WO2020187626A1 - Speziell substituierte 3-phenyl-5-spirocyclopentyl-3-pyrrolin-2-one und deren verwendung als herbizide - Google Patents

Speziell substituierte 3-phenyl-5-spirocyclopentyl-3-pyrrolin-2-one und deren verwendung als herbizide Download PDF

Info

Publication number
WO2020187626A1
WO2020187626A1 PCT/EP2020/056204 EP2020056204W WO2020187626A1 WO 2020187626 A1 WO2020187626 A1 WO 2020187626A1 EP 2020056204 W EP2020056204 W EP 2020056204W WO 2020187626 A1 WO2020187626 A1 WO 2020187626A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
plants
methyl
alkoxy
hydrogen
Prior art date
Application number
PCT/EP2020/056204
Other languages
English (en)
French (fr)
Inventor
Estella Buscato Arsequell
Alfred Angermann
Guido Bojack
Stefan Lehr
Elmar Gatzweiler
Elisabeth ASMUS
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Priority to CA3133184A priority Critical patent/CA3133184A1/en
Priority to EP20707483.2A priority patent/EP3938347A1/de
Priority to JP2021555319A priority patent/JP2022524861A/ja
Priority to AU2020242662A priority patent/AU2020242662A1/en
Priority to EA202192471A priority patent/EA202192471A1/ru
Priority to US17/438,827 priority patent/US20220386606A1/en
Priority to CN202080021291.6A priority patent/CN113574051A/zh
Priority to BR112021018297A priority patent/BR112021018297A2/pt
Publication of WO2020187626A1 publication Critical patent/WO2020187626A1/de
Priority to IL286252A priority patent/IL286252A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/96Spiro-condensed ring systems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/36Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
    • A01N43/38Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings condensed with carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/30Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms containing six-membered aromatic rings

Definitions

  • the present invention relates to new herbicidally active pyrrolin-2-ones according to the general formula (I) or agrochemically acceptable salts thereof, and their use for combating weeds and grass weeds in crops of useful plants.
  • bicyclic 3-aryl-pyrrolidine-2,4-dione derivatives EP-A-355 599, EP-A-415 211 and JP-A-12-053 670
  • substituted monocyclic 3- Aryl-pyrrolidine-2,4-dione derivatives EP-A-377 893 and EP-A-442 077 with herbicidal, insecticidal or fungicidal action are described.
  • Alkynyl-substituted-3-phenylpyrrolidine-2,4-diones with herbicidal action are also known from WO 96/82395, WO 98/05638, WO 01/74770, WO 15/032702, WO 15/040114 or WO 16/207097.
  • the object of the present invention is therefore to provide new compounds which do not have the disadvantages mentioned.
  • the present invention therefore relates to spirocyclopentylpyrrolin-2-ones of the general formula (I), and their agrochemically acceptable salts, in which
  • X is Ci-C ö -alkoxy, Ci-C ö -haloalkoxy or halogen
  • Y is Ci-C ö alkyl, C i -Cr, haloalkyl, Ci-C ö alkoxy, C 3 -C 6 cycloalkyl or halogen,
  • R 1 is hydrogen, Ci-C ö alkyl, Ci-C 4 -alkoxy-C 2 -C 4 - alkyl, C 3 -C 6 cycloalkyl, C 3 -C 6 cycloalkyl, Ci-C 2 alkyl, C -C ö haloalkyl, C 2 -C 6 alkenyl, C 2 -C 4 haloalkenyl, C 2 -C 6 alkynyl or C 2 -C 6 haloalkynyl,
  • R 2 hydrogen, Ci-Cr, -alkyl, Ci-C 4 -alkoxy-Ci-C 4 - alkyl, Ci-C ö -haloalkyl, C 3 -C 6 -
  • Cycloalkyl C 2 -C 6 -alkenyl, C 2 -C 6 -haloalkenyl, C 2 -C 6 -alkynyl, Ci-C ö -alkoxy or Ci- C ö -haloalkoxy,
  • R 3 is hydrogen, Ci-C 4 -alkyl, Ci-C 4 -haloalkyl, C 3 -C 6 -cycloalkyl or halogen,
  • G is hydrogen, a removable group L or a cation E,
  • R 4 is (C1-C4) -alkyl or (Ci-C3) -alkoxy- (C2-C4) -alkyl;
  • R 5 is (C 1 -C 4 ) alkyl
  • R 6 (C 1 -C 4 ) - alkyl, an unsubstituted phenyl or a single or multiple with halogen
  • R 7 , R 7 'independently of one another denote methoxy or ethoxy
  • R 8 , R 9 each independently represent methyl, ethyl, phenyl or together form a saturated 5-, 6- or 7-membered ring, or together form a saturated 5-, 6- or 7-membered heterocycle with an oxygen or Form sulfur atom,
  • E is an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent
  • Aluminum, an ion equivalent of a transition metal or a magnesium-halogen cation means an ammonium ion, in which optionally one, two, three or all four hydrogen atoms can be replaced by identical or different radicals from the group (Ci-Cio) -alkyl or (C3-C7) -cycloalkyl, these being independently substituted one or more times with fluorine, chlorine, bromine, cyano, hydroxyl or can be interrupted by one or more oxygen or sulfur atoms, a cyclic secondary or tertiary aliphatic or hetero-aliphatic ammonium ion, for example in each case morpholinium, thiomorpholinium, piperidinium, pyrrolidinium, or in each case protonated 1,4-diazabicyclo [1.1.2] octane (DABCO) or 1,5-diazabicyclo [4.3.0] undec-7-ene (DBU), which means a heteroaromatic ammonium c
  • Halogen-substituted alkyl means straight-chain or branched alkyl groups, it being possible for some or all of the hydrogen atoms in these groups to be replaced by halogen atoms, e.g. Ci-C2-haloalkyl such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2, 2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro, 2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroe
  • Alkenyl means unsaturated, straight-chain or branched hydrocarbon radicals with the specified number of carbon atoms and a double bond in any position, e.g. C2-C6-alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2- Butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl-1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, l-methyl-3-butenyl, 2-methyl-3
  • C2-C6- alkynyl such as ethynyl, 1-propynyl, 2-propynyl (or propargyl), 1-butynyl, 2-butynyl, 3-butynyl, 1- methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3- Pentynyl, 4-pentynyl, 3-methyl-l-butynyl, l-methyl-2-butynyl, l-methyl-3-butynyl, 2-methyl-3-butynyl, l, l-dimethyl-2-propynyl, l- Ethyl-2-propynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 3-methyl-1-pentynyl, 4-methyl-1-
  • Cycloalkyl means a carbocyclic, saturated ring system with preferably 3-8 ring carbon atoms, e.g. Cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
  • cyclic systems with substituents are included, with substituents with a double bond on the cycloalkyl radical, e.g. B. an alkylidene group such as methylidene are included.
  • Alkoxy means saturated, straight-chain or branched alkoxy radicals with the specified number of carbon atoms, e.g. Ci -C, - alkoxy such as methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy, 1,1- Dimethylethoxy, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1,1-dimethylbutoxy, 1,2-dimethylbutoxy, 1,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2- Ethyl butoxy, 1,1,2-trimethylpropoxy, 1,2,2-trimethylpropoxy, 1-ethy
  • Alkoxy substituted by halogen means straight-chain or branched alkoxy radicals with the number of carbon atoms specified in each case, with the hydrogen atoms in these groups being partially or completely replaced by halogen atoms as mentioned above, for example Ci-C2-haloalkoxy such as chloromethoxy, bromomethoxy, dichloromethoxy, trichloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorofluoromethoxy, dichloro fluoromethoxy, chlorodifluoromethoxy, 1-chloroethoxy, 1-bromoethoxy, 1 -fluoroethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-1,2 difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy
  • the compounds of the formula (I) can, depending on the nature of the substituents, be present as geometric and / or optical isomers or isomer mixtures, in different compositions, for example also in cis or trans form, which are defined as follows:
  • the present invention relates to both the pure isomers and the tautomer and isomer mixtures, their preparation and use, and agents containing them.
  • compounds of the formula (I) are always referred to below, although what is meant is both the pure compounds and, if appropriate, mixtures with different proportions of isomeric and tautomeric compounds.
  • X is Ci-C ö -alkoxy, bromine, chlorine or fluorine
  • Y is Ci-C ö -alkyl, Ci-Ce-haloalkyl, Ci-Ce-alkoxy or Cs-Ce-cycloalkyl,
  • R 1 is hydrogen, Ci-C ö alkyl, Ci-C 4 -alkoxy-C 2 -C 4 - alkyl, C3-C6-cycloalkyl, C3-C6-cycloalkyl, Ci-C2-alkyl, Ci-C ö -haloalkyl , C2-C6-alkenyl, Ci-C4-haloalkenyl, C2-C6-alkynyl or C2-C6 haloalkynyl, R 2 is hydrogen, Ci-Cr, -alkyl, Ci-C 4 -alkoxy-C 2 -C 4 -alkyl, Ci-C ö -haloalkyl, C 3 -C 6 -
  • Cycloalkyl C 2 -C 6 -alkenyl, C 2 -C 6 -haloalkenyl, C 2 -C 6 -alkynyl, Ci-C ö -alkoxy or Ci- C ö -haloalkoxy,
  • R 3 is hydrogen, Ci-C 4 -alkyl, Ci-C 4 -haloalkyl, C 3 -C 6 -cycloalkyl or halogen,
  • G is hydrogen, a leaving group L or a cation E, where
  • R 4 is C 1 -C 4 alkyl or C 1 -C 3 alkoxy-C 1 -C 4 alkyl
  • R 5 is C 1 -C 4 alkyl
  • R 6 is Ci-C 4 -alkyl, an unsubstituted phenyl or a phenyl substituted one or more times with halogen, Ci-C 4 -alkyl, Ci-C 4 -haloalkyl or cyano,
  • E is an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent of aluminum, an ion equivalent of a transition metal, a magnesium-halogen cation or an ammonium ion, in which one, two, three or all four hydrogen atoms are optionally replaced by identical or different radicals from the Groups C 1 -C 10 -alkyl or C 3 -C 7 -cycloalkyl which, independently of one another, are each substituted one or more times with fluorine, chlorine, bromine, cyano, hydroxy.
  • X is Ci-C ö -alkoxy, bromine, chlorine or fluorine
  • Y is Ci-C ö -alkyl, Ci-Cr, -haloalkyl, Ci-Ce-alkoxy or Cs-Ce-cycloalkyl,
  • R 1 is hydrogen, Ci-C ö alkyl, Ci-C4-alkoxy-C2-C4 alkyl, C 3 -C 6 cycloalkyl, C 3 -C 6 cycloalkyl, Ci-C 2 alkyl, Ci-C ö -Haloalkyl, C 2 -C 6 -alkenyl, Ci-C 4 -haloalkenyl, C 2 -C 6 -alkynyl or C 2 -C 6 haloalkynyl,
  • R 2 is hydrogen, Ci-Cr, -alkyl, Ci-C 4 -alkoxy-C 2 -C 4 -alkyl, Ci-C ö -haloalkyl, C 3 -C 6 -
  • Cycloalkyl C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl, Ci-C ö alkoxy or Ci- Ce-haloalkoxy,
  • R 3 is hydrogen, Ci-C 4 -alkyl, Ci-C 4 -haloalkyl, C 3 -C 6 -cycloalkyl or halogen,
  • G is hydrogen, a leaving group L or a cation E, where
  • R 4 is C i -C 4 - alkyl or C 1 -C 3 - alkoxy-C 1 -C 4 - alkyl
  • R 5 is C 1 -C 4 alkyl
  • E is an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent of aluminum, an ion equivalent of a transition metal, a magnesium-halogen cation or an ammonium ion, in which one, two, three or all four hydrogen atoms are optionally replaced by identical or different radicals from the Groups C 1 -C 10 - alkyl or C 3 -C 7 -cycloalkyl are substituted.
  • X is methoxy, ethoxy, bromine, chlorine or fluorine
  • Y is methyl, ethyl, cyclopropyl, ethoxy, methoxy,
  • R 1 is hydrogen, ethyl, methyl, n-propyl, n-butyl, allyl, methoxymethyl or ethoxymethyl
  • R 2 is hydrogen or methyl
  • R 3 is hydrogen, methyl, ethyl, bromine
  • G is hydrogen, a leaving group L or a cation E, where
  • R 4 is methyl, ethyl or i-propyl
  • R 5 is methyl, ethyl, i-propyl or t-butyl
  • E is a sodium ion or a potassium ion.
  • Hal-L (III) in which L has the meaning given above and Hal stands for a halogen, preferably chlorine or bromine, optionally in the presence of a suitable solvent or diluent and a suitable base, reacting c) by reacting compounds of general formula (IV),
  • R 3 has the meaning given above and W is hydrogen or a suitable one
  • the leaving group W includes, for example, halogen atoms such as chlorine, bromine or iodine, alkyl sulfonic ester groups such as triflate, mesylate or nonaflate, magnesium chloride, Zinc chloride, a trialkyltin radical and boric acid radicals such as B (OH) 2 or B (O-alkyl) 2 are possible.
  • halogen atoms such as chlorine, bromine or iodine
  • alkyl sulfonic ester groups such as triflate, mesylate or nonaflate
  • magnesium chloride Zinc chloride
  • a trialkyltin radical and boric acid radicals such as B (OH) 2 or B (O-alkyl) 2 are possible.
  • Pd ° complexes in particular are very suitable as catalysts, the addition of Cu® salts can also be very advantageous in many cases.
  • a compound of the general formula (IV) can also be reacted with an alkynyl reagent of the general formula (VI) in an analogous application of the coupling method described above, then in ethynyl WO 2016/207097 PC T / EP2016 / 064132 compounds of general formula (VIII) cleaved and these are finally converted with a suitable alkylating reagent into the compound (I) according to the invention, where in each case X, Y, R 1 , R 2 , and W have the meaning described and the removable group R 11 , for example, for a Trimethylsilyl group can stand.
  • amino acid esters of the general formula (IX) is described in principle in WO 04/024688 or WO 08/067873 and can be carried out analogously to these processes, for example by reacting a cyclopentanone of the general formula (XI) with sodium cyanide, followed by hydrolytic cleavage the resulting aminonitrile to the amino acid and esterification to the amino ester (IX) (Strecker or Bucherer-Bergs process).
  • the required precursors of the general formula XI can be obtained, for example, in analogy to US 20090275574 and WO 2015165279.
  • Phenylacetic acids of the general formula (X) are also known, inter alia, from WO 2015/040114 or can be prepared analogously to processes known from the literature, for example by adding a compound with the general formula (XII) in which X, Y, R 12 and U have the meaning given above, according to the cross-coupling methodology already described with a compound of the general formula (V), in which W has the meaning given above, and the resulting carboxylic acid ester (XIII) cleaves according to standard methods:
  • the required precursors of the general formula (XII) can be obtained, for example, by introducing an acetate unit into compounds of the general formula (XVI) in which X, Y and U have the meanings given above, according to processes known from the literature.
  • the present invention also relates to compounds of the formula (X) in which the radicals have the following meanings:
  • R 3 is hydrogen or methyl
  • X is fluorine, chlorine or bromine
  • Y is methyl, ethyl, methoxy, ethoxy.
  • the compounds of the formula (I) according to the invention (and / or their salts), hereinafter referred to collectively as “compounds according to the invention”, have excellent herbicidal activity against a broad spectrum of economically important monocotyledonous and dicotyledonous annual harmful plants.
  • the present invention therefore also provides a method for controlling unwanted plants or for regulating the growth of plants, preferably in plant crops, in which one or more compound (s) according to the invention are applied to the plants (for example harmful plants such as monocotyledonous or dicotyledonous weeds or unwanted crop plants), the seeds (e.g. grains, seeds or vegetative reproductive organs such as tubers or sprouts with buds) or the area on which the plants grow (e.g. the area under cultivation) are applied.
  • the compounds according to the invention can e.g. be applied by pre-sowing (if necessary also by incorporation into the soil), pre-emergence or post-emergence methods.
  • Monocotyledonous harmful plants of the genera Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragloaim, Festylochata , Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum.
  • the compounds according to the invention are applied to the surface of the earth before germination, either the emergence of the weed seedlings is completely prevented or the weeds grow to the cotyledon stage, but then stop growing.
  • the compounds according to the invention can have selectivities in useful crops and can also be used as non-selective herbicides.
  • the active compounds can also be used for combating harmful plants in crops of known or still to be developed genetically modified plants.
  • the transgenic plants are usually characterized by particularly advantageous properties, for example by resistance to certain active ingredients used in the agricultural industry, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses.
  • Other special properties concern e.g. the crop in terms of quantity, quality, shelf life, composition and special ingredients.
  • transgenic plants with an increased starch content or a changed quality of the starch or those with a different fatty acid composition of the harvested material are known.
  • Other special properties are tolerance or resistance to abiotic stressors e.g. Heat, cold, drought, salt and ultraviolet radiation.
  • the compounds of the formula (I) can be used as herbicides in crops of useful plants which are resistant or have been made resistant by genetic engineering to the phytotoxic effects of the herbicides.
  • new plants with modified properties can be produced with the aid of genetic engineering processes (see eg EP 0221044, EP 0131624).
  • genetic engineering of crop plants for the purpose of modifying the starch synthesized in the plants e.g.
  • transgenic crop plants which are resistant to certain herbicides of the glufosinate type ( See, for example, EP 0242236 A, EP 0242246 A) or glyphosate (WO 92/000377 A) or the sulfonylureas (EP 0257993 A, US 5,013,659) or are resistant to combinations or mixtures of these herbicides by “gene stacking”, such as transgenic crops e.g. . B. corn or soy with the trade name or designation Optimum TM GAT TM (Glyphosate ALS Tolerant).
  • transgenic crop plants for example cotton, with the ability to produce Bacillus thuringiensis toxins (Bt toxins), which make the plants resistant to certain pests (EP 0142924 A, EP 0193259 A).
  • Bacillus thuringiensis toxins Bacillus thuringiensis toxins
  • transgenic crop plants with modified fatty acid composition WO 91/013972 A.
  • genetically modified crops with new ingredients or secondary substances for example new phytoalexins that cause increased disease resistance
  • EP 0309862 A, EP 0464461 A genetically modified plants with reduced photorespiration, which have higher yields and higher stress tolerance
  • EP 0305398 A transgenic crops that Produce pharmaceutically or diagnostically important proteins
  • molecular pharming transgenic crops that are characterized by higher yields or better quality transgenic crops that are characterized by a combination of, for example, the new properties mentioned above (“gene stacking”)
  • nucleic acid molecules can be introduced into plasmids which allow mutagenesis or a sequence change by recombining DNA sequences. With the help of standard procedures, e.g. Base exchanges carried out, partial sequences removed or natural or synthetic sequences added.
  • adapters or linkers can be attached to the fragments, see e.g. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; or Winnacker "Genes and Clones", VCH Weinheim 2nd edition 1996
  • the production of plant cells with a reduced activity of a gene product can be achieved, for example, by expressing at least one corresponding antisense RNA, one sense RNA to achieve a cosuppression effect or expressing at least one appropriately constructed ribozyme that specifically transcripts the above-mentioned gene product splits.
  • DNA molecules can be used that include the entire coding sequence of a gene product including any flanking sequences that may be present, as well as DNA molecules that only include parts of the coding sequence, these parts having to be long enough to be in the cells to bring about an antisense effect. It is also possible to use DNA sequences which have a high degree of homology to the coding sequences of a gene product, but which are not completely identical.
  • the synthesized protein can be localized in any desired compartment of the plant cell.
  • the coding region can be linked to DNA sequences that ensure localization in a specific compartment.
  • sequences are known to the person skilled in the art (see, for example, Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991): 95-106).
  • the expression of the nucleic acid molecules can also take place in the organelles of the plant cells.
  • transgenic plant cells can be regenerated into whole plants using known techniques.
  • the transgenic plants can be plants of any plant species, i.e. both monocotyledonous and dicotyledonous plants.
  • the compounds (I) according to the invention can preferably be used in transgenic crops which are resistant to growth substances such as e.g. 2,4-D, dicamba or against herbicides, the essential plant enzymes, e.g. Acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or hydoxyphenylpyruvate dioxygenases (HPPD) inhibit or are resistant to herbicides from the group of sulfonylureas, glyphosates, glufosinates or benzoylisoxazoles and analogous active ingredients, or to any combination of these active ingredients.
  • the essential plant enzymes e.g. Acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or hydoxyphenylpyruvate dioxygenases (HPPD) inhibit or are resistant to herbicides from the group of sulfonylureas, glyphosates, glufo
  • the compounds according to the invention can particularly preferably be used in transgenic crop plants which are resistant to a combination of glyphosates and glufosinates, glyphosates and sulfonylureas or imidazolinones.
  • the compounds according to the invention can very particularly preferably be used in transgenic crop plants such as. B. corn or soy with the trade name or the designation OptimumTM GATTM (Glyphosate ALS Tolerant) can be used.
  • the invention therefore also relates to the use of the compounds of the formula (I) according to the invention as herbicides for controlling harmful plants in transgenic crop plants.
  • the compounds according to the invention can be used in the customary preparations in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusts or granules.
  • the invention therefore also relates to herbicidal and plant growth regulating agents which contain the compounds according to the invention.
  • the compounds according to the invention can be formulated in various ways, depending on which biological and / or chemico-physical parameters are given.
  • Possible formulation options include, for example: wettable powders (WP), water-soluble powders (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions , Suspension concentrates (SC), oil- or water-based dispersions, oil-miscible solutions, capsule suspensions (CS), dusts (DP), dressings, granules for litter and soil application, granules (GR) in the form of micro, spray, lift - and adsorption granules, water-dispersible granules (WG), water-soluble granules (SG), ULV formulations, microcapsules and waxes.
  • WP wettable powders
  • SP water-soluble powders
  • EC emul
  • Combination partners for the compounds according to the invention in mixture formulations or in the tank mix are, for example, known active ingredients which act on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate-3-phosphate synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I, photosystem II or protoporphyrinogen oxidase, can be used as they are, for example from Weed Research 26 (1986) 441-445 or "The Pesticide Manual", 16th edition, The British Crop Protection Council and the Royal Soc.
  • herbicidal mixing partners are:
  • Safeners which are used in combination with the compounds of the formula (I) according to the invention and optionally in combinations with other active ingredients such as e.g. Insecticides, acaricides, herbicides, fungicides as listed above can be used, are preferably selected from the group consisting of:
  • P A is a natural number from 0 to 5, preferably 0 to 3;
  • RA 1 is halogen, (Ci-C4) alkyl, (Ci-C4) alkoxy, nitro or (Ci-C4) haloalkyl;
  • WA is an unsubstituted or substituted divalent heterocyclic radical from the group of partially unsaturated or aromatic five-membered ring heterocycles with 1 to 3 hetero ring atoms from the group N and O, with at least one N atom and at most one O atom in the ring, preferably one Remainder from group (WA 1 ) to (WA 4 ), ni A is 0 or 1;
  • R A 2 is OR A 3 , SR A 3 or NR A 3 R A 4 or a saturated or unsaturated 3 to 7-membered heterocycle with at least one N atom and up to 3 heteroatoms, preferably from the group O and S, which is connected to the carbonyl group in (S1) via the N atom and is unsubstituted or substituted by radicals from the group (Ci-C4) alkyl, (Ci-C4) alkoxy or optionally substituted phenyl, preferably a radical of the formula OR A 3 , NHR A 4 or N (CH3) 2, in particular of the formula OR A 3 ;
  • R A 3 is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably with a total of 1 to 18 carbon atoms;
  • R A 4 is hydrogen, (Ci-Ce) alkyl, (Ci-Ce) alkoxy or substituted or unsubstituted phenyl;
  • RA 5 is H, (Ci-Cs) alkyl, (Ci-C 8 ) haloalkyl, (Ci-C 4 ) alkoxy (Ci-C 8 ) alkyl, cyano or COORA 9 , where RA 9 is hydrogen, (Ci-Cs) is alkyl, (Ci-Cs) -haloalkyl, (Ci-C4) alkoxy- (Ci-C4) alkyl, (Ci-C 6) hydroxyalkyl, (C3-Ci2) -cycloalkyl or tri- (Ci-C4) -alkyl-silyl ;
  • RA 6 , RA 7 , RA 8 are identically or differently hydrogen, (Ci-Cs) alkyl, (Ci-Cs) haloalkyl, (C 3 - Ci2) cycloalkyl or substituted or unsubstituted phenyl; preferably: a) compounds of the dichlorophenylpyrazoline-3-carboxylic acid type (Sl a ), preferably compounds such as 1- (2,4-dichlorophenyl) -5- (ethoxycarbonyl) -5-methyl-2-pyrazoline-3-carboxylic acid, l - (2,4-Dichlorophenyl) -5- (ethoxycarbonyl) -5-methyl-2-pyrazoline-3-carboxylic acid ethyl ester (S 1-1) ("Mefenpyr-diethyl”), and related compounds, as described in WO A-91/07874; b) Derivatives of dichlorophenylpyrazole carb
  • Diphenyl-2-isoxazoline-3-carboxylic acid (S l e ), preferably compounds such as
  • RB 1 is halogen, (C1-C4) alkyl, (Ci-C4) alkoxy, nitro or (Ci-C4) haloalkyl;
  • P B is a natural number from 0 to 5, preferably 0 to 3;
  • RB 2 is ORB 3 , SRB 3 or NRB 3 RB 4 or a saturated or unsaturated 3 to 7-membered heterocycle with at least one N atom and up to 3 heteroatoms, preferably from the group O and S, which has the N- Atom is connected to the carbonyl group in (S2) and is unsubstituted or substituted by radicals from the group (C1-C4) alkyl, (Ci-C4) alkoxy or optionally substituted phenyl, preferably a radical of the formula ORB 3 , NHRB 4 or N (CH3) 2, in particular of the formula ORB 3 ;
  • R B 3 is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably with a total of 1 to 18 carbon atoms;
  • R B 4 is hydrogen, (Ci-Ce) alkyl, (Ci-Ce) alkoxy or substituted or unsubstituted phenyl;
  • TB is a (Ci or C2) alkanediyl chain that is unsubstituted or substituted with one or two (Ci- C4) alkyl radicals or is substituted with [(Ci-C3) -alkoxy] -carbonyl; preferably: a) compounds of the 8-quinolineoxyacetic acid type (S2 a ), preferably
  • Rc 1 is (Ci-C4) alkyl, (Ci-C4) haloalkyl, (C2-C4) alkenyl, (C2-C4) haloalkenyl, (C3-Cv) cycloalkyl, preferably dichloromethyl;
  • Rc 2 , Rc 3 are identical or different hydrogen, (Ci-C4) alkyl, (C2-C4) alkenyl, (C2-C4) alkynyl, (Ci-C4) haloalkyl, (C2-C4) haloalkenyl, (Ci-C4 ) Alkylcarbamoyl- (Ci-C4) alkyl, (C2-
  • R-29148 (3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidine) from Stauffer (S3-2), "R-28725" (3-dichloroacetyl-2,2, -dimethyl- 1,3-oxazolidine) from Stauffer (S3-3), "Benoxacor” (4-dichloroacetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazine) (S3-4),
  • PPG-1292 N-Allyl-N - [(1,3-dioxolan-2-yl) methyl] dichloroacetamide
  • AD-67 or "MON 4660” (3-dichloroacetyl-l-oxa-3-aza-spiro [4,5] decane) from Nitrokemia or Monsanto (S3-7),
  • TI-35 (1-dichloroacetyl-azepan) from TRI-Chemical RT (S3-8), "Diclonon” (Dicyclonon) or "BAS145138” or “LAB145138” (S3-9)
  • AD is S0 2 -NR D 3 -C0 or C0-NR D 3 -S0 2
  • X D is CH or N
  • RD 1 is CO-NR D 5 RD 6 or NHCO-RD 7 ;
  • RD 2 is halogen, (Ci-C 4 ) haloalkyl, (Ci-C 4 ) haloalkoxy, nitro, (Ci-C 4 ) alkyl, (Ci-C 4 ) alkoxy, (Ci- C 4 ) alkylsulfonyl, (Ci- C 4 ) alkoxycarbonyl or (C 1 -C 4 ) alkyl carbonyl;
  • R D 3 is hydrogen, (Ci-C 4 ) alkyl, (C 2 -C 4 ) alkenyl or (C 2 -C 4 ) alkynyl;
  • RD 4 is halogen, nitro, (Ci-C 4 ) alkyl, (Ci-C 4 ) haloalkyl, (Ci-C 4 ) haloalkoxy, (C 3 -Ce) cycloalkyl, phenyl, (Ci-C 4 ) alkoxy, cyano , (Ci-C 4 ) alkylthio, (Ci-C 4 ) alkylsulfinyl, (Ci-C 4 ) alkylsulfonyl, (Ci- C 4 ) alkoxycarbonyl or (Ci-C 4 ) alkylcarbonyl;
  • RD 5 is hydrogen, (Ci-Ce) alkyl, (C 3 -Ce) cycloalkyl, (C 2 -Ce) alkenyl, (C 2 -C 6 ) alkynyl, (C 5 - Ce) cycloalkenyl, phenyl or 3- bis 6-membered heterocyclyl containing V D heteroatoms from the group nitrogen, oxygen and sulfur, the last seven radicals being replaced by V D substituents from the group halogen, (Ci-Ce) alkoxy, (Ci-Ce) haloalkoxy, (Ci-C 2 ) Alkylsulfinyl, (Ci-C 2 ) alkylsulfonyl, (C 3 -C 6 ) cycloalkyl, (Ci-C 4 ) alkoxycarbonyl, (Ci-C 4 ) alkylcarbonyl and phenyl and in the case of cyclic radicals also (C 1 -C
  • RD 6 is hydrogen, (Ci-Ce) alkyl, (C 2 -C 6 ) alkenyl or (C 2 -Ce) alkynyl, the last three radicals mentioned by V D radicals from the group halogen, hydroxy, (Ci-C 4 ) Alkyl, (Ci-C 4 ) alkoxy and (C 1 -C 4 ) alkyl are thio substituted, or
  • R D 5 and R D 6 together with the nitrogen atom bearing them form a pyrrolidinyl or piperidinyl radical
  • RD 7 is hydrogen, (Ci-C 4 ) alkylamino, di- (Ci-C 4 ) alkylamino, (Ci-Ce) alkyl, (C 3 -C 6 ) cycloalkyl, the last two radicals being replaced by V D substituents from the Group halogen, (Ci-C 4 ) alkoxy, (Ci-Ce) haloalkoxy and (Ci-C 4 ) alkylthio and in the case of cyclic radicals also (C 1 -C 4 ) alkyl and (Ci-C 4 ) haloalkyl are substituted; n D is 0, 1 or 2; m D is 1 or 2;
  • V D is 0, 1, 2, or 3; Preferred of these are compounds of the N-acylsulfonamide type, for example of the following formula (S4 a ), which z. B. are known from WO-A-97/45016
  • V D is 0, 1, 2 or 3; such as
  • R D 8 and Rr independently of one another hydrogen, (Ci-Cs) alkyl, (C3-Cs) cycloalkyl, (C3-Ce) alkenyl, (C3-C6) alkynyl,
  • R D 4 is halogen, (Ci-C4) alkyl, (Ci-C4) alkoxy, CF3 m D 1 or 2; for example l- [4- (N-2-methoxybenzoylsulfamoyl) phenyl] -3-methylurea,
  • RD 5 denotes hydrogen, (Ci-Ce) alkyl, (C3-Ce) cycloalkyl, (C2-Ce) alkenyl, (C2-C6) alkynyl, (C 5 - Ce) cycloalkenyl.
  • Carboxylic acid derivatives (S5) e.g.
  • Dihydroxybenzoic acid 4-hydroxysalicylic acid, 4-fluorosalicyclic acid, 2-hydroxycinnamic acid, 2,4-dichlorocinnamic acid, as described in WO-A-2004/084631, WO-A-2005/015994, WO-A-2005/016001.
  • RE 1 , RE 2 are independently halogen, (Ci-C4) alkyl, (Ci-C4) alkoxy, (Ci-C4) haloalkyl, (Ci-C4) alkylamino, di- (Ci-C4) alkylamino, nitro;
  • a E is COORE 3 or COSRE 4
  • RE 3 , RE 4 are independently hydrogen, (C1-C4) alkyl, (C2-Ce) alkenyl, (C2-C4) alkynyl, cyanoalkyl, (Ci-C4) haloalkyl, phenyl, nitrophenyl, benzyl, halobenzyl, pyridinylalkyl and Alkylammonium, he 1 is 0 or 1
  • P E 2 , np are independently 0, 1 or 2, preferably:
  • RF 1 halogen, (Ci-C4) alkyl, (Ci-C4) haloalkyl, (Ci-C4) alkoxy, (Ci-C4) haloalkoxy, nitro, (Ci- C4) alkylthio, (Ci-C4) -alkylsulfonyl, ( Ci-C4) alkoxycarbonyl, optionally substituted. Phenyl, optionally substituted phenoxy,
  • R F 3 is hydrogen, (Ci-Cs) alkyl, (C2-C4) alkenyl, (C2-C4) alkynyl, or aryl, where each of the aforementioned C-containing radicals is unsubstituted or by one or more, preferably up to three identical or is substituted various radicals from the group consisting of halogen and alkoxy; mean, or their salts, preferably compounds in which
  • n F is an integer from 0 to 2
  • R F 3 is hydrogen, (Ci-Cs) alkyl, (C2-C4) alkenyl, (C2-C4) alkynyl, or aryl, where each of the aforementioned C-containing radicals is unsubstituted or by one or more, preferably up to three identical or various radicals from the group consisting of halogen and alkoxy is substituted, or their salts.
  • R G 1 halogen, (Ci-C4) alkyl, methoxy, nitro, cyano, CF3, OCF3
  • Y G , Z G independently of one another O or S, nc an integer from 0 to 4,
  • R G 2 (C I -C I ⁇ ) alkyl, (C2-Ce) alkenyl, (C3-Ce) cycloalkyl, aryl; Benzyl, halobenzyl,
  • R G 3 is hydrogen or (Ci-Ce) alkyl.
  • Active ingredients from the class of isothiochromanones such as e.g. Methyl - [(3-oxo-lH-2- benzothiopyran-4 (3H) -ylidene) methoxy] acetate (CAS Reg.Nr. 205121-04-6) (S12-1) and related compounds from WO-A- 1998/13361.
  • MG 191 (CAS Reg.Nr. 96420-72-3) (2-dichloromethyl-2-methyl-1,3-dioxolane) (S13-5) from Nitrokemia, which is known as a safener for maize,
  • Active ingredients which, in addition to a herbicidal effect against harmful plants, also have a safener effect
  • CSB (1-bromo-4- (chloromethylsulfonyl) benzene) from Kumiai, (CAS Reg. No. 54091-06-4), which is known as a safener against damage from some herbicides in rice.
  • R H 1 is a (Ci-C ö jhaloalkyl radical and R H 2 is hydrogen or halogen and
  • R H 3 , R H 4 independently of one another are hydrogen, (C I -C I ⁇ ) alkyl, (C 2 -C 6 ) alkenyl or
  • (C 2 -Ci6) alkynyl each of the last-mentioned 3 radicals being unsubstituted or substituted by one or more radicals from the group consisting of halogen, hydroxy, cyano, (Ci-C 4 ) alkoxy, (Ci-C 4 ) haloalkoxy, (Ci-C 4 ) alkylthio, (Ci-C 4 ) alkylamino, di [(Ci-C 4 ) alkyl] amino, [(Ci-C 4 ) alkoxy] carbonyl, [(Ci-C 4 ) haloalkoxyj- carbonyl, (C 3 -C 6 ) Cycloalkyl that is unsubstituted or substituted, phenyl that is unsubstituted or substituted, and heterocyclyl that is unsubstituted or substituted, is substituted, or (C 3 -C 6 ) cycloalkyl, (C 4 -C 6
  • R H 3 (Ci-C 4 ) -alkoxy, (C 2 -C 4 ) alkenyloxy, (C 2 -Ce) alkynyloxy or (C 2 -C 4 ) haloalkoxy and R H 4 is hydrogen or (Ci-C 4 ) -Alkyl means or
  • R H 3 and R H 4 together with the directly bonded N atom form a four- to eight-membered heterocyclic ring which, in addition to the N atom, can also contain further hetero ring atoms, preferably up to two further hetero ring atoms from the group N, O and S and unsubstituted or by one or more radicals from the group consisting of halogen, cyano, nitro, (Ci-C 4 ) alkyl, (Ci-C 4 ) haloalkyl, (Ci-C 4 ) alkoxy, (Ci-C 4 ) haloalkoxy and ( C 1 -C 4 ) alkyl is thio substituted.
  • Particularly preferred safeners are Mefenpyr-diethyl, Cyprosulfamid, Isoxadifen-ethyl, Cloquintocet-Mexyl, Dichlormid and Metcamifen.
  • Wettable powders are preparations that are uniformly dispersible in water which, in addition to the active ingredient, besides a diluent or inert substance, also tensides of an ionic and / or nonionic type (wetting agents, dispersants), e.g. polyoxyethylated alkylphenols, polyoxethylated fatty alcohols, polyoxethylated fatty amines, fatty alcohol polyglycol ether sulfates, alkane sulfonates,
  • wetting agents, dispersants e.g. polyoxyethylated alkylphenols, polyoxethylated fatty alcohols, polyoxethylated fatty amines, fatty alcohol polyglycol ether sulfates, alkane sulfonates,
  • Alkylbenzenesulfonates sodium lignosulfonic acid, sodium 2,2'-dinaphthylmethane-6,6'-disulfonic acid, sodium dibutylnaphthalene-sulfonic acid or sodium oleoylmethyltaurate.
  • the herbicidally active ingredients are finely ground, for example, in customary apparatus such as hammer mills, blower mills and air jet mills and mixed with the formulation auxiliaries at the same time or subsequently.
  • Emulsifiable concentrates are made by dissolving the active ingredient in an organic solvent e.g. Butanol, cyclohexanone, dimethylformamide, xylene or also higher-boiling aromatics or hydrocarbons or mixtures of organic solvents with the addition of one or more surfactants of an ionic and / or nonionic type (emulsifiers).
  • organic solvent e.g. Butanol, cyclohexanone, dimethylformamide, xylene or also higher-boiling aromatics or hydrocarbons or mixtures of organic solvents.
  • alkylarylsulfonic acid calcium salts such as calcium dodecylbenzenesulfonate or nonionic emulsifiers
  • fatty acid polyglycol esters alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers, sorbitan esters such as e.g. Sorbitan fatty acid esters or polyoxethylene sorbitan esters such as e.g. Polyoxyethylene sorbitan fatty acid ester.
  • Dusts are obtained by grinding the active ingredient with finely divided solid substances, for example talc, natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • Suspension concentrates can be water or oil based. They can be produced, for example, by wet grinding using commercially available bead mills and, if necessary, addition of surfactants, such as those already listed above for the other types of formulation.
  • Emulsions e.g. Oil-in-water emulsions (EW) can be prepared, for example, by means of stirrers, colloid mills and / or static mixers using aqueous organic solvents and optionally surfactants, such as are e.g. are already listed above for the other formulation types.
  • EW Oil-in-water emulsions
  • Granules can be produced either by spraying the active ingredient onto adsorptive, granulated inert material or by applying active ingredient concentrates by means of adhesives, e.g. Polyvinyl alcohol, polyacrylic acid sodium or mineral oils, on the surface of carrier materials such as sand, kaolinite or granulated inert material. Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules - if desired as a mixture with fertilizers.
  • adhesives e.g. Polyvinyl alcohol, polyacrylic acid sodium or mineral oils
  • Water-dispersible granules are generally produced by the customary processes such as spray drying, fluidized bed granulation, plate granulation, mixing with high-speed mixers and extrusion without solid inert material.
  • the agrochemical preparations generally contain 0.1 to 99% by weight, in particular 0.1 to 95% by weight, of compounds according to the invention.
  • the active ingredient concentration is e.g. about 10 to 90% by weight, the remainder to 100% by weight consists of the usual
  • the active ingredient concentration can be about 1 to 90, preferably 5 to 80% by weight.
  • Dust-like formulations contain 1 to 30% by weight of active ingredient, preferably mostly 5 to 20% by weight of active ingredient
  • sprayable solutions contain about 0.05 to 80, preferably 2 to 50% by weight of active ingredient.
  • the active ingredient content depends in part on whether the active compound is liquid or solid and which granulation aids, fillers, etc. are used. With those in water In dispersible granules, the content of active ingredient is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight.
  • the active ingredient formulations mentioned contain, if appropriate, the respective customary adhesives, wetting agents, dispersants, emulsifiers, penetration agents, preservatives, antifreeze agents and solvents, fillers, carriers and dyes, defoamers, evaporation inhibitors and the pH and the Viscosity influencing agents.
  • the formulations present in commercially available form are optionally diluted in the customary manner, e.g. for wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules using water.
  • Preparations in dust form, soil granules or granules as well as sprayable solutions are usually no longer diluted with other inert substances before use.
  • the required application rate of the compounds of the formula (I) and their salts varies. It can vary within wide limits, e.g. between 0.001 and 10.0 kg / ha or more active substance, but preferably between 0.005 and 5 kg / ha, more preferably in the range from 0.01 to 1.5 kg / ha, particularly preferably in the range from 0.05 to 1 kg / ha g / ha. This applies to both pre-emergence and post-emergence use.
  • Carrier means a natural or synthetic, organic or inorganic substance with which the active ingredients for better applicability, especially for application to plants or parts of plants or seeds, mixed or combined.
  • the carrier which can be solid or liquid, is generally inert and should be agriculturally useful.
  • Suitable solid or liquid carriers are: e.g. ammonium salts and natural rock flours, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and synthetic rock flours, such as highly disperse silica, aluminum oxide and natural or synthetic silicates, resins, waxes, solid fertilizers, water, alcohols, especially butanol, organic solvents, mineral and vegetable oils and derivatives thereof. Mixtures of such carriers can also be used.
  • natural rock flours such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth
  • synthetic rock flours such as highly disperse silica, aluminum oxide and natural or synthetic silicates, resins, waxes, solid fertilizers, water, alcohols, especially butanol, organic solvents, mineral and vegetable oils and derivatives thereof. Mixtures of such carriers can also be used.
  • Solid carriers for granulates are: broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granulates made from inorganic and organic materials Flours and granulates made from organic material such as sawdust, coconut shells, corn on the cob and tobacco stalks.
  • Liquefied gaseous extenders or carriers are liquids which are gaseous at normal temperature and under normal pressure, e.g. Aerosol propellants such as halogenated hydrocarbons, as well as butane, propane, nitrogen and carbon dioxide.
  • Adhesives such as carboxymethylcellulose, natural and synthetic polymers in the form of powders, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, and also natural phospholipids such as cephalins and lecithins, and synthetic phospholipids can be used in the formulations. Further additives can be mineral and vegetable oils.
  • organic solvents can also be used as auxiliary solvents.
  • the following liquid solvents are essentially: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chlorethylene or dichloromethane, aliphatic hydrocarbons such as cyclohexane or paraffins, e.g.
  • Petroleum fractions mineral and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethyl formamide and dimethyl sulfoxide, and water.
  • alcohols such as butanol or glycol and their ethers and esters
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone
  • strongly polar solvents such as dimethyl formamide and dimethyl sulfoxide, and water.
  • the agents according to the invention can additionally contain further components, such as surface-active substances.
  • Suitable surface-active substances are emulsifiers and / or foam-generating agents, dispersants or wetting agents with ionic or non-ionic properties or mixtures of these surface-active substances.
  • salts of polyacrylic acid salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic acid esters (preferably alkyl taurine esters) of polyethoxylated alcohols or phenols, fatty acid esters of polyols, and derivatives of the compounds containing sulphates, sulphonates and phosphates, for example alkylaryl polyglycol ethers, alkyl sulphonates, alkyl sulphates, aryl sulphonates, protein hydrolysates, lignin sulphite waste liquors and methyl cellulose.
  • a surface-active substance is necessary if one of the active substances and / or one of the inert carriers is not soluble in water and if the application takes place in water.
  • the proportion of surface-active substances is between 5 and 40 percent by weight of the agent according to the invention.
  • dyes such as inorganic pigments, for example iron oxide, titanium oxide, ferrocyan blue and organic dyes, such as alizarin, azo and metal phthalocyanine dyes and trace nutrients, such as salts of iron, manganese, boron, copper, cobalt, molybdenum and Zinc can be used.
  • the active ingredients can be combined with any solid or liquid additive commonly used for formulation purposes.
  • the agents and formulations according to the invention contain between 0.05 and 99% by weight, 0.01 and 98% by weight, preferably between 0.1 and 95% by weight, particularly preferably between 0.5 and 90% Active ingredient, very particularly preferably between 10 and 70 percent by weight.
  • the active ingredients or agents according to the invention can be used as such or depending on their respective physical and / or chemical properties in the form of their formulations or the use forms prepared therefrom, such as aerosols, capsule suspensions, cold mist concentrates, hot mist concentrates, encapsulated granules, fine granules, flowable concentrates for the Treatment of seeds, ready-to-use solutions, dustable powders, emulsifiable concentrates, oil-in-water emulsions, water-in-oil emulsions, macro-granules, micro-granules, oil-dispersible powders, oil-miscible flowable concentrates, oil-miscible liquids, foams, Pastes, pesticide-coated seeds, suspension concentrates, suspension-emulsion concentrates, soluble concentrates, suspensions, wettable powders, soluble powders, dusts and granulates, water-soluble granulates or tablets, water-soluble powders for seed treatment, wettable powders
  • Said formulations can be prepared in a manner known per se, e.g. by mixing the active ingredients with at least one customary extender, solvent or diluent, emulsifier, dispersant and / or binding or fixing agent, wetting agent, water repellant, optionally siccatives and UV stabilizers and optionally dyes and pigments, defoamers, preservatives , secondary thickeners, adhesives, gibberellins and other processing aids.
  • the agents according to the invention not only include formulations which are already ready to use and can be applied to the plant or the seed with a suitable apparatus, but also commercial concentrates which have to be diluted with water before use.
  • the active compounds according to the invention can be used as such or in their (commercially available) formulations and in the use forms prepared from these formulations as a mixture with other (known) active compounds, such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, Fertilizers, safeners or semiochemicals are present.
  • active compounds such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, Fertilizers, safeners or semiochemicals are present.
  • the treatment according to the invention of the plants and parts of plants with the active ingredients or agents is carried out directly or by acting on their surroundings, habitat or storage room according to the usual treatment methods, e.g. by dipping, spraying, spraying, sprinkling, vaporizing, atomizing, atomizing, scattering, foaming, brushing, spreading, watering (drenching), drip irrigation and for propagation material, especially seeds by dry pickling, wet pickling, slurry pickling, encrusting, single- or multilayer coating, etc. It is also possible to bring the active ingredients according to the ultra-low-volume process or to inject the active ingredient preparation or the active ingredient itself into the soil.
  • transgenic seeds As also described below, the treatment of transgenic seeds with the active ingredients or agents according to the invention is of particular importance.
  • This relates to the seeds of plants which contain at least one heterologous gene that enables the expression of a polypeptide or protein with insecticidal properties.
  • the heterologous gene in transgenic seeds can e.g. originate from microorganisms of the species Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
  • This heterologous gene is preferably derived from Bacillus sp., The gene product having an effect against the European corn borer and / or Western corn rootworm.
  • the heterologous gene is particularly preferably derived from Bacillus thuringiensis.
  • the agent according to the invention is applied to the seed alone or in a suitable formulation.
  • the seed is preferably treated in a state in which it is so stable that no damage occurs during the treatment.
  • the seed can be treated at any point in time between harvest and sowing.
  • seeds are used that have been separated from the plant and freed from cobs, peels, stems, husks, wool or pulp.
  • seeds can be used that have been harvested, cleaned and dried to a moisture content of less than 15% by weight.
  • seeds can also be used which, after drying, e.g. treated with water and then dried again.
  • care when treating the seed, care must be taken to ensure that the amount of the agent according to the invention and / or further additives applied to the seed is selected so that the germination of the seed is not impaired or the resulting plant is not damaged. This is particularly important for active ingredients that can show phytotoxic effects when applied in certain amounts.
  • the agents according to the invention can be applied directly, that is to say without any further To contain components and without having been diluted.
  • suitable formulations and methods for seed treatment are known to the person skilled in the art and are described, for example, in the following documents: US 4,272,417 A, US 4,245,432 A, US 4,808,430, US 5,876,739, US 2003/0176428 A1, WO 2002/080675 A1, WO 2002/028186 A2.
  • the active compounds according to the invention can be converted into the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating materials for seeds, and also ULV formulations.
  • formulations are prepared in a known manner by mixing the active ingredients with customary additives, such as customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and also water .
  • customary additives such as customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and also water .
  • Suitable dyes which can be contained in the seed dressing formulations which can be used according to the invention are all dyes customary for such purposes. Both pigments which are sparingly soluble in water and dyes which are soluble in water can be used here. Examples are those under the names Rhodamine B, C.I. Pigment Red 112 and C.I. Solvent Red 1 known dyes.
  • Suitable wetting agents which can be contained in the seed dressing formulations which can be used according to the invention are all substances which are customary for the formulation of agrochemical active ingredients and which promote wetting.
  • Alkylnaphthalene sulfonates such as diisopropyl or diisobutyl naphthalene sulfonates, can preferably be used.
  • Suitable dispersants and / or emulsifiers which can be contained in the seed dressing formulations which can be used according to the invention are all nonionic, anionic and cationic dispersants customary for the formulation of agrochemical active ingredients.
  • Nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants can preferably be used.
  • Suitable nonionic dispersants are, in particular, ethylene oxide-propylene oxide block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ethers and their phosphated or sulfated derivatives.
  • Suitable anionic dispersants are, in particular, lignin sulfonates, polyacrylic acid salts and aryl sulfonate-formaldehyde condensates.
  • the seed dressing formulations which can be used according to the invention can contain all foam-inhibiting substances customary for the formulation of agrochemical active ingredients as defoamers. Silicone defoamers and magnesium stearate can preferably be used. All substances which can be used for such purposes in agrochemical agents can be present as preservatives in the seed dressing formulations which can be used according to the invention. Examples include dichlorophene and benzyl alcohol hemiformal.
  • Secondary thickeners which can be contained in the seed dressing formulations which can be used according to the invention are all substances which can be used in agrochemical compositions for such purposes. Cellulose derivatives, acrylic acid derivatives, xanthan gum, modified clays and highly disperse silicic acid are preferred.
  • Suitable adhesives which can be contained in the seed dressing formulations which can be used according to the invention are all conventional binders which can be used in seed dressings.
  • Polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and Tylose may be mentioned as preferred.
  • the seed dressing formulations which can be used according to the invention can be used either directly or after prior dilution with water for the treatment of seeds of the most varied of types, including seeds of transgenic plants.
  • additional synergistic effects can also occur in cooperation with the substances formed by expression.
  • the procedure for dressing is to put the seed in a mixer, add the desired amount of dressing formulations either as such or after prior dilution with water and mix until the formulation is evenly distributed on the seed . If necessary, this is followed by a drying process.
  • the active compounds according to the invention are suitable for protecting plants and plant organs, for increasing crop yields and improving the quality of the harvested crop, given good plant tolerance, favorable warm-blooded toxicity and good environmental compatibility. They can preferably be used as crop protection agents. They are effective against normally sensitive and resistant species and against all or individual stages of development.
  • plants which can be treated according to the invention maize, soybean, cotton, Brassica oil seeds such as Brassica napus (e.g. canola), Brassica rapa, B. juncea (e.g. (field) mustard) and Brassica carinata, rice, Wheat, sugar beet, sugar cane, oats, rye, barley, millet, triticale, flax, wine and various fruits and vegetables from various botanical taxa such as Rosaceae sp.
  • Brassica oil seeds such as Brassica napus (e.g. canola), Brassica rapa, B. juncea (e.g. (field) mustard) and Brassica carinata, rice, Wheat, sugar beet, sugar cane, oats, rye, barley, millet, triticale, flax, wine and various fruits and vegetables from various botanical taxa such as Rosaceae sp.
  • pome fruits like apple and pear but also stone fruits like apricots, cherries, almonds and peaches and berries like strawberries
  • Ribesioidae sp. Juglandaceae sp.
  • Betulaceae sp. Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (e.g. banana trees and plantations), Rubiaceae sp. (e.g.
  • Theaceae sp. Sterculiceae sp., Rutaceae sp. (e.g. lemons, organs and grapefruit); Solanaceae sp. (for example tomatoes, potatoes, pepper, eggplant), Liliaceae sp., Compositae sp. (for example lettuce, artichoke and chicory - including root chicory, endive or common chicory), Umbelliferae sp. (e.g., carrot, parsley, celery and celeriac), Cucurbitaceae sp. (e.g., cucumber - including pickles, squash, watermelon, bottle gourd, and melons), Alliaceae sp.
  • Solanaceae sp. for example tomatoes, potatoes, pepper, eggplant
  • Liliaceae sp. Compositae sp.
  • Umbelliferae sp. e.g., carrot, parsley, celery and celeriac
  • Cruciferae sp. for example white cabbage, red cabbage, broccoli, cauliflower, Brussels sprouts, pak choi, kohlrabi, radishes, horseradish, cress and Chinese cabbage
  • Leguminosae sp. for example, peanuts, peas, and beans - such as runner beans and field beans
  • Chenopodiaceae sp. e.g. chard, fodder beet, spinach, beetroot
  • Malvaceae e.g. okra
  • Asparagaceae e.g. asparagus
  • plants and their parts can be treated according to the invention.
  • plant species and plant cultivars occurring in the wild or obtained by conventional biological breeding methods such as crossing or protoplast fusion, as well as their parts are treated.
  • transgenic plants and plant cultivars obtained by genetic engineering methods, if appropriate in combination with conventional methods (genetically modified organisms), and their parts are treated.
  • the term “parts” or “parts of plants” or “plant parts” has been explained above. According to the invention, it is particularly preferred to treat plants of the plant varieties which are commercially available or in use. Plant cultivars are understood to be plants with new properties (“traits”) that have been bred by conventional breeding, by mutagenesis or by recombinant DNA techniques. These can be varieties, races, bio and genotypes.
  • the treatment method according to the invention can be used for the treatment of genetically modified organisms (GMOs), e.g. B. plants or seeds can be used.
  • GMOs genetically modified organisms
  • Genetically modified plants are plants in which a heterologous gene has been stably integrated into the genome.
  • heterologous gene means essentially a gene which is provided or assembled outside the plant and which, when introduced into the nucleus genome, the chloroplast genome or the mitochondrial genome of the transformed plant, gives new or improved agronomic or other properties that it gives an interesting Protein or polypeptide or that it downregulates or switches off another gene that is present in the plant or other genes that are present in the plant (for example by means of antisense Technology, cosuppression technology or RNAi technology [RNA Interference]).
  • a heterologous gene that is present in the genome is also called a transgene.
  • a transgene that is defined by its specific presence in the plant genome is called a transformation or transgenic event.
  • the treatment according to the invention can also lead to superadditive (“synergistic”) effects.
  • the following effects are possible that go beyond the effects that are actually to be expected: reduced application rates and / or expanded spectrum of activity and / or increased effectiveness of the active ingredients and compositions that can be used according to the invention, better plant growth, increased tolerance to high or low levels Temperatures, increased tolerance to drought or water or soil salt content, increased flowering performance, ease of harvest, acceleration of ripening, higher yields, larger fruits, greater plant height, more intense green color of the leaf, earlier flowering, higher quality and / or higher nutritional value of the harvested products, higher sugar concentration in the fruits, better storability and / or processability of the harvested products.
  • Plants and plant cultivars which are preferably treated according to the invention include all plants which have genetic material which gives these plants particularly advantageous, useful characteristics (regardless of whether this was achieved by breeding and / or biotechnology).
  • Examples of nematode-resistant plants are e.g. the following US patent applications: 11 / 765,491, 11 / 765,494, 10 / 926,819, 10 / 782,020, 12 / 032,479, 10 / 783,417, 10 / 782,096, 11 / 657,964, 12 / 192,904, 11 / 396,808, 12 / 166,253, 12 / 166,239, 12 / 166,124, 12 / 166,209, 11 / 762,886, 12 / 364,335, 11 / 763,947, 12 / 252,453, 12 / 209,354, 12 / 491,396 and 12 / 497,221.
  • Plants which can be treated according to the invention are hybrid plants which already express the properties of heterosis or the hybrid effect, which generally leads to higher yields, higher vigor, better health and better resistance to biotic and abiotic stress factors.
  • Such plants are typically produced by crossing an inbred male sterile parent line (the female cross partner) with another inbred male fertile parent line (the male cross partner).
  • the hybrid seeds are typically harvested from the male-sterile plants and sold to propagators.
  • Male-sterile plants can sometimes (e.g. with maize) by detaching (i.e. mechanical removal of the male sexual organs or the male flowers), to be produced; however, it is more common that male sterility is due to genetic determinants in the plant genome.
  • a particularly favorable means for producing male-sterile plants is described in WO 89/10396, for example a ribonuclease such as a barnase being selectively expressed in the tapetum cells in the stamens. Fertility can then be restored by expressing a ribonuclease inhibitor such as barstar in the tapetum cells.
  • Plants or plant cultivars which are obtained using methods of plant biotechnology, such as genetic engineering which can be treated according to the invention are herbicide-tolerant plants; H. Plants that have been made tolerant to one or more specified herbicides. Such plants can be obtained either by genetic transformation or by selection of plants which contain a mutation which confers such herbicide tolerance.
  • Herbicide-tolerant plants are, for example, glyphosate-tolerant plants, ie plants which have been made tolerant to the herbicide glyphosate or its salts. Plants can be made tolerant to glyphosate using various methods. For example, glyphosate-tolerant plants can be obtained by transforming the plant with a gene which codes for the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Comai et al., 1983, Science 221, 370-371), the CP4 gene of the bacterium Agrobacterium sp.
  • EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
  • Glyphosate-tolerant plants can also be obtained by expressing a gene which codes for a glyphosate acetyltransferase enzyme. Glyphosate-tolerant plants can also be obtained by selecting plants which contain naturally occurring mutations of the genes mentioned above. Plants expressing EPSPS genes that confer glyphosate tolerance are described. Plants that confer other genes that confer glyphosate tolerance, e.g., decarboxylase genes, are described.
  • herbicide-resistant plants are, for example, plants which have been made tolerant to herbicides which inhibit the enzyme glutamine synthase, such as bialaphos, phosphinotricin or glufosinate.
  • Such plants can be obtained by expressing an enzyme that detoxifies the herbicide or a mutant of the enzyme glutamine synthase that is resistant to inhibition.
  • an effective detoxifying enzyme is, for example, an enzyme which codes for a phosphinotricin acetyltransferase (such as the bar or pat protein from Streptomyces species). Plants expressing an exogenous phosphinotricin acetyltransferase have been described.
  • hydroxyphenylpyruvate dioxygenase HPPD
  • HPPD hydroxyphenylpyruvate dioxygenase
  • the hydroxyphenylpyruvate dioxygenases are enzymes that catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is converted to homogenate.
  • Plants that are tolerant of HPPD inhibitors can be transformed with a gene encoding a naturally occurring resistant HPPD enzyme or a gene encoding a mutated or chimeric HPPD enzyme, as in WO 96/38567 , WO 99/24585, WO 99/24586, WO 2009/144079, WO 2002/046387 or US 6,768,044.
  • Tolerance to HPPD inhibitors can also be achieved by transforming plants with genes which code for certain enzymes that enable the formation of homogenate despite the inhibition of the native HPPD enzyme by the HPPD inhibitor. Such plants are described in WO 99/34008 and WO 02/36787.
  • the tolerance of plants to HPPD inhibitors can also be improved by transforming plants, in addition to a gene that codes for an HPPD-tolerant enzyme, with a gene that codes for a prephenate dehydrogenase enzyme, as in WO 2004/024928 is described.
  • plants can be made even more tolerant of HPPD inhibitors by inserting a gene into their genome which codes for an enzyme that metabolizes or degrades HPPD inhibitors, such as B. CYP450 enzymes (see WO 2007/103567 and WO 2008/150473).
  • ALS inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinyloxy (thio) benzoates and / or sulfonylaminocarbonyltriazolinone herbicides.
  • Various mutations in the ALS enzyme also known as acetohydroxy acid synthase, AHAS
  • AHAS acetohydroxy acid synthase
  • the production of sulfonylurea tolerant plants and imidazolinone tolerant plants is described.
  • Other sulfonylurea and imidazolinone tolerant plants are also described.
  • Further plants that are tolerant to imidazolinones and / or sulfonylureas can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or by mutation breeding (cf., for example, US Pat. No. 5,084,082 for soybeans, WO 97/41218 for rice, US Pat. No. 5,773,702 for sugar beet and WO 99/057965, for lettuce US 5,198,599 or for sunflower WO 01/065922).
  • Plants or plant varieties which were obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are tolerant of abiotic stress factors. Such plants can be obtained by genetic transformation or by selection of plants which contain a mutation which confers such stress resistance.
  • Particularly useful plants with stress tolerance include the following: a. Plants which contain a transgene which is able to reduce the expression and / or activity of the gene for the poly (ADP-ribose) polymerase (PARP) in the plant cells or plants.
  • PARP poly (ADP-ribose) polymerase
  • Plants which contain a stress tolerance-promoting transgene which is able to reduce the expression and / or activity of the genes of the plants or plant cells coding for PARG
  • Enzyme encoded by the nicotinamide adenine dinucleotide salvage biosynthetic pathway including nicotinamidase, nicotinate phosphoribosyl transferase, nicotinic acid mononucleotide adenyl transferase,
  • Nicotinamide adenine dinucleotide synthetase or nicotinamide phosphoribosyl transferase Nicotinamide adenine dinucleotide synthetase or nicotinamide phosphoribosyl transferase.
  • Plants or plant varieties (which were obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, have a changed quantity, quality and / or shelf life of the harvested product and / or changed properties of certain components of the harvested product, such as:
  • Transgenic plants that synthesize a modified starch which, with regard to their chemical-physical properties, in particular the amylose content or the amylose / amylopectin ratio, the degree of branching, the average chain length, the distribution of the side chains, the viscosity behavior, the gel strength, the Starch grain size and / or starch grain morphology in comparison with the synthesized starch in wild-type plant cells or - plants has been modified so that this modified starch is more suitable for certain applications.
  • a modified starch which, with regard to their chemical-physical properties, in particular the amylose content or the amylose / amylopectin ratio, the degree of branching, the average chain length, the distribution of the side chains, the viscosity behavior, the gel strength, the Starch grain size and / or starch grain morphology in comparison with the synthesized starch in wild-type plant cells or - plants has been modified so that this modified starch is more suitable for certain applications.
  • Transgenic plants that synthesize non-starch carbohydrate polymers or non-starch carbohydrate polymers whose properties are changed compared to wild-type plants without genetic modification. Examples are plants which produce polyfructose, in particular of the inulin and levan type, plants which produce alpha-1,4-glucans, plants which produce alpha-1,6-branched alpha-1,4-glucans and plants which Produce alternan.
  • Transgenic plants or hybrid plants such as onions with certain properties such as "high soluble solids content” (“high soluble solids content”), low heat (“low pungency”, LP) and / or long storage life (“long storage", LS ).
  • Plants or plant cultivars are plants such as cotton plants with modified fiber properties.
  • Such plants can be obtained by genetic transformation or by selection of plants which contain a mutation which confers such altered fiber properties; these include: a) plants such as cotton plants which contain a modified form of cellulose synthase genes, b) plants such as cotton plants which contain a modified form of rsw2- or rsw3-homologous nucleic acids, such as cotton plants with an increased expression of sucrose phosphate synthase; c) Plants such as cotton plants with an increased expression of sucrose synthase; d) Plants such as cotton plants in which the time of the passage control of the plasmodesmata is changed at the base of the fiber cell, e.g.
  • Plants or plant cultivars which were obtained by methods of plant biotechnology, such as genetic engineering), which can likewise be treated according to the invention, are plants such as rapeseed or related Brassica plants with modified properties of the oil composition. Such plants can be obtained through genetic transformation or through selection from plants containing a mutation that confers such altered oil properties; these include: a) Plants such as rape plants that produce oil with a high oleic acid content; b) Plants, such as rape plants, that produce oil with a low linolenic acid content. c) Plants such as rape plants that produce oil with a low content of saturated fat.
  • Plants or plant varieties which can be obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are plants such as potatoes, which are virus-resistant e.g. against the potato virus Y (Event SY230 and SY233 from Tecnoplant, Argentina), or which are resistant to diseases such as late blight (potato late blight) (e.g. RB gene), or which show a reduced sweetness induced by cold (which the genes Nt- Inh, carry II-INV) or which show the dwarf phenotype (gene A-20 oxidase).
  • viruses which are virus-resistant e.g. against the potato virus Y (Event SY230 and SY233 from Tecnoplant, Argentina), or which are resistant to diseases such as late blight (potato late blight) (e.g. RB gene), or which show a reduced sweetness induced by cold (which the genes Nt- Inh, carry II-INV) or which show the dwarf phenotype (
  • Plants or plant cultivars obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are plants such as oilseed rape or related Brassica plants with changed properties in the case of seed shattering. Such plants can, by genetic transformation or by selection of plants that contain a mutation, confer such altered properties and include plants such as oilseed rape with delayed or reduced seed loss.
  • transgenic plants that can be treated according to the invention are plants with transformation events or combinations of transformation events which are the subject of petitions issued or pending in the USA at the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) are for the non-regulated status. Information on this is available at any time from APHIS (4700 River Road Riverdale, MD 20737, USA), e.g. via the website http://www.aphis.usda.gov/brs/not_reg.html. On the filing date of this application, the petitions with the following information were either granted or pending at APHIS:
  • Extension of a petition reference to a previous petition for which an extension or Extension is requested.
  • Transgenic phenotype the trait given to the plant by the transformation event.
  • - Transformation event or line the name of the event or events (sometimes referred to as line (s)) for which non-regulated status is requested.
  • APHIS documents various documents that are published by APHIS regarding the petition or can be obtained from APHIS on request.
  • transgenic plants which can be treated according to the invention are plants with one or more genes which code for one or more toxins, are the transgenic plants which are sold under the following trade names: YIELD GARD® (for example maize, cotton, Soybeans), KnockOut® (for example corn), BiteGard® (for example corn), BT-Xtra® (for example corn), StarLink® (for example corn), Bollgard® (cotton), Nucotn® (cotton), Nucotn 33B® (cotton), NatureGard® (e.g. maize), Protecta® and NewLeaf® (potato).
  • YIELD GARD® for example maize, cotton, Soybeans
  • KnockOut® for example corn
  • BiteGard® for example corn
  • BT-Xtra® for example corn
  • StarLink® for example corn
  • Bollgard® cotton
  • Nucotn® cotton
  • Nucotn 33B® cotton
  • NatureGard® e.g. maize
  • Herbicide-tolerant plants to be mentioned are, for example, maize varieties, cotton varieties and soybean varieties, which are sold under the following trade names: Roundup Ready® (glyphosate tolerance, e.g. corn, cotton, soybean), Liberty Link® (phosphinotricintolerance, e.g. rapeseed) , IMI® (imidazolinone tolerance) and SCS® (sylphonylurea tolerance), for example corn.
  • the herbicide-resistant plants (plants traditionally bred for herbicide tolerance) to be mentioned include the varieties sold under the name Clearfield® (e.g. maize).
  • Methyl 2- (2-fluoro-4-iodo-6-methyl-phenyl) acetate A suspension of 1.40 g (6.16 mmol) of methyl (4-amino-2-fluoro-6-methylphenyl) acetate and 3 ml (3.76 mol) of HCl in 30 ml of water was cooled to -5-0 ° C and slowly with a A solution of 0.4 g (6.03 mmol) sodium nitrite and 0.8 g (11.08 mmol) potassium iodide in 1.8 ml water are added. After 10 min the mixture was warmed to room temperature and stirred at 20 ° C. for a further 30 min.
  • a dusting agent is obtained by mixing 10 parts by weight of a compound of the formula (I) and / or its salts and 90 parts by weight of talc as an inert substance and comminuting it in a hammer mill.
  • a wettable powder which is easily dispersible in water is obtained by adding 25 parts by weight of a compound of the formula (I) and / or its salts, 64 parts by weight of kaolin-containing quartz as an inert substance, 10 parts by weight of potassium lignosulfonate and 1 part by weight of sodium oleoylmethyltaurinate as a wetting agent and dispersant and grinds in a pin mill.
  • a dispersion concentrate which is easily dispersible in water is obtained by adding 20 parts by weight of a compound of the formula (I) and / or its salts with 6 parts by weight of alkylphenol polyglycol ether ( ⁇ Triton X 207), 3 parts by weight of isotridecanol polyglycol ether (8 EO ) and 71 parts by weight of paraffinic mineral oil (boiling range, for example approx. 255 to over 277 C) and ground in a friction ball mill to a fineness of less than 5 microns.
  • An emulsifiable concentrate is obtained from 15 parts by weight of a compound of the formula (I) and / or its salts, 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of ethoxylated nonylphenol as emulsifier.
  • a water-dispersible granulate is obtained by adding 75 parts by weight of a compound of the formula (I) and / or its salts,
  • a water-dispersible granulate is also obtained by
  • ALOMY Alopecurus myosuroides
  • SETVI Setaria viridis
  • AMARE Amaranthus retroflexus AVEFA: Avena fatua
  • ECHCG Echinochloa crus-galli
  • VERPE Veronica persica VIOTR: Viola tricolor
  • POLCO Polygonum convolvulus ABUTH: Abutylon threophrasti
  • HORMU Hordeum murinum DIGSA: Digitaria sanguinalis
  • compounds No. P-70, P-81, P-05, P-77, P-76, 1-10, 1-2 and 1-11 in Tables 4-18 at an application rate of 320 g / ha each have a 90-100% effect against Alopecurus myrosoroides, Avena fatua, Diagitaria sanguinalis, Echinochloa crus-galli, Lolium rigidum, and Setaria viridis.
  • the compounds according to the invention are therefore suitable in the pre-emergence method for combating undesirable vegetation. 2. Post-emergence herbicidal effect or crop plant tolerance
  • Seeds of monocotyledonous or dicotyledonous weed or crop plants are placed in wooden fiber pots in sandy loam soil, covered with soil and grown in a greenhouse under good growth conditions. 2 to 3 weeks after sowing, the test plants are treated in the single-leaf stage.
  • the compounds according to the invention formulated in the form of wettable powders (WP) or emulsion concentrates (EC), are then sprayed onto the green parts of the plant as an aqueous suspension or emulsion with a water application rate of 600 to 800 l / ha with the addition of 0.2% wetting agent .
  • WP wettable powders
  • EC emulsion concentrates
  • compounds P-22, P-25, P-26 in Tables 17 to 29 at an application rate of 80 g / ha each show an 80-100% activity against Alopecurus myosuroides, Avena fatua, Digitaria sanguinalis, Echinochloa crus- galli, Setaria viridis and Hordeum murinum and are therefore suitable for post-emergence control of unwanted plants.

Abstract

BCS191005 Ausland NR/ec 14-02-2020 129 Zusammenfassung Speziell substituierte 3-Phenyl-5-spirocyclopentyl-3-pyrrolin-2-one und deren Verwendung als Herbizide Beschreibung Die vorliegende Erfindung betrifft neue herbizid wirksame Pyrrolin-2-one gemäß der allgemeinen Formel (I) oder agrochemisch akzeptable Salze davon, sowie deren Verwendung zur Bekämpfung von Unkräutern und Ungräsern in Nutzpflanzenkulturen.

Description

Speziell substituierte 3-Phenyl-5-spirocvclopentyl-3-pyrrolin-2-one und deren Verwendung als
Herbizide
Beschreibung
Die vorliegende Erfindung betrifft neue herbizid wirksame Pyrrolin-2-one gemäß der allgemeinen Formel (I) oder agrochemisch akzeptable Salze davon, sowie deren Verwendung zur Bekämpfung von Unkräutern und Ungräsern in Nutzpflanzenkulturen.
Die Verbindungsklasse der 3-Arylpyrrolidin-2,4-dione sowie deren Herstellung und Verwendung als Herbizide sind aus dem Stand der Technik wohl bekannt.
Darüber hinaus sind aber auch zum Beispiel bicyclische 3-Aryl-pyrrolidin-2,4-dion-Derivate (EP-A- 355 599, EP-A-415 211 und JP-A-12-053 670) sowie substituierte monocyclische 3-Aryl-pyrrolidin- 2,4-dion-Derivate (EP-A-377 893 und EP-A-442 077) mit herbizider, insektizider oder fungizider Wirkung beschrieben.
Alkinyl-substituierte-3-Phenylpyrrolidin-2,4-dione mit herbizider Wirkung sind ferner aus WO 96/82395, WO 98/05638, WO 01/74770, WO 15/032702, WO 15/040114 oder WO 16/207097 bekannt.
Die Wirksamkeit dieser Herbizide gegen Schadpflanzen ist von zahlreichen Parametern abhängig, beispielsweise von der verwendeten Aufwandmenge, der Zubereitungsform (Formulierung), den jeweils zu bekämpfenden Schadpflanzen, dem Schadpflanzenspektrum, den Klima- und Bodenverhältnissen sowie der Dauer der Wirkung bzw. der Abbaugeschwindigkeit des Herbizids. Zahlreiche Herbizide aus der Gruppe der 3-Arylpyrrolidin-2,4-dione erfordern, um eine ausreichende herbizide Wirkung zu entfalten, hohe Aufwandmengen und/oder haben nur ein schmales Unkrautspektrum, was deren Anwendung ökonomisch unattraktiv macht. Es besteht daher der Bedarf an alternativen Herbiziden, die verbesserte Eigenschaften aufweisen sowie ökonomisch attraktiv und gleichzeitig effizient sind.
Aufgabe der vorliegenden Erfindung ist folglich die Bereitstellung von neuen Verbindungen, die die genannten Nachteile nicht aufweisen.
Die vorliegende Erfindung betrifft daher Spirocyclopentylpyrrolin-2-one der allgemeinen Formel (I), und deren agrochemisch verträgliche Salze, in welchen
X Ci-Cö-Alkoxy, Ci-Cö-Halogenalkoxy oder Halogen ist,
Y Ci-Cö-Alkyl, C i -Cr, -Halogenalkyl , Ci-Cö-Alkoxy, C3-C6-Cycloalkyl oder Halogen ist,
R1 Wasserstoff, Ci-Cö-Alkyl, Ci-C4-Alkoxy-C2-C4- Alkyl, C3-C6-Cycloalkyl, C3-C6-Cycloalkyl- Ci-C2-Alkyl, Ci-Cö-Halogenalkyl, C2-C6-Alkenyl, C2-C4-Halogenalkenyl, C2-C6-Alkinyl oder C2-C6 Halogenalkinyl ist,
R2 Wasserstoff, Ci-Cr, -Alkyl, Ci-C4-Alkoxy-Ci-C4- Alkyl, Ci-Cö-Halogenalkyl, C3-C6-
Cycloalkyl, C2-C6-Alkenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, Ci-Cö-Alkoxy oder Ci- Cö-Halogenalkoxy ist,
R3 Wasserstoff, Ci-C4-Alkyl, Ci-C4-Halogenalkyl, C3-C6-Cycloalkyl oder Halogen ist,
G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist,
L einer der folgenden Reste
Figure imgf000003_0001
ist, wobei
R4 (C1-C4)- Alkyl oder (Ci-C3)-Alkoxy-(C2-C4)- Alkyl bedeutet;
R5 (C1-C4)- Alkyl bedeutet;
R6 (C1-C4)- Alkyl, ein unsubstituiertes Phenyl oder ein einfach oder mehrfach mit Halogen,
(C1-C4)- Alkyl, (Ci-C4)-Haloalkyl, (Ci-C4)-Alkoxy, (Ci-C4)-Haloalkoxy, Nitro oder Cyano substituiertes Phenyl bedeutet,
R7, R7‘ unabhängig voneinander Methoxy oder Ethoxy bedeuten;
R8, R9 jeweils unabhängig voneinander Methyl, Ethyl, Phenyl bedeuten oder gemeinsam einen gesättigten 5-, 6- oder 7-gliedrigen Ring bilden, oder gemeinsam einen gesättigten 5-, 6-, oder 7- gliedrigen Heterozyklus mit einem Sauerstoff- oder Schwefelatom bilden,
E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent
Aluminium, ein Ionenäquivalent eines Übergangsmetalls oder ein Magnesium-Halogen- Kation bedeutet, ein Ammoniumion bedeutet, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome durch gleiche oder verschiedene Reste aus den Gruppe (Ci-Cio)- Alkyl oder (C3-C7)-Cycloalkyl ersetzt sein können, wobei diese unabhängig voneinander jeweils ein- oder mehrfach mit Fluor, Chlor, Brom, Cyano, Hydroxy substituiert oder durch ein- oder mehrere Sauerstoff- oder Schwefelatome unterbrochen sein können, ein cyclisches sekundäres oder tertiäres aliphatisches oder he tero aliphatisches Ammoniumion bedeutet, beispielsweise jeweils Morpholinium, Thiomorpholinium, Piperidinium, Pyrrolidinium, oder jeweils protoniertes l,4-Diazabicyclo[1.1.2]octane (DABCO) oder 1,5- Diazabicyclo[4.3.0]undec-7-en (DBU), ein heteroaromatisches Ammoniumkation bedeutet, beispielsweise jeweils protoniertes Pyridin, 2-Methylpyridin, 3-Methylpyridin, 4- Methylpyridin, 2,4-Dimethylpyridin, 2,5-Dimethylpyridin, 2,6-Dimethylpyridin, 5-Ethyl-2- methylpyridin, Collidin , Pyrrol, Imidazol, Chinolin, Chinoxalin, 1 ,2-Dimethylimidazol, 1,3-Dimethylimidazolium-methylsulfat oder weiterhin auch für ein Trimethylsulfoniumion stehen kann. bedeutet gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen, z.B. (Ci-Cöj-Alkyl wie Methyl, Ethyl, Propyl, 1- Methylethyl, Butyl, 1-Methyl-propyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2- Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2- Dimethylpropyl,l-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethyl- butyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3- Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl- 1-methylpropyl und l-Ethyl-2-methylpropyl.
Durch Halogen substitiertes Alkyl bedeutet geradkettige oder verzweigte Alkylgruppen, wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome ersetzt sein können, z.B. Ci-C2-Halogenalkyl wie Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2- Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2- Trichlorethyl, Pentafluorethyl und l,l,l-Trifluorprop-2-yl.
Alkenyl bedeutet ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z.B. C2-C6-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl, 3- Butenyl, 1 -Methyl- 1-propenyl, 2-Methyl-l-propenyl, l-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1- Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1 -Methyl- 1-butenyl, 2-Methyl-l-butenyl, 3-Methyl-l- butenyl, l-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, l-Methyl-3-butenyl, 2- Methyl-3-butenyl, 3-Methyl-3-butenyl, l,l-Dimethyl-2-propenyl, 1 ,2-Dimethyl- 1-propenyl, 1,2- Dimethyl-2-propenyl, 1-Ethyl-l-propenyl, l-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4- Hexenyl, 5-Hexenyl, 1 -Methyl- 1-pentenyl, 2-Methyl-l-pentenyl, 3-Methyl-l-pentenyl, 4-Methyl-l- pentenyl, l-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 1- Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, l-Methyl-4- pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, l,l-Dimethyl-2-butenyl, l,l-Dimethyl-3-butenyl, 1,2-Dimethyl-l-butenyl, l,2-Dimethyl-2-butenyl, l,2-Dimethyl-3-butenyl,
1.3-Dimethyl- 1 -butenyl, l,3-Dimethyl-2-butenyl, 1 ,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl,
2.3-Dimethyl-l-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl- 1 -butenyl,
3.3-Dimethyl-2-butenyl, 1-Ethyl-l -butenyl, l-Ethyl-2-butenyl, l-Ethyl-3-butenyl, 2-Ethyl-l- butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1 , 1 ,2-Trimethyl-2-propenyl, l-Ethyl-l-methyl-2- propenyl, l-Ethyl-2-methyl-l-propenyl und l-Ethyl-2-methyl-2-propenyl. bedeutet geradkettige oder verzweigte Kohlenwasserstoffreste mit der jeweils angegebenen
Figure imgf000005_0001
Anzahl von Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, z.B. C2-C6- Alkinyl wie Ethinyl, 1-Propinyl, 2-Propinyl (oder Propargyl), 1-Butinyl, 2-Butinyl, 3-Butinyl, 1- Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 3-Methyl-l-butinyl, l-Methyl-2- butinyl, l-Methyl-3-butinyl, 2-Methyl-3-butinyl, l,l-Dimethyl-2-propinyl, l-Ethyl-2-propinyl, 1- Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 3-Methyl-l-pentinyl, 4-Methyl-l-pentinyl, 1- Methyl-2-pentinyl, 4-Methyl-2-pentinyl, l-Methyl-3-pentinyl, 2-Methyl-3-pentinyl, l-Methyl-4- pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, l,l-Dimethyl-2-butinyl, l,l-Dimethyl-3- butinyl, l,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-l-butinyl, l-Ethyl-2-butinyl, l-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und l-Ethyl-l-methyl-2-propinyl.
Cycloalkyl bedeutet ein carbocyclisches, gesättigtes Ringsystem mit vorzugsweise 3-8 Ring- C-Atomen, z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl. Im Falle von gegebenenfalls substituiertem Cycloalkyl werden cyclische Systeme mit Substituenten umfasst, wobei auch Substituenten mit einer Doppelbindung am Cycloalkylrest, z. B. eine Alkylidengruppe wie Methyliden, umfasst sind.
Alkoxy bedeutet gesättigte, geradkettige oder verzweigte Alkoxyreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen, z.B. Ci -C ,- Alkoxy wie Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1 -Methyl -propoxy, 2-Methylpropoxy, 1,1-Dimethylethoxy, Pentoxy, 1-Methylbutoxy, 2- Methylbutoxy, 3-Methylbutoxy, 2,2-Di-methylpropoxy, 1-Ethylpropoxy, Hexoxy, 1,1- Dimethylpropoxy, l,2-Dimethylpropoxy,l-Methylpentoxy, 2-Methylpentoxy, 3-Methylpentoxy, 4- Methylpentoxy, 1,1-Dimethylbutoxy, 1 ,2-Dimethylbutoxy, 1,3-Dimethylbutoxy, 2,2- Dimethylbutoxy, 2,3-Dimethylbutoxy, 3,3-Dimethylbutoxy, 1-Ethylbutoxy, 2-Ethylbutoxy, 1,1,2- Trimethylpropoxy, 1,2,2-Trimethylpropoxy, 1-Ethyl-l-methylpropoxy und l-Ethyl-2-methyl- propoxy. Durch Halogen substitiertes Alkoxy bedeutet geradkettige oder verzweigte Alkoxyreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen, wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können, z.B. Ci-C2-Halogenalkoxy wie Chlormethoxy, Brommethoxy, Dichlormethoxy, Trichlormethoxy, Fluormethoxy, Difluormethoxy, Trifluormethoxy, Chlorfluormethoxy, Dichlor-fluormethoxy, Chlordifluormethoxy, 1-Chlorethoxy, 1-Bromethoxy, 1 -Fluorethoxy, 2-Fluorethoxy, 2,2- Difluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-l,2-difluorethoxy, 2,2-Dichlor- 2-fluorethoxy, 2,2,2-Trichlorethoxy, Pentafluor-ethoxy und l,l,l-Trifluorprop-2-oxy.
Die Verbindungen der Formel (I) können, in Abhängigkeit von der Art der Substituenten, als geo metrische und/oder optische Isomere oder Isomerengemische, in unterschiedlicher Zusammen setzung vorliegen, beispielsweise auch in cis- oder trans-Form, welche folgendermaßen definiert sind:
Figure imgf000006_0001
cis-Form
trans-Form
Die gegebenfalls bei der Synthese anfallenden Isomerengemische können mit den üblichen technischen Methoden getrennt werden.
Sowohl die reinen Isomeren als auch die Tautomeren- und Isomerengemische, deren Herstellung und Verwendung sowie diese enthaltende Mittel sind Gegenstand der vorliegenden Erfindung. Im Folgenden wird der Einfachheit halber jedoch stets von Verbindungen der Formel (I) gesprochen, obwohl sowohl die reinen Verbindungen als auch gegebenenfalls Gemische mit unterschiedlichen Anteilen an isomeren und tautomeren Verbindungen gemeint sind.
Die erfindungsgemäßen Verbindungen sind durch die Formel (I) allgemein definiert. Bevorzugte Substituenten bzw. Bereiche der in der oben und nachstehend erwähnten Formeln aufgeführten Reste werden im Folgenden erläutert:
Bevorzugt sind Verbindungen der allgemeinen Formel (I), in denen
X Ci-Cö-Alkoxy, Brom, Chlor oder Fluor ist,
Y Ci-Cö-Alkyl, Ci-Ce-Halogenalkyl, Ci-Ce-Alkoxy oder Cs-Ce-Cycloalkyl ist,
R1 Wasserstoff, Ci-Cö-Alkyl, Ci-C4-Alkoxy-C2-C4- Alkyl, C3-C6-Cycloalkyl, C3-C6-Cycloalkyl- Ci-C2-Alkyl, Ci-Cö-Halogenalkyl, C2-C6-Alkenyl, Ci-C4-Halogenalkenyl, C2-C6-Alkinyl oder C2-C6 Halogenalkinyl ist, R2 Wasserstoff, Ci-Cr, -Alkyl, Ci-C4-Alkoxy-C2-C4-Alkyl, Ci-Cö-Halogenalkyl, C3-C6-
Cycloalkyl, C2-C6-Alkenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, Ci-Cö-Alkoxy oder Ci- Cö-Halogenalkoxy ist,
R3 Wasserstoff, Ci-C4-Alkyl, Ci-C4-Halogenalkyl, C3-C6-Cycloalkyl oder Halogen ist,
G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei
L einer der folgenden Reste
Figure imgf000007_0001
worin
R4 C 1 -C4- Alkyl oder C 1 -C3 - Alkoxy-C 1 -C4- Alkyl ist,
R5 C1-C4- Alkyl ist,
R6 Ci-C4-Alkyl, ein unsubstituiertes Phenyl oder ein einfach oder mehrfach mit Halogen, Ci-C4-Alkyl, Ci-C4-Haloalkyl oder Cyano substituiertes Phenyl ist,
E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion ist, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen C1-C10- Alkyl oder C3-C7-Cycloalkyl, die unabhängig voneinander jeweils ein- oder mehrfach mit Fluor, Chlor, Brom, Cyano, Hydroxy substituiert sind.
Besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), in denen
X Ci-Cö-Alkoxy, Brom, Chlor oder Fluor ist,
Y Ci-Cö-Alkyl, Ci-Cr, -Halogenalkyl, Ci-Ce-Alkoxy oder Cs-Ce-Cycloalkyl ist,
R1 Wasserstoff, Ci-Cö-Alkyl, Ci-C4-Alkoxy-C2-C4- Alkyl, C3-C6-Cycloalkyl, C3-C6-Cycloalkyl- Ci-C2-Alkyl, Ci-Cö-Halogenalkyl, C2-C6-Alkenyl, Ci-C4-Halogenalkenyl, C2-C6-Alkinyl oder C2-C6 Halogenalkinyl ist,
R2 Wasserstoff, Ci-Cr, -Alkyl, Ci-C4-Alkoxy-C2-C4-Alkyl, Ci-Cö-Halogenalkyl, C3-C6-
Cycloalkyl, C2-C6-Alkenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, Ci-Cö-Alkoxy oder Ci- Ce-Halogenalkoxy ist,
R3 Wasserstoff, Ci-C4-Alkyl, Ci-C4-Halogenalkyl, C3-C6-Cycloalkyl oder Halogen ist,
G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei
L einer der folgenden Reste worin
R4 C i -C4- Alkyl oder C 1 -C3 - Alkoxy-C 1 -C4- Alkyl ist,
R5 C1-C4- Alkyl ist,
E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion ist, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen C1-C10- Alkyl oder C3-C7-Cycloalkyl substituiert sind.
Ganz besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), in denen
X Methoxy, Ethoxy, Brom, Chlor oder Fluor ist,
Y Methyl, Ethyl, Cyclopropyl, Ethoxy, Methoxy ist,
R1 Wasserstoff, Ethyl, Methyl, n-Propyl, n-Butyl, Allyl, Methoxymethyl oder Ethoxymethyl ist, R2 Wasserstoff oder Methyl ist,
R3 Wasserstoff, Methyl, Ethyl, Brom ist,
G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei
L einer der folgenden Reste
Figure imgf000008_0001
worin
R4 Methyl, Ethyl oder i-Propyl ist,
R5 Methyl, Ethyl, i-Propyl oder t-Butyl ist,
E ein Natriumion oder ein Kaliumion ist.
Die Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) ist im Prinzip bekannt bzw. kann in Anlehnung an literaturbekannte Verfahren erfolgen, beispielsweise indem man a) eine Verbindung der allgemeinen Formel (II) in welcher R1, R2, R3, X und Y die oben angegebene Bedeutung haben, und R10 für Alkyl, bevorzugt für Methyl oder Ethyl steht, gegebenenfalls in Anwesenheit eines geeigneten Lösungs- oder Verdünnungsmittels, mit einer geeigneten Base unter formaler Abspaltung der Gruppe R10OH cyclisiert, oder b) eine Verbindung der allgemeinen Formel (I), in der R1, R2, R3, X, und Y die oben angegebenen Bedeutungen haben, beispielsweise mit einer Verbindung der allgemeinen Formel (III),
Hal-L (III) in der L die oben angegebene Bedeutung hat und Hai für ein Halogen, vorzugsweise Chlor oder Brom steht, gegebenenfalls in Anwesenheit eines geeigneten Lösungs- oder Verdünnungsmittels sowie einer geeigneten Base, zur Reaktion bringt, c) indem man Verbindungen der allgemeinen Formel (IV),
Figure imgf000009_0001
In der X, Y, R1, R2 und G die oben angegebenen Bedeutungen haben, und U für eine geeignete Abgangsgruppe steht, mit einem geeigneten Alkinyl-Reagnez der allgemeinen Formel (V),
W— — R (V)
in der R3 die oben angegebene Bedeutung besitzt und W für Wasserstoff oder eine geeignete
Abgangsgruppe steht, gegebenenfalls in Gegenwart geeigneter Katalysatoren und einer geeigneten Base umsetzt. Als Abgangsgruppe W kommen beispielsweise Halogenatome wie Chlor, Brom oder lod, Alkylsulfonestergruppen wie beispielsweise Triflat, Mesylat oder Nonaflat, Magnesiumchlorid, Zinkchlorid, ein Trialkylzinnrest sowie Borsaure -Reste wie B(OH)2 oder— B(OAlkyl)2 in Betracht. Als Katalysatoren sind insbesondere Pd° Komplexe sehr gut geeignet, wobei in vielen Fallen auch der Zusatz von Cu® Salzen sehr vorteilhaft sein kann.
Die beschriebene Methodik ist Stand der Technik und im Übrigen auch unter dern Stichwort "Palladium-katalysierte Kreuzkupplung", "Sonogashira-, Negishi-, Suzuki-, Stille- oder Kumada- Kupplung" einschlägig literaturbekannt.
Alternativ kann auch eine Verbindung der allgemein Formel (IV) auch mit einem Alkinyl-Reagenz der allgemeinen Formel (VI) in analoger Anwendung der oben beschriebenen Kupplungs-Methodik umsetzt werden, anschließend in Ethinyl WO 2016/207097 PC T/EP2016/064132 Verbindungen der allgemeinen Formel (VIII) gespalten und diese schließlich mit einem geeigneten Alkylierungsreagenz in die erfindungsgemäße Verbindung (I) überführt werden, wobei jeweils X, Y, R1, R2, und W die beschriebene Bedeutung haben und die abspaltbare Gruppe R11 beispielsweise für eine Gruppe Trimethylsilyl stehen kann.
Figure imgf000010_0001
Diese ebenfalls literaturbekannte Technik ist beispielsweise in in Beilstein Journal of Organic Chemistry 2011, 7(55), 426-431 und Catalysis Communications 2015, 60, 82-87 naher erläutert. Die Vorstufen der allgemeinen Formel (II) können in Analogie zu bekannten Verfahren, beispielsweise durch Umsetzung eines Aminosäureesters der allgemeinen Formel (IX) mit einer Phenylessigsäure der allgemeinen Formel (X), wobei R1, R2 R3, R10, X, Y und Z die oben beschriebene Bedeutung haben, gegebenenfalls durch Zusatz eines wasserentziehenden Mittels und gegebenenfalls in Anwesenheit eines geeigneten Lösungs- bzw. Verdünnungsmittels, hergestellt werden. (IX) (X)
Die Herstellung von Aminosäureestern der allgemeinen Formel (IX) ist prinzipiell in WO 04/024688 oder WO 08/067873 beschrieben und kann in Analogie zu diesen Verfahren durchgeführt werden, beispielsweise durch Umsetzung eines Cyclopentanons der allgemeinen Formel (XI) mit Natriumcyanid, anschließender hydrolytischen Spaltung des entstandenen Aminonitrils zur Aminosäure und Verestemng zum Aminoester (IX) (Strecker bzw. Bucherer-Bergs-Verfahren). Die benötigten Vorstufen der allgemeinen Formel XI können beispielsweise in Analogie zu US 20090275574 und WO 2015165279 erhalten werden.
Figure imgf000011_0001
Phenylessigsäuren der allgemeinen Formel (X) sind ebenfalls unter anderem aus WO 2015/040114 bekannt oder können in Analogie zu literaturbekannten Verfahren hergestellt werden, beispielsweise indem man eine Verbindung mit der allgemeinen Formel (XII), in der X, Y, R12 und U die oben angegebene Bedeutung haben, nach der bereits beschriebenen Kreuzkupplungs-Methodik mit einer Verbindung der allgemeinen Formel (V), in der W die oben angegebene Bedeutung hat, umsetzt und die resultierenden Carbonsäureester (XIII) nach Standardmethoden spaltet:
Figure imgf000011_0002
Die benötigten Vorstufen der allgemeinen Formel (XII) können zum Beispiel erhalten werden, indem man nach literaturbekannten Verfahren eine Acetateinheit in Verbindungen der allgemeinen Formel (XVI), in der X, Y und U die oben angegebene Bedeutung haben, einführt.
Dies kann beispielsweise analog zu den in WO 05/44796 oder in WO 10/115780 beschriebenen Verfahren durch Meerwein-Arylierung eines Anilins der allgemeinen Formel (XIV) mit Vinylidenchlorid gefolgt von einer Hydrolyse der Zwischenverbindung (XV) mit Alkoholat geschehen:
Figure imgf000012_0002
(XIV) CuCI2 (XV) (XII)
Daneben sind auch weitere alternative Herstellungsverfahren bekannt, die in WO 15/032702 beschrieben sind. Vorstufen der allgemeinen Formel (XIV) wiederum können durch gängige Standardmethoden wie Bromierung und/oder Alkylierung aus kommerziell erhältlichen Aminonitrophenolen erhalten werden.
Gegenstand der vorliegenden Erfindung sind des weiteren Verbindungen der Formel (X), worin die Reste die folgenden Bedeutungen aufweisen:
Figure imgf000012_0001
R3 ist Wasserstoff oder Methyl,
X ist Fluor, Chlor oder Brom,
Y ist Methyl, Ethyl, Methoxy, Ethoxy.
Die erfindungsgemäßen Verbindungen der Formel (I) (und/oder deren Salze), im folgenden zusammen als„erfindungsgemäße Verbindungen“ bezeichnet, weisen eine ausgezeichnete herbizide Wirksamkeit gegen ein breites Spektrum wirtschaftlich wichtiger mono- und dikotyler annueller Schadpflanzen auf.
Gegenstand der vorliegenden Erfindung ist daher auch ein Verfahren zur Bekämpfung von unerwünschten Pflanzen oder zur Wachstumsregulierung von Pflanzen, vorzugsweise in Pflanzenkulturen, worin eine oder mehrere erfindungsgemäße Verbindung(en) auf die Pflanzen (z.B. Schadpflanzen wie mono- oder dikotyle Unkräuter oder unerwünschte Kulturpflanzen), das Saatgut (z.B. Körner, Samen oder vegetative Vermehrungsorgane wie Knollen oder Sprossteile mit Knospen) oder die Fläche, auf der die Pflanzen wachsen (z.B. die Anbaufläche), ausgebracht werden. Dabei können die erfindungsgemäßen Verbindungen z.B. im Vorsaat- (ggf. auch durch Einarbeitung in den Boden), Vorauflauf- oder Nachauflaufverfahren ausgebracht werden. Im einzelnen seien beispielhaft einige Vertreter der mono- und dikotylen Unkrautflora genannt, die durch die erfindungsgemäßen Verbindungen kontrolliert werden können, ohne dass durch die Nennung eine Beschränkung auf bestimmte Arten erfolgen soll.
Monokotyle Schadpflanzen der Gattungen: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata, Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum.
Dikotyle Unkräuter der Gattungen: Abutilon, Amaranthus, Ambrosia, Anoda, Anthemis, Aphanes, Artemisia, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erysimum, Euphorbia, Galeopsis, Galinsoga, Galium, Hibiscus, Ipomoea, Kochia, Lamium, Lepidium, Lindernia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio, Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium.
Werden die erfindungsgemäßen Verbindungen vor dem Keimen auf die Erdoberfläche appliziert, so wird entweder das Auflaufen der Unkrautkeimlinge vollständig verhindert oder die Unkräuter wachsen bis zum Keimblattstadium heran, stellen jedoch dann ihr Wachstum ein.
Bei Applikation der Wirkstoffe auf die grünen Pflanzenteile im Nachauflaufverfahren tritt nach der Behandlung Wachstumsstop ein und die Schadpflanzen bleiben in dem zum Applikationszeitpunkt vorhandenen Wachstumsstadium stehen oder sterben nach einer gewissen Zeit ganz ab, so dass auf diese Weise eine für die Kulturpflanzen schädliche Unkrautkonkurrenz sehr früh und nachhaltig beseitigt wird.
Die erfindungsgemäßen Verbindungen können in Nutzkulturen Selektivitäten aufweisen und können auch als nichtselektive Herbizide eingesetzt werden.
Aufgrund ihrer herbiziden und pflanzenwachstumsregulatorischen Eigenschaften können die Wirkstoffe auch zur Bekämpfung von Schadpflanzen in Kulturen von bekannten oder noch zu entwickelnden gentechnisch veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistenzen gegenüber bestimmten in der Agrarindustrie verwendeten Wirkstoff , vor allem bestimmten Herbiziden, Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten wie bestimmten Insekten oder Mikroorganismen wie Pilzen, Bakterien oder Viren. Andere besondere Eigenschaften betreffen z.B. das Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Ernteguts bekannt. Weitere besondere Eigenschaften liegen in einer Toleranz oder Resistenz gegen abiotische Stressoren z.B. Hitze, Kälte, Trockenheit, Salz und ultraviolette Strahlung.
Bevorzugt ist die Anwendung der erfindungsgemäßen Verbindungen der Formel (I) oder deren Salze in wirtschaftlich bedeutenden transgenen Kulturen von Nutz-und Zierpflanzen,
Die Verbindungen der Formel (I) können als Herbizide in Nutzpflanzenkulturen eingesetzt werden, welche gegenüber den phytotoxischen Wirkungen der Herbizide resistent sind bzw. gentechnisch resistent gemacht wurden.
Herkömmliche Wege zur Herstellung neuer Pflanzen, die im Vergleich zu bisher vorkommenden Pflanzen modifizierte Eigenschaften aufweisen, bestehen beispielsweise in klassischen Züchtungsverfahren und der Erzeugung von Mutanten. Alternativ können neue Pflanzen mit veränderten Eigenschaften mit Hilfe gentechnischer Verfahren erzeugt werden (siehe z.B. EP 0221044, EP 0131624). Beschrieben wurden beispielsweise in mehreren Fällen gentechnische Verändemngen von Kulturpflanzen zwecks Modifikation der in den Pflanzen synthetisierten Stärke (z.B. WO 92/011376 A, WO 92/014827 A, WO 91/019806 A), transgene Kulturpflanzen, welche gegen bestimmte Herbizide vom Typ Glufosinate (vgl. z.B. EP 0242236 A, EP 0242246 A) oder Glyphosate (WO 92/000377 A) oder der Sulfonylharnstoffe (EP 0257993 A, US 5,013,659) oder gegen Kombinationen oder Mischungen dieser Herbizide durch„gene stacking“ resistent sind, wie transgenen Kulturpflanzen z. B. Mais oder Soja mit dem Handelsnamen oder der Bezeichnung Optimum™ GAT™ (Glyphosate ALS Tolerant). transgene Kulturpflanzen, beispielsweise Baumwolle, mit der Fähigkeit Bacillus thuringiensis- Toxine (Bt-Toxine) zu produzieren, welche die Pflanzen gegen bestimmte Schädlinge resistent machen (EP 0142924 A, EP 0193259 A). transgene Kulturpflanzen mit modifizierter Fettsäurezusammensetzung (WO 91/013972 A). gentechnisch veränderte Kulturpflanzen mit neuen Inhalts- oder Sekundärstoffen z.B. neuen Phytoalexinen, die eine erhöhte Krankheitsresistenz verursachen (EP 0309862 A, EP 0464461 A) gentechnisch veränderte Pflanzen mit reduzierter Photorespiration, die höhere Erträge und höhere Stresstoleranz aufweisen (EP 0305398 A) transgene Kulturpflanzen, die pharmazeutisch oder diagnostisch wichtige Proteine produzieren („molecular pharming“) transgene Kulturpflanzen, die sich durch höhere Erträge oder bessere Qualität auszeichnen transgene Kulturpflanzen die sich durch eine Kombinationen z.B. der o. g. neuen Eigenschaften auszeichnen („gene stacking“)
Zahlreiche molekularbiologische Techniken, mit denen neue transgene Pflanzen mit veränderten Eigenschaften hergestellt werden können, sind im Prinzip bekannt; siehe z.B. I. Potrykus und G. Spangenberg (eds.) Gene Transfer to Plants, Springer Lab Manual (1995), Springer Verlag Berlin, Heidelberg oder Christou, "Trends in Plant Science" 1 (1996) 423-431).
Für derartige gentechnische Manipulationen können Nucleinsäuremoleküle in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA- Sequenzen erlauben. Mit Hilfe von Standard verfahren können z.B. Basenaustausche vorgenommen, Teilsequenzen entfernt oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden, siehe z.B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; oder Winnacker "Gene und Klone", VCH Weinheim 2. Auflage 1996
Die Herstellung von Pflanzenzellen mit einer verringerten Aktivität eines Genprodukts kann beispielsweise erzielt werden durch die Expression mindestens einer entsprechenden antisense-RNA, einer sense-RNA zur Erzielung eines Cosuppressionseffektes oder die Expression mindestens eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte des obengenannten Genprodukts spaltet. Hierzu können zum einen DNA-Moleküle verwendet werden, die die gesamte codierende Sequenz eines Genprodukts einschließlich eventuell vorhandener flankierender Sequenzen umfassen, als auch DNA-Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense-Effekt zu bewirken. Möglich ist auch die Verwendung von DNA-Sequenzen, die einen hohen Grad an Homologie zu den codiereden Sequenzen eines Genprodukts aufweisen, aber nicht vollkommen identisch sind.
Bei der Expression von Nucleinsäuremolekülen in Pflanzen kann das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein. Um aber die Lokalisation in einem bestimmten Kompartiment zu erreichen, kann z.B. die codierende Region mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in einem bestimmten Kompartiment gewährleisten. Derartige Sequenzen sind dem Fachmann bekannt (siehe beispielsweise Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sei. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106). Die Expression der Nukleinsäuremoleküle kann auch in den Organellen der Pflanzenzellen stattfinden.
Die transgenen Pflanzenzellen können nach bekannten Techniken zu ganzen Pflanzen regeneriert werden. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen Pflanzenspezies handeln, d.h., sowohl monokotyle als auch dikotyle Pflanzen. So sind transgene Pflanzen erhältlich, die veränderte Eigenschaften durch Überexpression, Suppression oder Inhibierung homologer (= natürlicher) Gene oder Gensequenzen oder Expression heterologer (= fremder) Gene oder Gensequenzen aufweisen.
Vorzugsweise können die erfindungsgemäßen Verbindungen (I) in transgenen Kulturen eingesetzt werden, welche gegen Wuchsstoffe, wie z.B. 2,4-D, Dicamba oder gegen Herbizide, die essentielle Pflanzenenzyme, z.B. Acetolactatsynthasen (ALS), EPSP Synthasen, Glutaminsynthasen (GS) oder Hydoxyphenylpyruvat Dioxygenasen (HPPD) hemmen, respektive gegen Herbizide aus der Gruppe der Sulfonylharnstoffe, der Glyphosate, Glufosinate oder Benzoylisoxazole und analogen Wirkstoffe, oder gegen beliebige Kombinationen dieser Wirkstoffe, resistent sind.
Besonders bevorzugt können die erfindungsgemäßen Verbindungen in transgenen Kulturpflanzen eingesetzt werden, die gegen eine Kombination von Glyphosaten und Glufosinaten, Glyphosaten und Sulfonylharnstoffen oder Imidazolinonen resistent sind. Ganz besonders bevorzugt können die erfindungsgemäßen Verbindungen in transgenen Kulturpflanzen wie z. B. Mais oder Soja mit dem Handelsnamen oder der Bezeichnung OptimumTM GATTM (Glyphosate ALS Tolerant) eingesetzt werden.
Bei der Anwendung der erfindungsgemäßen Wirkstoffe in transgenen Kulturen treten neben den in anderen Kulturen zu beobachtenden Wirkungen gegenüber Schadpflanzen oftmals Wirkungen auf, die für die Applikation in der jeweiligen transgenen Kultur spezifisch sind, beispielsweise ein verändertes oder speziell erweitertes Unkrautspektrum, das bekämpft werden kann, veränderte Aufwandmengen, die für die Applikation eingesetzt werden können, vorzugsweise gute Kombinierbarkeit mit den Herbiziden, gegenüber denen die transgene Kultur resistent ist, sowie Beeinflussung von Wuchs und Ertrag der transgenen Kulturpflanzen.
Gegenstand der Erfindung ist deshalb auch die Verwendung der erfindungsgemäßen Verbindungen der Formel (I) als Herbizide zur Bekämpfung von Schadpflanzen in transgenen Kulturpflanzen.
Die erfindungsgemäßen Verbindungen können in Form von Spritzpulvern, emulgierbaren Konzentraten, versprühbaren Lösungen, Stäubemitteln oder Granulaten in den üblichen Zubereitungen angewendet werden. Gegenstand der Erfindung sind deshalb auch herbizide und pflanzenwachstumsregulierende Mittel, welche die erfindungsgemäßen Verbindungen enthalten.
Die erfindungsgemäßen Verbindungen können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch-physikalischen Parameter vorgegeben sind. Als Formulierungsmöglichkeiten kommen beispielsweise in Frage: Spritzpulver (WP), wasserlösliche Pulver (SP), wasserlösliche Konzentrate, emulgierbare Konzentrate (EC), Emulsionen (EW), wie Öl-in-Wasser- und Wasser-in-Öl -Emulsionen, versprühbare Lösungen, Suspensionskonzentrate (SC), Dispersionen auf Öl- oder Wasserbasis, ölmischbare Lösungen, Kapselsuspensionen (CS), Stäubemittel (DP), Beizmittel, Granulate für die Streu- und Bodenapplikation, Granulate (GR) in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), wasserlösliche Granulate (SG), ULV-Formulierungen, Mikrokapseln und Wachse. Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl. 1986, Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker, N.Y., 1973, K. Martens, "Spray Drying" Handbook, 3rd Ed. 1979, G. Goodwin Ltd. London.
Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J., H.v. Olphen, "Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y., C. Marsden, "Solvents Guide", 2nd Ed., Interscience, N.Y. 1963, McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J., Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964, Schönfeldt, "Grenzflächenaktive Äthylenoxid-addukte", Wiss. Verlagsgesell., Stuttgart 1976, Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl. 1986. Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen Wirkstoffen, wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix.
Als Kombinationspartner für die erfindungsgemäßen Verbindungen in Mischungsformulierungen oder im Tank-Mix sind beispielsweise bekannte Wirkstoffe, die auf einer Inhibition von beispielsweise Acetolactat-Synthase, Acetyl-CoA-Carboxylase, Cellulose-Synthase, Enolpyruvylshikimat-3-phosphat- Synthase, Glutamin-Synthetase, p-Hydroxyphenylpyruvat-Dioxygenase, Phytoendesaturase, Photosystem I, Photosystem II oder Protoporphyrinogen-Oxidase beruhen, einsetzbar, wie sie z.B. aus Weed Research 26 (1986) 441-445 oder "The Pesticide Manual", 16th edition, The British Crop Protection Council und the Royal Soc. of Chemistry, 2006 und dort zitierter Literatur beschrieben sind. Nachfolgend werden beispielhaft bekannte Herbizide oder Pflanzenwachstumsregulatoren genannt, die mit den erfindungsgemäßen Verbindungen kombiniert werden können, wobei diese Wirkstoffe entweder mit ihrem "common name" in der englischsprachigen Variante gemäß International Organization for Standardization (ISO) oder mit dem chemischen Namen bzw. mit der Codenummer bezeichnet sind. Dabei sind stets sämtliche Anwendungsformen wie beispielsweise Säuren, Salze, Ester sowie auch alle isomeren Formen wie Stereoisomere und optische Isomere umfaßt, auch wenn diese nicht explizit erwähnt sind.
Beispiele für solche herbiziden Mischungspartner sind:
Acetochlor, acifluorfen, acifluorfen-sodium, aclonifen, alachlor, allidochlor, alloxydim, alloxydim- sodium, ametryn, amicarbazone, amidochlor, amidosulfuron, 4-amino-3-chloro-5-fluoro-6-(7-fluoro-lH- indol-6-yl)pyridine-2-carboxylic acid, aminocyclopyrachlor, aminocyclopyrachlor-potassium, aminocyclopyrachlor-methyl, aminopyralid, amitrole, ammoniumsulfamate, anilofos, asulam, atrazine, azafenidin, azimsulfuron, beflubutamid, benazolin, benazolin-ethyl, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone, benzobicyclon, benzofenap, bicyclopyron, bifenox, bilanafos, bilanafos-sodium, bispyribac, bispyribac-sodium, bixlozone, bromacil, bromobutide, bromofenoxim, bromoxynil, bromoxynil-butyrate, -potassium, -heptanoate und -octanoate, busoxinone, butachlor, butafenacil, butamifos, butenachlor, butralin, butroxydim, butylate, cafenstrole, carbetamide, carfentrazone, carfentrazone-ethyl, chloramben, chlorbromuron, l-{2-Chlor-3-[(3-cyclopropyl-5- hydroxy-l-methyl-lH-pyrazol-4-yl)carbonyl]-6-(trifluormethyl)phenyl}piperidin-2-on, 4-{2-Chlor-3- [(3,5-dimethyl-lH-pyrazol-l-yl)methyl]-4-(methylsulfonyl)benzoyl}-l,3-dimethyl-lH-pyrazol-5-yl-l,3- dimethyl-lH-pyrazol-4-carboxylat, chlorfenac, chlorfenac-sodium, chlorfenprop, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, 2-[2-Chlor-4-(methylsulfonyl)-3- (morpholin-4-ylmethyl)benzoyl] -3-hydroxycyclohex-2-en- 1 -on, 4- { 2-Chlor-4-(methylsulfonyl)-3-
[(2,2,2-trifluorethoxy)methyl] benzoyl } - 1 -ethyl- 1 H-pyrazol-5-yl- 1 ,3 -dimethyl- 1 H-pyrazol-4-carboxylat, chlorophthalim, chlorotoluron, chlorthal-dimethyl, chlorsulfuron, 3-[5-Chlor-4-(trifluormethyl)pyridin-2- yl]-4-hydroxy-l-methylimidazolidin-2-on, cinidon, cinidon-ethyl, cinmethylin, cinosulfuron, clacyfos, clethodim, clodinafop, clodinafop-propargyl, clomazone, clomeprop, clopyralid, cloransulam, cloransulam-methyl, cumyluron, cyanamide, cyanazine, cycloate, cyclopyranil, cyclopyrimorate, cyclosulfamuron, cycloxydim, cyhalofop, cyhalofop-butyl, cyprazine, 2,4-D, 2,4-D-butotyl, -butyl, - dimethylammonium, -diolamin, -ethyl, 2-ethylhexyl, -isobutyl, -isooctyl, -isopropylammonium, - potassium, -triisopropanolammonium und -trolamine, 2,4-DB, 2,4-DB-butyl, -dimethylammonium, isooctyl, -potassium und -sodium, daimuron (dymron), dalapon, dazomet, n-decanol, desmedipham, detosyl-pyrazolate (DTP), dicamba, dichlobenil, dichlorprop, dichlorprop-P, diclofop, diclofop-methyl, diclofop-P-methyl, diclosulam, difenzoquat, diflufenican, diflufenzopyr, diflufenzopyr-sodium, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, 3-(2,6- Dimethylphenyl)-6- [(2-hydroxy-6-oxocy clohex- 1 -en- 1 -yl)carbonyl] - 1 -methylchinazolin-2,4( 1 H,3H)- dion, l,3-Dimethyl-4-[2-(methylsulfonyl)-4-(trifluormethyl)benzoyl]-lH-pyrazol-5-yl-l,3-dimethyl-lH- pyrazol-4-carboxylat, dimetrasulfuron, dinitramine, dinoterb, diphenamid, diquat, diquat-dibromid, dithiopyr, diuron, DMPA, DNOC, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron, ethamet- sulfuron-methyl, ethiozin, ethofumesate, ethoxyfen, ethoxyfen-ethyl, ethoxysulfuron, etobenzanid, Ethyl- [(3-{2-chlor-4-fluor-5-[3-methyl-2,6-dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-l(2H)- yl]phenoxy}pyridin-2-yl)oxy]acetat, F-9960, F-5231, i.e. N-[2-Chlor-4-fluor-5-[4-(3-fluorpropyl)-4,5- dihydro-5 -oxo- lH-tetrazol-l-yl] -phenyl] -ethansulfonamid, F-7967, i.e. 3-[7-Chlor-5-fluor-2-
(trifluormethyl)-lH-benzimidazol-4-yl]-l-methyl-6-(trifluormethyl)pyrimidin-2,4(lH,3H)-dion, fenoxaprop, fenoxaprop-P, fenoxaprop-ethyl, fenoxaprop-P-ethyl, fenoxasulfone, fenquinotrione, fentrazamide, flamprop, flamprop-M-isopropyl, flamprop-M-methyl, flazasulfuron, florasulam, florpyrauxifen, florpyrauxifen-benzyl, fluazifop, fluazifop-P, fluazifop-butyl, fluazifop-P-butyl, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazin, fluometuron, flurenol, flurenol-butyl, - dimethylammonium und -methyl, fluoroglycofen, fluoroglycofen-ethyl, flupropanate, flupyrsulfuron, flupyrsulfuron-methyl-sodium, fluridone, flurochloridone, fluroxypyr, fluroxypyr-meptyl, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, fomesafen-sodium, foramsulfuron, fosamine, glufosinate, glufosinate-ammonium, glufosinate -P-sodium, glufosinate -P-ammonium, glufosinate-P-sodium, glyphosate, glyphosate-ammonium, -isopropylammonium, -diammonium, -dimethylammonium, - potassium, -sodium und -trimesium, H-9201, i.e. 0-(2,4-Dimethyl-6-nitrophenyl)-0-ethyl- isopropylphosphoramidothioat, halauxifen, halauxifen-methyl, halosafen, halosulfuron, halosulfuron- methyl, haloxyfop, haloxyfop-P, haloxyfop-ethoxyethyl, haloxyfop-P-ethoxyethyl, haloxyfop-methyl, haloxyfop-P-methyl, hexazinone, HW-02, i.e. l-(Dimethoxyphosphoryl)-ethyl-(2,4- dichlorphenoxy)acetat, 4-Hydroxy-l-methoxy-5-methyl-3-[4-(trifluormethyl)pyridin-2-yl]imidazolidin- 2-on, 4-Hydroxy-l-methyl-3-[4-(trifluormethyl)pyridin-2-yl]imidazolidin-2-on, (5-Hydroxy-l-methyl- lH-pyrazol-4-yl)(3,3,4-trimethyl-l,l-dioxido-2,3-dihydro-l-benzothiophen-5-yl)methanon, 6-[(2-
Hydroxy-6-oxocyclohex-l-en-l-yl)carbonyl]-l,5-dimethyl-3-(2-methylphenyl)chinazolin-2,4(lH,3H)- dion, imazamethabenz, Imazamethabenz-methyl, imazamox, imazamox-ammonium, imazapic, imazapic- ammonium, imazapyr, imazapyr-isopropylammonium, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-immonium, imazosulfuron, indanofan, indaziflam, iodosulfuron, iodosulfuron-methyl- sodium, ioxynil, ioxynil-octanoate, -potassium und sodium, ipfencarbazone, isoproturon, isouron, isoxaben, isoxaflutole, karbudlate, KUH-043, i.e. 3-({ [5-(Difluormethyl)-l-methyl-3-(trifluormethyl)- lH-pyrazol-4-yl]methyl}sulfonyl)-5,5-dimethyl-4,5-dihydro-l,2-oxazol, ketospiradox, lactofen, lenacil, linuron, MCPA, MCPA-butotyl, -dimethylammonium, -2-ethylhexyl, -isopropylammonium, -potassium und -sodium, MCPB, MCPB-methyl, -ethyl und -sodium, mecoprop, mecoprop-sodium, und -butotyl, mecoprop-P, mecoprop-P-butotyl, -dimethylammonium, -2-ethylhexyl und -potassium, mefenacet, mefluidide, mesosulfuron, mesosulfuron-methyl, mesotrione, methabenzthiazuron, metam, metamifop, metamitron, metazachlor, metazosulfuron, methabenzthiazuron, methiopyrsulfuron, methiozolin, 2- ( { 2- [(2-Methoxyethoxy)methyl] -6-(trifluormethyl)pyridin-3 -yl } carbonyl)cyclohexan- 1 ,3-dion, methyl isothiocy anate , 1 -Methyl-4- [(3 , 3 ,4-trimethyl- 1 , 1 -dioxido-2 , 3 -dihydro- 1 -benzothiophen-5 -yl)carbonyl] - lH-pyrazol-5-ylpropan-l-sulfonat, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, molinat, monolinuron, monosulfuron, monosulfuron-ester, MT-5950, i.e. N-[3-chlor-4-(l-methylethyl)-phenyl]-2-methylpentanamid, NGGC-011, napropamide, NC-310, i.e. 4-(2,4-Dichlorbenzoyl)-l-methyl-5-benzyloxypyrazol, neburon, nicosulfuron, nonanoic acid (Pelargonsäure), norflurazon, oleic acid (fatty acids), orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefon, oxotrione (lancotrione), oxyfluorfen, paraquat, paraquat dichloride, pebulate, pendimethalin, penoxsulam, pentachlorphenol, pentoxazone, pethoxamid, petroleum oils, phenmedipham, picloram, picolinafen, pinoxaden, piperophos, pretilachlor, primisulfuron, primisulfuron-methyl, prodiamine, profoxydim, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propoxycarbazone-sodium, propyrisulfuron, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen, pyraflufen-ethyl, pyrasulfotole, pyrazolynate (pyrazolate), pyrazosulfuron, pyrazosulfuron-ethyl, pyrazoxyfen, pyribambenz, pyribambenz-isopropyl, pyribambenz-propyl, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobac, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, pyroxasulfone, pyroxsulam, quinclorac, quinmerac, quinoclamine, quizalofop, quizalofop-ethyl, quizalofop-P, quizalofop-P-ethyl, quizalofop-P-tefuryl, QYM-201, QYR-301, rimsulfuron, saflufenacil, sethoxydim, siduron, simazine, simetryn, sulcotrion, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosulfuron, , SYN-523, SYP-249, i.e. l-Ethoxy-3-methyl-l-oxobut-3-en-2-yl-5-[2-chlor-4-
(trifluormethyl)phenoxy]-2-nitrobenzoat, SYP-300, i.e. l-[7-Fluor-3-oxo-4-(prop-2-in-l-yl)-3,4-dihydro- 2H-l,4-benzoxazin-6-yl]-3-propyl-2-thioxoimidazolidin-4,5-dion, 2,3,6-TBA, TCA (Trifluoressigsäure), TCA-sodium, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbucarb, terbumeton, terbuthylazin, terbutryn, tetflupyrolimet, thenylchlor, thiazopyr, thiencarbazone, thiencarbazone-methyl, thifensulfuron, thifensulfuron-methyl, thiobencarb, tiafenacil, tolpyralate, topramezone, tralkoxydim, triafamone, tri-allate, triasulfuron, triaziflam, tribenuron, tribenuron-methyl, triclopyr, trietazine, trifloxysulfuron, trifloxysulfuron-sodium, trifludimoxazin, trifluralin, triflusulfuron, triflusulfuron- methyl, tritosulfuron, urea sulfate, vernolate, ZJ-0862, i.e. 3,4-Dichlor-N-{2-[(4,6-dimethoxypyrimidin- 2-yl)oxy] benzyl } anilin. Beispiele für Pflanzenwachstumsregulatoren als mögliche Mischungspartner sind:
Acibenzolar, acibenzolar-S-methyl, 5-Aminolävulinsäure, ancymidol, 6-benzylaminopurine, Brassinolid, Catechin, chlormequat Chloride, cloprop, cyclanilide, 3-(Cycloprop-l-enyl)propionsäure, daminozide, dazomet, n-decanol, dikegulac, dikegulac-sodium, endothal, endothal-dipotassium, -disodium, und mono(N,N-dimethylalkylammonium), ethephon, flumetralin, flurenol, flurenol-butyl, flurprimidol, forchlorfenuron, gibberellic acid, inabenfide, indol-3-acetic acid (IAA), 4-indol-3-ylbutyric acid, isoprothiolane, probenazole, Jasmonsäure, Jasmonsäuremethylester, maleic hydrazide, mepiquat Chloride, 1-methylcyclopropene, 2-(l-naphthyl)acetamide, 1-naphthylacetic acid, 2- naphthyloxyacetic acid, nitrophenolate-mixture, 4-Oxo-4[(2-phenylethyl)amino]buttersäure, paclobutrazol, N-phenylphthalamic acid, prohexadione, prohexadione -calcium, prohydrojasmone, Salicylsäure, Strigolacton, tecnazene, thidiazuron, triacontanol, trinexapac, trinexapac-ethyl, tsitodef, uniconazole, uniconazole-P.
Safener, die in Kombination mit den erfindungsgemäßen Verbindungen der Formel (I) und ggf. in Kombinationen mit weiteren Wirkstoffen wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden wie oben aufgelistet, eingesetzt werden können, sind vorzugsweise ausgewählt aus der Gruppe bestehend aus:
S 1) Verbindungen der Formel (S 1),
Figure imgf000021_0001
wobei die Symbole und Indizes folgende Bedeutungen haben:
PA ist eine natürliche Zahl von 0 bis 5, vorzugsweise 0 bis 3;
RA1 ist Halogen, (Ci-C4)Alkyl, (Ci-C4)Alkoxy, Nitro oder (Ci-C4)Haloalkyl;
WA ist ein unsubstituierter oder substituierter divalenter heterocyclischer Rest aus der Gruppe der teilungesättigten oder aromatischen Fünfring-Heterocyclen mit 1 bis 3 Heteroringatomen aus der Gruppe N und O, wobei mindestens ein N-Atom und höchstens ein O-Atom im Ring enthalten ist, vorzugsweise ein Rest aus der Gruppe (WA1) bis (WA4), niA ist 0 oder 1 ;
RA 2 ist ORA 3, SRA 3 oder NRA 3RA 4 oder ein gesättigter oder ungesättigter 3- bis 7-gliedriger Heterocyclus mit mindestens einem N-Atom und bis zu 3 Heteroatomen, vorzugsweise aus der Gruppe O und S, der über das N-Atom mit der Carbonylgruppe in (Sl) verbunden ist und unsubstituiert oder durch Reste aus der Gruppe (Ci-C4)Alkyl, (Ci-C4)Alkoxy oder gegebenenfalls substituiertes Phenyl substituiert ist, vorzugsweise ein Rest der Formel ORA 3, NHRA 4 oder N(CH3)2, insbesondere der Formel ORA 3;
RA 3 ist Wasserstoff oder ein unsubstituierter oder substituierter aliphatischer Kohlenwasserstoffrest, vorzugsweise mit insgesamt 1 bis 18 C- Atomen;
RA 4 ist Wasserstoff, (Ci-Ce)Alkyl, (Ci-Ce)Alkoxy oder substituiertes oder unsubstituiertes Phenyl;
RA5 ist H, (Ci-Cs)Alkyl, (Ci-C8)Haloalkyl, (Ci-C4)Alkoxy(Ci-C8) Alkyl, Cyano oder COORA9, worin RA9 Wasserstoff, (Ci-Cs)Alkyl, (Ci-Cs)Haloalkyl, (Ci-C4)Alkoxy-(Ci-C4)alkyl, (Ci-C6)Hydroxyalkyl, (C3-Ci2)Cycloalkyl oder Tri-(Ci-C4)-alkyl-silyl ist;
RA6, RA7, RA8 sind gleich oder verschieden Wasserstoff, (Ci-Cs)Alkyl, (Ci-Cs)Haloalkyl, (C3- Ci2)Cycloalkyl oder substituiertes oder unsubstituiertes Phenyl; vorzugsweise: a) Verbindungen vom Typ der Dichlorphenylpyrazolin-3-carbonsäure (Sla), vorzugsweise Verbindungen wie l-(2,4-Dichlorphenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazolin-3-carbonsäure, l-(2,4-Dichlorphenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazolin-3-carbonsäureethylester (S 1-1) ("Mefenpyr-diethyl"), und verwandte Verbindungen, wie sie in der WO-A-91/07874 beschrieben sind; b) Derivate der Dichlorphenylpyrazolcarbonsäure (Slb), vorzugsweise Verbindungen wie l-(2,4-Dichlorphenyl)-5-methyl-pyrazol-3-carbonsäureethylester (Sl-2), l-(2,4-Dichlorphenyl)-5-isopropyl-pyrazol-3-carbonsäureethylester (Sl-3),
1 -(2,4-Dichlorphenyl)-5-( 1 , 1 -dimethyl-ethyl)pyrazol-3-carbonsäureethyl-ester (S 1 -4) und verwandte Verbindungen, wie sie in EP-A-333 131 und EP-A-269 806 beschrieben sind; c) Derivate der l,5-Diphenylpyrazol-3-carbonsäure (Slc), vorzugsweise Verbindungen wie l-(2,4-Dichlorphenyl)-5-phenylpyrazol-3-carbonsäureethylester (S 1-5), l-(2-Chlorphenyl)-5-phenylpyrazol-3-carbonsäuremethylester (S 1-6) und verwandte Verbindungen wie sie beispielsweise in der EP-A-268554 beschrieben sind; d) Verbindungen vom Typ der Triazolcarbonsäuren (Sld), vorzugsweise Verbindungen wie Fenchlorazol(-ethylester), d.h. l-(2,4-Dichlorphenyl)-5-trichlormethyl-(lH)-l,2,4-triazol-3-carbon- säureethylester (S 1-7), und verwandte Verbindungen wie sie in EP-A-174 562 und EP-A-346 620 beschrieben sind; e) Verbindungen vom Typ der 5-Benzyl- oder 5-Phenyl-2-isoxazolin-3- carbonsäure oder der 5,5-
Diphenyl-2-isoxazolin-3-carbonsäure (S le), vorzugsweise Verbindungen wie
5-(2,4-Dichlorbenzyl)-2-isoxazolin-3-carbonsäureethylester (S 1-8) oder 5-Phenyl-2-isoxazolin-3- carbonsäureethylester (S 1-9) und verwandte Verbindungen, wie sie in WO-A-91/08202 beschrieben sind, bzw. 5,5-Diphenyl-2-isoxazolin-3-carbonsäure (Sl-10) oder 5,5-Diphenyl-2-isoxazolin-3- carbonsäureethylester (S 1-11) ("Isoxadifen-ethyl") oder -n-propylester (Sl-12) oder der 5-(4-Fluorphenyl)-5-phenyl-2-isoxazolin-3-carbonsäureethylester (S 1-13), wie sie in der Patentanmeldung WO-A-95/07897 beschrieben sind.
S2) Chinolinderivate der Formel (S2),
Figure imgf000023_0001
wobei die Symbole und Indizes folgende Bedeutungen haben:
RB1 ist Halogen, (C1-C4) Alkyl, (Ci-C4)Alkoxy, Nitro oder (Ci-C4)Haloalkyl; PB ist eine natürliche Zahl von 0 bis 5, vorzugsweise 0 bis 3;
RB2 ist ORB3, SRB3 oder NRB3RB4 oder ein gesättigter oder ungesättigter 3- bis 7-gliedriger Heterocyclus mit mindestens einem N-Atom und bis zu 3 Heteroatomen, vorzugsweise aus der Gruppe O und S, der über das N-Atom mit der Carbonylgruppe in (S2) verbunden ist und unsubstituiert oder durch Reste aus der Gruppe (C1-C4) Alkyl, (Ci-C4)Alkoxy oder gegebenenfalls substituiertes Phenyl substituiert ist, vorzugsweise ein Rest der Formel ORB3, NHRB4 oder N(CH3)2, insbesondere der Formel ORB3;
RB 3 ist Wasserstoff oder ein unsubstituierter oder substituierter aliphatischer Kohlenwasserstoffrest, vorzugsweise mit insgesamt 1 bis 18 C- Atomen;
RB 4 ist Wasserstoff, (Ci-Ce)Alkyl, (Ci-Ce)Alkoxy oder substituiertes oder unsubstituiertes Phenyl;
TB ist eine (Ci oder C2)-Alkandiylkette, die unsubstituiert oder mit einem oder zwei (Ci- C4)Alkylresten oder mit [(Ci-C3)-Alkoxy]-carbonyl substituiert ist; vorzugsweise: a) Verbindungen vom Typ der 8-Chinolinoxyessigsäure (S2a), vorzugsweise
(5-Chlor-8-chinolinoxy)essigsäure-(l-methylhexyl)ester ("Cloquintocet-mexyl") (S2-1), (5-Chlor-8-chinolinoxy)essigsäure-(l,3-dimethyl-but-l-yl)ester (S2-2),
(5-Chlor-8-chinolinoxy)essigsäure-4-allyloxy-butylester (S2-3),
(5-Chlor-8-chinolinoxy)essigsäure-l-allyloxy-prop-2-ylester (S2-4),
(5-Chlor-8-chinolinoxy)essigsäureethylester (S2-5),
(5-Chlor-8-chinolinoxy)essigsäuremethylester (S2-6),
(5-Chlor-8-chinolinoxy)essigsäureallylester (S2-7),
(5-Chlor-8-chinolinoxy)essigsäure-2-(2-propyliden-iminoxy)-l-ethylester (S2-8), (5-Chlor-8- chinolinoxy)essigsäure-2-oxo-prop-l-ylester (S2-9) und verwandte Verbindungen, wie sie in EP-A-86 750, EP-A-94 349 und EP-A-191 736 oder EP-A-0 492 366 beschrieben sind, sowie (5- Chlor-8-chinolinoxy)essigsäure (S2-10), deren Hydrate und Salze, beispielsweise deren Lithium-, Natrium- Kalium-, Kalzium-, Magnesium-, Aluminium-, Eisen-, Ammonium-, quartäre Ammonium-, Sulfonium-, oder Phosphoniumsalze wie sie in der WO-A-2002/34048 beschrieben sind; b) Verbindungen vom Typ der (5-Chlor-8-chinolinoxy)malonsäure (S2b), vorzugsweise Verbindungen wie (5-Chlor-8-chinolinoxy)malonsäurediethylester,
(5 -Chlor- 8 -chinolinoxy)malonsäurediallylester , (5 -Chlor- 8 -chinolin- oxy)malonsäure-methyl-ethylester und verwandte Verbindungen, wie sie in EP-A-0 582 198 beschrieben sind.
S3) Verbindungen der Formel (S3)
Figure imgf000024_0001
wobei die Symbole und Indizes folgende Bedeutungen haben:
Rc1 ist (Ci-C4)Alkyl, (Ci-C4)Haloalkyl, (C2-C4)Alkenyl, (C2-C4)Haloalkenyl, (C3-Cv)Cycloalkyl, vorzugsweise Dichlormethyl;
Rc2, Rc3 sind gleich oder verschieden Wasserstoff, (Ci-C4)Alkyl, (C2-C4)Alkenyl, (C2-C4)Alkinyl, (Ci-C4)Haloalkyl, (C2-C4)Haloalkenyl, (Ci-C4)Alkylcarbamoyl-(Ci-C4)alkyl, (C2-
C4) Alkenylcarbamoyl-(C 1 -C4)alkyl, (C 1 -C4)Alkoxy-(C 1 -C4)alkyl, Dioxolanyl-(C 1 -C4)alkyl, Thiazolyl, Furyl, Furylalkyl, Thienyl, Piperidyl, substituiertes oder unsubstituiertes Phenyl, oder Rc2 und Rc3 bilden zusammen einen substituierten oder unsubstituierten heterocyclischen Ring, vorzugsweise einen Oxazolidin-, Thiazolidin-, Piperidin-, Morpholin-, Hexahydropyrimidin- oder Benzoxazinring; vorzugsweise:
Wirkstoffe vom Typ der Dichloracetamide, die häufig als Vorauflauf safener (bodenwirksame Safener) angewendet werden, wie z. B.
"Dichlormid" (N,N-Diallyl-2,2-dichloracetamid) (S3-1),
"R-29148" (3-Dichloracetyl-2,2,5-trimethyl-l,3-oxazolidin) der Firma Stauffer (S3-2), "R-28725" (3-Dichloracetyl-2,2,-dimethyl-l,3-oxazolidin) der Firma Stauffer (S3-3), "Benoxacor" (4-Dichloracetyl-3,4-dihydro-3-methyl-2H-l,4-benzoxazin) (S3-4),
"PPG-1292" (N-Allyl-N-[(l,3-dioxolan-2-yl)-methyl]-dichloracetamid) der Firma PPG Industries (S3-5),
"DKA-24" (N-Allyl-N-[(allylaminocarbonyl)methyl]-dichloracetamid) der Firma Sagro-Chem (S3-6),
"AD-67" oder "MON 4660" (3-Dichloracetyl-l-oxa-3-aza-spiro[4,5]decan) der Firma Nitrokemia bzw. Monsanto (S3-7),
"TI-35" (1-Dichloracetyl-azepan) der Firma TRI-Chemical RT (S3-8), "Diclonon" (Dicyclonon) oder "BAS145138" oder "LAB145138" (S3-9)
((RS)-l-Dichloracetyl-3,3,8a-trimethylperhydropyrrolo[l,2-a]pyrimidin-6-on) der Firma BASF, "Furilazol" oder "MON 13900" ((RS)-3-Dichloracetyl-5-(2-furyl)-2,2-dimethyloxazolidin) (S3-10); sowie dessen (R)-Isomer (S3-11).
S4) N-Acylsulfonamide der Formel (S4) und ihre Salze,
Figure imgf000025_0001
worin die Symbole und Indizes folgende Bedeutungen haben:
AD ist S02-NRD 3-C0 oder C0-NRD 3-S02
XD ist CH oder N;
RD1 ist CO-NRD 5RD6 oder NHCO-RD7; RD2 ist Halogen, (Ci-C4)Haloalkyl, (Ci-C4)Haloalkoxy, Nitro, (Ci-C4)Alkyl, (Ci-C4)Alkoxy, (Ci- C4)Alkylsulfonyl, (Ci-C4)Alkoxycarbonyl oder (C1-C4) Alkyle arbonyl;
RD 3 ist Wasserstoff, (Ci-C4)Alkyl, (C2-C4)Alkenyl oder (C2-C4)Alkinyl;
RD4 ist Halogen, Nitro, (Ci-C4)Alkyl, (Ci-C4)Haloalkyl, (Ci-C4)Haloalkoxy, (C3-Ce)Cycloalkyl, Phenyl, (Ci-C4)Alkoxy, Cyano, (Ci-C4)Alkylthio, (Ci-C4)Alkylsulfinyl, (Ci-C4)Alkylsulfonyl, (Ci- C4)Alkoxycarbonyl oder (Ci-C4)Alkylcarbonyl;
RD5 ist Wasserstoff, (Ci-Ce)Alkyl, (C3-Ce)Cycloalkyl, (C2-Ce)Alkenyl, (C2-C6)Alkinyl, (C5- Ce)Cycloalkenyl, Phenyl oder 3- bis 6-gliedriges Heterocyclyl enthaltend VD Heteroatome aus der Gruppe Stickstoff, Sauerstoff und Schwefel, wobei die sieben letztgenannten Reste durch VD Substituenten aus der Gmppe Halogen, (Ci-Ce)Alkoxy, (Ci-Ce)Haloalkoxy, (Ci-C2)Alkylsulfinyl, (Ci-C2)Alkylsulfonyl, (C3-C6)Cycloalkyl, (Ci-C4)Alkoxycarbonyl, (Ci-C4)Alkylcarbonyl und Phenyl und im Falle cyclischer Reste auch (C1-C4) Alkyl und (Ci-C4)Haloalkyl substituiert sind;
RD6 ist Wasserstoff, (Ci-Ce)Alkyl, (C2-C6)Alkenyl oder (C2-Ce)Alkinyl, wobei die drei letztgenannten Reste durch VD Reste aus der Gruppe Halogen, Hydroxy, (Ci-C4)Alkyl, (Ci-C4)Alkoxy und (C1-C4) Alkyl thio substituiert sind, oder
RD 5 und RD 6 gemeinsam mit dem dem sie tragenden Stickstoffatom einen Pyrrolidinyl- oder Piperidinyl-Rest bilden;
RD7 ist Wasserstoff, (Ci-C4)Alkylamino, Di-(Ci-C4)alkylamino, (Ci-Ce)Alkyl, (C3-C6)Cycloalkyl, wobei die 2 letztgenannten Reste durch VD Substituenten aus der Gruppe Halogen, (Ci-C4)Alkoxy, (Ci-Ce)Haloalkoxy und (Ci-C4)Alkylthio und im Falle cyclischer Reste auch (C1-C4) Alkyl und (Ci-C4)Haloalkyl substituiert sind; nD ist 0, 1 oder 2; mD ist 1 oder 2;
VD ist 0, 1, 2 oder 3; davon bevorzugt sind Verbindungen vom Typ der N-Acylsulfonamide, z.B. der nachfolgenden Formel (S4a), die z. B. bekannt sind aus WO-A-97/45016
Figure imgf000026_0001
worin RD7 (Ci-Ce)Alkyl, (C3-Ce)Cycloalkyl, wobei die 2 letztgenannten Reste durch VD Substituenten aus der Gruppe Halogen, (Ci-C4)Alkoxy, (Ci-Ce)Haloalkoxy und (C1-C4) Alkyl thio und im Falle cyclischer Reste auch (Ci-C4)Alkyl und (Ci-C4)Haloalkyl substituiert sind;
RD4 Halogen, (Ci-C4)Alkyl, (Ci-C4)Alkoxy, CF3; mD 1 oder 2;
VD ist 0, 1, 2 oder 3 bedeutet; sowie
Acylsulfamoylbenzoesäureamide, z.B. der nachfolgenden Formel (S4b), die z.B. bekannt sind aus WO-A-99/16744,
Figure imgf000027_0001
z.B. solche worin
RD5 = Cyclopropyl und (RD4) = 2-OMe ist ("Cyprosulfamide", S4-1),
RD5 = Cyclopropyl und (RD4) = 5-Cl-2-OMe ist (S4-2),
RD5 = Ethyl und (RD 4) = 2-OMe ist (S4-3), RD5 = Isopropyl und (RD4) = 5-Cl-2-OMe ist (S4-4) und RD5 = Isopropyl und (RD4) = 2-OMe ist (S4-5). sowie
Verbindungen vom Typ der N-Acylsulfamoylphenylharnstoffe der Formel (S4C), die z.B. bekannt sind aus der EP-A-365484,
Figure imgf000027_0002
worin RD 8 und Rr inabhängig voneinander Wasserstoff, (Ci-Cs)Alkyl, (C3-Cs)Cycloalkyl, (C3-Ce)Alkenyl, (C3-C6)Alkinyl,
RD 4 Halogen, (Ci-C4)Alkyl, (Ci-C4)Alkoxy, CF3 mD 1 oder 2 bedeutet; beispielsweise l-[4-(N-2-Methoxybenzoylsulfamoyl)phenyl]-3-methylharnstoff,
1 - [4-(N -2-Methoxybenzoylsulf amoyl)phenyl] -3 , 3 -dimethylharnstoff ,
l-[4-(N-4,5-Dimethylbenzoylsulfamoyl)phenyl]-3-methylharnstoff, sowie
N-Phenylsulfonylterephthalamide der Formel (S4d), die z.B. bekannt sind aus CN 101838227,
Figure imgf000028_0001
z.B. solche worin
RD4 Halogen, (Ci-C4)Alkyl, (Ci-C4)Alkoxy, CF3; mD 1 oder 2;
RD5 Wasserstoff, (Ci-Ce)Alkyl, (C3-Ce)Cycloalkyl, (C2-Ce)Alkenyl, (C2-C6)Alkinyl, (C5- Ce)Cycloalkenyl bedeutet.
55) Wirkstoffe aus der Klasse der Hydroxyaromaten und der aromatisch-aliphatischen
Carbonsäurederivate (S5), z.B.
3 ,4,5-Triacetoxybenzoesäureethylester, 3 ,5-Dimethoxy-4-hydroxybenzoesäure, 3,5-
Dihydroxybenzoesäure, 4-Hydroxysalicylsäure, 4-Fluorsalicyclsäure, 2-Hydroxyzimtsäure, 2,4- Dichlorzimtsäure , wie sie in der WO-A-2004/084631 , WO-A-2005/015994, WO-A-2005/016001 beschrieben sind.
56) Wirkstoffe aus der Klasse der 1 ,2-Dihydrochinoxalin-2-one (S6), z.B.
1-Methyl-3-(2-thienyl)-l,2-dihydrochinoxalin-2-on, l-Methyl-3-(2-thienyl)-l,2-dihydrochinoxalin-
2-thion, 1 -(2- Aminoethyl)-3-(2-thienyl)- 1 ,2-dihydro-chinoxalin-2-on-hydrochlorid, 1 -(2-
Methylsulfonylaminoethyl)-3-(2-thienyl)-l,2-dihydro-chinoxalin-2-on, wie sie in der WO-A- 2005/112630 beschrieben sind.
S7) Verbindungen der Formel (S7),wie sie in der WO-A-1998/38856 beschrieben sind
Figure imgf000029_0001
worin die Symbole und Indizes folgende Bedeutungen haben:
RE1 , RE2 sind unabhängig voneinander Halogen, (Ci-C4)Alkyl, (Ci-C4)Alkoxy, (Ci-C4)Haloalkyl, (Ci-C4)Alkylamino, Di-(Ci-C4)Alkylamino, Nitro;
AE ist COORE3 oder COSRE4
RE3, RE4 sind unabhängig voneinander Wasserstoff, (C1-C4) Alkyl, (C2-Ce)Alkenyl, (C2-C4)Alkinyl, Cyanoalkyl, (Ci-C4)Haloalkyl, Phenyl, Nitrophenyl, Benzyl, Halobenzyl, Pyridinylalkyl und Alkylammonium, he1 ist 0 oder 1
PE 2, np sind unabhängig voneinander 0, 1 oder 2, vorzugsweise:
Diphenylmethoxyessigsäure,
Diphenylmethoxyessigsäureethylester,
Diphenylmethoxyessigsäuremethylester (CAS-Reg.Nr. 41858-19-9) (S7-1).
S8) Verbindungen der Formel (S8),wie sie in der WO-A-98/27049 beschrieben sind
Figure imgf000029_0002
worin
XE CH oder N, nF für den Fall, dass XF=N ist, eine ganze Zahl von 0 bis 4 und für den Fall, dass XF=CH ist, eine ganze Zahl von 0 bis 5 ,
RF1 Halogen, (Ci-C4)Alkyl, (Ci-C4)Haloalkyl, (Ci-C4)Alkoxy, (Ci-C4)Haloalkoxy, Nitro, (Ci- C4)Alkylthio, (Ci-C4)-Alkylsulfonyl, (Ci-C4)Alkoxycarbonyl, ggf. substituiertes. Phenyl, ggf. substituiertes Phenoxy,
RF2 Wasserstoff oder (Ci-C4)Alkyl
RF 3 Wasserstoff, (Ci-Cs)Alkyl, (C2-C4)Alkenyl, (C2-C4)Alkinyl, oder Aryl, wobei jeder der vorgenannten C-haltigen Reste unsubstituiert oder durch einen oder mehrere, vorzugsweise bis zu drei gleiche oder verschiedene Reste aus der Gruppe, bestehend aus Halogen und Alkoxy substituiert ist; bedeuten, oder deren Salze, vorzugsweise Verbindungen worin
XF CH, nF eine ganze Zahl von 0 bis 2 ,
RF1 Halogen, (Ci-C4)Alkyl, (Ci-C4)Haloalkyl, (C1-C4) Alkoxy, (Ci-C4)Haloalkoxy,
RF2 Wasserstoff oder (Ci-C4)Alkyl,
RF 3 Wasserstoff, (Ci-Cs)Alkyl, (C2-C4)Alkenyl, (C2-C4)Alkinyl, oder Aryl, wobei jeder der vorgenannten C-haltigen Reste unsubstituiert oder durch einen oder mehrere, vorzugsweise bis zu drei gleiche oder verschiedene Reste aus der Gruppe, bestehend aus Halogen und Alkoxy substituiert ist, bedeuten, oder deren Salze.
S9) Wirkstoffe aus der Klasse der 3-(5-Tetrazolylcarbonyl)-2-chinolone (S9), z.B.
1.2-Dihydro-4-hydroxy-l-ethyl-3-(5-tetrazolylcarbonyl)-2-chinolon (CAS-Reg.Nr. 219479-18-2),
1.2-Dihydro-4-hydroxy-l-methyl-3-(5-tetrazolyl-carbonyl)-2-chinolon (CAS-Reg.Nr. 95855-00-8), wie sie in der WO-A- 1999/000020 beschrieben sind.
S 10) Verbindungen der Formeln (S 10a) oder (S 10b) wie sie in der WO-A-2007/023719 und WO-A-2007/023764 beschrieben sind worin
RG 1 Halogen, (Ci-C4)Alkyl, Methoxy, Nitro, Cyano, CF3, OCF3
YG, ZG unabhängig voneinander O oder S, nc eine ganze Zahl von 0 bis 4,
RG 2 (CI-C ) Alkyl, (C2-Ce)Alkenyl, (C3-Ce)Cycloalkyl, Aryl; Benzyl, Halogenbenzyl,
RG 3 Wasserstoff oder (Ci-Ce)Alkyl bedeutet.
511) Wirkstoffe vom Typ der Oxyimino-Verbindungen (S 11), die als Saatbeizmittel bekannt sind, wie z. B. "Oxabetrinil" ((Z)-l,3-Dioxolan-2-ylmethoxyimino(phenyl)acetonitril) (Sl l-1), das als Saatbeiz- Safener für Hirse gegen Schäden von Metolachlor bekannt ist,
"Fluxofenim" ( 1 -(4-Chlorphenyl)-2,2,2-trifluor- 1 -ethanon-0-( 1 ,3-dioxolan-2-ylmethyl)-oxim)
(Sl l-2), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist, und
"Cyometrinü" oder "CGA-43089" ((Z)-Cyanomethoxyimino(phenyl)acetonitril) (S 11-3), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist.
512) Wirkstoffe aus der Klasse der Isothiochromanone (S12), wie z.B. Methyl-[(3-oxo-lH-2- benzothiopyran-4(3H)-yliden)methoxy]acetat (CAS-Reg.Nr. 205121-04-6) (S12-1) und verwandte Verbindungen aus WO-A-1998/13361.
513) Eine oder mehrere Verbindungen aus Gruppe (S13): "Naphthalic anhydrid" (1,8-Naphthalindicarbonsäureanhydrid) (S 13-1), das als Saatbeiz-Safener für Mais gegen Schäden von Thiocarbamatherbiziden bekannt ist,
"Fenclorim" (4,6-Dichlor-2-phenylpyrimidin) (S13-2), das als Safener für Pretilachlor in gesätem Reis bekannt ist, "Flurazole" (Benzyl-2-chlor-4-trifluormethyl-l,3-thiazol-5-carboxylat) (S13-3), das als Saatbeiz- Safener für Hirse gegen Schäden von Alachlor und Metolachlor bekannt ist,
"CL 304415" (CAS-Reg.Nr. 31541-57-8)
(4-Carboxy-3,4-dihydro-2H-l-benzopyran-4-essigsäure) (S13-4) der Firma American Cyanamid, das als Safener für Mais gegen Schäden von Imidazolinonen bekannt ist,
"MG 191" (CAS-Reg.Nr. 96420-72-3) (2-Dichlormethyl-2-methyl-l,3-dioxolan) (S13-5) der Firma Nitrokemia, das als Safener für Mais bekannt ist,
"MG 838" (CAS-Reg.Nr. 133993-74-5)
(2-propenyl l-oxa-4-azaspiro[4.5]decan-4-carbodithioat) (S13-6) der Firma Nitrokemia,
"Disulfoton" (0,0-Diethyl S-2-ethylthioethyl phosphordithioat) (S13-7),
"Dietholate" (O,O-Diethyl-O-phenylphosphorothioat) (S13-8),
"Mephenate" (4-Chlorphenyl-methylcarbamat) (S13-9).
514) Wirkstoffe, die neben einer herbiziden Wirkung gegen Schadpflanzen auch Safenerwirkung an
Kulturpflanzen wie Reis aufweisen, wie z. B.
"Dimepiperate" oder "MY 93" (5- 1 -Methyl- 1 -phenylethyl -piperidin- 1 -carbothioat), das als Safener für Reis gegen Schäden des Herbizids Molinate bekannt ist,
"Daimuron" oder "SK 23" (1 -(1 -Methyl- l-phenylethyl)-3-p-tolyl-harnstoff), das als Safener für Reis gegen Schäden des Herbizids Imazosulfuron bekannt ist,
"Cumyluron" = "JC 940" (3-(2-Chlorphenylmethyl)-l-(l-methyl-l-phenyl-ethyl)harnstoff, siehe JP- A-60087254), das als Safener für Reis gegen Schäden einiger Herbizide bekannt ist,
"Methoxyphenon" oder "NK 049" (3,3'-Dimethyl-4-methoxy-benzophenon), das als Safener für Reis gegen Schäden einiger Herbizide bekannt ist,
"CSB" (l-Brom-4-(chlormethylsulfonyl)benzol) von Kumiai, (CAS-Reg.Nr. 54091-06-4), das als Safener gegen Schäden einiger Herbizide in Reis bekannt ist.
515) Verbindungen der Formel (S 15) oder deren Tautomere wie sie in der WO-A-2008/131861 und WO-A-2008/131860 beschrieben sind, worin
RH 1 einen (Ci-CöjHaloalkylrest bedeutet und RH 2 Wasserstoff oder Halogen bedeutet und
RH 3, RH 4 unabhängig voneinander Wasserstoff, (CI-C) Alkyl, (C2-Ci6)Alkenyl oder
(C2-Ci6)Alkinyl, wobei jeder der letztgenannten 3 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Hydroxy, Cyano, (Ci-C4)Alkoxy, (Ci-C4)Haloalkoxy, (Ci-C4)Alkylthio, (Ci-C4)Alkylamino, Di[(Ci-C4)alkyl]-amino, [(Ci-C4)Alkoxy]-carbonyl, [(Ci-C4)Haloalkoxyj- carbonyl, (C3-C6)Cycloalkyl, das unsubstituiert oder substituiert ist, Phenyl, das unsubstituiert oder substituiert ist, und Heterocyclyl, das unsubstituiert oder substituiert ist, substituiert ist, oder (C3-C6)Cycloalkyl, (C4-C6)Cycloalkenyl, (C3-C6)Cycloalkyl, das an einer Seite des Rings mit einem 4 bis 6-gliedrigen gesättigten oder ungesättigten carbocyclischen Ring kondensiert ist, oder (C4-C6)Cycloalkenyl, das an einer Seite des Rings mit einem 4 bis 6-gliedrigen gesättigten oder ungesättigten carbocyclischen Ring kondensiert ist, wobei jeder der letztgenannten 4 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Hydroxy, Cyano, (Ci-C4)Alkyl, (Ci-C4)Haloalkyl, (Ci-C4)Alkoxy, (Ci-C4)Haloalkoxy, (C1-C4) Alkyl thio, (Ci-C4)Alkylamino, Di[(Ci-C4)alkyl]-amino,
[(Ci-c4)Alkoxy]-carbonyl, [(Ci-C4)Haloalkoxy]-carbonyl, (C3-C6)Cycloalkyl, das unsubstituiert oder substituiert ist, Phenyl, das unsubstituiert oder substituiert ist, und Heterocyclyl, das unsubstituiert oder substituiert ist, substituiert ist, bedeutet oder
RH 3 (Ci-C4)-Alkoxy, (C2-C4)Alkenyloxy, (C2-Ce)Alkinyloxy oder (C2-C4)Haloalkoxy bedeutet und RH 4 Wasserstoff oder (Ci-C4)-Alkyl bedeutet oder
RH 3 und RH 4 zusammen mit dem direkt gebundenen N-Atom einen vier- bis achtgliedrigen heterocyclischen Ring, der neben dem N-Atom auch weitere Heteroringatome, vorzugsweise bis zu zwei weitere Heteroringatome aus der Gruppe N, O und S enthalten kann und der unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Cyano, Nitro, (Ci-C4)Alkyl, (Ci-C4)Haloalkyl, (Ci-C4)Alkoxy, (Ci-C4)Haloalkoxy und (C1-C4) Alkyl thio substituiert ist, bedeutet.
S16) Wirkstoffe, die vorrangig als Herbizide eingesetzt werden, jedoch auch Safenerwirkung auf Kulturpflanzen aufweisen, z.B.
(2,4-Dichlorphenoxy)essigsäure (2,4-D),
(4-Chlorphenoxy)essigsäure,
(R,S)-2-(4-Chlor-o-tolyloxy)propionsäure (Mecoprop),
4-(2,4-Dichlorphenoxy)buttersäure (2,4-DB),
(4-Chlor-o-tolyloxy)essigsäure (MCPA),
4-(4-Chlor-o-tolyloxy)buttersäure,
4-(4-Chlorphenoxy)buttersäure,
3,6-Dichlor-2-methoxybenzoesäure (Dicamba), l-(Ethoxycarbonyl)ethyl-3,6-dichlor-2-methoxybenzoat (Lactidichlor-ethyl).
Besonders bevorzugte Safener sind Mefenpyr-diethyl, Cyprosulfamid, Isoxadifen-ethyl, Cloquintocet-mexyl, Dichlormid und Metcamifen.
Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Tenside ionischer und/oder nichtionischer Art (Netzmittel, Dispergiermittel), z.B. polyoxyethylierte Alkylphenole, polyoxethylierte Fettalkohole, polyoxethylierte Fettamine, Fettalkoholpolyglykolether-sulfate, Alkansulfonate,
Alkylbenzolsulfonate, ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleoylmethyltaurinsaures Natrium enthalten. Zur Herstellung der Spritzpulver werden die herbiziden Wirkstoffe beispielsweise in üblichen Apparaturen wie Hammermühlen, Gebläsemühlen und Fuftstrahlmühlen feingemahlen und gleichzeitig oder anschließend mit den Formulierungshilfsmitteln vermischt.
Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Fösungsmittel z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen oder Mischungen der organischen Fösungsmittel unter Zusatz von einem oder mehreren Tensiden ionischer und/oder nichtionischer Art (Emulgatoren) hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calzium-Salze wie Ca-Dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepoly-glykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylen- oxid-Kondensationsprodukte, Alkylpolyether, Sorbitanester wie z.B. Sorbitanfett-säureester oder Polyoxethylensorbitanester wie z.B. Polyoxyethylensorbitan-fettsäureester.
Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophyllit, oder Diatomeenerde. Suspensionskonzentrate können auf Wasser- oder Ölbasis sein. Sie können beispielsweise durch Naß-Vermahlung mittels handelsüblicher Perlmühlen und gegebenenfalls Zusatz von Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, hergestellt werden.
Emulsionen, z.B. Öl-in-Wasser-Emulsionen (EW), lassen sich beispielsweise mittels Rührern, Kolloidmühlen und/oder statischen Mischern unter Verwendung von wäßrigen organischen Lösungsmitteln und gegebenenfalls Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, herstellen.
Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.
Wasserdispergierbare Granulate werden in der Regel nach den üblichen Verfahren wie Sprühtrocknung, Wirbelbett-Granulierung, Teller-Granulierung, Mischung mit Hochgeschwindigkeitsmischern und Extrusion ohne festes Inertmaterial hergestellt.
Zur Herstellung von Teller-, Fließbett-, Extruder- und Sprühgranulate siehe z.B. Verfahren in "Spray-Drying Handbook" 3rd ed. 1979, G. Goodwin Ltd., London, J.E. Browning, "Agglomeration", Chemical and Engineering 1967, Seiten 147 ff, "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, S. 8-57.
Für weitere Einzelheiten zur Formulierung von Pflanzenschutzmitteln siehe z.B. G.C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, Seiten 81-96 und J.D. Freyer, S.A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, Seiten 101-103.
Die agrochemischen Zubereitungen enthalten in der Regel 0.1 bis 99 Gew.-%, insbesondere 0.1 bis 95 Gew.-%, erfindungsgemäße Verbindungen. In Spritzpulvern beträgt die Wirkstoff-konzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen
Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 1 bis 90, vorzugsweise 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten 1 bis 30 Gew.-% Wirkstoff, vorzugsweise meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen enthalten etwa 0.05 bis 80, vorzugsweise 2 bis 50 Gew.-% Wirkstoff. Bei wasser-dispergierbaren Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden. Bei den in Wasser dispergierbaren Granulaten liegt der Gehalt an Wirkstoff beispielsweise zwischen 1 und 95 Gew.-%, vorzugsweise zwischen 10 und 80 Gew.-%.
Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Konservierungs-, Frostschutz- und Lösungsmittel, Füll-, Träger- und Farbstoffe, Entschäumer, Verdunstungshemmer und den pH-Wert und die Viskosität beeinflussende Mittel.
Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix.
Zur Anwendung werden die in handelsüblicher Form vorliegenden Formuliemngen gegebenenfalls in üblicher Weise verdünnt z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Boden- bzw. Streugranulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.
Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit, der Art des verwendeten Herbizids, u.a. variiert die erforderliche Aufwandmenge der Verbindungen der Formel (I) und deren Salze. Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,001 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,005 bis 5 kg/ha, weiter bevorzugt im Bereich von 0,01 bis 1,5 kg/ha, insbesondere bevorzugt im Bereich von 0,05 bis 1 kg/ha g/ha. Dies gilt sowohl für die Anwendung im Vorauflauf oder im Nachauflauf.
Trägerstoff bedeutet eine natürliche oder synthetische, organische oder anorganische Substanz, mit welchen die Wirkstoffe zur besseren Anwendbarkeit, v.a. zum Aufbringen auf Pflanzen oder Pflanzenteile oder Saatgut, gemischt oder verbunden sind. Der Trägerstoff, welcher fest oder flüssig sein kann, ist im Allgemeinen inert und sollte in der Landwirtschaft verwendbar sein.
Als feste oder flüssige Trägerstoffe kommen infrage: z.B. Ammoniumsalze und natürliche Gesteins mehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und natürliche oder synthetische Silikate, Harze, Wachse, feste Düngemittel, Wasser, Alkohole, besonders Butanol, organische Solventien, Mineral- und Pflanzenöle sowie Derivate hiervon. Mischungen solcher Trägerstoffe können ebenfalls verwendet werden. Als feste Trägerstoffe für Granulate kommen infrage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnussschalen, Maiskolben und Tabakstängel.
Als verflüssigte gasförmige Streckmittel oder Trägerstoffe kommen solche Flüssigkeiten infrage, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe, sowie Butan, Propan, Stickstoff und Kohlendioxid.
Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthe tische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabikum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.
Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im Wesentlichen infrage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Dichlormethan, aliphatische Kohlen wasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone, wie Aceton, Methyl- ethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel wie Dimethyl formamid und Dimethylsulfoxid, sowie Wasser.
Die erfindungsgemäßen Mittel können zusätzlich weitere Bestandteile enthalten, wie z.B. oberflächenaktive Stoffe. Als oberflächenaktive Stoffe kommen Emulgier- und/oder Schaum erzeugende Mittel, Dispergiermittel oder Benetzungsmittel mit ionischen oder nicht-ionischen Eigenschaften oder Mischungen dieser oberflächenaktiven Stoffe infrage. Beispiele hierfür sind Salze von Polyacrylsäure, Salze von Lignosulphonsäure, Salze von Phenolsulphonsäure oder Naphthalinsulphonsäure, Polykondensate von Ethylenoxid mit Fettalkoholen oder mit Fettsäuren oder mit Fettaminen, substituierten Phenolen (vorzugsweise Alkylphenole oder Arylphenole), Salze von Sulphobernsteinsäureestern, Taurinderivate (vorzugsweise Alkyl taurate), Phosphorsäureester von polyethoxylierten Alkoholen oder Phenole, Fettsäureester von Polyolen, und Derivate der Verbindungen enthaltend Sulphate, Sulphonate und Phosphate, z.B. Alkylarylpolyglycolether, Alkyl - sulfonate, Alkylsulfate, Arylsulfonate, Eiweißhydrolysate, Lignin-Sulfitablaugen und Methyl cellulose. Die Anwesenheit einer oberflächenaktiven Substanz ist notwendig, wenn einer der Wirkstoff und/oder einer der inerten Trägerstoffe nicht in Wasser löslich ist und wenn die Anwendung in Wasser erfolgt. Der Anteil an oberflächenaktiven Stoffen liegt zwischen 5 und 40 Gewichtsprozent des erfindungsgemäßen Mittels. Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyanin- farbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
Gegebenenfalls können auch andere zusätzliche Komponenten enthalten sein, z.B. schützende Kolloide, Bindemittel, Klebstoffe, Verdicker, thixotrope Stoffe, Penetrationsförderer, Stabilisatoren, Sequestiermittel, Komplexbildner. Im Allgemeinen können die Wirkstoffe mit jedem festen oder flüssigen Additiv, welches für Formulierungszwecke gewöhnlich verwendet wird, kombiniert werden. Im Allgemeinen enthalten die erfindungsgemäßen Mittel und Formulierungen zwischen 0,05 und 99 Gew.-%, 0,01 und 98 Gew.-%, vorzugsweise zwischen 0,1 und 95 Gew.-%, besonders bevorzugt zwischen 0,5 und 90 % Wirkstoff, ganz besonders bevorzugt zwischen 10 und 70 Gewichtsprozent. Die erfindungsgemäßen Wirkstoffe bzw. Mittel können als solche oder in Abhängigkeit von ihren jeweiligen physikalischen und/oder chemischen Eigenschaften in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie Aerosole, Kapselsuspensionen, Kaltnebelkonzentrate, Heißnebelkonzentrate, verkapselte Granulate, Feingranulate, fließfähige Kon zentrate für die Behandlung von Saatgut, gebrauchsfertige Lösungen, verstäubbare Pulver, emulgier bare Konzentrate, Öl-in-Wasser-Emulsionen, Wasser-in-Öl-Emulsionen, Makrogranulate, Mikrogra nulate, Öl dispergierbare Pulver, Öl mischbare fließfähige Konzentrate, Öl mischbare Flüssigkeiten, Schäume, Pasten, Pestizid ummanteltes Saatgut, Suspensionskonzentrate, Suspensions-Emulsions- Konzentrate, lösliche Konzentrate, Suspensionen, Spritzpulver, lösliche Pulver, Stäubemittel und Granulate, wasserlösliche Granulate oder Tabletten, wasserlösliche Pulver für Saatgut-behandlung, benetzbare Pulver, Wirkstoff-imprägnierte Natur- und synthetische Stoffe sowie Feinstverkapse- lungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel- Formulierungen eingesetzt werden.
Die genannten Formuliemngen können in an sich bekannter Weise hergestellt werden, z.B. durch Vermischen der Wirkstoffe mit mindestens einem üblichen Streckmittel, Lösungs- bzw. Ver dünnungsmittel, Emulgator, Dispergier- und/oder Binde- oder Fixiermittels, Netzmittel, Wasser- Repellent, gegebenenfalls Sikkative und UV-Stabilisatoren und gegebenenfalls Farbstoffen und Pigmenten, Entschäumer, Konservierungsmittel, sekundäre Verdickungsmittel, Kleber, Gibberelline sowie weiteren Verarbeitungshilfsmitteln.
Die erfindungsgemäßen Mittel umfassen nicht nur Formulierungen, welche bereits anwendungsfertig sind und mit einer geeigneten Apparatur auf die Pflanze oder das Saatgut ausgebracht werden können, sondern auch kommerzielle Konzentrate, welche vor Gebrauch mit Wasser verdünnt werden müssen.
Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren (handelsüblichen) Formu lierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen (bekannten) Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Bakteriziden, Akariziden, Nematiziden, Fungiziden, Wachstumsregulatoren, Herbiziden, Düngemitteln, Safener bzw. Semiochemicals vorliegen.
Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen bzw. Mitteln erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, (Ver-)Spritzen, (Ver-)Sprühen, Berieseln, Verdampfen, Zerstäuben, Vernebeln, (Ver-)Streuen, Verschäumen, Bestreichen, Verstreichen, Gießen (drenchen), Tröpfchenbewässerung und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch Trockenbeizen, Nassbeizen, Schlämmbeizen, Inkrustieren, ein- oder mehrschichtiges Umhüllen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low- Volume- Verfahren auszu bringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren.
Wie auch weiter unten beschrieben, ist die Behandlung von transgenem Saatgut mit den erfindungs gemäßen Wirkstoffen bzw. Mitteln von besonderer Bedeutung. Dies betrifft das Saatgut von Pflanzen, die wenigstens ein heterologes Gen enthalten, das die Expression eines Polypeptids oder Proteins mit insektiziden Eigenschaften ermöglicht. Das heterologe Gen in transgenem Saatgut kann z.B. aus Mikroorganismen der Arten Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus oder Gliocladium stammen. Bevorzugt stammt dieses heterologe Gen aus Bacillus sp., wobei das Genprodukt eine Wirkung gegen den Maiszünsler (European corn borer) und/oder Western Corn Rootworm besitzt. Besonders bevorzugt stammt das heterologe Gen aus Bacillus thuringiensis.
Im Rahmen der vorliegenden Erfindung wird das erfindungsgemäße Mittel alleine oder in einer ge eigneten Formulierung auf das Saatgut aufgebracht. Vorzugsweise wird das Saatgut in einem Zustand behandelt, in dem so stabil ist, dass keine Schäden bei der Behandlung auftreten. Im Allgemeinen kann die Behandlung des Saatguts zu jedem Zeitpunkt zwischen der Ernte und der Aussaat erfolgen. Üblicherweise wird Saatgut verwendet, das von der Pflanze getrennt und von Kolben, Schalen, Stängeln, Hülle, Wolle oder Fruchtfleisch befreit wurde. So kann zum Beispiel Saatgut verwendet werden, das geerntet, gereinigt und bis zu einem Feuchtigkeitsgehalt von unter 15 Gew.-% getrocknet wurde. Alternativ kann auch Saatgut verwendet werden, das nach dem Trocknen z.B. mit Wasser behandelt und dann erneut getrocknet wurde.
Im Allgemeinen muss bei der Behandlung des Saatguts darauf geachtet werden, dass die Menge des auf das Saatgut aufgebrachten erfindungsgemäßen Mittels und/oder weiterer Zusatzstoffe so gewählt wird, dass die Keimung des Saatguts nicht beeinträchtigt bzw. die daraus hervorgehende Pflanze nicht geschädigt wird. Dies ist vor allem bei Wirkstoffen zu beachten, die in bestimmten Aufwandmengen phytotoxische Effekte zeigen können.
Die erfindungsgemäßen Mittel können unmittelbar aufgebracht werden, also ohne weitere Komponenten zu enthalten und ohne verdünnt worden zu sein. In der Regel ist es vorzuziehen, die Mittel in Form einer geeigneten Formulierung auf das Saatgut aufzubringen. Geeignete Formulierungen und Verfahren für die Saatgutbehandlung sind dem Fachmann bekannt und werden z.B. in den folgenden Dokumenten beschrieben: US 4,272,417 A, US 4,245,432 A, US 4,808,430, US 5,876,739, US 2003/0176428 Al, WO 2002/080675 Al, WO 2002/028186 A2.
Die erfindungsgemäßen Wirkstoffe können in die üblichen Beizmittel-Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Slurries oder andere Hüllmassen für Saatgut, sowie ULV-Formulierungen.
Diese Formulierungen werden in bekannter Weise hergestellt, indem man die Wirkstoffe mit üblichen Zusatzstoffen vermischt, wie zum Beispiel übliche Streckmittel sowie Lösungs- oder Verdünnungsmittel, Farbstoffe, Netzmittel, Dispergiermittel, Emulgatoren, Entschäumer, Konser vierungsmittel, sekundäre Verdickungsmittel, Kleber, Gibberelline und auch Wasser.
Als Farbstoffe, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle für derartige Zwecke üblichen Farbstoffe in Betracht. Dabei sind sowohl in Wasser wenig lösliche Pigmente als auch in Wasser lösliche Farbstoffe verwendbar. Als Beispiele genannt seien die unter den Bezeichnungen Rhodamin B, C.I. Pigment Red 112 und C.I. Solvent Red 1 bekannten Farbstoffe.
Als Netzmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen, die Benetzung fördernden Stoffe in Frage. Vorzugsweise verwendbar sind Alkylnaphthalin-Sulfonate, wie Diiso- propyl- oder Diisobutyl-naphthalin-Sulfonate.
Als Dispergiermittel und/oder Emulgatoren, die in den erfindungsgemäß verwendbaren Beizmittel- Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen nichtionischen, anionischen und kationischen Dispergiermittel in Betracht. Vorzugsweise verwendbar sind nichtionische oder anionische Dispergiermittel oder Gemische von nichtionischen oder anionischen Dispergiermitteln. Als geeignete nichtionische Dispergiermittel sind insbesondere Ethylenoxid-Propylenoxid Blockpolymere, Alkylphenolpolyglykolether sowie Tri- stryrylphenolpolyglykolether und deren phosphatierte oder sulfatierte Derivate zu nennen. Geeignete anionische Dispergiermittel sind insbesondere Ligninsulfonate, Polyacrylsäuresalze und Aryl- sulfonat-Formaldehydkondensate.
Als Entschäumer können in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen alle zur Formulierung von agrochemischen Wirkstoffen üblichen schaumhemmenden Stoffe enthalten sein. Vorzugsweise verwendbar sind Silikonentschäumer und Magnesiumstearat. Als Konservierungsmittel können in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe vorhanden sein. Beispielhaft genannt seien Dichlorophen und Benzylalkoholhemiformal.
Als sekundäre Verdickungsmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formu- lierungen enthalten sein können, kommen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe in Frage. Vorzugsweise in Betracht kommen Cellulosederivate, Acrylsäure derivate, Xanthan, modifizierte Tone und hochdisperse Kieselsäure.
Als Kleber, die in den erfindungsgemäß verwendbaren Beizmittel-Formuliemngen enthalten sein können, kommen alle üblichen in Beizmitteln einsetzbaren Bindemittel in Frage. Vorzugsweise genannt seien Polyvinylpyrrolidon, Polyvinylacetat, Polyvinylalkohol und Tylose.
Die erfindungsgemäß verwendbaren Beizmittel-Formulierungen können entweder direkt oder nach vorherigem Verdünnen mit Wasser zur Behandlung von Saatgut der verschiedensten Art, auch von Saatgut transgener Pflanzen, eingesetzt werden. Dabei können im Zusammenwirken mit den durch Expression gebildeten Substanzen auch zusätzliche synergistische Effekte auftreten.
Zur Behandlung von Saatgut mit den erfindungsgemäß verwendbaren Beizmittel-Formulierungen oder den daraus durch Zugabe von Wasser hergestellten Zubereitungen kommen alle üblicherweise für die Beizung einsetzbaren Mischgeräte in Betracht. Im einzelnen geht man bei der Beizung so vor, dass man das Saatgut in einen Mischer gibt, die jeweils gewünschte Menge an Beizmittel-Formu- lierungen entweder als solche oder nach vorherigem Verdünnen mit Wasser hinzufügt und bis zur gleichmäßigen Verteilung der Formuliemng auf dem Saatgut mischt. Gegebenenfalls schließt sich ein Trocknungsvorgang an.
Die erfindungsgemäßen Wirkstoffe eignen sich bei guter Pflanzenverträglichkeit, günstiger Warmblütertoxizität und guter Umweltverträglichkeit zum Schutz von Pflanzen und Pflanzenorganen, zur Steigerung der Ernteerträge, Verbesserung der Qualität des Erntegutes. Sie können vorzugsweise als Pflanzenschutzmittel eingesetzt werden. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam.
Als Pflanzen, welche erfindungsgemäß behandelt werden können, seien folgende Hauptanbaupflanzen erwähnt: Mais, Sojabohne, Baumwolle, Brassica Ölsaaten wie Brassica napus (z.B. Canola), Brassica rapa, B. juncea (z.B. (Acker-)Senf) und Brassica carinata, Reis, Weizen Zuckerrübe, Zurckerrohr, Hafer, Roggen, Gerste, Hirse, Triticale, Flachs, Wein und verschiedene Früchte und Gemüse von verschiedenen botanischen Taxa wie z.B. Rosaceae sp. (beispielsweise Kernfrüchte wie Apfel und Birne, aber auch Steinfrüchte wie Aprikosen, Kirschen, Mandeln und Pfirsiche und Beerenfrüchte wie Erdbeeren), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (beispielsweise Bananenbäume und -plantagen), Rubiaceae sp. (beispielsweise Kaffee), Theaceae sp., Sterculiceae sp., Rutaceae sp. (beispielsweise Zitronen, Organen und Grapefruit); Solanaceae sp. (beispielsweise Tomaten, Kartoffeln, Pfeffer, Auberginen), Liliaceae sp., Compositae sp. (beispielsweise Salat, Artischocke and Chicoree - einschließlich Wurzelchicoree, Endivie oder gemeinen Chicoree), Umbelliferae sp. (beispielsweise Karrotte, Petersilie, Stangensellerie und Knollensellerie), Cucurbitaceae sp. (beispielsweise Gurke - einschließlich Gewürzgurke, Kürbis, Wassermelone, Flaschenkürbis und Melonen), Alliaceae sp. (beispielsweise Lauch und Zwiebel), Cruciferae sp. (beispielsweise Weißkohl, Rotkohl, Brokkoli, Blumenkohl, Rosenkohl, Pak Choi, Kohlrabi, Radieschen, Meerrettich, Kresse und Chinakohl), Leguminosae sp. (beispielsweise Erdnüsse, Erbsen, und Bohnen - wie z.B. Stangenbohne und Ackerbohne), Chenopodiaceae sp. (beispielsweise Mangold, Futterrübe, Spinat, Rote Rübe), Malvaceae (beispielsweise Okra), Asparagaceae (beispielsweise Spargel); Nutzpflanzen und Zierpflanzen in Garten und Wald; sowie jeweils genetisch modifizierte Arten dieser Pflanzen.
Wie oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Der Begriff„Teile“ bzw.„Teile von Pflanzen“ oder„Pflanzenteile“ wurde oben erläutert. Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften („Traits“), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Rassen, Bio- und Genotypen sein.
Das erfindungsgemäße Behandlungsverfahren kann für die Behandlung von genetisch modifizierten Organismen (GMOs), z. B. Pflanzen oder Samen, verwendet werden. Genetisch modifizierte Pflanzen (oder transgene Pflanzen) sind Pflanzen, bei denen ein heterologes Gen stabil in das Genom integriert worden ist. Der Begriff "heterologes Gen" bedeutet im wesentlichen ein Gen, das außerhalb der Pflanze bereitgestellt oder assembliert wird und das bei Einführung in das Zellkerngenom, das Chloroplastengenom oder das Mitochondriengenom der transformierten Pflanze dadurch neue oder verbesserte agronomische oder sonstige Eigenschaften verleiht, dass es ein interessierendes Protein oder Polypeptid exprimiert oder dass es ein anderes Gen, das in der Pflanze vorliegt bzw. andere Gene, die in der Pflanze vorliegen, herunterreguliert oder abschaltet (zum Beispiel mittels Antisense- Technologie, Cosuppressionstechnologie oder RNAi-Technologie [RNA Interference]). Ein heterologes Gen, das im Genom vorliegt, wird ebenfalls als Transgen bezeichnet. Ein Transgen, das durch sein spezifisches Vorliegen im Pflanzengenom definiert ist, wird als Transformations- bzw. transgenes Event bezeichnet.
In Abhängigkeit von den Pflanzenarten oder Pflanzensorten, ihrem Standort und ihren Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) kann die erfindungsgemäße Behandlung auch zu überadditiven ("synergistischen") Effekten führen. So sind zum Beispiel die folgenden Effekte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen: verringerte Aufwandmengen und/oder erweitertes Wirkungsspektrum und/oder erhöhte Wirksamkeit der Wirkstoffe und Zusammensetzungen, die erfindungsgemäß eingesetzt werden können, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegenüber Trockenheit oder Wasser- oder Bodensalzgehalt, erhöhte Blühleistung, Ernteerleichterung, Reifebeschleunigung, höhere Erträge, größere Früchte, größere Pflanzenhöhe, intensiver grüne Farbe des Blatts, frühere Blüte, höhere Qualität und/oder höherer Nährwert der Ernteprodukte, höhere Zuckerkonzentration in den Früchten, bessere Lagerfähigkeit und/oder Verarbeitbarkeit der Ernteprodukte.
Zu Pflanzen und Pflanzensorten, die vorzugsweise erfindungsgemäß behandelt werden, zählen alle Pflanzen, die über Erbgut verfügen, das diesen Pflanzen besonders vorteilhafte, nützliche Merkmale verleiht (egal, ob dies durch Züchtung und/oder Biotechnologie erzielt wurde).
Beispiele für Nematoden-resistente Pflanzen sind z.B. folgenden US Patentanmeldungen beschrieben: 11/765,491, 11/765,494, 10/926,819, 10/782,020, 12/032,479, 10/783,417, 10/782,096, 11/657,964, 12/192,904, 11/396,808, 12/166,253, 12/166,239, 12/166,124, 12/166,209, 11/762,886, 12/364,335, 11/763,947, 12/252,453, 12/209,354, 12/491,396 und 12/497,221.
Pflanzen, die erfindungsgemäß behandelt werden können, sind Hybridpflanzen, die bereits die Eigenschaften der Heterosis bzw. des Hybrideffekts exprimieren, was im Allgemeinen zu höherem Ertrag, höherer Wüchsigkeit, besserer Gesundheit und besserer Resistenz gegen biotische und abiotische Stressfaktoren führt. Solche Pflanzen werden typischerweise dadurch erzeugt, dass man eine ingezüchtete pollensterile Elternlinie (den weiblichen Kreuzungspartner) mit einer anderen ingezüchteten pollenfertilen Elternlinie (dem männlichen Kreuzungspartner) kreuzt. Das Hybridsaatgut wird typischerweise von den pollensterilen Pflanzen geerntet und an Vermehrer verkauft. Pollensterile Pflanzen können manchmal (z. B. beim Mais) durch Entf ahnen (d.h. mechanischem Entfernen der männlichen Geschlechtsorgane bzw. der männlichen Blüten), produziert werden; es ist jedoch üblicher, dass die Pollensterilität auf genetischen Determinanten im Pflanzengenom beruht. In diesem Fall, insbesondere dann, wenn es sich bei dem gewünschten Produkt, da man von den Hybridpflanzen ernten will, um die Samen handelt, ist es üblicherweise günstig, sicherzustellen, dass die Pollenfertilität in Hybridpflanzen, die die für die Pollensterilität verantwortlichen genetischen Determinanten enthalten, völlig restoriert wird. Dies kann erreicht werden, indem sichergestellt wird, dass die männlichen Kreuzungspartner entsprechende Fertilitätsrestorergene besitzen, die in der Lage sind, die Pollenfertilität in Hybridpflanzen, die die genetischen Determinanten, die für die Pollensterilität verantwortlich sind, enthalten, zu restorieren. Genetische Determinanten für Pollensterilität können im Cytoplasma lokalisiert sein. Beispiele für cytoplasmatische Pollensterilität (CMS) wurden zum Beispiel für Brassica-Arten beschrieben. Genetische Determinanten für Pollensterilität können jedoch auch im Zellkerngenom lokalisiert sein. Pollensterile Pflanzen können auch mit Methoden der pflanzlichen Biotechnologie, wie Gentechnik, erhalten werden. Ein besonders günstiges Mittel zur Erzeugung von pollensterilen Pflanzen ist in WO 89/10396 beschrieben, wobei zum Beispiel eine Ribonuklease wie eine Barnase selektiv in den Tapetumzellen in den Staubblättern exprimiert wird. Die Fertilität kann dann durch Expression eines Ribonukleasehemmers wie Barstar in den Tapetumzellen restoriert werden.
Pflanzen oder Pflanzensorten (die mit Methoden der Pflanzenbiotechnologie, wie der Gentechnik, erhalten werden), die erfindungsgemäß behandelt werden können, sind herbizidtolerante Pflanzen, d. h. Pflanzen, die gegenüber einem oder mehreren vorgegebenen Herbiziden tolerant gemacht worden sind. Solche Pflanzen können entweder durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solch eine Herbizidtoleranz verleiht, erhalten werden.
Herbizidtolerante Pflanzen sind zum Beispiel glyphosatetolerante Pflanzen, d. h. Pflanzen, die gegenüber dem Herbizid Glyphosate oder dessen Salzen tolerant gemacht worden sind. Pflanzen können mit verschiedenen Methoden tolerant gegenüber Glyphosate gemacht werden. So können zum Beispiel glyphosatetolerante Pflanzen durch Transformation der Pflanze mit einem Gen, das für das Enzym 5-Enolpyruvylshikimat-3-phosphatsynthase (EPSPS) kodiert, erhalten werden. Beispiele für solche EPSPS-Gene sind das AroA-Gen (Mutante CT7) des Bakterium Salmonella typhimurium (Comai et al., 1983, Science 221, 370-371), das CP4-Gen des Bakteriums Agrobacterium sp. (Barry et al., 1992, Curr. Topics Plant Physiol. 7, 139-145), die Gene, die für eine EPSPS aus der Petunie (Shah et al., 1986, Science 233, 478-481), für eine EPSPS aus der Tomate (Gasser et al., 1988, J. Biol. Chem. 263, 4280-4289) oder für eine EPSPS aus Eleusine (WO 01/66704) kodieren. Es kann sich auch um eine mutierte EPSPS handeln. Glyphosate-tolerante Pflanzen können auch dadurch erhalten werden, dass man ein Gen exprimiert, das für ein Glyphosate-Oxidoreduktase-Enzym kodiert. Glyphosate-tolerante Pflanzen können auch dadurch erhalten werden, dass man ein Gen exprimiert, das für ein Glyphosate-acetyltransferase-Enzym kodiert. Glyphosatetolerante Pflanzen können auch dadurch erhalten werden, dass man Pflanzen, die natürlich vorkommende Mutationen der oben erwähnten Gene enthalten, selektiert. Pflanzen, die EPSPS Gene, welche Glyphosate- Toleranz verleihen, exprimieren, sind beschrieben. Pflanzen, welche andere Gene, die Glyphosate- Toleranz verleihen, z.B. Decarboxylase-Gene, sind beschrieben.
Sonstige herbizidresistente Pflanzen sind zum Beispiel Pflanzen, die gegenüber Herbiziden, die das Enzym Glutaminsynthase hemmen, wie Bialaphos, Phosphinotricin oder Glufosinate, tolerant gemacht worden sind. Solche Pflanzen können dadurch erhalten werden, dass man ein Enzym exprimiert, das das Herbizid oder eine Mutante des Enzyms Glutaminsynthase, das gegenüber Hemmung resistent ist, entgiftet. Solch ein wirksames entgiftendes Enzym ist zum Beispiel ein Enzym, das für ein Phosphinotricin-acetyltransferase kodiert (wie zum Beispiel das bar- oder pat- Protein aus Streptomyces-Arten). Pflanzen, die eine exogene Phosphinotricin-acetyltransferase exprimieren, sind beschrieben.
Weitere herbizidtolerante Pflanzen sind auch Pflanzen, die gegenüber den Herbiziden, die das Enzym Hydroxyphenylpyruvatdioxygenase (HPPD) hemmen, tolerant gemacht worden sind. Bei den Hydroxyphenylpyruvatdioxygenasen handelt es sich um Enzyme, die die Reaktion, in der para- Hydroxyphenylpyruvat (HPP) zu Homogentisat umgesetzt wird, katalysieren. Pflanzen, die gegenüber HPPD-Hemmern tolerant sind, können mit einem Gen, das für ein natürlich vorkommendes resistentes HPPD-Enzym kodiert, oder einem Gen, das für ein mutiertes oder chimäres HPPD-Enzym kodiert, transformiert werden, wie in WO 96/38567, WO 99/24585, WO 99/24586, WO 2009/144079, WO 2002/046387 oder US 6,768,044 beschrieben. Eine Toleranz gegenüber HPPD-Hemmern kann auch dadurch erzielt werden, dass man Pflanzen mit Genen transformiert, die für gewisse Enzyme kodieren, die die Bildung von Homogentisat trotz Hemmung des nativen HPPD-Enzyms durch den HPPD-Hemmer ermöglichen. Solche Pflanzen sind in WO 99/34008 und WO 02/36787 beschrieben. Die Toleranz von Pflanzen gegenüber HPPD-Hemmem kann auch dadurch verbessert werden, dass man Pflanzen zusätzlich zu einem Gen, das für ein HPPD- tolerantes Enzym kodiert, mit einem Gen transformiert, das für ein Prephenatdehydrogenase-Enzym kodiert, wie in WO 2004/024928 beschrieben ist. Außerdem können Pflanzen noch toleranter gegen HPPD-Hemmern gemacht werden, indem man ein Gen in ihr Genom einfügt, welches für ein Enzym kodiert, das HPPD-Hemmer metabolisiert oder abbaut, wie z.B. CYP450 Enzyme (siehe WO 2007/103567 und WO 2008/150473).
Weitere herbizidresistente Pflanzen sind Pflanzen, die gegenüber Acetolactatsynthase (ALS)- Hemmern tolerant gemacht worden sind. Zu bekannten ALS-Hemmern zählen zum Beispiel Sulfonylharnstoff, Imidazolinon, Triazolopyrimidine, Pyrimidinyloxy(thio)benzoate und/oder Sulfonylaminocarbonyltriazolinon-Herbizide. Es ist bekannt, dass verschiedene Mutationen im Enzym ALS (auch als Acetohydroxysäure-Synthase, AHAS, bekannt) eine Toleranz gegenüber unterschiedlichen Herbiziden bzw. Gruppen von Herbiziden verleihen wie z.B. in Tranel und Wright (Weed Science 2002, 50, 700-712) beschrieben ist. Die Herstellung von sulfonylharnstofftoleranten Pflanzen und imidazolinontoleranten Pflanzen ist beschrieben. Weitere Sulfonylharnstoff- und imidazolinontolerante Pflanzen sind auch beschrieben.
Weitere Pflanzen, die gegenüber Imidazolinonen und/oder Sulfonylharnstoffen tolerant sind, können durch induzierte Mutagenese, Selektion in Zellkulturen in Gegenwart des Herbizids oder durch Mutationszüchtung erhalten werden (vgl. z.B. für Sojabohne US 5,084,082, für Reis WO 97/41218, für Zuckerrübe US 5,773,702 und WO 99/057965, für Salat US 5,198,599 oder für Sonnenblume WO 01/065922).
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind gegenüber abiotischen Stressfaktoren tolerant. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solch eine Stressresistenz verleiht, erhalten werden. Zu besonders nützlichen Pflanzen mit Stresstoleranz zählen folgende: a. Pflanzen, die ein Transgen enthalten, das die Expression und/oder Aktivität des Gens für die Poly(ADP-ribose)polymerase (PARP) in den Pflanzenzellen oder Pflanzen zu reduzieren vermag. b. Pflanzen, die ein stresstoleranzförderndes Transgen enthalten, das die Expression und/oder Aktivität der für PARG kodierenden Gene der Pflanzen oder Pflanzenzellen zu reduzieren vermag; c. Pflanzen, die ein stresstoleranzfördemdes Transgen enthalten, das für ein in Pflanzen funktionelles
Enzym des Nicotinamidadenindinukleotid-Salvage-Biosynthesewegs kodiert, darunter Nicotinamidase, Nicotinatphosphoribosyltransferase, Nicotinsäuremononukleotidadenyltransferase,
Nicotinamidadenindinukleotidsynthetase oder Nicotinamidphosphoribosyltransferase.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, weisen eine veränderte Menge, Qualität und/oder Lagerfähigkeit des Ernteprodukts und/oder veränderte Eigenschaften von bestimmten Bestandteilen des Emteprodukts auf, wie zum Beispiel:
1) Transgene Pflanzen, die eine modifizierte Stärke synthetisieren, die bezüglich ihrer chemisch-phy sikalischen Eigenschaften, insbesondere des Amylosegehalts oder des Amylose/Amylopektin- Verhältnisses, des Verzweigungsgrads, der durchschnittlichen Kettenlänge, der Verteilung der Seitenketten, des Viskositätsverhaltens, der Gelfestigkeit, der Stärkekomgröße und/oder Stärkekommorphologie im Vergleich mit der synthetisierten Stärke in Wildtyppflanzenzellen oder - pflanzen verändert ist, so dass sich diese modifizierte Stärke besser für bestimmte Anwendungen eignet.
2) Transgene Pflanzen, die Nichtstärkekohlenhydratpolymere synthetisieren, oder Nichtstärkekohlenhydratpolymere, deren Eigenschaften im Vergleich zu Wildtyppflanzen ohne genetische Modifikation verändert sind. Beispiele sind Pflanzen, die Polyfructose, insbesondere des Inulin- und Levantyps, produzieren, Pflanzen, die alpha-l,4-Glucane produzieren, Pflanzen, die alpha-l,6-verzweigte alpha-l,4-Glucane produzieren und Pflanzen, die Alternan produzieren.
3) Transgene Pflanzen, die Hyaluronan produzieren.
4) Transgene Pflanzen oder Hybridpflanzen wie Zwiebeln mit bestimmten Eigenschaften wie „hohem Anteil an löslichen Feststoffen“ (,high soluble solids content’), geringe Schärfe (,low pungency’, LP) und/oder lange Lagerfähigkeit (,long storage’, LS).
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Baumwollpflanzen mit veränderten Fasereigenschaften. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Fasereigenschaften verleiht, erhalten werden; dazu zählen: a) Pflanzen wie Baumwollpflanzen, die eine veränderte Form von Cellulosesynthasegenen enthalten, b) Pflanzen wie Baumwollpflanzen, die eine veränderte Form von rsw2- oder rsw3-homologen Nukleinsäuren enthalten, wie Baumwollpflanzen mit einer erhöhten Expression der Saccharosephosphat- synthase; c) Pflanzen wie Baumwollpflanzen mit einer erhöhten Expression der Saccharosesynthase; d) Pflanzen wie Baumwollpflanzen bei denen der Zeitpunkt der Durchlaßsteuemng der Plasmodesmen an der Basis der Faserzelle verändert ist, z. B. durch Herunterregulieren der faserselektiven ß-l,3-Glucanase; e) Pflanzen wie Baumwollpflanzen mit Fasern mit veränderter Reaktivität, z. B. durch Expression des N-Acetylglucosamintransferasegens, darunter auch nodC, und von Chitinsynthasegenen.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Raps oder verwandte Brassica-Pflanzen mit veränderten Eigenschaften der Ölzusammensetzung. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Öleigenschaften verleiht, erhalten werden; dazu zählen: a) Pflanzen wie Rapspflanzen, die Öl mit einem hohen Ölsäuregehalt produziere; b) Pflanzen wie Rapspflanzen, die Öl mit einem niedrigen Linolensäuregehalt produzieren. c) Pflanzen wie Rapspflanzen, die Öl mit einem niedrigen gesättigten Fettsäuregehalt produzieren.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten werden können), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Kartoffeln, welche Virus-resistent sind z.B. gegen den Kartoffelvirus Y (Event SY230 und SY233 von Tecnoplant, Argentinien), oder welche resistent gegen Krankheiten wie die Kraut- und Knollenfäule (potato late blight) (z.B. RB Gen), oder welche eine verminderte kälteinduzierte Süße zeigen (welche die Gene Nt-Inh, II-INV tragen) oder welche den Zwerg-Phänotyp zeigen (Gen A-20 Oxidase).
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Raps oder verwandte Brassica-Pflanzen mit veränderten Eigenschaften im Samenausfall (seed shattering). Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Eigenschaften verleihen, und umfassen Pflanzen wie Raps mit verzögertem oder vermindertem Samenausfall.
Besonders nützliche transgene Pflanzen, die erfindungsgemäß behandelt werden können, sind Pflanzen mit Transformationsevents oder Kombinationen von Transformationsevent, welche in den USA beim Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) Gegenstand von erteilten oder anhängigen Petitionen für den nicht-regulierten Status sind. Die Information hierzu ist jederzeit beim APHIS (4700 River Road Riverdale, MD 20737, USA) erhältlich, z.B. über die Internetseite http://www.aphis.usda.gov/brs/not_reg.html. Am Anmeldetag dieser Anmeldung waren beim APHIS die Petitionen mit folgenden Informationen entweder erteilt oder anhängig:
- Petition: Identifikationsnummer der Petition. Die Technische Beschreibung des Transformationsevents kann im einzelnen Petitionsdokument erhältlich von APHIS auf der Website über die Petitionsnummer gefunden werden. Diese Beschreibungen sind hiermit per Referenz offenbart.
Erweiterung einer Petition: Referenz zu einer frühere Petition, für die eine Erweiterung oder Verlängerung beantragt wird.
- Institution: Name der die Petition einreichenden Person.
- Regulierter Artikel: die betroffen Pflanzenspecies.
- Transgener Phänotyp: die Eigenschaft („Trait“), die der Pflanze durch das Transformationsevent verliehen wird.
- Transformationevent oder -linie: der Name des oder der Events (manchmal auch als Linie(n) bezeichnet), für die der nicht-regulierte Status beantragt ist.
- APHIS Documente: verschiedene Dokumente, die von APHIS bzgl. der Petition veröffentlicht warden oder von APHIS auf Anfrage erhalten werden können.
Besonders nützliche transgene Pflanzen, die erfindungsgemäß behandelt werden können, sind Pflanzen mit einem oder mehreren Genen, die für ein oder mehrere Toxine kodieren, sind die transgenen Pflanzen, die unter den folgenden Handelsbezeichnungen angeboten werden: YIELD GARD® (zum Beispiel Mais, Baumwolle, Sojabohnen), KnockOut® (zum Beispiel Mais), BiteGard® (zum Beispiel Mais), BT-Xtra® (zum Beispiel Mais), StarLink® (zum Beispiel Mais), Bollgard® (Baumwolle), Nucotn® (Baumwolle), Nucotn 33B® (Baumwolle), NatureGard® (zum Beispiel Mais), Protecta® und NewLeaf® (Kartoffel). Herbizidtolerante Pflanzen, die zu erwähnen sind, sind zum Beispiel Maissorten, Baumwollsorten und Sojabohnensorten, die unter den folgenden Handelsbezeichnungen angeboten werden: Roundup Ready® (Glyphosatetoleranz, zum Beispiel Mais, Baumwolle, Sojabohne), Liberty Link® (Phosphinotricintoleranz, zum Beispiel Raps), IMI® (Imidazolinontoleranz) und SCS® (Sylfonylharnstofftoleranz), zum Beispiel Mais. Zu den herbizidresistenten Pflanzen (traditionell auf Herhizidtoleranz gezüchtete Pflanzen), die zu erwähnen sind, zählen die unter der Bezeichnung Clearfield® angebotenen Sorten (zum Beispiel Mais).
Die nachstehenden Beispiele erläutern die vorliegende Erfindung.
Chemische Beispiele
Beispiel 1-11
3-(2-Brom-6-methoxy-4-prop-l-ynylphenyl)-8-(ethoxymethyl)-4-hydroxy-l-azaspiro[4.4]non-3-en-
2-on 1.00 g (2.14 mmol) Methyl-l-[[2-(2-brom-6-methoxy-4-prop-l-ynyl-phenyl)acetyl]amino]-3- (ethoxymethyl)cyclopentanecarboxylat wurden in 3.5 ml Dimethylformamid vorgelegt und 0.52 g (4.71 mmol) Kalium-tert-butylat zugeben. Es wurde 1 h bei Raumtemperatur nachgerührt, Wasser zugegeben, mit Dichlormethan gewaschen und mit 2N wäßriger Salzsäure sauer gestellt. Der ausgefallene Feststoff wurde abgesaugt.
Man erhielt 900 mg eines gelben Feststoffes (96 % Ausbeute)
Beispiel P-13
[3-(2-Bromo-6-methoxy-4-prop-l-ynyl-phenyl)-8-(ethoxymethyl)-2-oxo-l-azaspiro[4,4]non-3- en-4-yl] ethyl carbonat
Figure imgf000050_0001
0.80 g (1.47 mmol) 3-(2-Brom-6-methoxy-4-prop-l-ynyl-phenyl)-8-(ethoxymethyl)-4-hydroxy-l- azaspiro[4.4]non-3-en-2-on und 0.29 g (2.94 mmol) Triethylamin wurden in 10 ml Methylenchlorid vorgelegt, und 0.19 g (1.76 mmol) Chlorameisensäureethylester zugetropft. Man ließ 1 h lang bei Raumtemperatur nachrühren. Es wurde mit Wasser gewaschen, getrocknet, das Fösemittel abdestilliert und der Rückstand chromatographisch gereinigt.
Man erhielt 700 mg eines hellen Feststoffes (Ausbeute 93%). n Analogie zu diesem Beispiel sowie gemäß den allgemeinen Angaben zur Herstellung erhält man folgende Verbindungen:
Figure imgf000051_0001
abelle 1: Verbindungen der allgemeinen Formel (Ib)
Figure imgf000051_0002
Figure imgf000052_0001
Figure imgf000053_0001
Figure imgf000054_0001
Figure imgf000055_0001
Figure imgf000056_0001
Figure imgf000057_0001
Figure imgf000058_0001
Figure imgf000058_0002
Figure imgf000059_0001
Figure imgf000060_0001
Figure imgf000061_0001
Figure imgf000062_0001
Figure imgf000063_0001
Figure imgf000064_0001
Figure imgf000065_0001
Figure imgf000066_0001
Figure imgf000067_0001
Herstellungsbeispiele Ausgangsmaterialien:
Beispiel A.6
Methyl- 1 - [ [2-(2-brom-6-methoxy-4-prop- 1 -ynyl-phenyl)acetyl] amino] -3- (methoxymethyl)cyclopentanecarboxylat
Figure imgf000068_0001
0.90 g (3.17 mmol) [2-Brom-6-methoxy-4-(prop-l-in-l-yl)phenyl]essigsäure wurden in 3.33 ml Dichlormethan gelöst und mit 2 Tropfen Dimethylformamid versetzt. Bei Raumtemperatur wurden daraufhin 0.55 ml (6.35 mmol) Oxalylchlorid langsam zugetropft, anschließend am Rückfluß erhitzt, bis keine Gasentwicklung mehr zu beobachten war und eingeengt. In einem separaten Ansatz wurden 0.77 g (3.17 mmol) [l-Methoxycarbonyl-3-(methoxymethyl)cyclopentyl]ammoniumchlorid und 1.72 ml (12.7 mmol) Triethylamin in 3.3 ml Dichlormethan vorgelegt und das Säurechlorid, gelöst in Dichlormethan, wurde zugetropft. Es wurde 1 h bei Raumtemperatur nachgerührt.
Man wusch mit Wasser, trennte die Phasen und trocknete die organische Phase über Natriumsulfat. Nach dem Einengen wurde der Rückstand chromatographisch gereinigt.
Man erhielt 1. g eines hellen Öls (Ausbeute 76%).
n Analogie zu diesem Beispiel sowie gemäß der allgemeinen Angaben zur Herstellung erhält man folgende Verbindungen:
Figure imgf000069_0001
Figure imgf000070_0001
2-Fluor-6-methyl-4-nitro-anilin
Figure imgf000071_0001
Zu einer Lösung von Dimethylether (100 ml) und Wasser (60 ml) wurden 150 mg (0.64 mmol) 2-Brom-6-fluoro-4-nitro-anilin (CAS Nummer: 455-58-3), 200 mg (1.91 mmol)
Natriumcarbonat und Trimethylboroxin (240 mg, 0.95 mmol) und Pd(dppd)Cl2 (18.6 mg, 0.02 mmol) unter Argon zugegeben und bei 90°C für 16h erhitzt. Man engte bis zur Trockne ein, löste den Rückstand in Wasser und extrahierte mit Dichlormethan. Es wurde mit Natriumsulfat getrocknet, eingeengt und chromatographiert. Man erhielt 188 mg (55%)
Ή-NMR (400 MHz, d in ppm, CDCL)
d = 2.26 (s, 3H), 4.36 (br, NH2), 7.81 (s, 1H), 7.86 (s, 1H) l-Fluor-3-methyl-5-nitro-2-(2,2,2-trichloroethyl)benzol
Figure imgf000071_0002
132 mg (1.28 mmol) tert-Butylnitrit und 144 mg (1.06 mmol) Kupfer(II)-chlorid wurden in 7.8 ml Acetonitril suspendiert und auf 0°C gekühlt. Dann wurden 983 mg (10.1 mmol) Vinylidenchlorid langsam zugetropft und auf Raumtemperatur kommen gelassen. Anschließend wurden 123 mg (0.72 mmol) 2-Fluor-6-methyl-4-nitroanilin, gelöst in 10 ml Acetonitril und 25 mL Aceton, langsam zugetropft. Es wurde bei Raumtemperatur nachgerührt, bis keine Gasentwicklung mehr stattfand. Unter Eiskühlung wurde langsam auf 2 ml 10%ige wäßrige Salzsäure gegeben, mit Ethylacetat extrahiert, mit Magnesiumsulfat getrocknet und eingeengt.
Man erhielt 3.636 g eines Rohprodukts, welches noch Kupfersalze enthielt und direkt in die folgende Reaktion eingesetzt wurde.
Ή-NMR (400 MHz, d in ppm, CDC13)
d = 2.66 (s, 3H), 1.96 (s, 2H), 7.83 (s, 1H), 7.96 (s, 1H) Methyl 2-(2-fluor-6-methyl-4-nitro-phenyl)acetat
Figure imgf000072_0001
160 mg (0.55 mmol) l-Fluor-3-methyl-5-nitro-2-(2,2,2-trichlorethyl)benzol wurden in 10 ml Methanol gelöst und langsam mit 121 mg (2.23 mmol) 30%iger methanolischer Natriummethanolat- Lösung versetzt, wobei eine Wärmeentwicklung auftrat. Anschließend wurde 12 h lang am Rückfluß erhitzt.
Man versetzte vorsichtig mit 1.1 ml konzentrierter Schwefelsäure, wobei eine Wärmeentwicklung auftrat. Es wurde 1 h unter Rückfluß erhitzt. Man engte bis zur Trockne ein, löste den Rückstand in Wasser und extrahierte mit Dichlormethan. Es wurde mit Natriumsulfat getrocknet, eingeengt und chromatographiert. Man erhielt 110 mg eines gelben Öls (75% Ausbeute).
Ή-NMR (400 MHz, d in ppm, CDCL)
d = 2.42 (s, 3H), 3,72 (s, 3H), 3.78 (s, 2H), 7.78 (s, 1H), 7.91 (s, 1H)
Methyl 2-(4-amino-2-fluor-6-methyl-phenyl)acetat
Figure imgf000072_0002
1.40 g (6.16 mmol) Methyl-(2-fluor-6-methyl-4-nitrophenyl)acetat wurden in 11 ml Tetrahydrofuran gelöst und eine Lösung von 2.040 g (38.1 mmol) Ammoniumchlorid in 5.3 ml Wasser sowie 1.37 g (2.46 mmol) Eisen Pulver zugegeben. Es wurde 30 min bei Raumtemperatur gerührt. Man filtrierte, verdünnte das Filtrat mit Wasser und extrahierte mit Ethylacetat, wobei der pH-Wert größer als 7 eingestellt wurde. Man trocknete mit Natriumsulfat und engte ein. Es wurden 1.17 g einen Brauenstoff erhalten (90% Ausbeute).
Methyl 2-(2-fluor-4-iodo-6-methyl-phenyl)acetat Eine Suspension von 1.40 g (6.16 mmol) Methyl-(4-amino-2-fluor-6-methylphenyl)acetat und 3 ml (3.76 mol) HCl in 30 ml Wasser wurde auf -5-0°C gekühlt und langsam mit einer Lösung von 0.4 g (6.03 mmol) Natriumnitrit und 0.8 g (11.08 mmol) Kaliumiodid in 1.8 ml Wasser versetzt. Nach 10 min wurde auf Raumtemperatur erwärmt und bei 20°C weitere 30 min gerührt. Es wurden 15 ml Wasser zugegeben, mit gesättigter Natriumhydrogencarbonat-Lösung auf pH 8 eingestellt und anschließend noch gesättigte Natriumthiosulfatlösung zugegeben. Nach Extraktion mit Ethylacetat, Trocknen (Natriumsulfat) und Abdestillieren des Lösungsmittels wurde der Rückstand durch Chromatographie an Kieselgel (Ethylacetat/Hexan) gereinigt. Man erhielt 1.35 g (75%) der Iodverbindung als weisser Feststoff.
^-NMR (400 MHz, d in ppm, CDC1 ) d = 2.26 (s, 3H), 3.64 (s, 2H), 3.70 (s, 3H), 7.29 (s, 1H), 7.35 (s, 1H)
Bespiel B.8
Methyl 2-(2-fluor-6-methyl-4-prop-l-ynyl-phenyl)acetat
Figure imgf000073_0001
Zu einer Lösung von 0.102 g (0.75 mmol) Zinkchlorid und 0.032 g (0.75 mmol) Lithiumchlorid in 7 ml trockenem Tetrahydrofuran unter Stickstoff wurden bei 0°C unter Rühren tropfenweise 1.5 ml (0.75 mmol) einer 0.5 M Lösung von 1-Propinylmagnesiumbromid in Tetrahydrofuran getropft. Die Lösung wurde unter Rühren innerhalb von 1.5 h auf Raumtemperatur erwärmt (Lösung 1). 2.8 mg (0.01 mmol) Palladium(II)acetat und 10.6 mg (0.02 mmol) 1,4- Bis(diphenylphosphino)-butan in 3 ml trockenem Tetrahydrofuran wurden unter Stickstoffatmo Sphäre 30 min lang bei Raumtemperatur gerührt (Lösung 2).
0.14 g (0.5 mmol) Methyl-(2-fluo-6-methyl-4-iodphenyl)acetat wurden in 2 ml trockenem Tetra hydrofuran unter Stickstoffatmosphäre gelöst und 30 min bei Raumtemperatur gerührt (Lösung
3).
Zu Lösung 1 wurde jeweils bei Raumtemperatur unter Rühren tropfenweise Lösung 2 und anschließend Lösung 3 hinzugefügt und nach beendeter Zugabe 3.5 h bei 60°C gerührt. Nach dem Abkühlen auf Raumtemperatur wurde mit Wasser und gesättigter Ammoniumchlorid- Lösung versetzt und mit Ethylacetat extrahiert, die organische Phase getrocknet (Natriumsulfat) und das Lösungsmittel abdestilliert. Chromatographie an Kieselgel (Essigsäureethylester/Hexan) lieferte 75 mg der gewünschten Verbindung (Ausbeute 65 %). ^-NMR (400 MHz, d in ppm, CDCb): d = 2.04 (s, 3H), 2.23 (s, 3H), 3.62 (s, 3H), 3.71 (s, 2H), 7.04 (s, 1H), 7.10 (s, 1H)
nalog wurden folgende Vorstufen hergestellt
Figure imgf000075_0001
abelle 3: Verbindungen der allgemeinen Formel (X)
Figure imgf000076_0001
B. Formulierungsbeispiele a) Ein Stäubemittel wird erhalten, indem man 10 Gew. Teile einer Verbindung der Formel (I) und/oder deren Salze und 90 Gew. Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert. b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile einer Verbindung der Formel (I) und/oder deren Salze, 64 Gew. Teile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gew. Teil oleoylmethyltaurinsaures Natrium als Netz und Dispergiermittel mischt und in einer Stiftmühle mahlt. c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gew. Teile einer Verbindung der Formel (I) und/oder deren Salze mit 6 Gew. Teilen Alkylphenolpolyglykolether (©Triton X 207), 3 Gew. Teilen Isotridecanolpolyglykolether (8 EO) und 71 Gew. Teilen paraffinischem Mineralöl (Siedebereich z.B. ca. 255 bis über 277 C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt. d) Ein emulgierbares Konzentrat wird erhalten aus 15 Gew. Teilen einer Verbindung der Formel (I) und/oder deren Salze, 75 Gew. Teilen Cyclohexanon als Lösungsmittel und 10 Gew. Teilen oxethyliertes Nonylphenol als Emulgator. e) Ein in Wasser dispergierbares Granulat wird erhalten indem man 75 Gew. Teile einer Verbindung der Formel (I) und/oder deren Salze,
10 Gew. Teile ligninsulfonsaures Calcium,
5 Gew. Teile Natriumlaurylsulfat,
3 Gew. Teile Polyvinylalkohol und 7 Gew. Teile Kaolin mischt, auf einer Stiftmühle mahlt und das Pulver in einem Wirbelbett durch Aufsprühen von Wasser als Granulierflüssigkeit granuliert. f) Ein in Wasser dispergierbares Granulat wird auch erhalten, indem man
25 Gew. Teile einer Verbindung der Formel (I) und/oder deren Salze,
5 Gew. Teile 2,2' Dinaphthylmethan 6,6' disulfonsaures Natrium, 2 Gew. Teile oleoylmethyltaurinsaures Natrium,
1 Gew. Teil Polyvinylalkohol,
17 Gew. Teile Calciumcarbonat und
50 Gew. Teile Wasser
auf einer Kolloidmühle homogenisiert und vorzerkleinert, anschließend auf einer Perlmühle mahlt und die so erhaltene Suspension in einem Sprühturm mittels einer Einstoffdüse zerstäubt und trocknet.
C. Biologische Beispiele
1. Herbizide Wirkung bzw. Kulturpflanzen Verträglichkeit im Vorauflauf Samen von mono- bzw. dikotylen Unkraut- bzw. Kulturpflanzen werden in Holzfasertöpfen in sandiger Lehmerde ausgelegt und mit Erde abgedeckt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen werden dann als wässrige Suspension bzw. Emulsion mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 1/ha unter Zusatz von 0,2% Netzmittel auf die Oberfläche der Abdeckerde appliziert. Nach der Behandlung werden die Töpfe im Gewächshaus aufgestellt und unter guten Wachstumsbedingungen für die Testpflanzen gehalten. Die visuelle Bonitur der Schäden an den Versuchspflanzen erfolgt nach einer Versuchszeit von 3 Wochen im Vergleich zu unbehandelten Kontrollen (herbizide Wirkung in Prozent (%): 100% Wirkung = Pflanzen sind abgestorben, 0 % Wirkung = wie Kontrollpflanzen).
Unerwünschte Pflanzen / Weeds:
ALOMY : Alopecurus myosuroides SETVI: Setaria viridis
AMARE: Amaranthus retroflexus AVEFA: Avena fatua
CYPES: Cyperus esculentus ECHCG: Echinochloa crus-galli
LOLRI: Lolium rigidum STEME: Stellaria media
VERPE: Veronica persica VIOTR: Viola tricolor
POLCO: Polygonum convolvulus ABUTH: Abutylon threophrasti
HORMU: Hordeum murinum DIGSA: Digitaria sanguinalis
1. Vorauflaufwirksamkeit Wie die Ergebnisse aus den Tabellen 3 und 4 zeigen, weisen erfindungsgemäße Verbindungen eine gute herbizide Vorauflaufwirksamkeit gegen ein breites Spektrum von Ungräsern und Unkräutern auf.
Tabelle 4: Vorauflaufwirkung bei 320 g/ha gegen ALOMY in %
Figure imgf000079_0001
Tabelle 5: Vorauflaufwirkung bei 320 g/ha gegen AVEFA in %
Figure imgf000081_0001
Tabelle 6: Vorauflaufwirkung bei 320 g/ha gegen DIGSA in %
Figure imgf000084_0001
WO 2020/187626 PCT/EP2020/056204
Figure imgf000085_0001
Tabelle 7: Vorauflaufwirkung bei 320 g/ha gegen ECHCG in % WO 2020/187626 PCT/EP2020/056204
Figure imgf000088_0001
Tabelle 8: Nachauflaufwirkung bei 320 g/ha gegen LOLRI in %
Figure imgf000089_0001
Tabelle 9: Vorauflaufwirkung bei 320 g/ha gegen SETVI in %
Figure imgf000092_0001
WO 2020/187626 PCT/EP2020/056204
Figure imgf000093_0001
Tabelle 10: Vorauflaufwirkung bei 320 g/ha gegen ABUTH in %
Figure imgf000094_0001
Tabelle 11 : Vorauflaufwirkung bei 320 g/ha gegen AMARE in %
Figure imgf000095_0001
Tabelle 12: Vorauflaufwirkung bei 320 g/ha gegen MATIN in %
Figure imgf000096_0001
Tabelle 13: Vorauflaufwirkung bei 320 g/ha gegen PHBPU in % Tabelle 14: Vorauflaufwirkung bei 320 g/ha gegen POLCO in %
Figure imgf000098_0001
abelle 15: Vorauflaufwirkung bei 320 g/ha gegen VIOTR in %
WO 2020/187626 PCT/EP2020/056204
Figure imgf000100_0001
Tabelle 16: Vorauflaufwirkung bei 320 g/ha gegen VERPE in %
Figure imgf000101_0001
Beispielsweise zeigen die Verbindungen Nr. P-70, P-81, P-05, P-77, P-76, 1-10, 1-2 ubd 1-11 in den Tabellen 4-18 bei einer Aufwandmenge von 320 g/ha jeweils eine 90-100%-ige Wirkung gegen Alopecurus myrosoroides, Avena fatua, Diagitaria sanguinalis, Echinochloa crus-galli, Lolium rigidum, und Setaria viridis.
Die erfindungsgemäßen Verbindungen eignen sich deshalb im Vorauflaufverfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs. 2. Herbizide Wirkung bzw. Kulturpflanzenverträglichkeit im Nachauflauf
Samen von mono- bzw. dikotylen Unkraut- bzw. Kulturpflanzen werden in Holzfasertöpfen in sandigem Lehmboden ausgelegt, mit Erde abgedeckt und im Gewächshaus unter guten Wachstumsbedingungen angezogen. 2 bis 3 Wochen nach der Aussaat werden die Versuchspflanzen im Einblattstadium behandelt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen werden dann als wässrige Suspension bzw. Emulsion mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 1/ha unter Zusatz von 0,2% Netzmittel auf die grünen Pflanzenteile gesprüht. Nach ca. 3 Wochen Standzeit der Versuchspflanzen im Gewächshaus unter optimalen Wachstumsbedingungen wird die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen bonitiert (herbizide Wirkung in Prozent (%): 100% Wirkung = Pflanzen sind abgestorben, 0 % Wirkung = wie Kontrollpflanzen).
Wie die Ergebnisse aus der Tabelle 5 und 6 zeigen, weisen erfindungsgemäße Verbindungen eine gute herbizide Nachauflaufwirksamkeit gegen ein breites Spektrum von Ungräsern und Unkräutern auf.
Tabelle 17: Nachauflaufwirkung bei 80 g/ha gegen ALOMY in %
Figure imgf000103_0001
Tabelle 18: Nachauflaufwirkung bei 80 g/ha gegen AVEFA in %
Figure imgf000106_0001
WO 2020/187626 PCT/EP2020/056204
Figure imgf000108_0001
abelle 19: Nachauflaufwirkung bei 80 g/ha gegen DIGSA in %
Figure imgf000110_0001
WO 2020/187626 PCT/EP2020/056204
Figure imgf000111_0001
Tabelle 20: Nachauflaufwirkung bei 80 g/ha gegen ECHCG in %
Figure imgf000112_0001
WO 2020/187626 PCT/EP2020/056204
Figure imgf000113_0001
WO 2020/187626 PCT/EP2020/056204
Figure imgf000114_0001
Tabelle 21: Nachauflaufwirkung bei 80 g/ha gegen LOLRI in %
Figure imgf000115_0001
Tabelle 22: Nachauflaufwirkung bei 80 g/ha gegen SETVI in %
Figure imgf000118_0001
Tabelle 23: Nachauflaufwirkung bei 80 g/ha gegen ABUTH in %
Figure imgf000121_0001
Tabelle 24: Nachauflaufwirkung bei 80 g/ha gegen AMARE in %
Figure imgf000122_0001
Tabelle 25: Nachauflaufwirkung bei 80 g/ha gegen PHBPU in % Tabelle 26: Nachauflaufwirkung bei 80 g/ha gegen POLCO in %
Figure imgf000123_0001
Tabelle 27: Nachauflaufwirkung bei 80 g/ha gegen VIOTR in %
Figure imgf000123_0002
Tabelle 28: Nachauflaufwirkung bei 80 g/ha gegen VERPE in %
Figure imgf000123_0003
Tabelle 29: Nachauflaufwirkung bei 80 g/ha gegen HORMU in %
Figure imgf000124_0001
Beispielsweise zeigen Verbindungen P-22, P-25, P-26 in den Tabellen 17 bis 29 bei einer Aufwandmenge von 80 g/ha jeweils eine 80 - 100%-ige Wirkung gegen Alopecurus myosuroides, Avena fatua, Digitaria sanguinalis, Echinochloa crus-galli, Setaria viridis und Hordeum murinum und eignen sich deshalb im Nachauflaufverfahren zur Bekämpfung von unerwünschtem Pflanzen wuchs.

Claims

Patentansprüche
1. Spirocyclopentylpyrrolin-2-one der allgemeinen Formel (I),
Figure imgf000125_0002
X Ci-Cö-Alkoxy, Ci-Cö-Halogenalkoxy oder Halogen ist,
Y Ci-Cö-Alkyl, Ci-Ce-Halogenalkyl, Ci-Ce-Alkoxy, (X-Ce-Cycloalkyl oder Halogen ist,
R1 Wasserstoff, Ci-Cö-Alkyl, Ci-C4-Alkoxy-C2-C4- Alkyl, C3-C6-Cycloalkyl, C3-C6-Cycloalkyl- Ci-C2-Alkyl, Ci-Cö-Halogenalkyl, C2-C6-Alkenyl, C2-C4-Halogenalkenyl, C2-C6-Alkinyl oder C2-C6 Halogenalkinyl ist,
R2 Wasserstoff, Ci-Ce-Alkyl, Ci-C4-Alkoxy-Ci-C4- Alkyl, Ci-Cö-Halogenalkyl, C3-C6- Cycloalkyl, C2-C6-Alkenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, Ci-Cö-Alkoxy oder Ci- Ce-Halogenalkoxy ist,
R3 Wasserstoff, Ci-C4-Alkyl, Ci-C4-Halogenalkyl, C3-C6-Cycloalkyl oder Halogen ist,
G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist,
L einer der folgenden Reste
Figure imgf000125_0001
ist, wobei
R4 (C1-C4)- Alkyl oder (Ci-C3)-Alkoxy-(C2-C4)- Alkyl bedeutet,
R5 (C1-C4)- Alkyl bedeutet,
R6 (C1-C4)- Alkyl, ein unsubstituiertes Phenyl oder ein einfach oder mehrfach mit Halogen,
(C1-C4)- Alkyl, (Ci-C4)-Haloalkyl, (Ci-C4)-Alkoxy, (Ci-C4)-Haloalkoxy, Nitro oder Cyano substituiertes Phenyl bedeutet,
R7, R7‘ unabhängig voneinander Methoxy oder Ethoxy bedeuten,
R8, R9 jeweils unabhängig voneinander Methyl, Ethyl, Phenyl bedeuten oder gemeinsam einen gesättigten 5-, 6- oder 7-gliedrigen Ring bilden, oder gemeinsam einen gesättigten 5-, 6-, oder 7- gliedrigen Heterozyklus mit einem Sauerstoff- oder Schwefelatom bilden, E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent
Aluminium, ein Ionenäquivalent eines Übergangsmetalls oder ein Magnesium-Halogen- Kation bedeutet, ein Ammoniumion bedeutet, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome durch gleiche oder verschiedene Reste aus den Gruppen (Ci- Cio)-Alkyl oder (C3-C7)-Cycloalkyl ersetzt sein können, wobei diese unabhängig voneinander jeweils ein- oder mehrfach mit Fluor, Chlor, Brom, Cyano, Hydroxy substituiert oder durch ein- oder mehrere Sauerstoff- oder Schwefelatome unterbrochen sein können, ein cyclisches sekundäres oder tertiäres aliphatisches oder heteroaliphatisches Ammoniumion bedeutet, beispielsweise jeweils Morpholinium, Thiomorpholinium, Piperidinium, Pyrrolidinium, oder jeweils protoniertes l,4-Diazabicyclo[1.1.2]octane (DABCO) oder l,5-Diazabicyclo[4.3.0]undec-7-en (DBU), ein heteroaromatisches Ammoniumkation bedeutet, beispielsweise jeweils protoniertes Pyridin, 2-Methylpyridin, 3-Methylpyridin, 4-Methylpyridin, 2,4-Dimethylpyridin, 2,5-Dimethylpyridin, 2,6- Dimethylpyridin, 5-Ethyl-2-methylpyridin, Collidin , Pyrrol, Imidazol, Chinolin, Chinoxalin, 1,2-Dimethylimidazol, 1,3-Dimethylimidazolium-methylsulfat oder weiterhin auch für ein Trimethylsulfoniumion stehen kann.
2. Verbindungen der Formel (I) gemäß Anspruch 1, worin die Reste folgende Bedeutungen aufweisen:
X Ci-Cö-Alkoxy, Brom, Chlor oder Fluor ist,
Y Ci-Cö-Alkyl, Ci-Ce-Halogenalkyl, Ci-Ce-Alkoxy oder Cs-Ce-Cycloalkyl ist,
R1 Wasserstoff, Ci-Cö-Alkyl, Ci-C4-Alkoxy-C2-C4- Alkyl, C3-C6-Cycloalkyl, C3-C6-Cycloalkyl- Ci-C2-Alkyl, Ci-Cö-Halogenalkyl, C2-C6-Alkenyl, Ci-C4-Halogenalkenyl, C2-C6-Alkinyl oder C2-C6 Halogenalkinyl ist,
R2 Wasserstoff, Ci-Ce-Alkyl, Ci-C4-Alkoxy-C2-C4-Alkyl, Ci-Cö-Halogenalkyl, C3-C6-
Cycloalkyl, C2-C6-Alkenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, Ci-Cö-Alkoxy oder Ci- Ce-Halogenalkoxy ist,
R3 Wasserstoff, Ci-C4-Alkyl, Ci-C4-Halogenalkyl, C3-C6-Cycloalkyl oder Halogen ist,
G Wasserstoff, eine abspaltbare Gruppe F oder ein Kation E ist, wobei
F einer der folgenden Reste
Figure imgf000126_0001
worin R4 C 1 -C4- Alkyl oder C 1 -C3 - Alkoxy-C 1 -C4- Alkyl ist,
R5 C1-C4- Alkyl ist,
R6 C1-C4- Alkyl, ein unsubstituiertes Phenyl oder ein einfach oder mehrfach mit Halogen,
C1-C4- Alkyl, Ci-C4-Haloalkyl oder Cyano substituiertes Phenyl ist,
E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion ist, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen C1-C10- Alkyl oder C3-C7-Cycloalkyl, die unabhängig voneinander jeweils ein- oder mehrfach mit Fluor, Chlor, Brom, Cyano, Hydroxy substituiert sind.
3. Verbindungen der Formel (I) gemäß Anspruch 1 oder 2, worin die Reste folgende Bedeutungen aufweisen:
X Ci-Cö-Alkoxy, Brom, Chlor oder Fluor ist,
Y Ci-Cö-Alkyl, Ci-Cr, -Halogenalkyl, Ci-Ce-Alkoxy oder Cs-Ce-Cycloalkyl ist,
R1 Wasserstoff, Ci-Cö-Alkyl, Ci-C4-Alkoxy-C2-C4- Alkyl, C3-C6-Cycloalkyl, C3-C6-Cycloalkyl- C1-C2- Alkyl, Ci-Cö-Halogenalkyl, C2-C6-Alkenyl, Ci-C4-Halogenalkenyl, C2-C6-Alkinyl oder C2-C6 Halogenalkinyl ist,
R2 Wasserstoff, Ci-Cr, -Alkyl, Ci-C4-Alkoxy-C2-C4-Alkyl, Ci-Cö-Halogenalkyl, C3-C6-
Cycloalkyl, C2-C6-Alkenyl, C2-C6-Halogenalkenyl, C2-C6-Alkinyl, Ci-Cö-Alkoxy oder Ci- Ce-Halogenalkoxy ist,
R3 Wasserstoff, C1-C4- Alkyl, Ci-C4-Halogenalkyl, C3-C6-Cycloalkyl oder Halogen ist,
G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei
L einer der folgenden Reste
Figure imgf000127_0001
worin
R4 C i -C4- Alkyl oder C 1 -C3 - Alkoxy-C 1 -C4- Alkyl ist,
R5 C1-C4- Alkyl ist,
E ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion ist, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen C1-C10- Alkyl oder C3-C7-Cycloalkyl substituiert sind.
4. Verbindungen der Formel (I) gemäß einem der Ansprüche 1 bis 3, worin die Reste folgende
Bedeutungen aufweisen:
X Methoxy, Ethoxy, Brom, Chlor oder Fluor ist,
Y Methyl, Ethyl, Cyclopropyl, Ethoxy, Methoxy ist,
R1 Wasserstoff, Ethyl, Methyl, n-Propyl, n-Butyl, Allyl, Methoxymethyl oder Ethoxymethyl ist, R2 Wasserstoff oder Methyl ist,
R3 Wasserstoff, Methyl, Ethyl, Brom ist,
G Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E ist, wobei
L einer der folgenden Reste
Figure imgf000128_0001
worin
R4 Methyl, Ethyl oder i-Propyl ist,
R5 Methyl, Ethyl, i-Propyl oder t-Butyl ist,
E ein Natriumion oder ein Kaliumion ist.
5. Verbindungen der Formel (X), worin die Reste die folgenden Bedeutungen aufweisen:
Figure imgf000128_0002
R3 ist Wasserstoff oder Methyl,
X ist Fluor, Chlor oder Brom,
Y ist Methyl, Ethyl, Methoxy, Ethoxy.
6. Verfahren zur Herstellung der Verbindungen der Formel (I) oder ein agrochemisch akzeptables Salz davon gemäß einem der Ansprüche 1 bis 4, indem eine Verbindung der allgemeinen Formel (II) in welcher R1, R2, R3, X und Y die oben angegebene Bedeutung haben und R10 für Alkyl, bevorzugt für Methyl oder Ethyl steht, gegebenenfalls in Anwesenheit eines geeigneten Lösungs- oder Verdünnungsmittels, mit einer geeigneten Base unter formaler Abspaltung der Gruppe R10OH cyclisiert wird.
7. Agrochemisches Mittel, enthaltend a) mindestens eine Verbindung der Formel (I) oder ein agrochemisch akzeptables Salz davon, wie in einem oder mehreren der Ansprüche 1 bis 4 definiert, und b) im Pflanzenschutz übliche Hilfs- und Zusatzstoffe.
8. Agrochemisches Mittel, enthaltend
a) mindestens eine Verbindung der Formel (I) oder ein agrochemisch akzeptables Salz davon, wie in einem oder mehreren der Ansprüche 1 bis 4 definiert,
b) einen oder mehrere von Komponente a) verschiedene agrochemische Wirkstoffe, und optional
c) im Pflanzenschutz übliche Hilfs- und Zusatzstoffe.
9. Verfahren zur Bekämpfung von unerwünschten Pflanzen oder zur Wachstumsregulierung von Pflanzen, wobei eine wirksame Menge mindestens einer Verbindung der Formel (I) oder ein agrochemisch akzeptables Salz davon, wie in einem oder mehreren der Ansprüche 1 bis 4 definiert, auf die Pflanzen, das Saatgut oder die Fläche, auf der die Pflanzen wachsen, appliziert wird.
10. Verwendung von Verbindungen der Formel (I) oder ein agrochemisch akzeptables Salz davon, wie in einem oder mehreren der Ansprüche 1 bis 4 definiert, als Herbizide oder Pflanzenwachstumsregulatoren.
11. Verwendung nach Anspruch 10, wobei die Verbindungen der Formel (I) oder ein agrochemisch akzeptables Salz davon zur Bekämpfung von Schadpflanzen oder zur Wachstumsregulierung in Pflanzenkulturen eingesetzt werden.
12. Verwendung nach Anspruch 11, wobei die Kulturpflanzen transgene oder nicht transgene Kulturpflanzen sind.
PCT/EP2020/056204 2019-03-15 2020-03-09 Speziell substituierte 3-phenyl-5-spirocyclopentyl-3-pyrrolin-2-one und deren verwendung als herbizide WO2020187626A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CA3133184A CA3133184A1 (en) 2019-03-15 2020-03-09 Specifically substituted 3-phenyl-5-spirocyclopentyl-3-pyrrolin-2-ones and their use as herbicides
EP20707483.2A EP3938347A1 (de) 2019-03-15 2020-03-09 Speziell substituierte 3-phenyl-5-spirocyclopentyl-3-pyrrolin-2-one und deren verwendung als herbizide
JP2021555319A JP2022524861A (ja) 2019-03-15 2020-03-09 具体的に置換された3-フェニル-5-スピロシクロペンチル-3-ピロリン-2-オン類及び除草剤としてのその使用
AU2020242662A AU2020242662A1 (en) 2019-03-15 2020-03-09 Specifically substituted 3-phenyl-5-spirocyclopentyl-3-pyrrolin-2-ones and their use as herbicides
EA202192471A EA202192471A1 (ru) 2019-03-15 2020-03-09 Специфически замещенные 3-фенил-5-спироциклопентил-3-пирролин-2-оны и их применение в качестве гербицидов
US17/438,827 US20220386606A1 (en) 2019-03-15 2020-03-09 Specifically substituted 3-phenyl-5-spirocyclopentyl-3-pyrrolin-2-ones and their use as herbicides
CN202080021291.6A CN113574051A (zh) 2019-03-15 2020-03-09 特定取代的3-苯基-5-螺环戊基-3-吡咯啉-2-酮及其作为除草剂的用途
BR112021018297A BR112021018297A2 (pt) 2019-03-15 2020-03-09 3-fenil-5-espirociclopentil-3-pirrolina-2-ona especialmente substituída e sua aplicação como herbicida
IL286252A IL286252A (en) 2019-03-15 2021-09-09 Specific converted 3-phenyl-5-spirocyclopentyl-3-pyrroline-2-ones and their use as herbicides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP19163148.0 2019-03-15
EP19163148 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020187626A1 true WO2020187626A1 (de) 2020-09-24

Family

ID=65817912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/056204 WO2020187626A1 (de) 2019-03-15 2020-03-09 Speziell substituierte 3-phenyl-5-spirocyclopentyl-3-pyrrolin-2-one und deren verwendung als herbizide

Country Status (11)

Country Link
US (1) US20220386606A1 (de)
EP (1) EP3938347A1 (de)
JP (1) JP2022524861A (de)
CN (1) CN113574051A (de)
AR (1) AR118347A1 (de)
AU (1) AU2020242662A1 (de)
BR (1) BR112021018297A2 (de)
CA (1) CA3133184A1 (de)
EA (1) EA202192471A1 (de)
IL (1) IL286252A (de)
WO (1) WO2020187626A1 (de)

Citations (88)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
US4272417A (en) 1979-05-22 1981-06-09 Cargill, Incorporated Stable protective seed coating
EP0086750A2 (de) 1982-02-17 1983-08-24 Ciba-Geigy Ag Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen
EP0094349A2 (de) 1982-05-07 1983-11-16 Ciba-Geigy Ag Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen
EP0131624A1 (de) 1983-01-17 1985-01-23 Monsanto Co Plasmide zur transformation von pflanzenzellen.
JPS6087254A (ja) 1983-10-19 1985-05-16 Japan Carlit Co Ltd:The 新規尿素化合物及びそれを含有する除草剤
EP0142924A2 (de) 1983-09-26 1985-05-29 Mycogen Plant Science, Inc. Insektresistente Pflanzen
EP0174562A2 (de) 1984-09-11 1986-03-19 Hoechst Aktiengesellschaft Pflanzenschützende Mittel auf Basis von 1,2,4-Triazolderivaten sowie neue Derivate des 1,2,4-Triazols
EP0191736A2 (de) 1985-02-14 1986-08-20 Ciba-Geigy Ag Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen
EP0193259A1 (de) 1985-01-18 1986-09-03 Plant Genetic Systems N.V. Modifikation von Pflanzen auf pentechnologischem Wege zur Bekämpfung oder zur Kontrolle von Insekten
EP0221044A1 (de) 1985-10-25 1987-05-06 Monsanto Company Pflanzenvektoren
EP0242246A1 (de) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Durch Gentechnologie erhaltene und gegen Glutaminsynthetase-Inhibitoren resistente Pflanzenzellen
EP0257993A2 (de) 1986-08-26 1988-03-02 E.I. Du Pont De Nemours And Company Herbizid-resistante Pflanzen-Acetolactatsynthase kodierendes Nucleinsäurefragment
EP0268554A2 (de) 1986-10-22 1988-05-25 Ciba-Geigy Ag 1,5-Diphenylpyrazol-3-carbonsäurederivate zum Schützen von Kulturpflanzen
EP0269806A1 (de) 1986-10-04 1988-06-08 Hoechst Aktiengesellschaft Phenylpyrazolcarbonsäurederivate, ihre Herstellung und Verwendung als Pflanzenwachstumsregulatoren und Safener
US4808430A (en) 1987-02-27 1989-02-28 Yazaki Corporation Method of applying gel coating to plant seeds
EP0305398A1 (de) 1986-05-01 1989-03-08 Honeywell Inc Verbindungsanordnung für mehrere integrierte schaltungen.
EP0309862A1 (de) 1987-09-30 1989-04-05 Bayer Ag Stilbensynthase-Gen
EP0333131A1 (de) 1988-03-17 1989-09-20 Hoechst Aktiengesellschaft Pflanzenschützende Mittel auf Basis von Pyrazolcarbonsäurederivaten
WO1989010396A1 (en) 1988-04-28 1989-11-02 Plant Genetic Systems N.V. Plants with modified stamen cells
EP0346620A1 (de) 1988-05-20 1989-12-20 Hoechst Aktiengesellschaft 1,2,4-Triazolderivate enthaltende pflanzenschützende Mittel sowie neue Derivate des 1,2,4-Triazols
EP0355599A1 (de) 1988-08-20 1990-02-28 Bayer Ag 3-Aryl-pyrrolidin-2,4-dione
EP0365484A1 (de) 1988-10-20 1990-04-25 Ciba-Geigy Ag Sulfamoylphenylharnstoffe
EP0377893A2 (de) 1989-01-07 1990-07-18 Bayer Ag 3-Aryl-pyrrolidin-2,4-dion-Derivate
EP0415211A2 (de) 1989-09-01 1991-03-06 Bayer Ag 3-Aryl-pyrrolidin-2,4-dion-derivate
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
WO1991007874A1 (de) 1989-11-30 1991-06-13 Hoechst Aktiengesellschaft Pyrazoline zum schutz von kulturpflanzen gegenüber herbiziden
WO1991008202A1 (de) 1989-11-25 1991-06-13 Hoechst Aktiengesellschaft Isoxazoline, verfahren zu ihrer herstellung und ihre verwendung als pflanzenschützende mittel
EP0442077A2 (de) 1990-02-14 1991-08-21 Bayer Ag 3-Aryl-pyrrolidin-2,4-dion-Derivate als Insektizide und Herbizide
WO1991013972A1 (en) 1990-03-16 1991-09-19 Calgene, Inc. Plant desaturases - compositions and uses
WO1991019806A1 (en) 1990-06-18 1991-12-26 Monsanto Company Increased starch content in plants
EP0464461A2 (de) 1990-06-29 1992-01-08 Bayer Ag Stilbensynthase-Gene aus Weinrebe
WO1992000377A1 (en) 1990-06-25 1992-01-09 Monsanto Company Glyphosate tolerant plants
US5084082A (en) 1988-09-22 1992-01-28 E. I. Du Pont De Nemours And Company Soybean plants with dominant selectable trait for herbicide resistance
EP0492366A2 (de) 1990-12-21 1992-07-01 Hoechst Schering AgrEvo GmbH Neue 5-Chlorchinolin-8-oxyalkancarbonsäurederivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Antidots von Herbiziden
WO1992011376A1 (en) 1990-12-21 1992-07-09 Amylogene Hb Genetically engineered modification of potato to form amylopectin-type starch
WO1992014827A1 (en) 1991-02-13 1992-09-03 Institut Für Genbiologische Forschung Berlin Gmbh Plasmids containing dna-sequences that cause changes in the carbohydrate concentration and the carbohydrate composition in plants, as well as plant cells and plants containing these plasmids
US5198599A (en) 1990-06-05 1993-03-30 Idaho Resarch Foundation, Inc. Sulfonylurea herbicide resistance in plants
EP0582198A2 (de) 1992-08-01 1994-02-09 Hoechst Schering AgrEvo GmbH Substituierte (Hetero-)Arylverbindungen, Verfahren zu deren Herstellung, diese enthaltende Mittel und deren Verwendung als Safener
WO1995007897A1 (de) 1993-09-16 1995-03-23 Hoechst Schering Agrevo Gmbh Substituierte isoxazoline, verfahren zu deren herstellung, diese enthaltende mittel und deren verwendung als safener
WO1996038567A2 (fr) 1995-06-02 1996-12-05 Rhone-Poulenc Agrochimie Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un gene de l'hydroxy-phenyl pyruvate dioxygenase, tolerantes a certains herbicides
WO1997041218A1 (en) 1996-04-29 1997-11-06 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herbicide resistant rice
WO1997045016A1 (de) 1996-05-29 1997-12-04 Hoechst Schering Agrevo Gmbh Neue n-acylsulfonamide, neue mischungen aus herbiziden und antidots und deren verwendung
WO1998005638A2 (de) 1996-08-05 1998-02-12 Bayer Aktiengesellschaft 2- und 2,5-substituierte phenylketoenole
WO1998013361A1 (en) 1996-09-26 1998-04-02 Novartis Ag Herbicidal composition
WO1998027049A1 (de) 1996-12-19 1998-06-25 Hoechst Schering Agrevo Gmbh Neue 2-fluoracrylsäurederivate, neue mischungen aus herbiziden und antidots und deren verwendung
US5773702A (en) 1996-07-17 1998-06-30 Board Of Trustees Operating Michigan State University Imidazolinone herbicide resistant sugar beet plants
WO1998038856A1 (en) 1997-03-04 1998-09-11 Zeneca Limited Compositions for safening rice against acetochlor
WO1999000020A1 (de) 1997-06-27 1999-01-07 Hoechst Schering Agrevo Gmbh 3-(5-tetrazolylcarbonyl)-2-chinolone und diese enthaltende nutzpflanzenschützende mittel
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
WO1999016744A1 (de) 1997-09-29 1999-04-08 Aventis Cropscience Gmbh Acylsulfamoylbenzoesäureamide, diese enthaltende nutzpflanzenschützende mittel und verfahren zu ihrer herstellung
WO1999024586A1 (fr) 1997-11-07 1999-05-20 Aventis Cropscience S.A. Hydroxy-phenyl pyruvate dioxygenase chimere, sequence d'adn et obtention de plantes contenant un tel gene, tolerantes aux herbicides
WO1999034008A1 (fr) 1997-12-24 1999-07-08 Aventis Cropscience S.A. Procede de preparation enzymatique d'homogentisate
WO1999057965A1 (de) 1998-05-14 1999-11-18 Aventis Cropscience Gmbh Sulfonylharnstoff-tolerante zuckerrübenmutanten
JP2000053670A (ja) 1998-08-10 2000-02-22 Ube Ind Ltd アルコキシメチルフラノン誘導体及び有害生物防除剤
WO2001065922A2 (en) 2000-03-09 2001-09-13 E. I. Du Pont De Nemours And Company Sulfonylurea-tolerant sunflower plants
WO2001066704A2 (en) 2000-03-09 2001-09-13 Monsanto Technology Llc Methods for making plants tolerant to glyphosate and compositions thereof
WO2001074770A1 (de) 2000-04-03 2001-10-11 Bayer Cropscience Ag C2-phenylsubstituierte cyclische ketoenole als schädlingsbekämpfungsmittel und herbizide
WO2002028186A2 (en) 2000-10-06 2002-04-11 Monsanto Technology, Llc Seed treatment with combinations of insecticides
WO2002034048A1 (en) 2000-10-23 2002-05-02 Syngenta Participations Ag Agrochemical compositions with quinoline safeners
WO2002036787A2 (fr) 2000-10-30 2002-05-10 Bayer Cropscience S.A. Plantes tolerantes aux herbicides par contournement de voie metabolique
WO2002046387A2 (en) 2000-12-07 2002-06-13 Syngenta Limited Plant derived hydroxy phenyl pyruvate dioxygenases (hppd) resistant against triketone herbicides and transgenic plants containing these dioxygenases
WO2002080675A1 (en) 2001-03-21 2002-10-17 Monsanto Technology, Llc Treated plant seeds with controlled release of active agents
US20030176428A1 (en) 1998-11-16 2003-09-18 Schneidersmann Ferdinand Martin Pesticidal composition for seed treatment
WO2004024688A1 (de) 2002-08-28 2004-03-25 Bayer Cropscience Aktiengesellschaft Substituierte spirocyclische ketoenole
WO2004024928A2 (fr) 2002-09-11 2004-03-25 Bayer Cropscience S.A. Plantes transformees a biosynthese de prenylquinones amelioree
US6768044B1 (en) 2000-05-10 2004-07-27 Bayer Cropscience Sa Chimeric hydroxyl-phenyl pyruvate dioxygenase, DNA sequence and method for obtaining plants containing such a gene, with herbicide tolerance
WO2004084631A1 (de) 2003-03-26 2004-10-07 Bayer Cropscience Gmbh Verwendung von hydroxyaromaten als safener
WO2005015994A1 (de) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Verwendung von hydroxyaromaten als safener
WO2005016001A1 (de) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Safener auf basis aromatisch-aliphatischer carbonsäurederivate
WO2005044796A1 (de) 2003-11-05 2005-05-19 Bayer Cropscience Aktiengesellschaft 2-halogen-6-alkyl-phenyl substituierte spirocyclische tetramsäure-derivate
WO2005112630A1 (de) 2004-05-12 2005-12-01 Bayer Cropscience Gmbh Chinoxalin-2-on-derivate, diese enthaltende nutzpflanzenschützende mittel und verfahren zu ihrer herstellung und deren verwendung
WO2007023719A1 (ja) 2005-08-22 2007-03-01 Kumiai Chemical Industry Co., Ltd. 薬害軽減剤及び薬害が軽減された除草剤組成物
WO2007023764A1 (ja) 2005-08-26 2007-03-01 Kumiai Chemical Industry Co., Ltd. 薬害軽減剤及び薬害が軽減された除草剤組成物
WO2007103567A2 (en) 2006-03-09 2007-09-13 E. I. Dupont De Nemours & Company Polynucleotide encoding a maize herbicide resistance gene and methods for use
WO2008067873A1 (de) 2006-10-25 2008-06-12 Bayer Cropscience Ag Trifluormethoxy-phenylsubstituierte tetramsäure-derivate als schädlingsbekämpfungsmittel und/oder herbizide
WO2008131861A1 (de) 2007-04-30 2008-11-06 Bayer Cropscience Ag Verwendung von pyridin-2-oxy-3-carbonamiden als safener
WO2008131860A2 (de) 2007-04-30 2008-11-06 Bayer Cropscience Ag Pyridoncarboxamide, diese enthaltende nutzpflanzenschützende mittel und verfahren zu ihrer herstellung und deren verwendung
WO2008150473A2 (en) 2007-05-30 2008-12-11 Syngenta Participations Ag Cytochrome p450 genes conferring herbicide resistance
US20090275574A1 (en) 2008-05-05 2009-11-05 Astrazeneca Ab Novel compounds-300
WO2009144079A1 (en) 2008-04-14 2009-12-03 Bayer Bioscience N.V. New mutated hydroxyphenylpyruvate dioxygenase, dna sequence and isolation of plants which are tolerant to hppd inhibitor herbicides
CN101838227A (zh) 2010-04-30 2010-09-22 孙德群 一种苯甲酰胺类除草剂的安全剂
WO2010115780A1 (en) 2009-04-08 2010-10-14 Syngenta Participations Ag Spiroheterocyclic pyrrolidine dione derivatives used as pesticides
WO2015032702A1 (en) 2013-09-06 2015-03-12 Syngenta Limited Herbicidally active 2-halogen-4-alkynyl- phenyl-pyrazolidine-dione or pyrrolidine-dione derivatives
WO2015040114A1 (en) 2013-09-20 2015-03-26 Syngenta Limited Herbicidally active 2-halogen-4-alkynyl-phenyl-pyrazolidine-dione or pyrrolidine-dione derivatives
WO2015165279A1 (zh) 2014-04-29 2015-11-05 浙江导明医药科技有限公司 多氟化合物作为布鲁顿酪氨酸激酶抑制剂
WO2016207097A1 (de) 2015-06-22 2016-12-29 Bayer Cropscience Aktiengesellschaft Neue alkinyl-substituierte- 3-phenylpyrrolidin-2,4-dione und deren verwendung als herbizide
WO2017178314A1 (de) * 2016-04-14 2017-10-19 Bayer Cropscience Aktiengesellschaft Anellierte 3-phenyltetramsäure-derivate mit herbizider wirkung

Patent Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272417A (en) 1979-05-22 1981-06-09 Cargill, Incorporated Stable protective seed coating
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
EP0086750A2 (de) 1982-02-17 1983-08-24 Ciba-Geigy Ag Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen
EP0094349A2 (de) 1982-05-07 1983-11-16 Ciba-Geigy Ag Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen
EP0131624A1 (de) 1983-01-17 1985-01-23 Monsanto Co Plasmide zur transformation von pflanzenzellen.
EP0142924A2 (de) 1983-09-26 1985-05-29 Mycogen Plant Science, Inc. Insektresistente Pflanzen
JPS6087254A (ja) 1983-10-19 1985-05-16 Japan Carlit Co Ltd:The 新規尿素化合物及びそれを含有する除草剤
EP0174562A2 (de) 1984-09-11 1986-03-19 Hoechst Aktiengesellschaft Pflanzenschützende Mittel auf Basis von 1,2,4-Triazolderivaten sowie neue Derivate des 1,2,4-Triazols
EP0193259A1 (de) 1985-01-18 1986-09-03 Plant Genetic Systems N.V. Modifikation von Pflanzen auf pentechnologischem Wege zur Bekämpfung oder zur Kontrolle von Insekten
EP0191736A2 (de) 1985-02-14 1986-08-20 Ciba-Geigy Ag Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen
EP0221044A1 (de) 1985-10-25 1987-05-06 Monsanto Company Pflanzenvektoren
EP0242246A1 (de) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Durch Gentechnologie erhaltene und gegen Glutaminsynthetase-Inhibitoren resistente Pflanzenzellen
EP0242236A1 (de) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Durch Gentechnologie erhaltene und gegen Glutaminsynthetase-Inhibitoren resistente Pflanzenzellen
EP0305398A1 (de) 1986-05-01 1989-03-08 Honeywell Inc Verbindungsanordnung für mehrere integrierte schaltungen.
EP0257993A2 (de) 1986-08-26 1988-03-02 E.I. Du Pont De Nemours And Company Herbizid-resistante Pflanzen-Acetolactatsynthase kodierendes Nucleinsäurefragment
EP0269806A1 (de) 1986-10-04 1988-06-08 Hoechst Aktiengesellschaft Phenylpyrazolcarbonsäurederivate, ihre Herstellung und Verwendung als Pflanzenwachstumsregulatoren und Safener
EP0268554A2 (de) 1986-10-22 1988-05-25 Ciba-Geigy Ag 1,5-Diphenylpyrazol-3-carbonsäurederivate zum Schützen von Kulturpflanzen
US4808430A (en) 1987-02-27 1989-02-28 Yazaki Corporation Method of applying gel coating to plant seeds
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
EP0309862A1 (de) 1987-09-30 1989-04-05 Bayer Ag Stilbensynthase-Gen
EP0333131A1 (de) 1988-03-17 1989-09-20 Hoechst Aktiengesellschaft Pflanzenschützende Mittel auf Basis von Pyrazolcarbonsäurederivaten
WO1989010396A1 (en) 1988-04-28 1989-11-02 Plant Genetic Systems N.V. Plants with modified stamen cells
EP0346620A1 (de) 1988-05-20 1989-12-20 Hoechst Aktiengesellschaft 1,2,4-Triazolderivate enthaltende pflanzenschützende Mittel sowie neue Derivate des 1,2,4-Triazols
EP0355599A1 (de) 1988-08-20 1990-02-28 Bayer Ag 3-Aryl-pyrrolidin-2,4-dione
US5084082A (en) 1988-09-22 1992-01-28 E. I. Du Pont De Nemours And Company Soybean plants with dominant selectable trait for herbicide resistance
EP0365484A1 (de) 1988-10-20 1990-04-25 Ciba-Geigy Ag Sulfamoylphenylharnstoffe
EP0377893A2 (de) 1989-01-07 1990-07-18 Bayer Ag 3-Aryl-pyrrolidin-2,4-dion-Derivate
EP0415211A2 (de) 1989-09-01 1991-03-06 Bayer Ag 3-Aryl-pyrrolidin-2,4-dion-derivate
WO1991008202A1 (de) 1989-11-25 1991-06-13 Hoechst Aktiengesellschaft Isoxazoline, verfahren zu ihrer herstellung und ihre verwendung als pflanzenschützende mittel
WO1991007874A1 (de) 1989-11-30 1991-06-13 Hoechst Aktiengesellschaft Pyrazoline zum schutz von kulturpflanzen gegenüber herbiziden
EP0442077A2 (de) 1990-02-14 1991-08-21 Bayer Ag 3-Aryl-pyrrolidin-2,4-dion-Derivate als Insektizide und Herbizide
WO1991013972A1 (en) 1990-03-16 1991-09-19 Calgene, Inc. Plant desaturases - compositions and uses
US5198599A (en) 1990-06-05 1993-03-30 Idaho Resarch Foundation, Inc. Sulfonylurea herbicide resistance in plants
WO1991019806A1 (en) 1990-06-18 1991-12-26 Monsanto Company Increased starch content in plants
WO1992000377A1 (en) 1990-06-25 1992-01-09 Monsanto Company Glyphosate tolerant plants
EP0464461A2 (de) 1990-06-29 1992-01-08 Bayer Ag Stilbensynthase-Gene aus Weinrebe
EP0492366A2 (de) 1990-12-21 1992-07-01 Hoechst Schering AgrEvo GmbH Neue 5-Chlorchinolin-8-oxyalkancarbonsäurederivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Antidots von Herbiziden
WO1992011376A1 (en) 1990-12-21 1992-07-09 Amylogene Hb Genetically engineered modification of potato to form amylopectin-type starch
WO1992014827A1 (en) 1991-02-13 1992-09-03 Institut Für Genbiologische Forschung Berlin Gmbh Plasmids containing dna-sequences that cause changes in the carbohydrate concentration and the carbohydrate composition in plants, as well as plant cells and plants containing these plasmids
EP0582198A2 (de) 1992-08-01 1994-02-09 Hoechst Schering AgrEvo GmbH Substituierte (Hetero-)Arylverbindungen, Verfahren zu deren Herstellung, diese enthaltende Mittel und deren Verwendung als Safener
WO1995007897A1 (de) 1993-09-16 1995-03-23 Hoechst Schering Agrevo Gmbh Substituierte isoxazoline, verfahren zu deren herstellung, diese enthaltende mittel und deren verwendung als safener
WO1996038567A2 (fr) 1995-06-02 1996-12-05 Rhone-Poulenc Agrochimie Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un gene de l'hydroxy-phenyl pyruvate dioxygenase, tolerantes a certains herbicides
WO1997041218A1 (en) 1996-04-29 1997-11-06 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herbicide resistant rice
WO1997045016A1 (de) 1996-05-29 1997-12-04 Hoechst Schering Agrevo Gmbh Neue n-acylsulfonamide, neue mischungen aus herbiziden und antidots und deren verwendung
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
US5773702A (en) 1996-07-17 1998-06-30 Board Of Trustees Operating Michigan State University Imidazolinone herbicide resistant sugar beet plants
WO1998005638A2 (de) 1996-08-05 1998-02-12 Bayer Aktiengesellschaft 2- und 2,5-substituierte phenylketoenole
WO1998013361A1 (en) 1996-09-26 1998-04-02 Novartis Ag Herbicidal composition
WO1998027049A1 (de) 1996-12-19 1998-06-25 Hoechst Schering Agrevo Gmbh Neue 2-fluoracrylsäurederivate, neue mischungen aus herbiziden und antidots und deren verwendung
WO1998038856A1 (en) 1997-03-04 1998-09-11 Zeneca Limited Compositions for safening rice against acetochlor
WO1999000020A1 (de) 1997-06-27 1999-01-07 Hoechst Schering Agrevo Gmbh 3-(5-tetrazolylcarbonyl)-2-chinolone und diese enthaltende nutzpflanzenschützende mittel
WO1999016744A1 (de) 1997-09-29 1999-04-08 Aventis Cropscience Gmbh Acylsulfamoylbenzoesäureamide, diese enthaltende nutzpflanzenschützende mittel und verfahren zu ihrer herstellung
WO1999024586A1 (fr) 1997-11-07 1999-05-20 Aventis Cropscience S.A. Hydroxy-phenyl pyruvate dioxygenase chimere, sequence d'adn et obtention de plantes contenant un tel gene, tolerantes aux herbicides
WO1999024585A1 (fr) 1997-11-07 1999-05-20 Aventis Cropscience S.A. Hydroxy-phenyl pyruvate dioxygenase mutee, sequence d'adn et obtention de plantes contenant un tel gene, tolerantes aux herbicides
WO1999034008A1 (fr) 1997-12-24 1999-07-08 Aventis Cropscience S.A. Procede de preparation enzymatique d'homogentisate
WO1999057965A1 (de) 1998-05-14 1999-11-18 Aventis Cropscience Gmbh Sulfonylharnstoff-tolerante zuckerrübenmutanten
JP2000053670A (ja) 1998-08-10 2000-02-22 Ube Ind Ltd アルコキシメチルフラノン誘導体及び有害生物防除剤
US20030176428A1 (en) 1998-11-16 2003-09-18 Schneidersmann Ferdinand Martin Pesticidal composition for seed treatment
WO2001065922A2 (en) 2000-03-09 2001-09-13 E. I. Du Pont De Nemours And Company Sulfonylurea-tolerant sunflower plants
WO2001066704A2 (en) 2000-03-09 2001-09-13 Monsanto Technology Llc Methods for making plants tolerant to glyphosate and compositions thereof
WO2001074770A1 (de) 2000-04-03 2001-10-11 Bayer Cropscience Ag C2-phenylsubstituierte cyclische ketoenole als schädlingsbekämpfungsmittel und herbizide
US6768044B1 (en) 2000-05-10 2004-07-27 Bayer Cropscience Sa Chimeric hydroxyl-phenyl pyruvate dioxygenase, DNA sequence and method for obtaining plants containing such a gene, with herbicide tolerance
WO2002028186A2 (en) 2000-10-06 2002-04-11 Monsanto Technology, Llc Seed treatment with combinations of insecticides
WO2002034048A1 (en) 2000-10-23 2002-05-02 Syngenta Participations Ag Agrochemical compositions with quinoline safeners
WO2002036787A2 (fr) 2000-10-30 2002-05-10 Bayer Cropscience S.A. Plantes tolerantes aux herbicides par contournement de voie metabolique
WO2002046387A2 (en) 2000-12-07 2002-06-13 Syngenta Limited Plant derived hydroxy phenyl pyruvate dioxygenases (hppd) resistant against triketone herbicides and transgenic plants containing these dioxygenases
WO2002080675A1 (en) 2001-03-21 2002-10-17 Monsanto Technology, Llc Treated plant seeds with controlled release of active agents
WO2004024688A1 (de) 2002-08-28 2004-03-25 Bayer Cropscience Aktiengesellschaft Substituierte spirocyclische ketoenole
WO2004024928A2 (fr) 2002-09-11 2004-03-25 Bayer Cropscience S.A. Plantes transformees a biosynthese de prenylquinones amelioree
WO2004084631A1 (de) 2003-03-26 2004-10-07 Bayer Cropscience Gmbh Verwendung von hydroxyaromaten als safener
WO2005015994A1 (de) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Verwendung von hydroxyaromaten als safener
WO2005016001A1 (de) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Safener auf basis aromatisch-aliphatischer carbonsäurederivate
WO2005044796A1 (de) 2003-11-05 2005-05-19 Bayer Cropscience Aktiengesellschaft 2-halogen-6-alkyl-phenyl substituierte spirocyclische tetramsäure-derivate
WO2005112630A1 (de) 2004-05-12 2005-12-01 Bayer Cropscience Gmbh Chinoxalin-2-on-derivate, diese enthaltende nutzpflanzenschützende mittel und verfahren zu ihrer herstellung und deren verwendung
WO2007023719A1 (ja) 2005-08-22 2007-03-01 Kumiai Chemical Industry Co., Ltd. 薬害軽減剤及び薬害が軽減された除草剤組成物
WO2007023764A1 (ja) 2005-08-26 2007-03-01 Kumiai Chemical Industry Co., Ltd. 薬害軽減剤及び薬害が軽減された除草剤組成物
WO2007103567A2 (en) 2006-03-09 2007-09-13 E. I. Dupont De Nemours & Company Polynucleotide encoding a maize herbicide resistance gene and methods for use
WO2008067873A1 (de) 2006-10-25 2008-06-12 Bayer Cropscience Ag Trifluormethoxy-phenylsubstituierte tetramsäure-derivate als schädlingsbekämpfungsmittel und/oder herbizide
WO2008131861A1 (de) 2007-04-30 2008-11-06 Bayer Cropscience Ag Verwendung von pyridin-2-oxy-3-carbonamiden als safener
WO2008131860A2 (de) 2007-04-30 2008-11-06 Bayer Cropscience Ag Pyridoncarboxamide, diese enthaltende nutzpflanzenschützende mittel und verfahren zu ihrer herstellung und deren verwendung
WO2008150473A2 (en) 2007-05-30 2008-12-11 Syngenta Participations Ag Cytochrome p450 genes conferring herbicide resistance
WO2009144079A1 (en) 2008-04-14 2009-12-03 Bayer Bioscience N.V. New mutated hydroxyphenylpyruvate dioxygenase, dna sequence and isolation of plants which are tolerant to hppd inhibitor herbicides
US20090275574A1 (en) 2008-05-05 2009-11-05 Astrazeneca Ab Novel compounds-300
WO2010115780A1 (en) 2009-04-08 2010-10-14 Syngenta Participations Ag Spiroheterocyclic pyrrolidine dione derivatives used as pesticides
CN101838227A (zh) 2010-04-30 2010-09-22 孙德群 一种苯甲酰胺类除草剂的安全剂
WO2015032702A1 (en) 2013-09-06 2015-03-12 Syngenta Limited Herbicidally active 2-halogen-4-alkynyl- phenyl-pyrazolidine-dione or pyrrolidine-dione derivatives
WO2015040114A1 (en) 2013-09-20 2015-03-26 Syngenta Limited Herbicidally active 2-halogen-4-alkynyl-phenyl-pyrazolidine-dione or pyrrolidine-dione derivatives
WO2015165279A1 (zh) 2014-04-29 2015-11-05 浙江导明医药科技有限公司 多氟化合物作为布鲁顿酪氨酸激酶抑制剂
WO2016207097A1 (de) 2015-06-22 2016-12-29 Bayer Cropscience Aktiengesellschaft Neue alkinyl-substituierte- 3-phenylpyrrolidin-2,4-dione und deren verwendung als herbizide
US20180170872A1 (en) * 2015-06-22 2018-06-21 Bayer Cropscience Aktiengesellschaft Novel-alkynyl-substituted 3-phenylpyrrolidine-2,4-diones and use thereof as herbicides
WO2017178314A1 (de) * 2016-04-14 2017-10-19 Bayer Cropscience Aktiengesellschaft Anellierte 3-phenyltetramsäure-derivate mit herbizider wirkung

Non-Patent Citations (26)

* Cited by examiner, † Cited by third party
Title
"Gene Transfer to Plants, Springer Lab Manual", 1995, SPRINGER VERLAG
"Spray-Drying Handbook", 1979, G. GOODWIN LTD.
"The Pesticide Manual", 2006, THE BRITISH CROP PROTECTION COUNCIL UND THE ROYAL SOC. OF CHEMISTRY
BARRY ET AL., CURR. TOPICS PLANT PHYSIOL., vol. 7, 1992, pages 139 - 145
BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, vol. 7, no. 55, 2011, pages 426 - 431
BRAUN ET AL., EMBO J., vol. 11, 1992, pages 3219 - 3227
CATALYSIS COMMUNICATIONS, vol. 60, 2015, pages 82 - 87
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 133993-74-5
CHRISTOU, TRENDS IN PLANT SCIENCE, vol. 1, 1996, pages 423 - 431
COMAI ET AL., SCIENCE, vol. 221, 1983, pages 370 - 371
G.C. KLINGMAN: "Weed Control as a Science", 1961, JOHN WILEY AND SONS, INC., pages: 81 - 96
GASSER ET AL., J. BIOL. CHEM., vol. 263, 1988, pages 4280 - 4289
H.V. OLPHEN: "Handbook of Insecticide Dust Diluents and Carriers", 1963, J. WILEY & SONS
J.D. FREYERS.A. EVANS: "Weed Control Handbook", 1968, BLACKWELL SCIENTIFIC PUBLICATIONS, pages: 101 - 103
J.E. BROWNING, AGGLOMERATION'', CHEMICAL AND ENGINEERING, 1967, pages 147 ff
K. MARTENS: "Handbook", 1979, G. GOODWIN LTD., article "Spray Drying"
SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
SCHÖNFELDT: "Grenzflächenaktive Äthylenoxid-addukte", 1976, WISS. VERLAGSGESELL.
SHAH ET AL., SCIENCE, vol. 233, 1986, pages 478 - 481
SISLEYWOOD: "Encyclopedia of Surface Active Agents", 1964, CHEM. PUBL. CO. INC.
SONNEWALD ET AL., PLANT J., vol. 1, 1991, pages 95 - 106
TRANELWRIGHT, WEED SCIENCE, vol. 50, 2002, pages 700 - 712
WADE VAN VALKENBURG: "Perry's Chemical Engineer's Handbook", 1973, MARCEL DEKKER, pages: 8 - 57
WEED RESEARCH, vol. 26, 1986, pages 441 - 445
WINNACKER: "Gene und Klone", 1996, VCH
WOLTER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 846 - 850

Also Published As

Publication number Publication date
IL286252A (en) 2021-10-31
BR112021018297A2 (pt) 2021-11-23
CN113574051A (zh) 2021-10-29
US20220386606A1 (en) 2022-12-08
AU2020242662A1 (en) 2021-10-07
EA202192471A1 (ru) 2022-02-03
EP3938347A1 (de) 2022-01-19
JP2022524861A (ja) 2022-05-10
CA3133184A1 (en) 2020-09-24
AR118347A1 (es) 2021-09-29

Similar Documents

Publication Publication Date Title
EP3638665A1 (de) Herbizid wirksame 3-phenylisoxazolin-5-carboxamide von tetrahydro- und dihydrofurancarbonsäuren und -estern
EP3793977A1 (de) 2-brom-6-alkoxyphenyl-substituierte pyrrolin-2-one und deren verwendung als herbizide
WO2020245044A1 (de) 1-phenyl-5-azinylpyrazolyl-3-oxyalkylsäuren und deren verwendung zur bekämpfung unerwünschten pflanzenwachstums
WO2019219584A1 (de) Neue spirocyclohexylpyrrolin-2-one und deren verwendung als herbizide
EP3853219B1 (de) Herbizid wirksame substituierte phenylpyrimidinhydrazide
EP3580216A1 (de) Substituierte benzyl-4-aminopicolinsäureester und pyrimidin-4-carbonsäureester, verfahren zu deren herstellung sowie deren verwendung als herbizide und pflanzenwachstumsregulatoren
WO2022084278A1 (de) 1-(pyridyl)-5-azinylpyrazol derivate und deren verwendung zur bekämpfung unerwünschten pflanzenwachstums
WO2020187627A1 (de) Neue 3-(2-brom-4-alkinyl-6-alkoxyphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2021204884A1 (de) 3-(4-alkenyl-phenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2019228788A1 (de) 2-brom-6-alkoxyphenyl-substituierte pyrrolin-2-one und deren verwendung als herbizide
WO2019228787A1 (de) Speziell substituierte 2-alkyl-6-alkoxyphenyl-3-pyrrolin-2-one und deren verwendung als herbizide
WO2020187626A1 (de) Speziell substituierte 3-phenyl-5-spirocyclopentyl-3-pyrrolin-2-one und deren verwendung als herbizide
WO2020187629A1 (de) 3-(2-brom-4-alkinyl-6-alkoxyphenyl)-substituierte 5-spirocyclohexyl-3-pyrrolin-2-one und deren verwendung als herbizide
EP3938346A1 (de) Speziell substituierte 3-(2-halogen-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
EP3938349A1 (de) Speziell substituierte 3-(2-alkoxy-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2023274869A1 (de) 3-(4-alkenyl-phenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2019219588A1 (de) Speziell substituierte 2-alkyl-6-alkoxyphenyl-3-pyrroliin-2-one und deren verwendung als herbizide
WO2019219585A1 (de) Neue 3-(4-alkinyl-6-alkoxy-2-chlorphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2022253700A1 (de) Speziell substituierte pyrrolin-2-one und deren verwendung als herbizide
WO2021209486A1 (de) Speziell substituierte pyrrolin-2-one und deren verwendung als herbizide
WO2021239673A1 (de) Substituierte pyrrolin-2-one und deren verwendung als herbizide
EP4367105A1 (de) N-(1,3,4-oxadiazol-2-yl)phenylcarboxamide als herbizide
WO2019233862A1 (de) Herbizid wirksame substituierte phenylpyrimidine
EP3360417A1 (de) Verwendung von sulfonylindol als herbizid
EP3720853A1 (de) 3-amino-[1,2,4]-triazolderivate und deren verwendung zur bekämpfung unerwünschten pflanzenwachstums

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20707483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3133184

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021555319

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021018297

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020242662

Country of ref document: AU

Date of ref document: 20200309

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020707483

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112021018297

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210915