Alkoxy]-carbonyl substituiert ist; vorzugsweise: a) Verbindungen vom Typ der 8-Chinolinoxyessigsäure (S2a), vorzugsweise (5-Chlor-8-chinolinoxy)essigsäure-(1-methylhexyl)ester ("Cloquintocet-mexyl") (S2-1), 25 (5-Chlor-8-chinolinoxy)essigsäure-(1,3-dimethyl-but-1-yl)ester (S2-2),
  (5-Chlor-8-chinolinoxy)essigsäure-4-allyloxy-butylester (S2-3), (5-Chlor-8-chinolinoxy)essigsäure-1-allyloxy-prop-2-ylester (S2-4), (5-Chlor-8-chinolinoxy)essigsäureethylester (S2-5), (5-Chlor-8-chinolinoxy)essigsäuremethylester (S2-6), (5-Chlor-8-chinolinoxy)essigsäureallylester (S2-7), (5-Chlor-8-chinolinoxy)essigsäure-2-(2-propyliden-iminoxy)-1-ethylester (S2-8), (5-Chlor-8- chinolinoxy)essigsäure-2-oxo-prop-1-ylester (S2-9) und verwandte Verbindungen, wie sie in EP-A-86750, EP-A-94349 und EP-A-191736 oder EP-A-0 492 366 beschrieben sind, sowie (5- Chlor-8-chinolinoxy)essigsäure (S2-10), deren Hydrate und Salze, beispielsweise deren Lithium-, Natrium- Kalium-, Kalzium-, Magnesium-, Aluminium-, Eisen-, Ammonium-, quartäre Ammonium-, Sulfonium-, oder Phosphoniumsalze wie sie in der WO-A-2002/34048 beschrieben sind; b) Verbindungen vom Typ der (5-Chlor-8-chinolinoxy)malonsäure (S2b), vorzugsweise Verbindungen wie (5-Chlor-8-chinolinoxy)malonsäurediethylester, (5-Chlor-8-chinolinoxy)malonsäurediallylester, (5-Chlor-8-chinolin- oxy)malonsäure-methyl-ethylester und verwandte Verbindungen, wie sie in EP-A-0 582 198 beschrieben sind. S3) Verbindungen der Formel (S3)
Figure imgf000021_0001
wobei die Symbole und Indizes folgende Bedeutungen haben: R 1
C ist (C1-C4)Alkyl, (C1-C4)Haloalkyl, (C2-C4)Alkenyl, (C2-C4)Haloalkenyl, (C3-C7)Cycloalkyl, vorzugsweise Dichlormethyl; R 2
C , R 3
C sind gleich oder verschieden Wasserstoff, (C1-C4)Alkyl, (C2-C4)Alkenyl, (C2-C4)Alkinyl, (C1-C4)Haloalkyl, (C2-C4)Haloalkenyl, (C1-C4)Alkylcarbamoyl-(C1-C4)alkyl, (C2- C4)Alkenylcarbamoyl-(C1-C4)alkyl, (C1-C4)Alkoxy-(C1-C4)alkyl, Dioxolanyl-(C1-C4)alkyl, Thiazolyl, Furyl, Furylalkyl, Thienyl, Piperidyl, substituiertes oder unsubstituiertes Phenyl, oder R 2
C
und R 3
C bilden zusammen einen substituierten oder unsubstituierten heterocyclischen Ring, vorzugsweise einen Oxazolidin-, Thiazolidin-, Piperidin-, Morpholin-, Hexahydropyrimidin- oder Benzoxazinring; vorzugsweise:
  Wirkstoffe vom Typ der Dichloracetamide, die häufig als Vorauflaufsafener (bodenwirksame Safener) angewendet werden, wie z. B.
"Dichlormid" (N,N-Diallyl-2,2-dichloracetamid) (S3-1), "R-29148" (3-Dichloracetyl-2,2,5-trimethyl-1,3-oxazolidin) der Firma Stauffer (S3-2), "R-28725" (3-Dichloracetyl-2,2,-dimethyl-1,3-oxazolidin) der Firma Stauffer (S3-3), "Benoxacor" (4-Dichloracetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazin) (S3-4), "PPG-1292" (N-Allyl-N-[(1,3-dioxolan-2-yl)-methyl]-dichloracetamid) der Firma PPG Industries (S3-5),
"DKA-24" (N-Allyl-N-[(allylaminocarbonyl)methyl]-dichloracetamid) der Firma Sagro-Chem
(S3-6),
"AD-67" oder "MON 4660" (3-Dichloracetyl-1-oxa-3-aza-spiro[4,5]decan) der Firma Nitrokemia bzw. Monsanto (S3-7), "TI-35" (1-Dichloracetyl-azepan) der Firma TRI-Chemical RT (S3-8), "Diclonon" (Dicyclonon) oder "BAS145138" oder "LAB145138" (S3-9) ((RS)-1-Dichloracetyl-3,3,8a-trimethylperhydropyrrolo[1,2-a]pyrimidin-6-on) der Firma BASF, "Furilazol" oder "MON 13900" ((RS)-3-Dichloracetyl-5-(2-furyl)-2,2-dimethyloxazolidin) (S3-10);
sowie dessen (R)-Isomer (S3-11). S4) N-Acylsulfonamide der Formel (S4) und ihre Salze,
Figure imgf000022_0001
worin die Symbole und Indizes folgende Bedeutungen haben: AD ist SO2-NR 3
D -CO oder CO-NR 3
D -SO2 XD ist CH oder N; R 1
D ist CO-NR 5
D R 6
D oder NHCO-R 7
D ; R 2
D ist Halogen, (C1-C4)Haloalkyl, (C1-C4)Haloalkoxy, Nitro, (C1-C4)Alkyl, (C1-C4)Alkoxy, (C1- C4)Alkylsulfonyl, (C1-C4)Alkoxycarbonyl oder (C1-C4)Alkylcarbonyl; R 3
D ist Wasserstoff, (C1-C4)Alkyl, (C2-C4)Alkenyl oder (C2-C4)Alkinyl; R 4
D ist Halogen, Nitro, (C1-C4)Alkyl, (C1-C4)Haloalkyl, (C1-C4)Haloalkoxy, (C3-C6)Cycloalkyl, Phenyl, (C1-C4)Alkoxy, Cyano, (C1-C4)Alkylthio, (C1-C4)Alkylsulfinyl, (C1-C4)Alkylsulfonyl, (C1-
  C4)Alkoxycarbonyl oder (C1-C4)Alkylcarbonyl; R 5
D ist Wasserstoff, (C1-C6)Alkyl, (C3-C6)Cycloalkyl, (C2-C6)Alkenyl, (C2-C6)Alkinyl, (C5- C6)Cycloalkenyl, Phenyl oder 3- bis 6-gliedriges Heterocyclyl enthaltend vD Heteroatome aus der Gruppe Stickstoff, Sauerstoff und Schwefel, wobei die sieben letztgenannten Reste durch vD Substituenten aus der Gruppe Halogen, (C1-C6)Alkoxy, (C1-C6)Haloalkoxy, (C1-C2)Alkylsulfinyl, (C1-C2)Alkylsulfonyl, (C3-C6)Cycloalkyl, (C1-C4)Alkoxycarbonyl, (C1-C4)Alkylcarbonyl und Phenyl und im Falle cyclischer Reste auch (C1-C4) Alkyl und (C1-C4)Haloalkyl substituiert sind; R 6
D ist Wasserstoff, (C1-C6)Alkyl, (C2-C6)Alkenyl oder (C2-C6)Alkinyl, wobei die drei letztgenannten Reste durch vD Reste aus der Gruppe Halogen, Hydroxy, (C1-C4)Alkyl, (C1-C4)Alkoxy und (C1-C4)Alkylthio substituiert sind, oder R 5
D und R 6
D gemeinsam mit dem dem sie tragenden Stickstoffatom einen Pyrrolidinyl- oder Piperidinyl-Rest bilden; R 7
D ist Wasserstoff, (C1-C4)Alkylamino, Di-(C1-C4)alkylamino, (C1-C6)Alkyl, (C3-C6)Cycloalkyl, wobei die 2 letztgenannten Reste durch vD Substituenten aus der Gruppe Halogen, (C1-C4)Alkoxy, (C1-C6)Haloalkoxy und (C1-C4)Alkylthio und im Falle cyclischer Reste auch (C1-C4)Alkyl und (C1-C4)Haloalkyl substituiert sind; nD ist 0, 1 oder 2; mD ist 1 oder 2; vD ist 0, 1, 2 oder 3; davon bevorzugt sind Verbindungen vom Typ der N-Acylsulfonamide, z.B. der nachfolgenden Formel (S4a), die z. B. bekannt sind aus WO-A-97/45016
Figure imgf000023_0001
worin R 7
D (C1-C6)Alkyl, (C3-C6)Cycloalkyl, wobei die 2 letztgenannten Reste durch vD Substituenten aus der Gruppe Halogen, (C1-C4)Alkoxy, (C1-C6)Haloalkoxy und (C1-C4)Alkylthio und im Falle cyclischer Reste auch (C1-C4)Alkyl und (C1-C4)Haloalkyl substituiert sind; R 4
D Halogen, (C1-C4)Alkyl, (C1-C4)Alkoxy, CF3;
  mD 1 oder 2; vD ist 0, 1, 2 oder 3 bedeutet; sowie Acylsulfamoylbenzoesäureamide, z.B. der nachfolgenden Formel (S4b), die z.B. bekannt sind aus WO-A-99/16744,
Figure imgf000024_0001
z.B. solche worin R5
D = Cyclopropyl und (R4
D) = 2-OMe ist ("Cyprosulfamide", S4-1), R5
D = Cyclopropyl und (R4
D) = 5-Cl-2-OMe ist (S4-2), R5
D = Ethyl und (R4
D) = 2-OMe ist (S4-3), R5
D = Isopropyl und (R4
D) = 5-Cl-2-OMe ist (S4-4) und R5
D = Isopropyl und (R4
D) = 2-OMe ist (S4-5). sowie Verbindungen vom Typ der N-Acylsulfamoylphenylharnstoffe der Formel (S4c), die z.B. bekannt sind aus der EP-A-365484,
Figure imgf000024_0002
worin R8 9
D und RDunabhängig voneinander Wasserstoff, (C1-C8)Alkyl, (C3-C8)Cycloalkyl, (C3-C6)Alkenyl, (C3-C6)Alkinyl, R4
D Halogen, (C1-C4)Alkyl, (C1-C4)Alkoxy, CF3 mD 1 oder 2 bedeutet;
  beispielsweise 1-[4-(N-2-Methoxybenzoylsulfamoyl)phenyl]-3-methylharnstoff,
1-[4-(N-2-Methoxybenzoylsulfamoyl)phenyl]-3,3-dimethylharnstoff,
1-[4-(N-4,5-Dimethylbenzoylsulfamoyl)phenyl]-3-methylharnstoff, sowie N-Phenylsulfonylterephthalamide der Formel (S4d), die z.B. bekannt sind aus CN 101838227,
Figure imgf000025_0001
z.B. solche worin R 4
D Halogen, (C1-C4)Alkyl, (C1-C4)Alkoxy, CF3; mD 1 oder 2; R 5
D Wasserstoff, (C1-C6)Alkyl, (C3-C6)Cycloalkyl, (C2-C6)Alkenyl, (C2-C6)Alkinyl, (C5- C6)Cycloalkenyl bedeutet. S5) Wirkstoffe aus der Klasse der Hydroxyaromaten und der aromatisch-aliphatischen Carbonsäurederivate (S5), z.B.
3,4,5-Triacetoxybenzoesäureethylester, 3,5-Dimethoxy-4-hydroxybenzoesäure, 3,5- Dihydroxybenzoesäure, 4-Hydroxysalicylsäure, 4-Fluorsalicyclsäure, 2-Hydroxyzimtsäure, 2,4- Dichlorzimtsäure, wie sie in der WO-A-2004/084631, WO-A-2005/015994, WO-A-2005/016001 beschrieben sind. S6) Wirkstoffe aus der Klasse der 1,2-Dihydrochinoxalin-2-one (S6), z.B.
1-Methyl-3-(2-thienyl)-1,2-dihydrochinoxalin-2-on, 1-Methyl-3-(2-thienyl)-1,2-dihydrochinoxalin- 2-thion, 1-(2-Aminoethyl)-3-(2-thienyl)-1,2-dihydro-chinoxalin-2-on-hydrochlorid, 1-(2- Methylsulfonylaminoethyl)-3-(2-thienyl)-1,2-dihydro-chinoxalin-2-on, wie sie in der WO-A- 2005/112630 beschrieben sind.
  S7) Verbindungen der Formel (S7),wie sie in der WO-A-1998/38856 beschrieben sind
Figure imgf000026_0001
worin die Symbole und Indizes folgende Bedeutungen haben: R 1 2
E , RE sind unabhängig voneinander Halogen, (C1-C4)Alkyl, (C1-C4)Alkoxy, (C1-C4)Haloalkyl, (C1-C4)Alkylamino, Di-(C1-C4)Alkylamino, Nitro; A 3
E ist COORE oder COSR 4
E R 3
E , R 4
E sind unabhängig voneinander Wasserstoff, (C1-C4)Alkyl, (C2-C6)Alkenyl, (C2-C4)Alkinyl, Cyanoalkyl, (C1-C4)Haloalkyl, Phenyl, Nitrophenyl, Benzyl, Halobenzyl, Pyridinylalkyl und Alkylammonium, n 1
E ist 0 oder 1 n 2
E , n 3
E sind unabhängig voneinander 0, 1 oder 2, vorzugsweise:
Diphenylmethoxyessigsäure,
Diphenylmethoxyessigsäureethylester,
Diphenylmethoxyessigsäuremethylester (CAS-Reg.Nr.41858-19-9) (S7-1). S8) Verbindungen der Formel (S8),wie sie in der WO-A-98/27049 beschrieben sind
Figure imgf000026_0002
worin XF CH oder N, für den Fall, dass XF=N ist, eine ganze Zahl von 0 bis 4 und für den Fall, dass XF=CH ist, eine ganze Zahl von 0 bis 5 , R 1
F Halogen, (C1-C4)Alkyl, (C1-C4)Haloalkyl, (C1-C4)Alkoxy, (C1-C4)Haloalkoxy, Nitro, (C1-   C4)Alkylthio, (C1-C4)-Alkylsulfonyl, (C1-C4)Alkoxycarbonyl, ggf. substituiertes. Phenyl, ggf.
substituiertes Phenoxy, R 2
F Wasserstoff oder (C1-C4)Alkyl R 3
F Wasserstoff, (C1-C8)Alkyl, (C2-C4)Alkenyl, (C2-C4)Alkinyl, oder Aryl, wobei jeder der vorgenannten C-haltigen Reste unsubstituiert oder durch einen oder mehrere, vorzugsweise bis zu drei gleiche oder verschiedene Reste aus der Gruppe, bestehend aus Halogen und Alkoxy substituiert ist; bedeuten, oder deren Salze, vorzugsweise Verbindungen worin XF CH, nF eine ganze Zahl von 0 bis 2 , R 1
F Halogen, (C1-C4)Alkyl, (C1-C4)Haloalkyl, (C1-C4)Alkoxy, (C1-C4)Haloalkoxy, R 2
F Wasserstoff oder (C1-C4)Alkyl, R 3
F Wasserstoff, (C1-C8)Alkyl, (C2-C4)Alkenyl, (C2-C4)Alkinyl, oder Aryl, wobei jeder der vorgenannten C-haltigen Reste unsubstituiert oder durch einen oder mehrere, vorzugsweise bis zu drei gleiche oder verschiedene Reste aus der Gruppe, bestehend aus Halogen und Alkoxy substituiert ist, bedeuten, oder deren Salze. S9) Wirkstoffe aus der Klasse der 3-(5-Tetrazolylcarbonyl)-2-chinolone (S9), z.B.
1,2-Dihydro-4-hydroxy-1-ethyl-3-(5-tetrazolylcarbonyl)-2-chinolon (CAS-Reg.Nr. 219479-18-2), 1,2-Dihydro-4-hydroxy-1-methyl-3-(5-tetrazolyl-carbonyl)-2-chinolon (CAS-Reg.Nr. 95855-00-8), wie sie in der WO-A-1999/000020 beschrieben sind. S10) Verbindungen der Formeln (S10a) oder (S10b) wie sie in der WO-A-2007/023719 und WO-A-2007/023764 beschrieben sind
Figure imgf000027_0001
(S10a) (S10 b )
  worin R 1
G Halogen, (C1-C4)Alkyl, Methoxy, Nitro, Cyano, CF3, OCF3 YG, ZG unabhängig voneinander O oder S, nG eine ganze Zahl von 0 bis 4, R 2
G (C1-C16)Alkyl, (C2-C6)Alkenyl, (C3-C6)Cycloalkyl, Aryl; Benzyl, Halogenbenzyl, R 3
G Wasserstoff oder (C1-C6)Alkyl bedeutet. S11) Wirkstoffe vom Typ der Oxyimino-Verbindungen (S11), die als Saatbeizmittel bekannt sind, wie z. B.
"Oxabetrinil" ((Z)-1,3-Dioxolan-2-ylmethoxyimino(phenyl)acetonitril) (S11-1), das als Saatbeiz- Safener für Hirse gegen Schäden von Metolachlor bekannt ist, "Fluxofenim" (1-(4-Chlorphenyl)-2,2,2-trifluor-1-ethanon-O-(1,3-dioxolan-2-ylmethyl)-oxim) (S11-2), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist, und "Cyometrinil" oder "CGA-43089" ((Z)-Cyanomethoxyimino(phenyl)acetonitril) (S11-3), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist. S12) Wirkstoffe aus der Klasse der Isothiochromanone (S12), wie z.B. Methyl-[(3-oxo-1H-2- benzothiopyran-4(3H)-yliden)methoxy]acetat (CAS-Reg.Nr. 205121-04-6) (S12-1) und verwandte Verbindungen aus WO-A-1998/13361. S13) Eine oder mehrere Verbindungen aus Gruppe (S13): "Naphthalic anhydrid" (1,8-Naphthalindicarbonsäureanhydrid) (S13-1), das als Saatbeiz-Safener für Mais gegen Schäden von Thiocarbamatherbiziden bekannt ist, "Fenclorim" (4,6-Dichlor-2-phenylpyrimidin) (S13-2), das als Safener für Pretilachlor in gesätem
Reis bekannt ist, "Flurazole" (Benzyl-2-chlor-4-trifluormethyl-1,3-thiazol-5-carboxylat) (S13-3), das als Saatbeiz- Safener für Hirse gegen Schäden von Alachlor und Metolachlor bekannt ist, "CL 304415" (CAS-Reg.Nr. 31541-57-8) (4-Carboxy-3,4-dihydro-2H-1-benzopyran-4-essigsäure) (S13-4) der Firma American Cyanamid, das als Safener für Mais gegen Schäden von Imidazolinonen bekannt ist,
  "MG 191" (CAS-Reg.Nr. 96420-72-3) (2-Dichlormethyl-2-methyl-1,3-dioxolan) (S13-5) der Firma Nitrokemia, das als Safener für Mais bekannt ist, "MG 838" (CAS-Reg.Nr. 133993-74-5) (2-propenyl 1-oxa-4-azaspiro[4.5]decan-4-carbodithioat) (S13-6) der Firma Nitrokemia, "Disulfoton" (O,O-Diethyl S-2-ethylthioethyl phosphordithioat) (S13-7), "Dietholate" (O,O-Diethyl-O-phenylphosphorothioat) (S13-8), "Mephenate" (4-Chlorphenyl-methylcarbamat) (S13-9). S14) Wirkstoffe, die neben einer herbiziden Wirkung gegen Schadpflanzen auch Safenerwirkung an Kulturpflanzen wie Reis aufweisen, wie z. B.
"Dimepiperate" oder "MY 93" (S-1-Methyl-1-phenylethyl-piperidin-1-carbothioat), das als Safener für Reis gegen Schäden des Herbizids Molinate bekannt ist, "Daimuron" oder "SK 23" (1-(1-Methyl-1-phenylethyl)-3-p-tolyl-harnstoff), das als Safener für Reis gegen Schäden des Herbizids Imazosulfuron bekannt ist, "Cumyluron" = "JC 940" (3-(2-Chlorphenylmethyl)-1-(1-methyl-1-phenyl-ethyl)harnstoff, siehe JP- A-60087254), das als Safener für Reis gegen Schäden einiger Herbizide bekannt ist, "Methoxyphenon" oder "NK 049" (3,3'-Dimethyl-4-methoxy-benzophenon), das als Safener für Reis gegen Schäden einiger Herbizide bekannt ist, "CSB" (1-Brom-4-(chlormethylsulfonyl)benzol) von Kumiai, (CAS-Reg.Nr. 54091-06-4), das als Safener gegen Schäden einiger Herbizide in Reis bekannt ist. S15) Verbindungen der Formel (S15) oder deren Tautomere
Figure imgf000029_0001
wie sie in der WO-A-2008/131861 und WO-A-2008/131860 beschrieben sind, worin R 1
H einen (C1-C6)Haloalkylrest bedeutet und R 2
H Wasserstoff oder Halogen bedeutet und
  R 3
H , R 4
H unabhängig voneinander Wasserstoff, (C1-C16)Alkyl, (C2-C16)Alkenyl oder (C2-C16)Alkinyl, wobei jeder der letztgenannten 3 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Hydroxy, Cyano, (C1-C4)Alkoxy, (C1-C4)Haloalkoxy, (C1-C4)Alkylthio, (C1-C4)Alkylamino, Di[(C1-C4)alkyl]-amino, [(C1-C4)Alkoxy]-carbonyl, [(C1-C4)Haloalkoxy]- carbonyl, (C3-C6)Cycloalkyl, das unsubstituiert oder substituiert ist, Phenyl, das unsubstituiert oder substituiert ist, und Heterocyclyl, das unsubstituiert oder substituiert ist, substituiert ist, oder (C3-C6)Cycloalkyl, (C4-C6)Cycloalkenyl, (C3-C6)Cycloalkyl, das an einer Seite des Rings mit einem 4 bis 6-gliedrigen gesättigten oder ungesättigten carbocyclischen Ring kondensiert ist, oder (C4-C6)Cycloalkenyl, das an einer Seite des Rings mit einem 4 bis 6-gliedrigen gesättigten oder ungesättigten carbocyclischen Ring kondensiert ist, wobei jeder der letztgenannten 4 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Hydroxy, Cyano, (C1-C4)Alkyl, (C1-C4)Haloalkyl, (C1-C4)Alkoxy, (C1-C4)Haloalkoxy, (C1-C4)Alkylthio, (C1-C4)Alkylamino, Di[(C1-C4)alkyl]-amino,
[(C1-C4)Alkoxy]-carbonyl, [(C1-C4)Haloalkoxy]-carbonyl, (C3-C6)Cycloalkyl, das unsubstituiert oder substituiert ist, Phenyl, das unsubstituiert oder substituiert ist, und Heterocyclyl, das unsubstituiert oder substituiert ist, substituiert ist, bedeutet oder R 3
H (C1-C4)-Alkoxy, (C2-C4)Alkenyloxy, (C2-C6)Alkinyloxy oder (C2-C4)Haloalkoxy bedeutet und R 4
H Wasserstoff oder (C1-C4)-Alkyl bedeutet oder R 3
H und R 4
H zusammen mit dem direkt gebundenen N-Atom einen vier- bis achtgliedrigen heterocyclischen Ring, der neben dem N-Atom auch weitere Heteroringatome, vorzugsweise bis zu zwei weitere Heteroringatome aus der Gruppe N, O und S enthalten kann und der unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Cyano, Nitro, (C1-C4)Alkyl, (C1-C4)Haloalkyl, (C1-C4)Alkoxy, (C1-C4)Haloalkoxy und (C1-C4)Alkylthio substituiert ist, bedeutet. S16) Wirkstoffe, die vorrangig als Herbizide eingesetzt werden, jedoch auch Safenerwirkung auf Kulturpflanzen aufweisen, z.B. (2,4-Dichlorphenoxy)essigsäure (2,4-D), (4-Chlorphenoxy)essigsäure,
(R,S)-2-(4-Chlor-o-tolyloxy)propionsäure (Mecoprop), 4-(2,4-Dichlorphenoxy)buttersäure (2,4-DB),   (4-Chlor-o-tolyloxy)essigsäure (MCPA), 4-(4-Chlor-o-tolyloxy)buttersäure,
4-(4-Chlorphenoxy)buttersäure,
3,6-Dichlor-2-methoxybenzoesäure (Dicamba), 1-(Ethoxycarbonyl)ethyl-3,6-dichlor-2-methoxybenzoat (Lactidichlor-ethyl). Besonders bevorzugte Safener sind Mefenpyr-diethyl, Cyprosulfamid, Isoxadifen-ethyl, Cloquintocet-mexyl, Dichlormid und Metcamifen. Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Tenside ionischer und/oder nichtionischer Art (Netzmittel, Dispergiermittel), z.B. polyoxyethylierte Alkylphenole, polyoxethylierte Fettalkohole, polyoxethylierte Fettamine, Fettalkoholpolyglykolether-sulfate, Alkansulfonate, Alkylbenzolsulfonate, ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleoylmethyltaurinsaures Natrium enthalten. Zur Herstellung der Spritzpulver werden die herbiziden Wirkstoffe beispielsweise in üblichen Apparaturen wie Hammermühlen, Gebläsemühlen und Luftstrahlmühlen feingemahlen und gleichzeitig oder anschließend mit den Formulierungshilfsmitteln vermischt. Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen
Lösungsmittel z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden
Aromaten oder Kohlenwasserstoffen oder Mischungen der organischen Lösungsmittel unter Zusatz von einem oder mehreren Tensiden ionischer und/oder nichtionischer Art (Emulgatoren) hergestellt.
Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calzium-Salze wie Ca-Dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepoly-glykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylen- oxid-Kondensationsprodukte, Alkylpolyether, Sorbitanester wie z.B. Sorbitanfett-säureester oder Polyoxethylensorbitanester wie z.B. Polyoxyethylensorbitan-fettsäureester. Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B.
Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophyllit, oder Diatomeenerde. Suspensionskonzentrate können auf Wasser- oder Ölbasis sein. Sie können beispielsweise durch
Naß-Vermahlung mittels handelsüblicher Perlmühlen und gegebenenfalls Zusatz von Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, hergestellt werden. Emulsionen, z.B. Öl-in-Wasser-Emulsionen (EW), lassen sich beispielsweise mittels Rührern, Kolloidmühlen und/oder statischen Mischern unter Verwendung von wäßrigen organischen
  Lösungsmitteln und gegebenenfalls Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, herstellen. Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden. Wasserdispergierbare Granulate werden in der Regel nach den üblichen Verfahren wie Sprühtrocknung, Wirbelbett-Granulierung, Teller-Granulierung, Mischung mit Hochgeschwindigkeitsmischern und Extrusion ohne festes Inertmaterial hergestellt. Zur Herstellung von Teller-, Fließbett-, Extruder- und Sprühgranulate siehe z.B. Verfahren in
"Spray-Drying Handbook" 3rd ed. 1979, G. Goodwin Ltd., London, J.E. Browning, "Agglomeration", Chemical and Engineering 1967, Seiten 147 ff, "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, S.8-57. Für weitere Einzelheiten zur Formulierung von Pflanzenschutzmitteln siehe z.B. G.C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, Seiten 81-96 und J.D.
Freyer, S.A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, Seiten 101-103. Die agrochemischen Zubereitungen enthalten in der Regel 0.1 bis 99 Gew.-%, insbesondere 0.1 bis 95 Gew.-%, erfindungsgemäße Verbindungen. In Spritzpulvern beträgt die Wirkstoff-konzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen
Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 1 bis 90, vorzugsweise 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten 1 bis 30
Gew.-% Wirkstoff, vorzugsweise meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen enthalten etwa 0.05 bis 80, vorzugsweise 2 bis 50 Gew.-% Wirkstoff. Bei wasser-dispergierbaren
Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden. Bei den in Wasser dispergierbaren Granulaten liegt der Gehalt an Wirkstoff beispielsweise zwischen 1 und 95 Gew.-%, vorzugsweise zwischen 10 und 80 Gew.-%. Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Konservierungs-, Frostschutz- und Lösungsmittel,
  Füll-, Träger- und Farbstoffe, Entschäumer, Verdunstungshemmer und den pH-Wert und die Viskosität beeinflussende Mittel. Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix. Zur Anwendung werden die in handelsüblicher Form vorliegenden Formulierungen gegebenenfalls in üblicher Weise verdünnt z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Boden- bzw.
Streugranulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt. Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit, der Art des verwendeten Herbizids, u.a.
variiert die erforderliche Aufwandmenge der Verbindungen der Formel (I) und deren Salze. Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,001 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,005 bis 5 kg/ha, weiter bevorzugt im Bereich von 0,01 bis 1,5 kg/ha, insbesondere bevorzugt im Bereich von 0,05 bis 1 kg/ha g/ha. Dies gilt sowohl für die Anwendung im Vorauflauf oder im Nachauflauf. Trägerstoff bedeutet eine natürliche oder synthetische, organische oder anorganische Substanz, mit welchen die Wirkstoffe zur besseren Anwendbarkeit, v.a. zum Aufbringen auf Pflanzen oder Pflanzenteile oder Saatgut, gemischt oder verbunden sind. Der Trägerstoff, welcher fest oder flüssig sein kann, ist im Allgemeinen inert und sollte in der Landwirtschaft verwendbar sein. Als feste oder flüssige Trägerstoffe kommen infrage: z.B. Ammoniumsalze und natürliche Gesteins- mehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und natürliche oder synthetische Silikate, Harze, Wachse, feste Düngemittel, Wasser, Alkohole, besonders Butanol, organische Solventien, Mineral- und Pflanzenöle sowie Derivate hiervon.
Mischungen solcher Trägerstoffe können ebenfalls verwendet werden. Als feste Trägerstoffe für Granulate kommen infrage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen
Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnussschalen, Maiskolben und Tabakstängel.
  Als verflüssigte gasförmige Streckmittel oder Trägerstoffe kommen solche Flüssigkeiten infrage, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe, sowie Butan, Propan, Stickstoff und Kohlendioxid. Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthe- tische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabikum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein. Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im Wesentlichen infrage:
Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Dichlormethan, aliphatische Kohlen- wasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone, wie Aceton, Methyl- ethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel wie Dimethyl- formamid und Dimethylsulfoxid, sowie Wasser. Die erfindungsgemäßen Mittel können zusätzlich weitere Bestandteile enthalten, wie z.B.
oberflächenaktive Stoffe. Als oberflächenaktive Stoffe kommen Emulgier- und/oder Schaum erzeugende Mittel, Dispergiermittel oder Benetzungsmittel mit ionischen oder nicht-ionischen
Eigenschaften oder Mischungen dieser oberflächenaktiven Stoffe infrage. Beispiele hierfür sind
Salze von Polyacrylsäure, Salze von Lignosulphonsäure, Salze von Phenolsulphonsäure oder Naphthalinsulphonsäure, Polykondensate von Ethylenoxid mit Fettalkoholen oder mit Fettsäuren oder mit Fettaminen, substituierten Phenolen (vorzugsweise Alkylphenole oder Arylphenole), Salze von Sulphobernsteinsäureestern, Taurinderivate (vorzugsweise Alkyltaurate), Phosphorsäureester von polyethoxylierten Alkoholen oder Phenole, Fettsäureester von Polyolen, und Derivate der Verbindungen enthaltend Sulphate, Sulphonate und Phosphate, z.B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate, Eiweißhydrolysate, Lignin-Sulfitablaugen und Methyl- cellulose. Die Anwesenheit einer oberflächenaktiven Substanz ist notwendig, wenn einer der Wirkstoff und/oder einer der inerten Trägerstoffe nicht in Wasser löslich ist und wenn die Anwendung in Wasser erfolgt. Der Anteil an oberflächenaktiven Stoffen liegt zwischen 5 und 40
Gewichtsprozent des erfindungsgemäßen Mittels. Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metall- phthalocyaninfarbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
  Gegebenenfalls können auch andere zusätzliche Komponenten enthalten sein, z.B. schützende Kolloide, Bindemittel, Klebstoffe, Verdicker, thixotrope Stoffe, Penetrationsförderer, Stabilisatoren, Sequestiermittel, Komplexbildner. Im Allgemeinen können die Wirkstoffe mit jedem festen oder flüssigen Additiv, welches für Formulierungszwecke gewöhnlich verwendet wird, kombiniert werden. Im Allgemeinen enthalten die erfindungsgemäßen Mittel und Formulierungen zwischen 0,05 und 99 Gew.-%, 0,01 und 98 Gew.-%, vorzugsweise zwischen 0,1 und 95 Gew.-%, besonders bevorzugt zwischen 0,5 und 90 % Wirkstoff, ganz besonders bevorzugt zwischen 10 und 70
Gewichtsprozent. Die erfindungsgemäßen Wirkstoffe bzw. Mittel können als solche oder in
Abhängigkeit von ihren jeweiligen physikalischen und/oder chemischen Eigenschaften in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie Aerosole, Kapselsuspensionen, Kaltnebelkonzentrate, Heißnebelkonzentrate, verkapselte Granulate, Feingranulate, fließfähige Kon- zentrate für die Behandlung von Saatgut, gebrauchsfertige Lösungen, verstäubbare Pulver, emulgier- bare Konzentrate, Öl-in-Wasser-Emulsionen, Wasser-in-Öl-Emulsionen, Makrogranulate, Mikrogra- nulate, Öl dispergierbare Pulver, Öl mischbare fließfähige Konzentrate, Öl mischbare Flüssigkeiten, Schäume, Pasten, Pestizid ummanteltes Saatgut, Suspensionskonzentrate, Suspensions-Emulsions- Konzentrate, lösliche Konzentrate, Suspensionen, Spritzpulver, lösliche Pulver, Stäubemittel und
Granulate, wasserlösliche Granulate oder Tabletten, wasserlösliche Pulver für Saatgut-behandlung, benetzbare Pulver, Wirkstoff-imprägnierte Natur- und synthetische Stoffe sowie Feinstverkapse- lungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel- Formulierungen eingesetzt werden. Die genannten Formulierungen können in an sich bekannter Weise hergestellt werden, z.B. durch
Vermischen der Wirkstoffe mit mindestens einem üblichen Streckmittel, Lösungs- bzw. Ver- dünnungsmittel, Emulgator, Dispergier- und/oder Binde- oder Fixiermittels, Netzmittel, Wasser- Repellent, gegebenenfalls Sikkative und UV-Stabilisatoren und gegebenenfalls Farbstoffen und
Pigmenten, Entschäumer, Konservierungsmittel, sekundäre Verdickungsmittel, Kleber, Gibberelline sowie weiteren Verarbeitungshilfsmitteln. Die erfindungsgemäßen Mittel umfassen nicht nur Formulierungen, welche bereits anwendungsfertig sind und mit einer geeigneten Apparatur auf die Pflanze oder das Saatgut ausgebracht werden können, sondern auch kommerzielle Konzentrate, welche vor Gebrauch mit Wasser verdünnt werden müssen. Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren (handelsüblichen) Formu- lierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen (bekannten) Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Bakteriziden, Akariziden, Nematiziden, Fungiziden, Wachstumsregulatoren, Herbiziden, Düngemitteln, Safener bzw. Semiochemicals vorliegen.
  Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen bzw. Mitteln erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, (Ver-)Spritzen, (Ver-)Sprühen, Berieseln, Verdampfen, Zerstäuben, Vernebeln, (Ver-)Streuen, Verschäumen, Bestreichen, Verstreichen, Gießen (drenchen), Tröpfchenbewässerung und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch Trockenbeizen, Nassbeizen, Schlämmbeizen, Inkrustieren, ein- oder mehrschich- tiges Umhüllen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Wie auch weiter unten beschrieben, ist die Behandlung von transgenem Saatgut mit den erfindungs- gemäßen Wirkstoffen bzw. Mitteln von besonderer Bedeutung. Dies betrifft das Saatgut von
Pflanzen, die wenigstens ein heterologes Gen enthalten, das die Expression eines Polypeptids oder Proteins mit insektiziden Eigenschaften ermöglicht. Das heterologe Gen in transgenem Saatgut kann z.B. aus Mikroorganismen der Arten Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus oder Gliocladium stammen. Bevorzugt stammt dieses heterologe Gen aus Bacillus sp., wobei das Genprodukt eine Wirkung gegen den Maiszünsler (European corn borer) und/oder Western Corn Rootworm besitzt. Besonders bevorzugt stammt das heterologe Gen aus Bacillus thuringiensis. Im Rahmen der vorliegenden Erfindung wird das erfindungsgemäße Mittel alleine oder in einer ge- eigneten Formulierung auf das Saatgut aufgebracht. Vorzugsweise wird das Saatgut in einem Zustand behandelt, in dem so stabil ist, dass keine Schäden bei der Behandlung auftreten. Im Allgemeinen kann die Behandlung des Saatguts zu jedem Zeitpunkt zwischen der Ernte und der Aussaat erfolgen.
Üblicherweise wird Saatgut verwendet, das von der Pflanze getrennt und von Kolben, Schalen, Stängeln, Hülle, Wolle oder Fruchtfleisch befreit wurde. So kann zum Beispiel Saatgut verwendet werden, das geerntet, gereinigt und bis zu einem Feuchtigkeitsgehalt von unter 15 Gew.-% getrocknet wurde. Alternativ kann auch Saatgut verwendet werden, das nach dem Trocknen z.B. mit Wasser behandelt und dann erneut getrocknet wurde. Im Allgemeinen muss bei der Behandlung des Saatguts darauf geachtet werden, dass die Menge des auf das Saatgut aufgebrachten erfindungsgemäßen Mittels und/oder weiterer Zusatzstoffe so gewählt wird, dass die Keimung des Saatguts nicht beeinträchtigt bzw. die daraus hervorgehende Pflanze nicht geschädigt wird. Dies ist vor allem bei Wirkstoffen zu beachten, die in bestimmten
Aufwandmengen phytotoxische Effekte zeigen können. Die erfindungsgemäßen Mittel können unmittelbar aufgebracht werden, also ohne weitere Komponenten zu enthalten und ohne verdünnt worden zu sein. In der Regel ist es vorzuziehen, die Mittel in Form einer geeigneten Formulierung auf das Saatgut aufzubringen. Geeignete   Formulierungen und Verfahren für die Saatgutbehandlung sind dem Fachmann bekannt und werden z.B. in den folgenden Dokumenten beschrieben: US 4,272,417 A, US 4,245,432 A, US 4,808,430, US 5,876,739, US 2003/0176428 A1, WO 2002/080675 A1, WO 2002/028186 A2. Die erfindungsgemäßen Wirkstoffe können in die üblichen Beizmittel-Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Slurries oder andere Hüllmassen für Saatgut, sowie ULV-Formulierungen. Diese Formulierungen werden in bekannter Weise hergestellt, indem man die Wirkstoffe mit üblichen Zusatzstoffen vermischt, wie zum Beispiel übliche Streckmittel sowie Lösungs- oder Verdünnungsmittel, Farbstoffe, Netzmittel, Dispergiermittel, Emulgatoren, Entschäumer, Konser- vierungsmittel, sekundäre Verdickungsmittel, Kleber, Gibberelline und auch Wasser. Als Farbstoffe, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle für derartige Zwecke üblichen Farbstoffe in Betracht. Dabei sind sowohl in
Wasser wenig lösliche Pigmente als auch in Wasser lösliche Farbstoffe verwendbar. Als Beispiele genannt seien die unter den Bezeichnungen Rhodamin B, C.I. Pigment Red 112 und C.I. Solvent Red
1 bekannten Farbstoffe. Als Netzmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen, die Benetzung fördernden Stoffe in Frage. Vorzugsweise verwendbar sind Alkylnaphthalin-Sulfonate, wie Diiso- propyl- oder Diisobutyl-naphthalin-Sulfonate. Als Dispergiermittel und/oder Emulgatoren, die in den erfindungsgemäß verwendbaren Beizmittel- Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen
Wirkstoffen üblichen nichtionischen, anionischen und kationischen Dispergiermittel in Betracht.
Vorzugsweise verwendbar sind nichtionische oder anionische Dispergiermittel oder Gemische von nichtionischen oder anionischen Dispergiermitteln. Als geeignete nichtionische Dispergiermittel sind insbesondere Ethylenoxid-Propylenoxid Blockpolymere, Alkylphenolpolyglykolether sowie Tri- stryrylphenolpolyglykolether und deren phosphatierte oder sulfatierte Derivate zu nennen. Geeignete anionische Dispergiermittel sind insbesondere Ligninsulfonate, Polyacrylsäuresalze und Aryl- sulfonat-Formaldehydkondensate. Als Entschäumer können in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen alle zur Formulierung von agrochemischen Wirkstoffen üblichen schaumhemmenden Stoffe enthalten sein.
Vorzugsweise verwendbar sind Silikonentschäumer und Magnesiumstearat.
  Als Konservierungsmittel können in den erfindungsgemäß verwendbaren Beizmittel-Formulierun- gen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe vorhanden sein.
Beispielhaft genannt seien Dichlorophen und Benzylalkoholhemiformal. Als sekundäre Verdickungsmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formu- lierungen enthalten sein können, kommen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe in Frage. Vorzugsweise in Betracht kommen Cellulosederivate, Acrylsäure- derivate, Xanthan, modifizierte Tone und hochdisperse Kieselsäure. Als Kleber, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle üblichen in Beizmitteln einsetzbaren Bindemittel in Frage. Vorzugsweise genannt seien Polyvinylpyrrolidon, Polyvinylacetat, Polyvinylalkohol und Tylose. Die erfindungsgemäß verwendbaren Beizmittel-Formulierungen können entweder direkt oder nach vorherigem Verdünnen mit Wasser zur Behandlung von Saatgut der verschiedensten Art, auch von
Saatgut transgener Pflanzen, eingesetzt werden. Dabei können im Zusammenwirken mit den durch
Expression gebildeten Substanzen auch zusätzliche synergistische Effekte auftreten. Zur Behandlung von Saatgut mit den erfindungsgemäß verwendbaren Beizmittel-Formulierungen oder den daraus durch Zugabe von Wasser hergestellten Zubereitungen kommen alle üblicherweise für die Beizung einsetzbaren Mischgeräte in Betracht. Im einzelnen geht man bei der Beizung so vor, dass man das Saatgut in einen Mischer gibt, die jeweils gewünschte Menge an Beizmittel-Formu- lierungen entweder als solche oder nach vorherigem Verdünnen mit Wasser hinzufügt und bis zur gleichmäßigen Verteilung der Formulierung auf dem Saatgut mischt. Gegebenenfalls schließt sich ein Trocknungsvorgang an. Die erfindungsgemäßen Wirkstoffe eignen sich bei guter Pflanzenverträglichkeit, günstiger Warmblütertoxizität und guter Umweltverträglichkeit zum Schutz von Pflanzen und
Pflanzenorganen, zur Steigerung der Ernteerträge, Verbesserung der Qualität des Erntegutes. Sie können vorzugsweise als Pflanzenschutzmittel eingesetzt werden. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Als Pflanzen, welche erfindungsgemäß behandelt werden können, seien folgende Hauptanbaupflanzen erwähnt: Mais, Sojabohne, Baumwolle, Brassica Ölsaaten wie Brassica napus (z.B. Canola), Brassica rapa, B. juncea (z.B. (Acker-)Senf) und Brassica carinata, Reis, Weizen
Zuckerrübe, Zurckerrohr, Hafer, Roggen, Gerste, Hirse, Triticale, Flachs, Wein und verschiedene Früchte und Gemüse von verschiedenen botanischen Taxa wie z.B. Rosaceae sp. (beispielsweise Kernfrüchte wie Apfel und Birne, aber auch Steinfrüchte wie Aprikosen, Kirschen, Mandeln und
  Pfirsiche und Beerenfrüchte wie Erdbeeren), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (beispielsweise Bananenbäume und -plantagen), Rubiaceae sp. (beispielsweise Kaffee), Theaceae sp., Sterculiceae sp., Rutaceae sp. (beispielsweise Zitronen, Organen und
Grapefruit); Solanaceae sp. (beispielsweise Tomaten, Kartoffeln, Pfeffer, Auberginen), Liliaceae sp., Compositae sp. (beispielsweise Salat, Artischocke and Chicoree– einschließlich Wurzelchicoree, Endivie oder gemeinen Chicoree), Umbelliferae sp. (beispielsweise Karrotte, Petersilie, Stangensellerie und Knollensellerie), Cucurbitaceae sp. (beispielsweise Gurke– einschließlich
Gewürzgurke, Kürbis, Wassermelone, Flaschenkürbis und Melonen), Alliaceae sp. (beispielsweise Lauch und Zwiebel), Cruciferae sp. (beispielsweise Weißkohl, Rotkohl, Brokkoli, Blumenkohl, Rosenkohl, Pak Choi, Kohlrabi, Radieschen, Meerrettich, Kresse und Chinakohl), Leguminosae sp.
(beispielsweise Erdnüsse, Erbsen, und Bohnen– wie z.B. Stangenbohne und Ackerbohne), Chenopodiaceae sp. (beispielsweise Mangold, Futterrübe, Spinat, Rote Rübe), Malvaceae (beispielsweise Okra), Asparagaceae (beispielsweise Spargel); Nutzpflanzen und Zierpflanzen in
Garten und Wald; sowie jeweils genetisch modifizierte Arten dieser Pflanzen. Wie oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Der Begriff„Teile“ bzw.„Teile von Pflanzen“ oder„Pflanzenteile“ wurde oben erläutert.
Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in
Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften („Traits“), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Rassen, Bio- und
Genotypen sein. Das erfindungsgemäße Behandlungsverfahren kann für die Behandlung von genetisch modifizierten
Organismen (GMOs), z. B. Pflanzen oder Samen, verwendet werden. Genetisch modifizierte Pflanzen (oder transgene Pflanzen) sind Pflanzen, bei denen ein heterologes Gen stabil in das Genom integriert worden ist. Der Begriff "heterologes Gen" bedeutet im wesentlichen ein Gen, das außerhalb der Pflanze bereitgestellt oder assembliert wird und das bei Einführung in das Zellkerngenom, das Chloroplastengenom oder das Mitochondriengenom der transformierten Pflanze dadurch neue oder verbesserte agronomische oder sonstige Eigenschaften verleiht, dass es ein interessierendes Protein
35 oder Polypeptid exprimiert oder dass es ein anderes Gen, das in der Pflanze vorliegt bzw. andere
  Gene, die in der Pflanze vorliegen, herunterreguliert oder abschaltet (zum Beispiel mittels Antisense- Technologie, Cosuppressionstechnologie oder RNAi-Technologie [RNA Interference]). Ein heterologes Gen, das im Genom vorliegt, wird ebenfalls als Transgen bezeichnet. Ein Transgen, das durch sein spezifisches Vorliegen im Pflanzengenom definiert ist, wird als Transformations- bzw. transgenes Event bezeichnet. In Abhängigkeit von den Pflanzenarten oder Pflanzensorten, ihrem Standort und ihren
Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) kann die erfindungsgemäße Behandlung auch zu überadditiven ("synergistischen") Effekten führen. So sind zum Beispiel die
folgenden Effekte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen: verringerte Aufwandmengen und/oder erweitertes Wirkungsspektrum und/oder erhöhte Wirksamkeit der Wirkstoffe und Zusammensetzungen, die erfindungsgemäß eingesetzt werden können, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegenüber Trockenheit oder Wasser- oder Bodensalzgehalt, erhöhte Blühleistung, Ernteerleichterung, Reifebeschleunigung, höhere Erträge, größere Früchte, größere Pflanzenhöhe, intensiver grüne Farbe des Blatts, frühere Blüte, höhere Qualität und/oder höherer Nährwert der Ernteprodukte, höhere Zuckerkonzentration in den Früchten, bessere Lagerfähigkeit und/oder Verarbeitbarkeit der Ernteprodukte. Zu Pflanzen und Pflanzensorten, die vorzugsweise erfindungsgemäß behandelt werden, zählen alle Pflanzen, die über Erbgut verfügen, das diesen Pflanzen besonders vorteilhafte, nützliche Merkmale verleiht (egal, ob dies durch Züchtung und/oder Biotechnologie erzielt wurde). Beispiele für Nematoden-resistente Pflanzen sind z.B. folgenden US Patentanmeldungen beschrieben: 11/765,491, 11/765,494, 10/926,819, 10/782,020, 12/032,479, 10/783,417, 10/782,096, 11/657,964, 12/192,904, 11/396,808, 12/166,253, 12/166,239, 12/166,124, 12/166,209, 11/762,886, 12/364,335, 11/763,947, 12/252,453, 12/209,354, 12/491,396 und 12/497,221. Pflanzen, die erfindungsgemäß behandelt werden können, sind Hybridpflanzen, die bereits die Eigenschaften der Heterosis bzw. des Hybrideffekts exprimieren, was im Allgemeinen zu höherem
Ertrag, höherer Wüchsigkeit, besserer Gesundheit und besserer Resistenz gegen biotische und abiotische Stressfaktoren führt. Solche Pflanzen werden typischerweise dadurch erzeugt, dass man eine ingezüchtete pollensterile Elternlinie (den weiblichen Kreuzungspartner) mit einer anderen ingezüchteten pollenfertilen Elternlinie (dem männlichen Kreuzungspartner) kreuzt. Das Hybridsaatgut wird typischerweise von den pollensterilen Pflanzen geerntet und an Vermehrer verkauft. Pollensterile Pflanzen können manchmal (z. B. beim Mais) durch Entfahnen (d.h.
mechanischem Entfernen der männlichen Geschlechtsorgane bzw. der männlichen Blüten),   produziert werden; es ist jedoch üblicher, dass die Pollensterilität auf genetischen Determinanten im
Pflanzengenom beruht. In diesem Fall, insbesondere dann, wenn es sich bei dem gewünschten Produkt, da man von den Hybridpflanzen ernten will, um die Samen handelt, ist es üblicherweise günstig, sicherzustellen, dass die Pollenfertilität in Hybridpflanzen, die die für die Pollensterilität verantwortlichen genetischen Determinanten enthalten, völlig restoriert wird. Dies kann erreicht werden, indem sichergestellt wird, dass die männlichen Kreuzungspartner entsprechende Fertilitätsrestorergene besitzen, die in der Lage sind, die Pollenfertilität in Hybridpflanzen, die die genetischen Determinanten, die für die Pollensterilität verantwortlich sind, enthalten, zu restorieren.
Genetische Determinanten für Pollensterilität können im Cytoplasma lokalisiert sein. Beispiele für cytoplasmatische Pollensterilität (CMS) wurden zum Beispiel für Brassica-Arten beschrieben.
Genetische Determinanten für Pollensterilität können jedoch auch im Zellkerngenom lokalisiert sein.
Pollensterile Pflanzen können auch mit Methoden der pflanzlichen Biotechnologie, wie Gentechnik, erhalten werden. Ein besonders günstiges Mittel zur Erzeugung von pollensterilen Pflanzen ist in WO
89/10396 beschrieben, wobei zum Beispiel eine Ribonuklease wie eine Barnase selektiv in den
Tapetumzellen in den Staubblättern exprimiert wird. Die Fertilität kann dann durch Expression eines Ribonukleasehemmers wie Barstar in den Tapetumzellen restoriert werden. Pflanzen oder Pflanzensorten (die mit Methoden der Pflanzenbiotechnologie, wie der Gentechnik, erhalten werden), die erfindungsgemäß behandelt werden können, sind herbizidtolerante Pflanzen, d.
h. Pflanzen, die gegenüber einem oder mehreren vorgegebenen Herbiziden tolerant gemacht worden sind. Solche Pflanzen können entweder durch genetische Transformation oder durch Selektion von
Pflanzen, die eine Mutation enthalten, die solch eine Herbizidtoleranz verleiht, erhalten werden. Herbizidtolerante Pflanzen sind zum Beispiel glyphosatetolerante Pflanzen, d. h. Pflanzen, die gegenüber dem Herbizid Glyphosate oder dessen Salzen tolerant gemacht worden sind. Pflanzen können mit verschiedenen Methoden tolerant gegenüber Glyphosate gemacht werden. So können zum Beispiel glyphosatetolerante Pflanzen durch Transformation der Pflanze mit einem Gen, das für das Enzym 5-Enolpyruvylshikimat-3-phosphatsynthase (EPSPS) kodiert, erhalten werden. Beispiele für solche EPSPS-Gene sind das AroA-Gen (Mutante CT7) des Bakterium Salmonella typhimurium
(Comai et al., 1983, Science 221, 370-371), das CP4-Gen des Bakteriums Agrobacterium sp. (Barry et al., 1992, Curr. Topics Plant Physiol. 7, 139-145), die Gene, die für eine EPSPS aus der Petunie (Shah et al., 1986, Science 233, 478-481), für eine EPSPS aus der Tomate (Gasser et al., 1988, J.
Biol. Chem. 263, 4280-4289) oder für eine EPSPS aus Eleusine (WO 01/66704) kodieren. Es kann sich auch um eine mutierte EPSPS handeln. Glyphosate-tolerante Pflanzen können auch dadurch erhalten werden, dass man ein Gen exprimiert, das für ein Glyphosate-Oxidoreduktase-Enzym kodiert. Glyphosate-tolerante Pflanzen können auch dadurch erhalten werden, dass man ein Gen
35 exprimiert, das für ein Glyphosate-acetyltransferase-Enzym kodiert. Glyphosatetolerante Pflanzen
 
können auch dadurch erhalten werden, dass man Pflanzen, die natürlich vorkommende Mutationen der oben erwähnten Gene enthalten, selektiert. Pflanzen, die EPSPS Gene, welche Glyphosate- Toleranz verleihen, exprimieren, sind beschrieben. Pflanzen, welche andere Gene, die Glyphosate- Toleranz verleihen, z.B. Decarboxylase-Gene, sind beschrieben. Sonstige herbizidresistente Pflanzen sind zum Beispiel Pflanzen, die gegenüber Herbiziden, die das Enzym Glutaminsynthase hemmen, wie Bialaphos, Phosphinotricin oder Glufosinate, tolerant gemacht worden sind. Solche Pflanzen können dadurch erhalten werden, dass man ein Enzym exprimiert, das das Herbizid oder eine Mutante des Enzyms Glutaminsynthase, das gegenüber Hemmung resistent ist, entgiftet. Solch ein wirksames entgiftendes Enzym ist zum Beispiel ein
Enzym, das für ein Phosphinotricin-acetyltransferase kodiert (wie zum Beispiel das bar- oder pat- Protein aus Streptomyces-Arten). Pflanzen, die eine exogene Phosphinotricin-acetyltransferase exprimieren, sind beschrieben. Weitere herbizidtolerante Pflanzen sind auch Pflanzen, die gegenüber den Herbiziden, die das Enzym
Hydroxyphenylpyruvatdioxygenase (HPPD) hemmen, tolerant gemacht worden sind. Bei den
Hydroxyphenylpyruvatdioxygenasen handelt es sich um Enzyme, die die Reaktion, in der para- Hydroxyphenylpyruvat (HPP) zu Homogentisat umgesetzt wird, katalysieren. Pflanzen, die gegenüber HPPD-Hemmern tolerant sind, können mit einem Gen, das für ein natürlich vorkommendes resistentes HPPD-Enzym kodiert, oder einem Gen, das für ein mutiertes oder chimäres HPPD-Enzym kodiert, transformiert werden, wie in WO 96/38567, WO 99/24585, WO 99/24586, WO 2009/144079, WO 2002/046387 oder US 6,768,044 beschrieben. Eine Toleranz gegenüber HPPD-Hemmern kann auch dadurch erzielt werden, dass man Pflanzen mit Genen transformiert, die für gewisse Enzyme kodieren, die die Bildung von Homogentisat trotz Hemmung des nativen HPPD-Enzyms durch den HPPD-Hemmer ermöglichen. Solche Pflanzen sind in WO
99/34008 und WO 02/36787 beschrieben. Die Toleranz von Pflanzen gegenüber HPPD-Hemmern kann auch dadurch verbessert werden, dass man Pflanzen zusätzlich zu einem Gen, das für ein HPPD- tolerantes Enzym kodiert, mit einem Gen transformiert, das für ein Prephenatdehydrogenase-Enzym kodiert, wie in WO 2004/024928 beschrieben ist. Außerdem können Pflanzen noch toleranter gegen
HPPD-Hemmern gemacht werden, indem man ein Gen in ihr Genom einfügt, welches für ein Enzym kodiert, das HPPD-Hemmer metabolisiert oder abbaut, wie z.B. CYP450 Enzyme (siehe WO
2007/103567 und WO 2008/150473). Weitere herbizidresistente Pflanzen sind Pflanzen, die gegenüber Acetolactatsynthase (ALS)- Hemmern tolerant gemacht worden sind. Zu bekannten ALS-Hemmern zählen zum Beispiel Sulfonylharnstoff, Imidazolinon, Triazolopyrimidine, Pyrimidinyloxy(thio)benzoate und/oder Sulfonylaminocarbonyltriazolinon-Herbizide. Es ist bekannt, dass verschiedene Mutationen im
 
Enzym ALS (auch als Acetohydroxysäure-Synthase, AHAS, bekannt) eine Toleranz gegenüber unterschiedlichen Herbiziden bzw. Gruppen von Herbiziden verleihen wie z.B. in Tranel und Wright (Weed Science 2002, 50, 700-712) beschrieben ist. Die Herstellung von sulfonylharnstofftoleranten
Pflanzen und imidazolinontoleranten Pflanzen ist beschrieben. Weitere sulfonylharnstoff- und imidazolinontolerante Pflanzen sind auch beschrieben. Weitere Pflanzen, die gegenüber Imidazolinonen und/oder Sulfonylharnstoffen tolerant sind, können durch induzierte Mutagenese, Selektion in Zellkulturen in Gegenwart des Herbizids oder durch
Mutationszüchtung erhalten werden (vgl. z.B. für Sojabohne US 5,084,082, für Reis WO 97/41218, für Zuckerrübe US 5,773,702 und WO 99/057965, für Salat US 5,198,599 oder für Sonnenblume WO 01/065922). Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind gegenüber abiotischen Stressfaktoren tolerant. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solch eine Stressresistenz verleiht, erhalten werden. Zu besonders nützlichen Pflanzen mit Stresstoleranz zählen folgende: a. Pflanzen, die ein Transgen enthalten, das die Expression und/oder Aktivität des Gens für die Poly(ADP-ribose)polymerase (PARP) in den Pflanzenzellen oder Pflanzen zu reduzieren vermag. b. Pflanzen, die ein stresstoleranzförderndes Transgen enthalten, das die Expression und/oder Aktivität der für PARG kodierenden Gene der Pflanzen oder Pflanzenzellen zu reduzieren vermag; c. Pflanzen, die ein stresstoleranzförderndes Transgen enthalten, das für ein in Pflanzen funktionelles Enzym des Nicotinamidadenindinukleotid-Salvage-Biosynthesewegs kodiert, darunter Nicotinamidase, Nicotinatphosphoribosyltransferase, Nicotinsäuremononukleotidadenyltransferase, Nicotinamidadenindinukleotidsynthetase oder Nicotinamidphosphoribosyltransferase. Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, weisen eine veränderte Menge, Qualität und/oder Lagerfähigkeit des Ernteprodukts und/oder veränderte Eigenschaften von bestimmten Bestandteilen des Ernteprodukts auf, wie zum Beispiel: 1) Transgene Pflanzen, die eine modifizierte Stärke synthetisieren, die bezüglich ihrer chemisch-phy- sikalischen Eigenschaften, insbesondere des Amylosegehalts oder des Amylose/Amylopektin- Verhältnisses, des Verzweigungsgrads, der durchschnittlichen Kettenlänge, der Verteilung der Seitenketten, des Viskositätsverhaltens, der Gelfestigkeit, der Stärkekorngröße und/oder   Stärkekornmorphologie im Vergleich mit der synthetisierten Stärke in Wildtyppflanzenzellen oder - pflanzen verändert ist, so dass sich diese modifizierte Stärke besser für bestimmte Anwendungen eignet. 2) Transgene Pflanzen, die Nichtstärkekohlenhydratpolymere synthetisieren, oder Nichtstärkekohlenhydratpolymere, deren Eigenschaften im Vergleich zu Wildtyppflanzen ohne genetische Modifikation verändert sind. Beispiele sind Pflanzen, die Polyfructose, insbesondere des Inulin- und Levantyps, produzieren, Pflanzen, die alpha-1,4-Glucane produzieren, Pflanzen, die alpha-1,6-verzweigte alpha-1,4-Glucane produzieren und Pflanzen, die Alternan produzieren. 3) Transgene Pflanzen, die Hyaluronan produzieren. 4) Transgene Pflanzen oder Hybridpflanzen wie Zwiebeln mit bestimmten Eigenschaften wie „hohem Anteil an löslichen Feststoffen“ (‚high soluble solids content’), geringe Schärfe (‚low pungency’, LP) und/oder lange Lagerfähigkeit (‚long storage’, LS). Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Baumwollpflanzen mit veränderten Fasereigenschaften. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Fasereigenschaften verleiht, erhalten werden; dazu zählen: a) Pflanzen wie Baumwollpflanzen, die eine veränderte Form von Cellulosesynthasegenen enthalten, b) Pflanzen wie Baumwollpflanzen, die eine veränderte Form von rsw2- oder rsw3-homologen Nukleinsäuren enthalten, wie Baumwollpflanzen mit einer erhöhten Expression der Saccharosephosphat- synthase; c) Pflanzen wie Baumwollpflanzen mit einer erhöhten Expression der Saccharosesynthase; d) Pflanzen wie Baumwollpflanzen bei denen der Zeitpunkt der Durchlaßsteuerung der Plasmodesmen an der Basis der Faserzelle verändert ist, z. B. durch Herunterregulieren der faserselektiven b-1,3-Glucanase; e) Pflanzen wie Baumwollpflanzen mit Fasern mit veränderter Reaktivität, z. B. durch Expression des N-Acetylglucosamintransferasegens, darunter auch nodC, und von Chitinsynthasegenen. Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind 30 Pflanzen wie Raps oder verwandte Brassica-Pflanzen mit veränderten Eigenschaften der
  Ölzusammensetzung. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Öleigenschaften verleiht, erhalten werden; dazu zählen: a) Pflanzen wie Rapspflanzen, die Öl mit einem hohen Ölsäuregehalt produziere; b) Pflanzen wie Rapspflanzen, die Öl mit einem niedrigen Linolensäuregehalt produzieren. c) Pflanzen wie Rapspflanzen, die Öl mit einem niedrigen gesättigten Fettsäuregehalt produzieren. Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten werden können), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Kartoffeln, welche Virus-resistent sind z.B. gegen den Kartoffelvirus Y (Event SY230 und SY233 von Tecnoplant, Argentinien), oder welche resistent gegen Krankheiten wie die Kraut- und Knollenfäule (potato late blight) (z.B. RB Gen), oder welche eine verminderte kälteinduzierte Süße zeigen (welche die Gene Nt-Inh, II-INV tragen) oder welche den Zwerg-Phänotyp zeigen (Gen A-20 Oxidase). Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Raps oder verwandte Brassica-Pflanzen mit veränderten Eigenschaften im Samenausfall (seed shattering). Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Eigenschaften verleihen, und umfassen Pflanzen wie Raps mit verzögertem oder vermindertem Samenausfall. Besonders nützliche transgene Pflanzen, die erfindungsgemäß behandelt werden können, sind Pflanzen mit Transformationsevents oder Kombinationen von Transformationsevent, welche in den USA beim Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) Gegenstand von erteilten oder anhängigen Petitionen für den nicht-regulierten Status sind. Die Information hierzu ist jederzeit beim APHIS (4700 River Road Riverdale, MD 20737, USA) erhältlich, z.B. über die Internetseite http://www.aphis.usda.gov/brs/not_reg.html. Am
Anmeldetag dieser Anmeldung waren beim APHIS die Petitionen mit folgenden Informationen entweder erteilt oder anhängig: - Petition: Identifikationsnummer der Petition. Die Technische Beschreibung des Transformationsevents kann im einzelnen Petitionsdokument erhältlich von APHIS auf der Website über die Petitionsnummer gefunden werden. Diese Beschreibungen sind hiermit per Referenz offenbart.
  - Erweiterung einer Petition: Referenz zu einer frühere Petition, für die eine Erweiterung oder Verlängerung beantragt wird. - Institution: Name der die Petition einreichenden Person. - Regulierter Artikel: die betroffen Pflanzenspecies. - Transgener Phänotyp: die Eigenschaft („Trait“), die der Pflanze durch das Transformationsevent verliehen wird. - Transformationevent oder -linie: der Name des oder der Events (manchmal auch als Linie(n) bezeichnet), für die der nicht-regulierte Status beantragt ist. - APHIS Documente: verschiedene Dokumente, die von APHIS bzgl. der Petition veröffentlicht warden oder von APHIS auf Anfrage erhalten werden können. Besonders nützliche transgene Pflanzen, die erfindungsgemäß behandelt werden können, sind Pflanzen mit einem oder mehreren Genen, die für ein oder mehrere Toxine kodieren, sind die transgenen Pflanzen, die unter den folgenden Handelsbezeichnungen angeboten werden: YIELD GARD ® (zum Beispiel Mais, Baumwolle, Sojabohnen), KnockOut ® (zum Beispiel Mais), BiteGard ® (zum Beispiel Mais), BT-Xtra ®
(zum Beispiel Mais), StarLink ® (zum Beispiel Mais), Bollgard ® (Baumwolle), Nucotn ® (Baumwolle), Nucotn 33B ® (Baumwolle), NatureGard ® (zum Beispiel Mais), Protecta ® und NewLeaf ® (Kartoffel).
Herbizidtolerante Pflanzen, die zu erwähnen sind, sind zum Beispiel Maissorten, Baumwollsorten und Sojabohnensorten, die unter den folgenden Handelsbezeichnungen angeboten werden: Roundup Ready ®
(Glyphosatetoleranz, zum Beispiel Mais, Baumwolle, Sojabohne), Liberty Link ®
(Phosphinotricintoleranz, zum Beispiel Raps), IMI ® (Imidazolinontoleranz) und SCS ®
(Sylfonylharnstofftoleranz), zum Beispiel Mais. Zu den herbizidresistenten Pflanzen (traditionell auf Herbizidtoleranz gezüchtete Pflanzen), die zu erwähnen sind, zählen die unter der Bezeichnung Clearfield ® angebotenen Sorten (zum Beispiel Mais). Die nachfolgenden Beispiele erläutern die vorliegende Erfindung. A. Chemische Beispiele Bei der Auswertung von NMR-Signalen werden folgende Abkürzungen verwendet: s (Singulett), d (Dublett), t (Triplett), q (Quartett), quint (Quintett), sext (Sextett), sept (Septett), m
(Multiplett), mc (Multiplett centered)
  Beispiel D1: 4-Hydroxy-3-[2-methoxy-6-methyl-4-(prop-1-in-1-yl)phenyl]-7-propoxy-1- azaspiro[4.5]dec-3-en-2-on
Figure imgf000047_0001
5.35 g (12.4 mmol) 2-[2-Methoxy-6-methyl-4-(prop-1-in-1-yl)phenyl]-N-(1-methyl-3- propoxycyclohexyl)acetamid in 50 ml DMF wurden innerhalb von 30 min bei Raumtemperatur zu einer Lösung von 3.18 g (28.43 mmol) Kalium-t-butylat in 70 ml DMF zugetropft und 12 h bei Raumtemperatur weitergerührt. Die Reaktionsmischung wurde anschließend vorsichtig auf eine Eis- /Wassermischung gegeben und mit 2N Salzsäure auf pH 2 angesäuert. Der ausgefallene Niederschlag wurde abgesaugt, mit Wasser nachgewaschen, getrocknet und an Kieselgel mit Hexan/Essigester chromatogrphiert. Man erhielt 4.30 g (87 %) der gewünschten Titelverbindung. 1H-NMR [400 MHz, d in ppm, d6-DMSO]: d = 0.85 (mc, 3H), 0.98-1.10 (m, 1H), 1.21-1.30 (m,
1H), 1.49 (mc, 2H), 1.45-1.79 (m, 4H), 2.02 (s, 3H), 3.38 (mc, 2H), 3.55 (mc, 1H), 3.64 und 3.67
(je s, S 3H), 6.79 und 6.85 (je s, je 1H)
  In Analogie zu Beispiel D1 sowie gemäß den allgemeinen Angaben zur Herstellung erhält man folgende erfindungsgemäßen Verbindungen:
B C
S
91
1 3
R 0
OH X 29
A
us
H N l
na d
O Y N
R
/e Beispiel Nr. R1 5 c
DMSO]
2.01 und 2.02 (je s, je 3H), 3.18 (mc, 1H), 3.37 (t, 2H),
D2 nC3H7O- O
1H)
, 1.45-1.54 (m, 1H), 2.00 und 2.10 (je s, je 3H), 3.38
D3 iC3H7O- O 47
1H), 6.78 und 6.83 (je s, je 1H)
D4 nC4H9O- O 10
H), 1.79-1.99 (m, 4H), 2.01 und 2.02 (je s, je 3H), 3.29
D5 CH2=CHCH2O- O H), 5.11 und 5.26 (je mc, je 1H), 5.82-5.95 (m, 1H),
71 0- 2 m, 1H), 1.62-1.88 (m, 4H), 2.02 und 2.03 (je s, je 3H), -2 D6 CH3OCH2- O 20
3H), 6.78 und 6.83 (je s, je 1H) 0
 
Figure imgf000048_0001
Figure imgf000048_0002
Beispiel P1: 3-[2-Methoxy-6-methyl-4-(prop-1-in-1-yl)phenyl]-2-oxo-7-propoxy-1- azaspiro[4.5]dec-3-en-4-ylpivalat
Figure imgf000049_0001
100.0 mg (0.26 mmol) 4-Hydroxy-3-[2-methoxy-6-methyl-4-(prop-1-in-1-yl)phenyl]-7-propoxy-1- azaspiro[4.5]dec-3-en-2-on wurden mit 2 ml Triethylamin in 15 ml Dichlormethan vorgelegt und 10 min bei Raumtemperatur gerührt. Anschließend tropfte man 35 mg (0.28 mmol) 2,2- Dimethylpropanoylchlorid in 3 ml Dichlormethan langsam zu und ließ anschließend 14 h bei Raumtemperatur rühren. Danach wurde in 20 ml Dichlormethan aufgenommen, mit 10 ml Natriumhydrogencarbonat-Lösung und 2 x10 ml Wasser gewaschen, getrocknet (Magnesiumsulfat) und das Lösemittel abdestilliert. Die Reinigung dieses Rohprodukt erfolgte durch Chromatographie and Kieselgel (Ethylacetat /n-Heptan). Ausbeute 86 mg (52 %) als farblosen Feststoff.
  In Analogie zu Beispiel P1 sowi erhält man folgende erfindungsgemäßen Verbindungen: B
C L S
\ 1
O X 9 3
1 0
R 29
A H N u
ls a
O Y nd
N
R
/ Beispiel Nr. R1 X d in ppm, CDCl3] ec
(s, 9H), 1.58 (mc, 2H), 2.02 (s, 3H), 2.20 und 2.22 (je s, S3H), 3.39
P1 nC3H7O CH
H), 3.70 (s, 3H), 6.71 und 6.88 (je s, je 1H)
), 2.19 und 2.21 (je s, S 3H), 3.36 (mc, 1H), 3.42 (t, 2H), 3.60 (s,
P2 nC3H7O CH 4
s, S 3H), 6.76 und 6.90 (je s, je 1H) 9 , je 3H), 1.59 (mc, 2H), 2.05 (s, 3H), 2.18 und 2.21 (je s, S 3H),
P3 nC3H7O CH
72 und 3.74 (je s, S 3H), 4.00 (mc, 2H), 6.75 und 6.89 (je s, je 1H)
(mc, 6H), 2.03 (s, 3H), 1.99 und 2.01 (je s, S 3H), 2.52 (hept, 1H),
P4 nC3H7O CH 1
mc, 2H), 3.70 und 3.71 (je s, S 3H), 6.71 und 6.88 (je s, je 1H) -7
0 , je 3H), 2.02 (s, 3H), 2.19 und 2.21 (je s, S 3H), 2.31 (q, 2H), 3.32 2- P5 nC3H7O CH 20
H), 3.71 und 3.72 (je s, S 3H), 6.74 und 6.89 (je s, je 1H) 20
 
Figure imgf000050_0001
Figure imgf000050_0002
In Analogie zu Beispiel P1 sowie gemäß den allgemeinen Angaben zur Herstellung erhält man folgende erfindungsgemäßen Verbindungen:
B C
S
91
R1 L 3
20
O X 9
A
su al
H N nd
N O Y R
e/ c Beispiel
R1 X ppm, CDCl3]
Nr. 50
Q1 nC3H7O- CH3
3H), 1.38 (mc, 2H), 1.60 (mc, 2H), 1.68-1.71 (m,
Q2 nC3H7O- CH3 2.02 und 2.20 (je s, je 2H), 3.29 (mc, 1H), 3.42 (t,
mc, 2H), 6.72 und 6.87 (je s, je 2H)
69-1.99 (m, 4H), 2.02 und 2.21 (je s, je 3H), 3.39 17
Q3 CH2=CHCH2O- CH3 je s, je 3H), 4.03 (mc, 2H), 5.19 und 5.30 (je d, je - 20
- .78 und 6.80 (je s, je 1H) 02
02
, 2H), 1.70-1.99 (m, 4H), 2.02 und 2.20 (je s, je
Q4 CH2=CHCH2O- CH3 (s, 3H), 4.00 (mc, 2H), 4.07 (mc, 2H), 5.20 und
99 (m, 1H), 6.75 und 6.89 (je s, je 1H)
 
Figure imgf000051_0001
Figure imgf000051_0002
d = 1.00 und 1.02 (je d, je 3H), 1.40 (mc, 2H), 2.02 und 2.19 (je s, je 3H),
B CH3O- -COiC3H7 2.52 (hept, 1H), 3.35 (mc, 1H), 3.70 (s, 3H), 4.03 (mc, 2H), 5.19 und 5.29 (je C
S
d, je 1H), 5.88-5.99 (m, 1H), 6.71 und 6.89 (je s, je 1H) 91
03
CH3O- -COiC3H7 29
CH A
3O- -CO2C2H5 su
l d = 1.10-1.20 (m, 2H), 1.11 (t, 3H), 1.80-1.98 (m, 4H), 2.02 und 2.20 (je s, je n a
d
CH3 -CO2C2H5 1H), 3,22 (d, 2H), 3.32 und 3.72 (je s, je 3H), 4.00 (mc, 2H), 6.72 und 6.88 N
R
/
(je s, je 1H) ce
51
1
-7
-20
02
02
 
Figure imgf000052_0001
Herstellung von Ausgangsmaterialien der Formel II Methyl-1-{2-[2-methoxy-6-methyl-4-(prop-1-in-1-yl)phenyl]acetamido}-3-propoxycyclohexan- carboxylat
Figure imgf000053_0001
3.00 mg (13.7 mmol) [2-Methoxy-6-methyl-4-(prop-1-in-1-yl)phenyl]essigsäure wurden in 50 ml Dichlormethan gelöst und mit einem Tropfen DMF versetzt. Man gab 3.49 g (27.4 mmol) Oxalylchlorid hinzu und erhitzte bis zum Ende der Gasentwicklung unter Rückfluss zum Sieden.
Anschließend engte man die Reaktionslösung zur Trockne ein, versetzte noch zweimal mit je 50 ml Dichlormethan und engte erneut ein, um abschließend in 30 ml Dichlormethan aufzunehmen (Lösung 1). 3.46 g (27.4 mmol) 1-(Methoxycarbonyl)-3-propoxycyclohexanaminiumchlorid sowie 8 ml Triethylamin wurden in 80 ml Dichlormethan vorgelegt und Lösung 1 innerhalb von 20 Min.
zugetropft. Nach 16 h Rühren bei Raumtemperatur wurde mit 100 ml Wasser versetzt, die organische Phase abgetrennt, das Lösungsmittel abdestilliert und säulenchromatographisch (Silicagel, Gradient Ethylacetat/n-Heptan) gereinigt. Man erhielt 5.35 g (93%) der gewünschten Vorstufe. 1H-NMR (400 MHz, d in ppm, CDCl3): d = 0.87 (t, 3H), 1.12 (mc, 2H), 2.05 und 2.22 (je s, je 3H), 2.89 (mc, 1H), 3.15-3.28 (m, 2H), 3.64 und 3.88 (je s, je 3H), 6.82 und 6.92 (je s, je 1H)
  Analog wud f l d Z i h t f d F l II h tllt
B C S
Struktur 1
39 20 1.75 (m, 6H), 2.01 und 2.17 (je s, je 3H), 3.50 (s, 3H), 3.67 (hept, 1H), 3.72 (s, 9
A
0 us
al dn N
* 05 und 2.32 (je s, je 3H), 3.37 (mc, 1H), 3.62 (s, 3H), 3.86 (s, 2H), 3.97 (mc, R 0 /e
e s, je 1H) c 5 und 2.21 (je s, je 3H), 3.05 (d, 2H), 3.30 (s, 3H), 3.60 (s, 2H), 3.62 und 3.87
—0 1H)
53 2H), 2.05 und 2.31 (je s, je 3H), 3.20 (mc, 1H), 3.33 (t, 2H), 3.57 (s, 2H), 3.63
0
(je s, je 1H) 1 -7 20 2- 20 0
 
Figure imgf000054_0001
B. Formulierungsbeispiele a) Ein Stäubemittel wird erhalten, indem man 10 Gew. Teile einer Verbindung der Formel (I) und/oder deren Salze und 90 Gew. Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert. b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile einer Verbindung der Formel (I) und/oder deren Salze, 64 Gew. Teile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gew. Teil oleoylmethyltaurinsaures Natrium als Netz und Dispergiermittel mischt und in einer Stiftmühle mahlt. c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gew.
Teile einer Verbindung der Formel (I) und/oder deren Salze mit 6 Gew. Teilen Alkylphenolpolyglykolether (®Triton X 207), 3 Gew. Teilen Isotridecanolpolyglykolether (8 EO) und 71 Gew. Teilen paraffinischem Mineralöl (Siedebereich z.B. ca.255 bis über 277 C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt. d) Ein emulgierbares Konzentrat wird erhalten aus 15 Gew. Teilen einer Verbindung der Formel (I) und/oder deren Salze, 75 Gew. Teilen Cyclohexanon als Lösungsmittel und 10 Gew. Teilen oxethyliertes Nonylphenol als Emulgator. e) Ein in Wasser dispergierbares Granulat wird erhalten indem man 75 Gew. Teile einer Verbindung der Formel (I) und/oder deren Salze, 10 Gew. Teile ligninsulfonsaures Calcium, 5 Gew. Teile Natriumlaurylsulfat, 3 Gew. Teile Polyvinylalkohol und 7 Gew. Teile Kaolin mischt, auf einer Stiftmühle mahlt und das Pulver in einem Wirbelbett durch Aufsprühen von Wasser als Granulierflüssigkeit granuliert. f) Ein in Wasser dispergierbares Granulat wird auch erhalten, indem man 25 Gew. Teile einer Verbindung der Formel (I) und/oder deren Salze, 5 Gew. Teile 2,2' Dinaphthylmethan 6,6' disulfonsaures Natrium,  
2 Gew. Teile oleoylmethyltaurinsaures Natrium, 1 Gew. Teil Polyvinylalkohol, 17 Gew. Teile Calciumcarbonat und
50 Gew. Teile Wasser
auf einer Kolloidmühle homogenisiert und vorzerkleinert, anschließend auf einer Perlmühle mahlt und die so erhaltene Suspension in einem Sprühturm mittels einer Einstoffdüse zerstäubt und trocknet. C. Biologische Daten Herbizide Wirkung bzw. Kulturpflanzenverträglichkeit im Vorauflauf Samen von mono- bzw. dikotylen Unkraut- bzw. Kulturpflanzen werden in Holzfasertöpfen in sandiger Lehmerde ausgelegt und mit Erde abgedeckt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen werden dann als wässrige Suspension bzw. Emulsion mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 l/ha unter Zusatz von 0,2% Netzmittel auf die Oberfläche der Abdeckerde appliziert. Nach der Behandlung werden die Töpfe im Gewächshaus aufgestellt und unter guten Wachstumsbedingungen für die Testpflanzen gehalten. Die visuelle Bonitur der Schäden an den Versuchspflanzen erfolgt nach einer Versuchszeit von 3 Wochen im Vergleich zu unbehandelten Kontrollen (herbizide Wirkung in Prozent (%): 100% Wirkung = Pflanzen sind abgestorben, 0 %
Wirkung = wie Kontrollpflanzen). Unerwünschte Pflanzen / Weeds:
Figure imgf000056_0001
  Wie die Ergebnisse aus den Tabellen 1 und 2 zeigen, weisen die erfindungsgemäßen
Verbindungen eine gute herbizide Vorauflaufwirksamkeit gegen ein breites Spektrum von
Ungräsern und Unkräutern auf. Beispielsweise zeigen die Verbindungen bei einer Aufwandmenge von 320 g ai/ha bzw.80 g/ha jeweils eine 80 - 100%-ige Wirkung unter anderem gegen Alopecurus myosuroides, Avena fatua, Digitaria sanguinalis, Echinochloa crus-galli, Lolium rigidum, Setaria viridis, Amaranthus retroflexus, Matricaria inodora, Stellaria medi, Viola tricolor, Veronica persica und Hordeum murinum. Die erfindungsgemäßen Verbindungen eignen sich deshalb im
Vorauflaufverfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs.
Figure imgf000057_0001
Tabelle 1: Vorauflaufwirksamkeit bei 320 g ai/ha
Figure imgf000057_0002
Tabelle 2: Vorauflaufwirksamkeit bei 80 g ai/ha 2. Herbizide Wirkung bzw. Kulturpflanzenverträglichkeit im Nachauflauf Samen von mono- bzw. dikotylen Unkraut- bzw. Kulturpflanzen werden in Holzfasertöpfen in
sandigem Lehmboden ausgelegt, mit Erde abgedeckt und im Gewächshaus unter guten
Wachstumsbedingungen angezogen. 2 bis 3 Wochen nach der Aussaat werden die
Versuchspflanzen im Einblattstadium behandelt. Die in Form von benetzbaren Pulvern (WP) oder
  als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen werden dann als wässrige Suspension bzw. Emulsion mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 l/ha unter Zusatz von 0,2% Netzmittel auf die grünen Pflanzenteile gesprüht. Nach ca. 3 Wochen
Standzeit der Versuchspflanzen im Gewächshaus unter optimalen Wachstumsbedingungen wird die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen bonitiert (herbizide
Wirkung in Prozent (%): 100% Wirkung = Pflanzen sind abgestorben, 0 % Wirkung = wie
Kontrollpflanzen).
Figure imgf000058_0001
Tabelle 3: Nachauflaufwirksamkeit bei 80 g ai/ha Wie die Ergebnisse aus Tabelle 3 zeigen, weisen die erfindungsgemäßen Verbindungen eine gute herbizide Nachauflaufwirksamkeit gegen ein breites Spektrum von Ungräsern und Unkräutern auf.
Beispielsweise zeigen die aufgeführten Beispiele bei einer Aufwandmenge von 80 g/ha eine 80 - 100%-ige Wirkung unter anderem gegen Alopecurus myosuroides, Avena fatua, Digitaria sanguinalis, Echinochloa crus-galli, Lolium rigidum, Setaria viridis und Hordeum murinum. Die erfindungsgemäßen Verbindungen eignen sich deshalb im Nachauflaufverfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs.
 

Claims

Patentansprüche 1. 3-Phenylpyrrolin-2one der allgemeinen Formel (I) oder ein agrochemisch akzeptables Salz davon,
Figure imgf000059_0002
wobei X C1-C6-Alkoxy oder C1-C6-Halogenalkoxy ist, Y C1-C6-Alkyl, C1-C6-Halogenalkyl oder C3-C6-Cycloalkyl ist, R1 C3-C6-Alkoxy, C1-C4-Alkoxy-C1-C4-Alkyl, C3-C6-Cycloalkyl, C1-C6-Halogenalkyl, C2-C6- Alkenyloxy oder C2-C6-Halogenalkenyloxy ist, R2 Wasserstoff, C1-C6-Alkyl, C1-C4-Alkoxy-C2-C4-Alkyl, C1-C6-Halogenalkyl, C3-C6- Cycloalkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, C1-C6-Alkoxy oder C1-C6 Halogenalkoxy ist, G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei L einer der folgenden Reste ist
Figure imgf000059_0001
worin R3 C1-C4-Alkyl oder C1-C3-Alkoxy-C1-C4-Alkyl ist, R4 C1-C4-Alkyl ist,
  R5 C1-C4-Alkyl, ein unsubstituiertes Phenyl oder ein einfach oder mehrfach mit Halogen, C1- C4-Alkyl, C1-C4-Haloalkyl, C1-C4-Alkoxy, C1-C4-Halogenalkoxy, Nitro oder Cyano substituiertes
Phenyl ist, R6, R6‘ unabhängig voneinander Methoxy oder Ethoxy ist, R7, R8 jeweils unabhängig voneinander Methyl, Ethyl, Phenyl ist, oder gemeinsam einen gesättigten 5-, 6- oder 7-gliedrigen Ring bilden, wobei ein Ringkohlenstoffatom gegebenenfalls durch ein Sauerstoff- oder Schwefelatom ersetzt sein kann, E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent
Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion ist, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen C1-C10-Alkyl oder C3-C7- Cycloalkyl, die unabhängig voneinander jeweils ein- oder mehrfach mit Fluor, Chlor, Brom,
Cyano, Hydroxy substituiert oder durch ein- oder mehrere Sauerstoff- oder Schwefelatome unterbrochen sein können, ein cyclisches sekundäres oder tertiäres aliphatisches oder heteroaliphatisches Ammoniumion ist, beispielsweise Morpholinium, Thiomorpholinium,
Piperidinium, Pyrrolidinium oder jeweils protoniertes 1,4-Diazabicyclo[1.1.2]octane (DABCO) oder 1,5-Diazabicyclo[4.3.0]undec-7-en (DBU), ein heteroaromatisches Ammoniumkation ist, beispielsweise jeweils protoniertes Pyridin, 2-Methylpyridin, 3-Methylpyridin, 4-Methylpyridin,
2,4-Dimethylpyridin, 2,5-Di-methylpyridin, 2,6-Dimethylpyridin, 5-Ethyl-2-methylpyridin,
Collidin, Pyrrol, Imidazol, Chinolin, Chinoxalin, 1,2-Dimethylimidazol, 1,3- Dimethylimidazolium-methylsulfat oder weiterhin auch für ein Trimethylsulfoniumion steht. 2. Verbindungen der Formel (I) gemäß Anspruch 1 oder ein agrochemisch akzeptables Salz davon, worin die Reste folgende Bedeutungen aufweisen: X C1-C4-Alkoxy oder C1-C4-Halogenalkoxy ist, Y C1-C4-Alkyl, C1-C4-Halogenalkyl oder C3-C6-Cycloalkyl ist, R1 C3-C6-Alkoxy, C1-C4-Alkoxy-C1-C2-Alkyl, Cyclopropyl, C1-C6-Halogenalkyl, C3-C6- Alkenyloxy oder C3-C6-Halogenalkenyloxy ist
  R2 Wasserstoff, C1-C6-Alkyl, C1-C2-Halogenalkyl, Cyclopropyl, C2-C4-Alkenyl, C2-C4-Alkinyl,
C1-C4-Alkoxy oder C1-C4-Halogenalkoxy ist, G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei L einer der folgenden Reste ist
Figure imgf000061_0001
worin R3 C1-C4-Alkyl oder C1-C3-Alkoxy-C1-C4-Alkyl ist, R4 C1-C4-Alkyl ist, R5 C1-C4-Alkyl, ein unsubstituiertes Phenyl oder ein einfach oder mehrfach mit Halogen, C1- C4-Alkyl oder C1-C4-Haloalkyl, substituiertes Phenyl ist, E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent
Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion ist, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen C1-C10-Alkyl oder C3-C7- Cycloalkyl, die unabhängig voneinander jeweils ein- oder mehrfach mit Fluor, Chlor, Brom,
Cyano, Hydroxy substituiert sind. 3. Verbindungen der Formel (I) gemäß Anspruch 1 oder 2 oder ein agrochemisch akzeptables
Salz davon, worin die Reste folgende Bedeutungen aufweisen: X C1-C4-Alkoxy oder C1-C4-Halogenalkoxy ist, Y C1-C4-Alkyl, C1-C4-Halogenalkyl oder Cyclopropyl ist, R1 C3-C6-Alkoxy, C1-C4-Alkoxy-C1-C2-Alkyl, Cyclopropyl, C3-C6-Halogenalkyl, C3-C4- Alkenyloxy oder C3-C4-Halogenalkenyloxy ist
  R2 Wasserstoff, C1-C6-Alkyl, C1-C2-Halogenalkyl, C2-C4-Alkenyl, C2-C4-Alkinyl, C1-C2- Alkoxy oder C1-C4-Halogenalkoxy ist, G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei L einer der folgenden Reste ist
Figure imgf000062_0001
worin R3 C1-C4-Alkyl oder C1-C3-Alkoxy-C1-C4-Alkyl ist, R4 C1-C4-Alkyl ist, E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent
Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion ist, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen C1-C10-Alkyl oder C3-C7- Cycloalkyl substituiert sind. 4. Verbindungen der Formel (I) gemäß einem der Ansprüche 1 bis 3 oder ein agrochemisch akzeptables Salz davon, worin die Reste folgende Bedeutungen aufweisen: X Methoxy, Ethoxy, Trifluormethoxy, 2,2,2-Trifluorethoxy oder 2,2-Difluorethoxy ist, Y Methyl, Ethyl oder Cyclopropyl ist, R1 n-Propoxy, n-Butoxy, Allyloxy, Methoxymethyl oder Ethoxymethyl ist, R2 Wasserstoff oder Methyl ist, G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei L einer der folgenden Reste ist
 
Figure imgf000063_0002
worin R3 Methyl, Ethyl, i-Propyl oder t-Butyl ist, R4 Methyl oder Ethyl ist, E ein Natriumion oder ein Kaliumion ist. 5. Verfahren zur Herstellung der Verbindungen der Formel (I) oder ein agrochemisch akzeptables Salz davon gemäß einem der Ansprüche 1 bis 4, indem eine Verbindung der allgemeinen Formel (II)
Figure imgf000063_0001
in welcher R1, R2, X und Y die oben angegebene Bedeutung haben und R9 für Alkyl, bevorzugt für Methyl oder Ethyl steht, gegebenenfalls in Anwesenheit eines geeigneten Lösungs- oder
Verdünnungsmittels, mit einer geeigneten Base unter formaler Abspaltung der Gruppe R9OH
cyclisiert wird. 6. Agrochemisches Mittel, enthaltend a) mindestens eine Verbindung der Formel (I) oder ein agrochemisch akzeptables Salz davon, wie in einem oder mehreren der Ansprüche 1 bis 4 definiert, und b) im Pflanzenschutz übliche Hilfs- und Zusatzstoffe. 7. Agrochemisches Mittel, enthaltend a) mindestens eine Verbindung der Formel (I) oder ein agrochemisch akzeptables Salz davon, wie in einem oder mehreren der Ansprüche 1 bis 4 definiert, b) einen oder mehrere von Komponente a) verschiedene agrochemische Wirkstoffe, und optional
  c) im Pflanzenschutz übliche Hilfs- und Zusatzstoffe. 8. Verfahren zur Bekämpfung von unerwünschten Pflanzen oder zur Wachstumsregulierung von Pflanzen, wobei eine wirksame Menge mindestens einer Verbindung der Formel (I) oder ein agrochemisch akzeptables Salz davon, wie in einem oder mehreren der Ansprüche 1 bis 4 definiert, auf die Pflanzen, das Saatgut oder die Fläche, auf der die Pflanzen wachsen, appliziert wird. 9. Verwendung von Verbindungen der Formel (I) oder ein agrochemisch akzeptables Salz davon, wie in einem oder mehreren der Ansprüche 1 bis 4 definiert, als Herbizide oder
Pflanzenwachstumsregulatoren. 10. Verwendung nach Anspruch 9, wobei die Verbindungen der Formel (I) oder ein
agrochemisch akzeptables Salz davon zur Bekämpfung von Schadpflanzen oder zur
Wachstumsregulierung in Pflanzenkulturen eingesetzt werden. 11. Verwendung nach Anspruch 10, wobei die Kulturpflanzen transgene oder nicht transgene
Kulturpflanzen sind.
 
PCT/EP2020/056206 2019-03-15 2020-03-09 Speziell substituierte 3-(2-alkoxy-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide WO2020187628A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA3133190A CA3133190A1 (en) 2019-03-15 2020-03-09 Specifically substituted 3-(2-alkoxy-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-ones and their use as herbicides
EP20707681.1A EP3938349A1 (de) 2019-03-15 2020-03-09 Speziell substituierte 3-(2-alkoxy-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
EA202192468A EA202192468A1 (ru) 2019-03-15 2020-03-09 Специфически замещенные 3-(2-алкокси-6-алкил-4-пропинилфенил)-3-пирролин-2-оны и их применение в качестве гербицидов
AU2020244063A AU2020244063A1 (en) 2019-03-15 2020-03-09 Specifically substituted 3-(2-alkoxy-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-ones and their use as herbicides
US17/437,996 US20220177428A1 (en) 2019-03-15 2020-03-09 Specifically substituted 3-(2-alkoxy-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-ones and their use as herbicides
JP2021555318A JP2022525174A (ja) 2019-03-15 2020-03-09 特異的に置換された3-(2-アルコキシ-6-アルキル-4-プロピニルフェニル)-3-ピロリン-2-オン類およびそれらの除草剤としての使用
BR112021011965-5A BR112021011965A2 (pt) 2019-03-15 2020-03-09 3-(2-alcoxi-6-alquil-4-propinilfenil)-3-pirrolin-2-ona especialmente substituído e sua aplicação como herbicida
CN202080020612.0A CN113557232A (zh) 2019-03-15 2020-03-09 特定取代的3-(2-烷氧基-6-烷基-4-丙炔基苯基)-3-吡咯啉-2-酮及其作为除草剂的用途
IL286325A IL286325A (en) 2019-03-15 2021-09-13 3-(2-Alkoxy-6-alkyl-4-propynylphenyl)-3-pyrroline-2-ones are specifically converted and their use as herbicides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19163144 2019-03-15
EP19163144.9 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020187628A1 true WO2020187628A1 (de) 2020-09-24

Family

ID=65817910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/056206 WO2020187628A1 (de) 2019-03-15 2020-03-09 Speziell substituierte 3-(2-alkoxy-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide

Country Status (11)

Country Link
US (1) US20220177428A1 (de)
EP (1) EP3938349A1 (de)
JP (1) JP2022525174A (de)
CN (1) CN113557232A (de)
AR (1) AR118345A1 (de)
AU (1) AU2020244063A1 (de)
BR (1) BR112021011965A2 (de)
CA (1) CA3133190A1 (de)
EA (1) EA202192468A1 (de)
IL (1) IL286325A (de)
WO (1) WO2020187628A1 (de)

Citations (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
US4272417A (en) 1979-05-22 1981-06-09 Cargill, Incorporated Stable protective seed coating
EP0094349A2 (de) 1982-05-07 1983-11-16 Ciba-Geigy Ag Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen
EP0131624A1 (de) 1983-01-17 1985-01-23 Monsanto Co Plasmide zur transformation von pflanzenzellen.
JPS6087254A (ja) 1983-10-19 1985-05-16 Japan Carlit Co Ltd:The 新規尿素化合物及びそれを含有する除草剤
EP0142924A2 (de) 1983-09-26 1985-05-29 Mycogen Plant Science, Inc. Insektresistente Pflanzen
EP0174562A2 (de) 1984-09-11 1986-03-19 Hoechst Aktiengesellschaft Pflanzenschützende Mittel auf Basis von 1,2,4-Triazolderivaten sowie neue Derivate des 1,2,4-Triazols
EP0191736A2 (de) 1985-02-14 1986-08-20 Ciba-Geigy Ag Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen
EP0193259A1 (de) 1985-01-18 1986-09-03 Plant Genetic Systems N.V. Modifikation von Pflanzen auf pentechnologischem Wege zur Bekämpfung oder zur Kontrolle von Insekten
EP0221044A1 (de) 1985-10-25 1987-05-06 Monsanto Company Pflanzenvektoren
EP0242246A1 (de) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Durch Gentechnologie erhaltene und gegen Glutaminsynthetase-Inhibitoren resistente Pflanzenzellen
EP0257993A2 (de) 1986-08-26 1988-03-02 E.I. Du Pont De Nemours And Company Herbizid-resistante Pflanzen-Acetolactatsynthase kodierendes Nucleinsäurefragment
EP0268554A2 (de) 1986-10-22 1988-05-25 Ciba-Geigy Ag 1,5-Diphenylpyrazol-3-carbonsäurederivate zum Schützen von Kulturpflanzen
EP0269806A1 (de) 1986-10-04 1988-06-08 Hoechst Aktiengesellschaft Phenylpyrazolcarbonsäurederivate, ihre Herstellung und Verwendung als Pflanzenwachstumsregulatoren und Safener
US4808430A (en) 1987-02-27 1989-02-28 Yazaki Corporation Method of applying gel coating to plant seeds
EP0305398A1 (de) 1986-05-01 1989-03-08 Honeywell Inc Verbindungsanordnung für mehrere integrierte schaltungen.
EP0309862A1 (de) 1987-09-30 1989-04-05 Bayer Ag Stilbensynthase-Gen
EP0333131A1 (de) 1988-03-17 1989-09-20 Hoechst Aktiengesellschaft Pflanzenschützende Mittel auf Basis von Pyrazolcarbonsäurederivaten
WO1989010396A1 (en) 1988-04-28 1989-11-02 Plant Genetic Systems N.V. Plants with modified stamen cells
EP0346620A1 (de) 1988-05-20 1989-12-20 Hoechst Aktiengesellschaft 1,2,4-Triazolderivate enthaltende pflanzenschützende Mittel sowie neue Derivate des 1,2,4-Triazols
EP0355599A1 (de) 1988-08-20 1990-02-28 Bayer Ag 3-Aryl-pyrrolidin-2,4-dione
EP0365484A1 (de) 1988-10-20 1990-04-25 Ciba-Geigy Ag Sulfamoylphenylharnstoffe
EP0377893A2 (de) 1989-01-07 1990-07-18 Bayer Ag 3-Aryl-pyrrolidin-2,4-dion-Derivate
EP0415211A2 (de) 1989-09-01 1991-03-06 Bayer Ag 3-Aryl-pyrrolidin-2,4-dion-derivate
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
WO1991007874A1 (de) 1989-11-30 1991-06-13 Hoechst Aktiengesellschaft Pyrazoline zum schutz von kulturpflanzen gegenüber herbiziden
WO1991008202A1 (de) 1989-11-25 1991-06-13 Hoechst Aktiengesellschaft Isoxazoline, verfahren zu ihrer herstellung und ihre verwendung als pflanzenschützende mittel
EP0442077A2 (de) 1990-02-14 1991-08-21 Bayer Ag 3-Aryl-pyrrolidin-2,4-dion-Derivate als Insektizide und Herbizide
WO1991013972A1 (en) 1990-03-16 1991-09-19 Calgene, Inc. Plant desaturases - compositions and uses
WO1991019806A1 (en) 1990-06-18 1991-12-26 Monsanto Company Increased starch content in plants
EP0464461A2 (de) 1990-06-29 1992-01-08 Bayer Ag Stilbensynthase-Gene aus Weinrebe
WO1992000377A1 (en) 1990-06-25 1992-01-09 Monsanto Company Glyphosate tolerant plants
US5084082A (en) 1988-09-22 1992-01-28 E. I. Du Pont De Nemours And Company Soybean plants with dominant selectable trait for herbicide resistance
EP0492366A2 (de) 1990-12-21 1992-07-01 Hoechst Schering AgrEvo GmbH Neue 5-Chlorchinolin-8-oxyalkancarbonsäurederivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Antidots von Herbiziden
WO1992011376A1 (en) 1990-12-21 1992-07-09 Amylogene Hb Genetically engineered modification of potato to form amylopectin-type starch
WO1992014827A1 (en) 1991-02-13 1992-09-03 Institut Für Genbiologische Forschung Berlin Gmbh Plasmids containing dna-sequences that cause changes in the carbohydrate concentration and the carbohydrate composition in plants, as well as plant cells and plants containing these plasmids
US5198599A (en) 1990-06-05 1993-03-30 Idaho Resarch Foundation, Inc. Sulfonylurea herbicide resistance in plants
EP0582198A2 (de) 1992-08-01 1994-02-09 Hoechst Schering AgrEvo GmbH Substituierte (Hetero-)Arylverbindungen, Verfahren zu deren Herstellung, diese enthaltende Mittel und deren Verwendung als Safener
WO1995007897A1 (de) 1993-09-16 1995-03-23 Hoechst Schering Agrevo Gmbh Substituierte isoxazoline, verfahren zu deren herstellung, diese enthaltende mittel und deren verwendung als safener
DE4440594A1 (de) * 1994-04-05 1995-12-07 Bayer Ag Alkoxy-alkyl-substituierte 1-H-3-Aryl-pyrrolidin-2,4-dione
WO1996038567A2 (fr) 1995-06-02 1996-12-05 Rhone-Poulenc Agrochimie Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un gene de l'hydroxy-phenyl pyruvate dioxygenase, tolerantes a certains herbicides
WO1997041218A1 (en) 1996-04-29 1997-11-06 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herbicide resistant rice
WO1997045016A1 (de) 1996-05-29 1997-12-04 Hoechst Schering Agrevo Gmbh Neue n-acylsulfonamide, neue mischungen aus herbiziden und antidots und deren verwendung
WO1998005638A2 (de) 1996-08-05 1998-02-12 Bayer Aktiengesellschaft 2- und 2,5-substituierte phenylketoenole
WO1998013361A1 (en) 1996-09-26 1998-04-02 Novartis Ag Herbicidal composition
WO1998027049A1 (de) 1996-12-19 1998-06-25 Hoechst Schering Agrevo Gmbh Neue 2-fluoracrylsäurederivate, neue mischungen aus herbiziden und antidots und deren verwendung
US5773702A (en) 1996-07-17 1998-06-30 Board Of Trustees Operating Michigan State University Imidazolinone herbicide resistant sugar beet plants
WO1998038856A1 (en) 1997-03-04 1998-09-11 Zeneca Limited Compositions for safening rice against acetochlor
WO1999000020A1 (de) 1997-06-27 1999-01-07 Hoechst Schering Agrevo Gmbh 3-(5-tetrazolylcarbonyl)-2-chinolone und diese enthaltende nutzpflanzenschützende mittel
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
WO1999016744A1 (de) 1997-09-29 1999-04-08 Aventis Cropscience Gmbh Acylsulfamoylbenzoesäureamide, diese enthaltende nutzpflanzenschützende mittel und verfahren zu ihrer herstellung
WO1999024586A1 (fr) 1997-11-07 1999-05-20 Aventis Cropscience S.A. Hydroxy-phenyl pyruvate dioxygenase chimere, sequence d'adn et obtention de plantes contenant un tel gene, tolerantes aux herbicides
WO1999034008A1 (fr) 1997-12-24 1999-07-08 Aventis Cropscience S.A. Procede de preparation enzymatique d'homogentisate
WO1999057965A1 (de) 1998-05-14 1999-11-18 Aventis Cropscience Gmbh Sulfonylharnstoff-tolerante zuckerrübenmutanten
JP2000053670A (ja) 1998-08-10 2000-02-22 Ube Ind Ltd アルコキシメチルフラノン誘導体及び有害生物防除剤
WO2001065922A2 (en) 2000-03-09 2001-09-13 E. I. Du Pont De Nemours And Company Sulfonylurea-tolerant sunflower plants
WO2001066704A2 (en) 2000-03-09 2001-09-13 Monsanto Technology Llc Methods for making plants tolerant to glyphosate and compositions thereof
WO2001074770A1 (de) 2000-04-03 2001-10-11 Bayer Cropscience Ag C2-phenylsubstituierte cyclische ketoenole als schädlingsbekämpfungsmittel und herbizide
WO2002028186A2 (en) 2000-10-06 2002-04-11 Monsanto Technology, Llc Seed treatment with combinations of insecticides
WO2002034048A1 (en) 2000-10-23 2002-05-02 Syngenta Participations Ag Agrochemical compositions with quinoline safeners
WO2002036787A2 (fr) 2000-10-30 2002-05-10 Bayer Cropscience S.A. Plantes tolerantes aux herbicides par contournement de voie metabolique
WO2002046387A2 (en) 2000-12-07 2002-06-13 Syngenta Limited Plant derived hydroxy phenyl pyruvate dioxygenases (hppd) resistant against triketone herbicides and transgenic plants containing these dioxygenases
WO2002080675A1 (en) 2001-03-21 2002-10-17 Monsanto Technology, Llc Treated plant seeds with controlled release of active agents
US20030176428A1 (en) 1998-11-16 2003-09-18 Schneidersmann Ferdinand Martin Pesticidal composition for seed treatment
WO2004024928A2 (fr) 2002-09-11 2004-03-25 Bayer Cropscience S.A. Plantes transformees a biosynthese de prenylquinones amelioree
US6768044B1 (en) 2000-05-10 2004-07-27 Bayer Cropscience Sa Chimeric hydroxyl-phenyl pyruvate dioxygenase, DNA sequence and method for obtaining plants containing such a gene, with herbicide tolerance
WO2004084631A1 (de) 2003-03-26 2004-10-07 Bayer Cropscience Gmbh Verwendung von hydroxyaromaten als safener
WO2005015994A1 (de) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Verwendung von hydroxyaromaten als safener
WO2005016001A1 (de) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Safener auf basis aromatisch-aliphatischer carbonsäurederivate
WO2005112630A1 (de) 2004-05-12 2005-12-01 Bayer Cropscience Gmbh Chinoxalin-2-on-derivate, diese enthaltende nutzpflanzenschützende mittel und verfahren zu ihrer herstellung und deren verwendung
WO2006000355A1 (de) 2004-06-25 2006-01-05 Bayer Cropscience Aktiengesellschaft 3'-alkoxy spirocyclische tetram- und tetronsäuren
WO2007023719A1 (ja) 2005-08-22 2007-03-01 Kumiai Chemical Industry Co., Ltd. 薬害軽減剤及び薬害が軽減された除草剤組成物
WO2007023764A1 (ja) 2005-08-26 2007-03-01 Kumiai Chemical Industry Co., Ltd. 薬害軽減剤及び薬害が軽減された除草剤組成物
WO2007103567A2 (en) 2006-03-09 2007-09-13 E. I. Dupont De Nemours & Company Polynucleotide encoding a maize herbicide resistance gene and methods for use
WO2008131860A2 (de) 2007-04-30 2008-11-06 Bayer Cropscience Ag Pyridoncarboxamide, diese enthaltende nutzpflanzenschützende mittel und verfahren zu ihrer herstellung und deren verwendung
WO2008131861A1 (de) 2007-04-30 2008-11-06 Bayer Cropscience Ag Verwendung von pyridin-2-oxy-3-carbonamiden als safener
WO2008150473A2 (en) 2007-05-30 2008-12-11 Syngenta Participations Ag Cytochrome p450 genes conferring herbicide resistance
WO2009144079A1 (en) 2008-04-14 2009-12-03 Bayer Bioscience N.V. New mutated hydroxyphenylpyruvate dioxygenase, dna sequence and isolation of plants which are tolerant to hppd inhibitor herbicides
CN101838227A (zh) 2010-04-30 2010-09-22 孙德群 一种苯甲酰胺类除草剂的安全剂
WO2015032702A1 (en) 2013-09-06 2015-03-12 Syngenta Limited Herbicidally active 2-halogen-4-alkynyl- phenyl-pyrazolidine-dione or pyrrolidine-dione derivatives
WO2015040114A1 (en) 2013-09-20 2015-03-26 Syngenta Limited Herbicidally active 2-halogen-4-alkynyl-phenyl-pyrazolidine-dione or pyrrolidine-dione derivatives
WO2017060203A1 (de) 2015-10-06 2017-04-13 Bayer Cropscience Aktiengesellschaft Neue alkinyl-substituierte 3-phenylpyrrolidin-2,4-dione und deren verwendung als herbizide

Patent Citations (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272417A (en) 1979-05-22 1981-06-09 Cargill, Incorporated Stable protective seed coating
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
EP0094349A2 (de) 1982-05-07 1983-11-16 Ciba-Geigy Ag Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen
EP0131624A1 (de) 1983-01-17 1985-01-23 Monsanto Co Plasmide zur transformation von pflanzenzellen.
EP0142924A2 (de) 1983-09-26 1985-05-29 Mycogen Plant Science, Inc. Insektresistente Pflanzen
JPS6087254A (ja) 1983-10-19 1985-05-16 Japan Carlit Co Ltd:The 新規尿素化合物及びそれを含有する除草剤
EP0174562A2 (de) 1984-09-11 1986-03-19 Hoechst Aktiengesellschaft Pflanzenschützende Mittel auf Basis von 1,2,4-Triazolderivaten sowie neue Derivate des 1,2,4-Triazols
EP0193259A1 (de) 1985-01-18 1986-09-03 Plant Genetic Systems N.V. Modifikation von Pflanzen auf pentechnologischem Wege zur Bekämpfung oder zur Kontrolle von Insekten
EP0191736A2 (de) 1985-02-14 1986-08-20 Ciba-Geigy Ag Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen
EP0221044A1 (de) 1985-10-25 1987-05-06 Monsanto Company Pflanzenvektoren
EP0242246A1 (de) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Durch Gentechnologie erhaltene und gegen Glutaminsynthetase-Inhibitoren resistente Pflanzenzellen
EP0242236A1 (de) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Durch Gentechnologie erhaltene und gegen Glutaminsynthetase-Inhibitoren resistente Pflanzenzellen
EP0305398A1 (de) 1986-05-01 1989-03-08 Honeywell Inc Verbindungsanordnung für mehrere integrierte schaltungen.
EP0257993A2 (de) 1986-08-26 1988-03-02 E.I. Du Pont De Nemours And Company Herbizid-resistante Pflanzen-Acetolactatsynthase kodierendes Nucleinsäurefragment
EP0269806A1 (de) 1986-10-04 1988-06-08 Hoechst Aktiengesellschaft Phenylpyrazolcarbonsäurederivate, ihre Herstellung und Verwendung als Pflanzenwachstumsregulatoren und Safener
EP0268554A2 (de) 1986-10-22 1988-05-25 Ciba-Geigy Ag 1,5-Diphenylpyrazol-3-carbonsäurederivate zum Schützen von Kulturpflanzen
US4808430A (en) 1987-02-27 1989-02-28 Yazaki Corporation Method of applying gel coating to plant seeds
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
EP0309862A1 (de) 1987-09-30 1989-04-05 Bayer Ag Stilbensynthase-Gen
EP0333131A1 (de) 1988-03-17 1989-09-20 Hoechst Aktiengesellschaft Pflanzenschützende Mittel auf Basis von Pyrazolcarbonsäurederivaten
WO1989010396A1 (en) 1988-04-28 1989-11-02 Plant Genetic Systems N.V. Plants with modified stamen cells
EP0346620A1 (de) 1988-05-20 1989-12-20 Hoechst Aktiengesellschaft 1,2,4-Triazolderivate enthaltende pflanzenschützende Mittel sowie neue Derivate des 1,2,4-Triazols
EP0355599A1 (de) 1988-08-20 1990-02-28 Bayer Ag 3-Aryl-pyrrolidin-2,4-dione
US5084082A (en) 1988-09-22 1992-01-28 E. I. Du Pont De Nemours And Company Soybean plants with dominant selectable trait for herbicide resistance
EP0365484A1 (de) 1988-10-20 1990-04-25 Ciba-Geigy Ag Sulfamoylphenylharnstoffe
EP0377893A2 (de) 1989-01-07 1990-07-18 Bayer Ag 3-Aryl-pyrrolidin-2,4-dion-Derivate
EP0415211A2 (de) 1989-09-01 1991-03-06 Bayer Ag 3-Aryl-pyrrolidin-2,4-dion-derivate
WO1991008202A1 (de) 1989-11-25 1991-06-13 Hoechst Aktiengesellschaft Isoxazoline, verfahren zu ihrer herstellung und ihre verwendung als pflanzenschützende mittel
WO1991007874A1 (de) 1989-11-30 1991-06-13 Hoechst Aktiengesellschaft Pyrazoline zum schutz von kulturpflanzen gegenüber herbiziden
EP0442077A2 (de) 1990-02-14 1991-08-21 Bayer Ag 3-Aryl-pyrrolidin-2,4-dion-Derivate als Insektizide und Herbizide
WO1991013972A1 (en) 1990-03-16 1991-09-19 Calgene, Inc. Plant desaturases - compositions and uses
US5198599A (en) 1990-06-05 1993-03-30 Idaho Resarch Foundation, Inc. Sulfonylurea herbicide resistance in plants
WO1991019806A1 (en) 1990-06-18 1991-12-26 Monsanto Company Increased starch content in plants
WO1992000377A1 (en) 1990-06-25 1992-01-09 Monsanto Company Glyphosate tolerant plants
EP0464461A2 (de) 1990-06-29 1992-01-08 Bayer Ag Stilbensynthase-Gene aus Weinrebe
EP0492366A2 (de) 1990-12-21 1992-07-01 Hoechst Schering AgrEvo GmbH Neue 5-Chlorchinolin-8-oxyalkancarbonsäurederivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Antidots von Herbiziden
WO1992011376A1 (en) 1990-12-21 1992-07-09 Amylogene Hb Genetically engineered modification of potato to form amylopectin-type starch
WO1992014827A1 (en) 1991-02-13 1992-09-03 Institut Für Genbiologische Forschung Berlin Gmbh Plasmids containing dna-sequences that cause changes in the carbohydrate concentration and the carbohydrate composition in plants, as well as plant cells and plants containing these plasmids
EP0582198A2 (de) 1992-08-01 1994-02-09 Hoechst Schering AgrEvo GmbH Substituierte (Hetero-)Arylverbindungen, Verfahren zu deren Herstellung, diese enthaltende Mittel und deren Verwendung als Safener
WO1995007897A1 (de) 1993-09-16 1995-03-23 Hoechst Schering Agrevo Gmbh Substituierte isoxazoline, verfahren zu deren herstellung, diese enthaltende mittel und deren verwendung als safener
DE4440594A1 (de) * 1994-04-05 1995-12-07 Bayer Ag Alkoxy-alkyl-substituierte 1-H-3-Aryl-pyrrolidin-2,4-dione
WO1996038567A2 (fr) 1995-06-02 1996-12-05 Rhone-Poulenc Agrochimie Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un gene de l'hydroxy-phenyl pyruvate dioxygenase, tolerantes a certains herbicides
WO1997041218A1 (en) 1996-04-29 1997-11-06 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herbicide resistant rice
WO1997045016A1 (de) 1996-05-29 1997-12-04 Hoechst Schering Agrevo Gmbh Neue n-acylsulfonamide, neue mischungen aus herbiziden und antidots und deren verwendung
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
US5773702A (en) 1996-07-17 1998-06-30 Board Of Trustees Operating Michigan State University Imidazolinone herbicide resistant sugar beet plants
WO1998005638A2 (de) 1996-08-05 1998-02-12 Bayer Aktiengesellschaft 2- und 2,5-substituierte phenylketoenole
WO1998013361A1 (en) 1996-09-26 1998-04-02 Novartis Ag Herbicidal composition
WO1998027049A1 (de) 1996-12-19 1998-06-25 Hoechst Schering Agrevo Gmbh Neue 2-fluoracrylsäurederivate, neue mischungen aus herbiziden und antidots und deren verwendung
WO1998038856A1 (en) 1997-03-04 1998-09-11 Zeneca Limited Compositions for safening rice against acetochlor
WO1999000020A1 (de) 1997-06-27 1999-01-07 Hoechst Schering Agrevo Gmbh 3-(5-tetrazolylcarbonyl)-2-chinolone und diese enthaltende nutzpflanzenschützende mittel
WO1999016744A1 (de) 1997-09-29 1999-04-08 Aventis Cropscience Gmbh Acylsulfamoylbenzoesäureamide, diese enthaltende nutzpflanzenschützende mittel und verfahren zu ihrer herstellung
WO1999024585A1 (fr) 1997-11-07 1999-05-20 Aventis Cropscience S.A. Hydroxy-phenyl pyruvate dioxygenase mutee, sequence d'adn et obtention de plantes contenant un tel gene, tolerantes aux herbicides
WO1999024586A1 (fr) 1997-11-07 1999-05-20 Aventis Cropscience S.A. Hydroxy-phenyl pyruvate dioxygenase chimere, sequence d'adn et obtention de plantes contenant un tel gene, tolerantes aux herbicides
WO1999034008A1 (fr) 1997-12-24 1999-07-08 Aventis Cropscience S.A. Procede de preparation enzymatique d'homogentisate
WO1999057965A1 (de) 1998-05-14 1999-11-18 Aventis Cropscience Gmbh Sulfonylharnstoff-tolerante zuckerrübenmutanten
JP2000053670A (ja) 1998-08-10 2000-02-22 Ube Ind Ltd アルコキシメチルフラノン誘導体及び有害生物防除剤
US20030176428A1 (en) 1998-11-16 2003-09-18 Schneidersmann Ferdinand Martin Pesticidal composition for seed treatment
WO2001065922A2 (en) 2000-03-09 2001-09-13 E. I. Du Pont De Nemours And Company Sulfonylurea-tolerant sunflower plants
WO2001066704A2 (en) 2000-03-09 2001-09-13 Monsanto Technology Llc Methods for making plants tolerant to glyphosate and compositions thereof
WO2001074770A1 (de) 2000-04-03 2001-10-11 Bayer Cropscience Ag C2-phenylsubstituierte cyclische ketoenole als schädlingsbekämpfungsmittel und herbizide
US6768044B1 (en) 2000-05-10 2004-07-27 Bayer Cropscience Sa Chimeric hydroxyl-phenyl pyruvate dioxygenase, DNA sequence and method for obtaining plants containing such a gene, with herbicide tolerance
WO2002028186A2 (en) 2000-10-06 2002-04-11 Monsanto Technology, Llc Seed treatment with combinations of insecticides
WO2002034048A1 (en) 2000-10-23 2002-05-02 Syngenta Participations Ag Agrochemical compositions with quinoline safeners
WO2002036787A2 (fr) 2000-10-30 2002-05-10 Bayer Cropscience S.A. Plantes tolerantes aux herbicides par contournement de voie metabolique
WO2002046387A2 (en) 2000-12-07 2002-06-13 Syngenta Limited Plant derived hydroxy phenyl pyruvate dioxygenases (hppd) resistant against triketone herbicides and transgenic plants containing these dioxygenases
WO2002080675A1 (en) 2001-03-21 2002-10-17 Monsanto Technology, Llc Treated plant seeds with controlled release of active agents
WO2004024928A2 (fr) 2002-09-11 2004-03-25 Bayer Cropscience S.A. Plantes transformees a biosynthese de prenylquinones amelioree
WO2004084631A1 (de) 2003-03-26 2004-10-07 Bayer Cropscience Gmbh Verwendung von hydroxyaromaten als safener
WO2005015994A1 (de) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Verwendung von hydroxyaromaten als safener
WO2005016001A1 (de) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Safener auf basis aromatisch-aliphatischer carbonsäurederivate
WO2005112630A1 (de) 2004-05-12 2005-12-01 Bayer Cropscience Gmbh Chinoxalin-2-on-derivate, diese enthaltende nutzpflanzenschützende mittel und verfahren zu ihrer herstellung und deren verwendung
US20090029858A1 (en) * 2004-06-25 2009-01-29 Bayer Cropscience Aktiengesellschaft Spirocyclic 3'-Alkoxytetramic Acids and -Tetronic Acids
WO2006000355A1 (de) 2004-06-25 2006-01-05 Bayer Cropscience Aktiengesellschaft 3'-alkoxy spirocyclische tetram- und tetronsäuren
WO2007023719A1 (ja) 2005-08-22 2007-03-01 Kumiai Chemical Industry Co., Ltd. 薬害軽減剤及び薬害が軽減された除草剤組成物
WO2007023764A1 (ja) 2005-08-26 2007-03-01 Kumiai Chemical Industry Co., Ltd. 薬害軽減剤及び薬害が軽減された除草剤組成物
WO2007103567A2 (en) 2006-03-09 2007-09-13 E. I. Dupont De Nemours & Company Polynucleotide encoding a maize herbicide resistance gene and methods for use
WO2008131860A2 (de) 2007-04-30 2008-11-06 Bayer Cropscience Ag Pyridoncarboxamide, diese enthaltende nutzpflanzenschützende mittel und verfahren zu ihrer herstellung und deren verwendung
WO2008131861A1 (de) 2007-04-30 2008-11-06 Bayer Cropscience Ag Verwendung von pyridin-2-oxy-3-carbonamiden als safener
WO2008150473A2 (en) 2007-05-30 2008-12-11 Syngenta Participations Ag Cytochrome p450 genes conferring herbicide resistance
WO2009144079A1 (en) 2008-04-14 2009-12-03 Bayer Bioscience N.V. New mutated hydroxyphenylpyruvate dioxygenase, dna sequence and isolation of plants which are tolerant to hppd inhibitor herbicides
CN101838227A (zh) 2010-04-30 2010-09-22 孙德群 一种苯甲酰胺类除草剂的安全剂
WO2015032702A1 (en) 2013-09-06 2015-03-12 Syngenta Limited Herbicidally active 2-halogen-4-alkynyl- phenyl-pyrazolidine-dione or pyrrolidine-dione derivatives
WO2015040114A1 (en) 2013-09-20 2015-03-26 Syngenta Limited Herbicidally active 2-halogen-4-alkynyl-phenyl-pyrazolidine-dione or pyrrolidine-dione derivatives
WO2017060203A1 (de) 2015-10-06 2017-04-13 Bayer Cropscience Aktiengesellschaft Neue alkinyl-substituierte 3-phenylpyrrolidin-2,4-dione und deren verwendung als herbizide
US20180282275A1 (en) * 2015-10-06 2018-10-04 Bayer Cropscience Aktiengesellschaft New alkynyl-substituted 3-phenylpyrrolidine-2,4-diones and use thereof as herbicides

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
"Gene Transfer to Plants", 1995, SPRINGER LAB MANUAL
"The Pesticide Manual", 2006, THE BRITISH CROP PROTECTION COUNCIL
BARRY ET AL., CURR. TOPICS PLANT PHYSIOL., vol. 7, 1992, pages 139 - 145
BRAUN ET AL., EMBO J., vol. 11, 1992, pages 3219 - 3227
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 133993-74-5
COMAI ET AL., SCIENCE, vol. 221, 1983, pages 370 - 371
G.C. KLINGMAN: "Weed Control as a Science", 1961, JOHN WILEY AND SONS, INC., pages: 81 - 96
GASSER ET AL., J. BIOL. CHEM., vol. 263, 1988, pages 4280 - 4289
H.V. OLPHEN: "Handbook of Insecticide Dust Diluents and Carriers", 1963, J. WILEY & SONS
J.D. FREYERS.A. EVANS: "Weed Control Handbook", 1968, BLACKWELL SCIENTIFIC PUBLICATIONS, pages: 101 - 103
J.E. BROWNING: "Agglomeration", CHEMICAL AND ENGINEERING, 1967, pages 147 ff
K. MARTENS: "Spray-Drying Handbook", 1979, G. GOODWIN LTD.
MCCUTCHEON'S: "Encyclopedia of Surface Active Agents", 1964, CHEM. PUBL. CO. INC.
SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", vol. 2, 1989, COLD SPRING HARBOR LABORATORY PRESS
SCHÖNFELDT: "Grenzflächenaktive Äthylenoxid-addukte", 1976, WISS. VERLAGSGESELL.
SHAH ET AL., SCIENCE, vol. 233, 1986, pages 478 - 481
SONNEWALD ET AL., PLANT J., vol. 1, 1991, pages 95 - 106
TRANELWRIGHT, WEED SCIENCE, vol. 50, 2002, pages 700 - 712
WADE VAN VALKENBURG: "Perry's Chemical Engineer's Handbook", 1973, MARCEL DEKKER, N.Y., pages: 8 - 57
WEED RESEARCH, vol. 26, 1986, pages 441 - 445
WINNACKER: "Trends in Plant Science", vol. 1, 1996, SPRINGER VERLAG BERLIN, pages: 423 - 431
WOLTER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 846 - 850

Also Published As

Publication number Publication date
JP2022525174A (ja) 2022-05-11
CA3133190A1 (en) 2020-09-24
IL286325A (en) 2021-10-31
AU2020244063A1 (en) 2021-10-07
AR118345A1 (es) 2021-09-29
BR112021011965A2 (pt) 2021-09-21
CN113557232A (zh) 2021-10-26
EP3938349A1 (de) 2022-01-19
EA202192468A1 (ru) 2022-02-16
US20220177428A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
EP3638665A1 (de) Herbizid wirksame 3-phenylisoxazolin-5-carboxamide von tetrahydro- und dihydrofurancarbonsäuren und -estern
EP3793977A1 (de) 2-brom-6-alkoxyphenyl-substituierte pyrrolin-2-one und deren verwendung als herbizide
EP3975720A1 (de) 1-phenyl-5-azinylpyrazolyl-3-oxyalkylsäuren und deren verwendung zur bekämpfung unerwünschten pflanzenwachstums
WO2019219584A1 (de) Neue spirocyclohexylpyrrolin-2-one und deren verwendung als herbizide
EP3853219B1 (de) Herbizid wirksame substituierte phenylpyrimidinhydrazide
EP3580216A1 (de) Substituierte benzyl-4-aminopicolinsäureester und pyrimidin-4-carbonsäureester, verfahren zu deren herstellung sowie deren verwendung als herbizide und pflanzenwachstumsregulatoren
EP3938348A1 (de) Neue 3-(2-brom-4-alkinyl-6-alkoxyphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2021204884A1 (de) 3-(4-alkenyl-phenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2019228787A1 (de) Speziell substituierte 2-alkyl-6-alkoxyphenyl-3-pyrrolin-2-one und deren verwendung als herbizide
WO2019228788A1 (de) 2-brom-6-alkoxyphenyl-substituierte pyrrolin-2-one und deren verwendung als herbizide
WO2020187628A1 (de) Speziell substituierte 3-(2-alkoxy-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
EP3938346A1 (de) Speziell substituierte 3-(2-halogen-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
EP3938350A1 (de) 3-(2-brom-4-alkinyl-6-alkoxyphenyl)-substituierte 5-spirocyclohexyl-3-pyrrolin-2-one und deren verwendung als herbizide
WO2020187626A1 (de) Speziell substituierte 3-phenyl-5-spirocyclopentyl-3-pyrrolin-2-one und deren verwendung als herbizide
WO2023274869A1 (de) 3-(4-alkenyl-phenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2019219588A1 (de) Speziell substituierte 2-alkyl-6-alkoxyphenyl-3-pyrroliin-2-one und deren verwendung als herbizide
WO2019219585A1 (de) Neue 3-(4-alkinyl-6-alkoxy-2-chlorphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2022253700A1 (de) Speziell substituierte pyrrolin-2-one und deren verwendung als herbizide
WO2023280772A1 (de) N-(1,3,4-oxadiazol-2-yl)phenylcarboxamide als herbizide
WO2021239673A1 (de) Substituierte pyrrolin-2-one und deren verwendung als herbizide
WO2021209486A1 (de) Speziell substituierte pyrrolin-2-one und deren verwendung als herbizide
WO2019233862A1 (de) Herbizid wirksame substituierte phenylpyrimidine
EP3360417A1 (de) Verwendung von sulfonylindol als herbizid
EP3360872A1 (de) Unsubstituierte benzyl-4-aminopicolinsäureester und pyrimidin-4-carbonsäureester, verfahren zu deren herstellung sowie deren verwendung als herbizide und pflanzenwachstumsregulatoren

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20707681

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021011965

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 3133190

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021555318

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021011965

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210617

ENP Entry into the national phase

Ref document number: 2020244063

Country of ref document: AU

Date of ref document: 20200309

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020707681

Country of ref document: EP