EP3580216A1 - Substituierte benzyl-4-aminopicolinsäureester und pyrimidin-4-carbonsäureester, verfahren zu deren herstellung sowie deren verwendung als herbizide und pflanzenwachstumsregulatoren - Google Patents

Substituierte benzyl-4-aminopicolinsäureester und pyrimidin-4-carbonsäureester, verfahren zu deren herstellung sowie deren verwendung als herbizide und pflanzenwachstumsregulatoren

Info

Publication number
EP3580216A1
EP3580216A1 EP18702514.3A EP18702514A EP3580216A1 EP 3580216 A1 EP3580216 A1 EP 3580216A1 EP 18702514 A EP18702514 A EP 18702514A EP 3580216 A1 EP3580216 A1 EP 3580216A1
Authority
EP
European Patent Office
Prior art keywords
compounds
alkyl
hydrogen
formula
nmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP18702514.3A
Other languages
English (en)
French (fr)
Inventor
Michael Gerhard Hoffmann
Uwe Döller
Chieko Ueno
Hansjörg Dietrich
Christopher Hugh Rosinger
Anu Bheemaiah MACHETTIRA
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Bayer CropScience AG
Original Assignee
Bayer AG
Bayer CropScience AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG, Bayer CropScience AG filed Critical Bayer AG
Publication of EP3580216A1 publication Critical patent/EP3580216A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/541,3-Diazines; Hydrogenated 1,3-diazines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/72Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
    • A01N43/74Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
    • A01N43/781,3-Thiazoles; Hydrogenated 1,3-thiazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings

Definitions

  • the invention relates to the technical field of herbicides, in particular that of herbicides for the selective control of weeds and grass weeds in crops. It is known from various documents that substituted picolinic acid derivatives and pyrimidine-4-carboxylic acid derivatives have herbicidal properties: WO 2003/011853 A1 describes poly-substituted 6-phenylpicolinic acid derivatives having herbicidal activity. WO 2009/029735 Al and WO 2010/125332 Al describe herbicidal effects for polysubstituted 2-phenyl-4-pyrimidine-carboxylic acid derivatives.
  • Heteroaromatic-substituted picoline and pyrimidinecarboxylic acids having herbicidal properties are disclosed in WO 2009/138712 A2. Benzoheteroaromatic-substituted picoline and 4-pyrimidinecarboxylic acids are claimed as herbicides in WO 2013/014165.
  • WO 2007/080382 Al and WO 2009/007751 A2 describe heteroaromatic-substituted picoline and pyrimidinecarboxylic acids having pharmacological effects. However, the compounds described there often show insufficient herbicides
  • An object of the present invention is Benzylpicolinklare- and pyrimidine-4-carboxylic acid esters of general formula (I), their N-oxides or their agrochemically acceptable salts,
  • A is a radical of the group consisting of Al to A20,
  • R 3 is hydrogen
  • R 4 is hydrogen
  • R 5 is hydrogen, halogen, OH, NH 2 , CN, (C 1 -C 3 ) -alkyl, (C 1 -C 3 ) -alkoxy, C 1 -C 3 -alkylamino or cyclopropyl,
  • R 6 is hydrogen, halogen, OH, NH 2 , CN, (C 1 -C 3 ) -alkyl, (C 1 -C 3 ) -alkoxy, cyclopropyl or vinyl,
  • R 7 is hydrogen, halogen, (C 1 -C 3 ) -alkyl, (C 1 -C 3 ) -alkoxy, (C 1 -C 3 ) -alkylthio, cyclopropyl, (C 1 -C 3 ) -alkylamino or phenyl, R 8 Hydrogen, (C 1 -C 6 ) -alkyl, (C 1 -C 4 ) -alkylcarbonyl, (C 1 -C 6 ) -alkoxycarbonyl or
  • X is CH or CF
  • m is 1, 2, 3, 4 or 5
  • n is 0, 1 or 2.
  • a first embodiment of the present invention comprises compounds of the general formula (I) in which
  • A is preferably selected from the group consisting of Al to A3, A7 to Al 5, and Al 7 to Al 8
  • A17 A18 selected from the group consisting of residues AI to A3 and AI 3 A is most preferably A2 or Al5.
  • a second embodiment of the present invention comprises compounds of the general formula (I) in which
  • R 1 is preferably halogen, CN, NO 2 , OH, NH 2 , (C 1 -C 6 ) -alkyl, (C 1 -C 6 ) -alkoxy, (C 1 -C 6 ) -haloalkyl or (C 1 -C 6 ) -haloalkoxy , especially halogen, and most preferably fluorine.
  • a third embodiment of the present invention comprises compounds of the general formula (I) in which
  • R 2 is preferably chlorine.
  • a fourth embodiment of the present invention comprises compounds of the general formula (I) in which
  • R 3 is preferably hydrogen.
  • a fifth embodiment of the present invention comprises compounds of the general formula (I) in which
  • R 4 is preferably hydrogen.
  • a sixth embodiment of the present invention comprises compounds of the general formula (I) in which
  • R 5 is preferably hydrogen or halogen, and particularly preferably hydrogen or fluorine.
  • a seventh embodiment of the present invention comprises compounds of the general formula (I) in which
  • R 6 is preferably hydrogen or halogen, and particularly preferably hydrogen.
  • An eighth embodiment of the present invention comprises compounds of the general formula (I) in which R 7 is preferably hydrogen, halogen or (C 1 -C 3) -alkyl, and particularly preferably hydrogen.
  • a ninth embodiment of the present invention comprises compounds of the general formula (I) in which
  • R 8 is preferably hydrogen, (C 1 -C 4) -alkyl, (C 1 -C 4) -alkylcarbonyl or (C 1 -C 4) -alkoxycarbonyl, particularly preferably hydrogen, (C 1 -C 3) -alkyl, (C 1 -C 4) -alkylcarbonyl or (C 1 -C 4) alkoxycarbonyl, and most preferably hydrogen.
  • a tenth embodiment of the present invention comprises compounds of the general formula (I) in which
  • X is preferably CH or CF.
  • An eleventh embodiment of the present invention comprises compounds of the general formula (I) in which m is preferably 1, 2 or 3, more preferably 1 or 2 and most preferably 1.
  • a twelfth embodiment of the present invention comprises compounds of the general formula (I) in which n is preferably 0 or 1, and more preferably 0.
  • a thirteenth embodiment of the present invention comprises compounds of the general formula (I) in which
  • A is selected from AI to A3 and AI 3 to AI 5,
  • R 1 is halogen, CN, NO 2 , OH, NH 2 , (C 1 -C 6 ) -alkyl, (C 1 -C 6 ) -alkoxy, (C 1 -C 6 ) -haloalkyl or (C 1 -C 6 ) -haloalkoxy,
  • R 2 is chlorine
  • R 3 is hydrogen
  • R 4 is hydrogen
  • R means hydrogen or fluorine
  • R 6 is hydrogen or halogen
  • R 7 is hydrogen, halogen or (G-C3) -alkyl
  • R 8 is hydrogen, (C 1 -C 4 ) -alkyl, (C 1 -C 4 ) -alkylcarbonyl or (C 1 -C 4 ) -alkoxycarbonyl,
  • X is CH or CF
  • n 0 or 1
  • a fourteenth embodiment of the present invention comprises compounds of the general formula (I) in which
  • A is selected from AI to A3 and AI 3 to AI 5,
  • R 1 is halogen
  • R 2 is chlorine
  • R 3 is hydrogen
  • R 4 is hydrogen
  • R 5 is hydrogen or fluorine
  • R 6 is hydrogen
  • R 7 is hydrogen
  • R 8 is hydrogen, (C 1 -C 3 ) -alkyl, (C 1 -C 4 ) -alkylcarbonyl or (C 1 -C 4 ) -alkoxycarbonyl,
  • X is CH or CF
  • n 0 or 1
  • a fifteenth embodiment of the present invention comprises compounds of the general formula (I) in which
  • a A2 or AI 5 means
  • R 1 is fluorine
  • R 2 is chlorine
  • R 3 is hydrogen
  • R 4 is hydrogen
  • R 5 is hydrogen or fluorine
  • R 6 is hydrogen
  • R 7 is hydrogen
  • R 8 is hydrogen, (C 1 -C 3 ) -alkyl, (C 1 -C 4) -alkylcarbonyl or (C 1 -C 4) -alkoxycarbonyl,
  • X is CH or CF
  • n 0 or 1
  • the number of C atoms refers to the alkyl radical in the alkylcarbonyl group.
  • Alkyl is saturated, straight or branched chain hydrocarbon radicals of 1 to 10 carbon atoms, e.g.
  • C 1 -C 6 -alkyl such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2, 2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1, 2 Dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1-ethylbutyl, 2-ethylbutyl, 1, 1, 2-trimethylpropyl, 1, 2,2-trimethylpropyl, 1-ethyl-1-
  • Haloalkyl means straight-chain or branched alkyl groups having 1 to 8 carbon atoms, in which groups the hydrogen atoms may be partially or completely replaced by halogen atoms, for example C 1 -C 2 -haloalkyl, such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl , Dichlorofluoromethyl, chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro, 2-difluoroethyl , 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoro
  • Carbon atoms and a double bond in any position e.g. C 2 -C 6 alkenyl, such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, Methyl 2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl 1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3 -butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3 -butenyl, 1-methyl-3-butenyl,
  • Alkynyl means straight-chain or branched hydrocarbon radicals having 2 to 8 carbon atoms and a triple bond in any position, e.g. C 2 -C 6 -alkynyl, such as ethynyl, 1-propynyl, 2-propynyl (or propargyl), 1-butynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3 Pentynyl, 4-pentynyl, 3-methyl-1-butynyl, 1-methyl-2-butynyl, 1-methyl-3-butynyl, 2-methyl-3-butynyl, 1, 1-dimethyl-2-propynyl, 1 - Ethyl 2-propynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 3-
  • Alkoxy means saturated, straight or branched alkoxy radicals of 1 to 8 carbon atoms, e.g. C 1 -C 6 -alkoxy, such as methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy, 1, 1-dimethylethoxy, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 2, 2-methylpropoxy, 1-ethylpropoxy, hexoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1,1-dimethylbutoxy, 1, 2
  • Haloalkoxy means straight-chain or branched alkoxy groups having 1 to 8 carbon atoms (as mentioned above), wherein in these groups some or all of the hydrogen atoms may be replaced by halogen atoms as mentioned above, e.g.
  • C 1 -C 2 -haloalkoxy such as chloromethoxy, bromomethoxy, dichloromethoxy, trichloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 1-chloroethoxy, 1-bromoethoxy, 1-fluoroethoxy, 2-fluoroethoxy, 2,2- Difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro, 2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, pentafluoroethoxy and 1, 1,1-trifluoroprop-2-oxy.
  • Alkylthio means saturated, straight-chain or branched alkylthio radicals having 1 to 8 carbon atoms, e.g. C 1 -C 6 -alkylthio, such as methylthio, ethylthio, propylthio, 1-methylethylthio, butylthio, 1-methylpropylthio, 2-methylpropylthio, 1,1-dimethylethylthio, pentylthio, 1-methylbutylthio, 2-methylbutylthio, 3-methylbutylthio, 2, 2-dimethylpropylthio, 1-ethylpropylthio, hexylthio, 1,1-dimethylpropylthio, 1,2-dimethylpropylthio, 1-methylpentylthio, 2-methylpentylthio, 3-methylpentylthio, 4-methylpentylthio, 1,1-dimethylbutylthio, 1, 2-dimethylbuty
  • Haloalkylthio means straight-chain or branched alkylthio groups having 1 to 8
  • Carbon atoms (as mentioned above), wherein in these groups, partially or completely, the hydrogen atoms may be replaced by halogen atoms as mentioned above, e.g. C 1 -C 2 -haloalkylthio, such as chloromethylthio, bromomethylthio, dichloromethylthio, trichloromethylthio, fluoromethylthio, difluoromethylthio, trifluoromethylthio, chlorofluoromethylthio, dichlorofluoromethylthio, chlorodifluoromethylthio, 1-chloroethylthio, 1-bromethylthio, 1-fluoroethylthio, 2-fluoroethylthio, 2,2-difluoroethylthio, 2,2,2-trifluoroethylthio, 2-chloro-2-fluoroethylthio, 2-chloro, 2-difluoroethylthio, 2,2-dichloro-2-flu
  • Aryl is phenyl or naphthyl.
  • the compounds of the formula (I) can be present in different compositions as geometric and / or optical isomers or isomer mixtures, which can optionally be separated in a customary manner. Both the pure isomers and the mixtures of isomers, their preparation and use and these containing agents are the subject of the present invention. However, in the following, for the sake of simplicity, compounds of the formula (I) will always be mentioned, although both the pure ones
  • a metal ion equivalent means a metal ion with a positive charge such as Na + , K + , (Mg 2+ ) 1/2, (Ca 2+ ) i / 2, MgH + , CaH + , (Al 3+ ) i / 3 (Fe 2+ ) i / 2 or (Fe 3+ ) i / 3 .
  • Halogen means fluorine, chlorine, bromine and iodine.
  • the compounds of the formula (I) have acidic or basic properties and can form salts with inorganic or organic acids or with bases or with metal ions, optionally also internal salts or adducts. If the compounds of the formula (I) bear amino, alkylamino or other basic-property-inducing groups, these compounds can be reacted with acids to form salts or are obtained directly as salts by the synthesis.
  • inorganic acids examples include hydrohalic acids such as hydrogen fluoride,
  • Nitric acid and acid salts such as NaHSC and KHSO4.
  • Suitable organic acids are, for example, formic acid, carbonic acid and alkanoic acids, such as acetic acid, trifluoroacetic acid, trichloroacetic acid and propionic acid, and also glycolic acid, thiocyanic acid, lactic acid, succinic acid, citric acid,
  • Benzoic acid cinnamic acid, oxalic acid, alkylsulfonic acids (sulfonic acids having straight-chain or branched alkyl radicals having 1 to 20 carbon atoms), arylsulfonic acids or -disulfonklaren (aromatic radicals such as phenyl and naphthyl which carry one or two sulfonic acid groups), alkylphosphonic acids (phosphonic acids with straight chain or branched alkyl radicals having 1 to 20 carbon atoms), arylphosphonic acids or - diphosphonic acids (aromatic radicals such as phenyl and naphthyl which carry one or two phosphonic acid radicals), where the alkyl or aryl radicals may carry further substituents, eg p-toluenesulfonic acid, salicylic acid, p-aminosalicylic acid, 2-phenoxybenzoic acid, 2-acetoxybenzoic acid, etc.
  • the metal ions are, in particular, the ions of the elements of the second main group, in particular calcium and magnesium, the third and fourth main groups, in particular aluminum, tin and lead, and the first to eighth transition groups, in particular chromium, manganese, iron, cobalt, nickel, copper, Zinc and others into consideration. Particularly preferred are the metal ions of the elements of the fourth period.
  • the metals can be present in the various valences that belong to them.
  • Suitable bases are, for example, hydroxides, carbonates, bicarbonates of the alkali and alkaline earth metals, in particular those of sodium, potassium, magnesium and calcium, furthermore
  • Ammonia primary, secondary and tertiary amines with (Ci-C i -) - alkyl groups, mono-, di- and trialkanolamines of (Ci-C i) alkanols, choline and chlorocholine.
  • the compounds of the general formula (I) can exist as stereoisomers. For example, if one or more asymmetrically substituted carbon atoms or sulfoxides are present, enantiomers and diastereomers may occur.
  • Stereoisomers can be prepared from the mixtures obtained in the preparation of conventional
  • stereoisomers can be selectively prepared by using stereoselective reactions using optically active starting and / or adjuvants.
  • the invention also relates to all stereoisomers and mixtures thereof which include but are not specifically defined by the general formula (I). In all of the formulas below, the substituents and symbols, unless otherwise defined, have the same meaning as described for formula (I).
  • the carboxylic acids of the formula (II) are known, for example, from WO2013 / 14165 A1, or can be prepared by methods known per se to the person skilled in the art.
  • the benzyl derivatives of the formula (III) are commercially available or can be prepared by methods known to those skilled in the art. Preference is given to the compounds of the formula (I) given in Table 1 below,
  • Collections of compounds of formula (I) and / or their salts, which may be synthesized following the above reactions, may also be prepared in a parallelized manner, which may be done in a manual, partially automated or fully automated manner. It is possible, for example, to automate the reaction procedure, the work-up or the purification of the products or intermediates. Overall, this is one
  • Chromatographieapparaturen available, for example, the company ISCO, Inc., 4700 Superior Street, Lincoln, NE 68504, USA.
  • the listed equipment leads to a modular procedure, in which the individual work steps are automated, but between the work steps, manual operations must be performed.
  • This can be circumvented by the use of partially or fully integrated automation systems in which the respective automation modules are operated, for example, by robots.
  • Such automation systems can be obtained, for example, from Caliper, Hopkinton, MA 01748, USA.
  • Solid-phase assisted synthesis methods allow a number of protocols known from the literature, which in turn can be performed manually or automatically.
  • the reactions can be carried out, for example, by means of IRORI technology in microreactors (microreactors) from Nexus Biosystems, 12140 Community Road, Poway, CA92064, USA.
  • Both solid and liquid phases may require the performance of one or more
  • the preparation according to the methods described herein provides compounds of formula (I) and their salts in the form of substance collections called libraries.
  • the present invention also provides libraries containing at least two compounds of formula (I) and their salts.
  • the compounds of the formula (I) according to the invention (and / or their salts), together referred to as “compounds according to the invention", have excellent herbicidal activity against a broad spectrum of economically important monocotyledonous and dicotyledonous harmful plants which are expelled from rhizomes, rhizomes or other long-term organs, are well detected by the active ingredients.
  • the present invention therefore also provides a method for combating
  • Plant cultures in which one or more compounds of the invention (s) on the plants eg harmful plants such as mono- or dicotyledonous weeds or undesirable crops
  • the seed eg grains, seeds or vegetative propagules such as tubers or sprouts with buds
  • the area on the plants grow eg the acreage
  • the compounds according to the invention can be applied, for example, in pre-sowing (optionally also by incorporation into the soil), pre-emergence or postemergence process.
  • the compounds according to the invention are applied to the surface of the earth before germination, then either the emergence of the weed seedlings is completely prevented or the weeds grow up to the cotyledon stage, but then cease their growth and finally die off completely after a lapse of three to four weeks.
  • the compounds according to the invention have excellent herbicidal activity against monocotyledonous and dicotyledonous weeds, crops of economically important crops, eg dicotyledonous crops of the genera Arachis, Beta, Brassica, Cucumis, Cucurbita, Helianthus, Daucus, Glycine, Gossypium, Ipomoea, Lactuca, Linum, Lycopersicon, Nicotiana, Phaseolus, Pisum, Solanum, Vicia, or monocotyledonous cultures of the genera Allium, Pineapple, Asparagus, Avena, Hordeum, Oryza, Panicum, Saccharum, Seeal, Sorghum, Triticale, Triticum, Zea, especially Zea and Triticum, depending on the structure of the respective compound of the invention and its application rate only insignificantly damaged or not at all.
  • the present compounds are suitable for these Reason very well for the selective control of undesirable plant growth in crops such as agricultural crops or ornamental plantings.
  • the compounds according to the invention (depending on their respective structure and the applied application rate) have excellent growth-regulatory properties in crop plants. They regulate the plant's metabolism and can thus be used to specifically influence plant constituents and facilitate harvesting, such as be used by triggering desiccation and stunted growth. Furthermore, they are also suitable for the general control and inhibition of undesirable vegetative growth, without killing the plants. Inhibition of vegetative growth plays an important role in many monocotyledonous and dicotyledonous crops, since, for example, storage formation can thereby be reduced or completely prevented.
  • the active compounds can also be used for controlling harmful plants in crops of known or yet to be developed genetically modified plants.
  • the transgenic plants are usually characterized by particular advantageous properties, for example by resistance to certain pesticides, especially certain herbicides, resistance to plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses.
  • Other special properties concern e.g. the crop in terms of quantity, quality, shelf life, composition and special ingredients. So are transgenic plants with increased starch content or altered quality of starch or those with others
  • Other particular properties may include tolerance or resistance to abiotic stressors, e.g. Heat, cold, drought, salt and ultraviolet radiation are present.
  • cereals such as wheat, barley, rye, oats, millet, rice, manioc and maize or also crops of sugar beet, cotton, soya, rapeseed, potato, tomato, pea and other vegetables.
  • the compounds of the formula (I) can be used as herbicides in crops which are resistant to the phytotoxic effects of the herbicides or have been made genetically resistant.
  • EP 0131624 In several cases, for example, genetic modifications of cultivated plants have been described for the purpose of modification in plants
  • synthesized starch eg WO 92/011376 A, WO 92/014827 A, WO 91/019806 A
  • transgenic crop plants which are resistant to certain glufosinate-type herbicides (cf., for example, EP 0242236 A, EP 0242246 A) or glyphosate (WO 92 / 000377 A) or the sulfonylureas (EP 0257993 A, US 5,013,659) or against combinations or mixtures of these herbicides by gene stacking resistant, such as transgenic crop plants such as corn or soybean with the
  • Optimum TM GAT TM Glyphosate ALS Tolerant
  • transgenic crops for example cotton
  • Bacillus thuringiensis toxins Bacillus thuringiensis toxins
  • Bacillus thuringiensis toxins Bacillus thuringiensis toxins
  • transgenic crops with modified fatty acid composition WO 91/013972 A
  • genetically engineered crops with new content or secondary substances e.g. novel phytoalexins which cause increased disease resistance (EP 0309862 A, EP 0464461 A)
  • genetically modified plants with reduced photorespiration which have higher yields and higher stress tolerance (EP 0305398 A)
  • transgenic crops characterized by higher yields or better quality transgenic crops characterized by a combination of e.g. the o. g. characterize new properties ("gene stacking")
  • nucleic acid molecules can be introduced into plasmids that allow mutagenesis or sequence alteration by recombination of DNA sequences.
  • base exchanges can be made, partial sequences removed or natural or synthetic sequences added.
  • adapters or linkers can be attached to the fragments, see eg Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; or Winnacker "Genes and Clones", VCH Weinheim 2nd edition 1996.
  • the production of plant cells having a reduced activity of a gene product can be achieved, for example, by the expression of at least one corresponding antisense RNA, a sense RNA to obtain a cosuppression effect, or the expression of at least one appropriately engineered ribozyme which specifically cleaves transcripts of the above gene product.
  • DNA molecules can be used which comprise the entire coding sequence of a gene product including any flanking sequences, as well as DNA molecules which comprise only parts of the coding sequence, which parts have to be long enough to be present in the cells to cause an antisense effect. It is also possible to use DNA sequences which have a high degree of homology to the coding sequences of a gene product, but are not completely identical.
  • the synthesized protein may be located in any compartment of the plant cell.
  • the coding region is linked to DNA sequences which ensure localization in a particular compartment.
  • sequences are known to those skilled in the art (see, for example, Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad., U.S.A. 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106).
  • the expression of the nucleic acid molecules can also take place in the organelles of the plant cells.
  • the transgenic plant cells can be regenerated to whole plants by known techniques.
  • the transgenic plants can in principle be plants of any one
  • Plant species that is, both monocotyledonous and dicotyledonous plants.
  • the compounds (I) according to the invention can be used in transgenic cultures which are resistant to growth substances, such as 2,4 D, dicamba or herbicides, the essential plant enzymes, for example acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or hydroxyphenylpyruvate dioxygenases (HPPD) inhibit, respectively against herbicides from the group of Sulfonylureas, the glyphosate, glufosinate or Benzoylisoxazole and analogous drugs, or against any combination of these agents, resistant.
  • the essential plant enzymes for example acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or hydroxyphenylpyruvate dioxygenases (HPPD) inhibit, respectively against herbicides from the group of Sulfonylureas, the glyphosate, glufosinate or Benzoylisoxazole and analogous drugs, or against
  • the compounds according to the invention can particularly preferably be employed in transgenic crop plants which are resistant to a combination of glyphosates and glufosinates, glyphosates and sulfonylureas or imidazolinones. Most preferably, the compounds of the invention in transgenic crops such. As corn or soybean with the trade name or the name Optimum TM GAT TM (Glyphosate ALS Tolerant) are used.
  • the invention therefore also relates to the use of the compounds of the formula (I) according to the invention as herbicides for controlling harmful plants in transgenic crop plants.
  • the compounds according to the invention can be used in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusts or granules in the customary formulations.
  • the invention therefore also relates to herbicidal and plant growth-regulating agents which contain the compounds according to the invention.
  • the compounds according to the invention can be formulated in various ways, depending on which biological and / or chemical-physical parameters are predetermined.
  • Formulation options are, for example: wettable powders (WP), water-soluble powders (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as
  • the safeners are preferably selected from the group consisting of:
  • nA is a natural number from 0 to 5, preferably 0 to 3;
  • R A 1 is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, nitro or (C 1 -C 4 ) haloalkyl;
  • W A is an unsubstituted or substituted divalent heterocyclic radical from the group of the unsaturated or unsaturated five-membered ring heterocycles having 1 to 3 hetero ring N and O groups, wherein at least one N atom and at most one O atom is contained in the ring, preferably a residue from the group (WA 1 ) to (WA 4 ),
  • niA is 0 or 1
  • RA is ORA, SRA or NRA RA or a saturated or unsaturated 3- to 7-membered one
  • Heterocycle having at least one N atom and up to 3 heteroatoms, preferably from the group O and S, which is connected via the N atom to the carbonyl group in (S1) and unsubstituted or by radicals from the group (Ci-C i) Alkyl, (Ci-C i) alkoxy or
  • optionally substituted phenyl is substituted, preferably a radical of the formula ORA 3 , NHR a 4 or N (CH 3 ) 2, in particular the formula ORA 3 ;
  • R A 3 is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably having a total of 1 to 18 C atoms;
  • RA 4 is hydrogen, (C 1 -C 6) alkyl, (C 1 -C 6) alkoxy or substituted or unsubstituted phenyl;
  • RA 5 is H, (C 1 -C 8 ) alkyl, (C 1 -C 8 ) haloalkyl, (C 1 -C 4 ) alkoxy (C 1 -C 8 ) alkyl, cyano or COORA 9 , in which R A 9 is hydrogen, (C 1 -C 4) C 8 ) alkyl, (C 1 -C 8 ) haloalkyl, (C 1 -C 4 ) alkoxy- (C 1 -C 4 ) -alkyl,
  • RA 6 , RA 7 , RA 8 are identical or different hydrogen, (C 1 -C 8 ) alkyl, (C 1 -C 8 ) haloalkyl, (C 3 -C 12) cycloalkyl or substituted or unsubstituted phenyl; preferably: a) compounds of the type of dichlorophenylpyrazoline-3-carboxylic acid (Sl a ), preferably
  • Fenchlorazole ethyl ester
  • related compounds as described in EP -A-174,562 and EP-A-346,620; e) compounds of the type of 5-benzyl- or 5-phenyl-2-isoxazoline-3-carboxylic acid or of 5,5-diphenyl-2-isoxazoline-3-carboxylic acid (Sl e ), preferably compounds such as
  • RB 1 is halogen, (Ci-C 4) alkyl, (Ci-C 4) alkoxy, nitro or (Ci-C 4) haloalkyl; ne is a natural number of 0 to 5, preferably 0 to 3; R B 2 is OR B 3 , SR b 3 or NR B 3 R B 4 or a saturated or unsaturated 3- to 7-membered heterocycle having at least one N atom and up to 3 heteroatoms, preferably from the group O and S, the one about the N-atom with the
  • Carbonyl group in (S2) is unsubstituted or substituted by radicals from the group (Ci-C i) alkyl, (Ci-C i) alkoxy or optionally substituted phenyl, preferably a radical of the formula ORB 3 , NHRB 4 or N ( CH3) 2, in particular of the formula ORB 3 ;
  • RB 3 is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably having a total of 1 to 18 C atoms;
  • RB 4 is hydrogen, (Ci-C6) alkyl, (Ci-Ce) alkoxy or substituted or unsubstituted phenyl;
  • TB is a (Ci or C2) alkanediyl chain which is unsubstituted or substituted by one or two (Ci-C i) alkyl radicals or by [(Ci-C3) alkoxy] carbonyl; preferably: a) compounds of the 8-quinolinoxyacetic acid type (S2 a ), preferably
  • Rc 1 is (Ci-C 4) alkyl, (Ci-C 4) haloalkyl, (C 2 -C 4) alkenyl, (C 2 -C 4) haloalkenyl, (C 3 -C 7) cycloalkyl, preferably dichloromethyl;
  • Rc 2 , Rc 3 are identical or different hydrogen, (Ci-C 4 ) alkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) alkynyl, (Ci- C 4 ) haloalkyl, (C 2 -C 4) haloalkenyl, (Ci-C 4) alkylcarbamoyl (Ci-C4) alkyl, (C 2 - C 4) Alkenylcarbamoyl- (Ci-C 4) alkyl, (Ci-C 4) alkoxy (Ci-C 4 ) alkyl, dioxolanyl- (Ci-C 4 ) alkyl, thiazolyl, furyl, furylalkyl, thienyl, piperidyl, substituted or unsubstituted phenyl, or Rc 2 and Rc 3 together form a substituted or unsubstituted heterocyclic ring, preferably an
  • Benoxacor (4-dichloroacetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazine) (S3-4),
  • PPG-1292 N-allyl-N - [(1,3-dioxolan-2-yl) -methyl] -dichloroacetamide
  • TI-35 (1-dichloroacetyl-azepane) from TRI-Chemical RT (S3-8),
  • a D is S0 2 -NR D 3 -CO or CO-NR D 3 -S0 2
  • RD 1 is CO-NRD 5 RD 6 or NHCO-RD 7 ;
  • RD 2 is halogen, (Ci-C 4) haloalkyl, (Ci-C 4) haloalkoxy, nitro, (Ci-C 4) alkyl, (Ci-C 4) alkoxy, (Ci C 4) alkylsulfonyl, (Ci- C 4 ) alkoxycarbonyl or (C 1 -C 4 ) alkylcarbonyl;
  • RD 3 is hydrogen, (C 1 -C 4 ) alkyl, (C 2 -C 4 ) alkenyl or (C 2 -C 4 ) alkynyl;
  • RD 4 is halogen, nitro, (Ci-C 4) alkyl, (Ci-C 4) haloalkyl, (Ci-C 4) haloalkoxy, (C 3 -C 6) cycloalkyl,
  • Phenyl (Ci-C 4) alkoxy, cyano, (Ci-C 4) alkylthio, (Ci-C 4) Alkylsulfmyl, (Ci-C 4) alkylsulfonyl, (Ci-C 4) alkoxycarbonyl or (Ci-C 4) alkylcarbonyl;
  • RD 5 is hydrogen, (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, (C 2 -C 6 ) alkenyl, (C 2 -C 6 ) alkynyl, (C 5 -
  • RD 6 is hydrogen, (Ci-C 6 ) alkyl, (C 2 -C 6 ) alkenyl or (C 2 -C 6 ) alkynyl, wherein the three
  • radicals are substituted by VD radicals from the group halogen, hydroxy, (Ci-C 4) alkyl, (Ci-C 4) alkoxy and (Ci-C 4) alkylthio, or RD 5 and RD 6 together with the nitrogen atom carrying them a pyrrolidinyl or
  • RD 7 is hydrogen, (Ci-C 4 ) alkylamino, di- (Ci-C 4 ) alkylamino, (Ci-C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, wherein the latter two radicals by VD substituents from the Group halogen, (Ci-C4) alkoxy, (Ci-C6) haloalkoxy and (Ci-C4) alkylthio and in the case of cyclic radicals also (Ci-C4) alkyl and (Ci-C4) haloalkyl are substituted; nD is 0, 1 or 2; niD is 1 or 2;
  • VD is 0, 1, 2 or 3; Of these, preference is given to compounds of the N-acylsulfonamide type, for example of the following formula (S4 a ), which are, for example, B. are known from WO-A-97/45016
  • RD 7 (Ci-C6) alkyl, (C3-C6) cycloalkyl, wherein the last two radicals by VD substituents selected from the group consisting of halogen, (Ci-C4) alkoxy, (Ci-C6) haloalkoxy and (Ci-C4) alkylthio and in the case of cyclic radicals also (Ci-C4) alkyl and (Ci-C4) haloalkyl are substituted;
  • RD 4 is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, CF 3; niD 1 or 2;
  • VD is 0, 1, 2 or 3; such as
  • Acylsulfamoylbenzoeklareamide for example, the following formula (S4 b ), for example, are known from WO-A-99/16744,
  • R D 8 and R D 9 independently of one another are hydrogen, (C 1 -C 6 ) alkyl, (C 3 -C 9 ) cycloalkyl, (C 3 -C 6 ) alkenyl, (C 3 -C 6 ) alkynyl,
  • RD 4 is halogen, (Ci-C 4 ) alkyl, (Ci-C 4 ) alkoxy, CF 3 , niD 1 or 2; for example
  • N-phenylsulfonylterephthalamides of the formula (S4 d ) which are known, for example, from CN 101838227, O
  • R D 4 is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, CF 3; niD 1 or 2;
  • R D 5 is hydrogen, (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, (C 2 -C 6 ) alkenyl, (C 2 -C 6 ) alkynyl, (C 5 -C 6 ) cycloalkenyl.
  • Carboxylic acid derivatives (S5) e.g.
  • RE 1 , RE 2 are each independently halogen, (Ci-C i) alkyl, (Ci-C4) alkoxy, (Ci-C4) haloalkyl,
  • a E is Coore 3 or COSR E 4,
  • RE 3 , RE 4 are, independently of one another, hydrogen, (C 1 -C 4 ) -alkyl, (C 2 -C 6 ) -alkenyl,
  • Methyl diphenylmethoxyacetate (CAS No. 41858-19-9) (S7-1).
  • RF 2 is hydrogen or (Ci-C 4 ) alkyl
  • nF is an integer from 0 to 2
  • RF 1 is halogen, (Ci-C 4) alkyl, (Ci-C 4) haloalkyl, (Ci-C 4) alkoxy, (Ci-C 4) haloalkoxy, RF 2 is hydrogen or (Ci-C 4) alkyl,
  • RF 3 is hydrogen, (Ci-Cg) alkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) alkynyl, or aryl, wherein each of the
  • Seed pickling safener for millet is known against damage from metolachlor
  • Fluorofenim (1- (4-chlorophenyl) -2,2,2-trifluoro-1-ethanone 0- (1,3-dioxolan-2-ylmethyl) -oxime) (S l 1 -2), which was used as a Seed pickling safener for millet is known against damage from metolachlor, and
  • Cyometrinil or “CGA-43089” ((Z) -cyanomethoxyimino (phenyl) acetonitrile) (Sl l -3), which is known as a seed dressing safener for millet against damage by metolachlor. ) Active substances from the class of isothiochromanones (S 12), such as. Methyl [(3-oxo-1H-2-benzothiopyran-4 (3H) -ylidene) methoxy] acetate (CAS Reg. No. 205121 -04-6) (S12-1) and related compounds of WO-A -1998 / 13361.
  • naphthalene anhydride (1,8-naphthalenedicarboxylic anhydride) (S13-1), which is known as a seed safener for corn against damage by thiocarbamate herbicides,
  • Cyanamide which is known as safener for maize against damage of imidazolinones
  • MG 191 (CAS Reg. No. 96420-72-3) (2-dichloromethyl-2-methyl-1,3-dioxolane) (S13-5) from Nitrokemia, which is known as safener for corn,
  • RH 1 is a (Ci-C6) haloalkyl radical
  • RH 2 is hydrogen or halogen
  • R 3 , R 4 independently of one another denote hydrogen, (C 1 -C 16) alkyl, (C 2 -C 6) alkenyl or (C 2 -C 6) alkynyl, where each of the last-mentioned 3 radicals is unsubstituted or substituted by one Hydroxy, cyano, (Ci-C i) alkoxy, (Ci-C i) haloalkoxy, (Ci-C 4) alkylthio, (Ci-C 4) alkylamino, di [(Ci-C 4) alkyl] amino, [(Ci-C 4) alkoxy] - carbonyl, [(Ci-C 4) haloalkoxy] -carbonyl, (C3-C6) cycloalkyl which is unsubstituted or substituted, is phenyl which is unsubstituted or substituted, and heterocyclyl which is unsubstituted or substituted substituted, or (
  • RH 3 is (C 1 -C 4 ) -alkoxy, (C 2 -C 4 ) -alkenyloxy, (C 2 -C 6) -alkinyloxy or (C 2 -C 4 ) -haloalkoxy, and RH 4 is hydrogen or (C 1 -C 4 ) -alkyl, or
  • RH 3 and RH 4 together with the directly attached N atom form a four- to eight-membered one
  • heterocyclic ring which, in addition to the N atom, may also contain further hetero ring atoms, preferably up to two further hetero ring atoms from the group consisting of N, O and S, and which may be unsubstituted or substituted by one or more radicals from the group consisting of halogen, cyano, nitro, C 4 ) alkyl, (Ci-C 4 ) haloalkyl, (Ci-C 4 ) alkoxy, (Ci-C 4 ) haloalkoxy and (Ci-C 4 ) alkylthio is substituted, means.
  • Preferred safeners are: cloquintocet-mexyl, cyprosulfamide, fenchlorazole-ethyl ester, isoxadifen-ethyl, mefenpyr-diethyl, fenclorim, cumyluron, S4-1 and S4-5, particular preference is given to:
  • Injectable powders are preparations which are uniformly dispersible in water and contain surfactants of the ionic and / or nonionic type (wetting agents, dispersants) in addition to the active ingredient except a diluent or inert substance.
  • the herbicidal active compounds are finely ground, for example, in customary apparatus such as hammer mills, blower mills and air-jet mills and mixed simultaneously or subsequently with the formulation auxiliaries.
  • Emulsifiable concentrates are prepared by dissolving the active ingredient in an organic solvent, e.g. Butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of organic solvents with the addition of one or more surfactants of ionic and / or nonionic type (emulsifiers).
  • organic solvent e.g. Butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of organic solvents
  • surfactants of ionic and / or nonionic type emulsifiers
  • alkylarylsulfonic acid calcium salts such as
  • Ca-dodecylbenzenesulfonate or nonionic emulsifiers such as fatty acid polyglycol ester
  • Alkylaryl polyglycol ethers fatty alcohol polyglycol ethers,
  • Propylene oxide-ethylene oxide condensation products alkyl polyethers, sorbitan esters, e.g.
  • Sorbitan fatty acid esters or polyoxethylenesorbitan esters such as e.g. Polyoxyethylene.
  • Dusts are obtained by milling the active ingredient with finely divided solids, e.g.
  • Talc natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • Suspension concentrates may be water or oil based. They can be prepared, for example, by wet grinding by means of commercially available bead mills and, if appropriate, addition of surfactants, as already listed above, for example, in the other formulation types.
  • Emulsions for example oil-in-water emulsions (EW)
  • EW oil-in-water emulsions
  • Solvents and optionally surfactants such as those listed above, for example, in the other types of formulation produce.
  • Water-dispersible granules are generally prepared by the usual methods such as spray drying, fluidized bed granulation, plate granulation, mixing with high-speed mixers and extrusion without solid inert material.
  • spray drying e.g., spray drying, fluidized bed granulation, plate granulation, mixing with high-speed mixers and extrusion without solid inert material.
  • plate, fluid bed, extruder and spray granules see e.g. Procedure in
  • the agrochemical preparations generally contain from 0.1 to 99% by weight, in particular from 0.1 to 95% by weight, of compounds according to the invention.
  • the drug concentration is e.g. about 10 to 90 wt .-%, the remainder to 100% by weight consists of conventional formulation ingredients.
  • the active ingredient concentration may be about 1 to 90, preferably 5 to 80 wt .-%.
  • Formulations contain 1 to 30 wt .-% of active ingredient, preferably usually 5 to 20 wt .-% of active ingredient, sprayable solutions contain about 0.05 to 80, preferably 2 to 50 wt .-% active ingredient.
  • the active ingredient content depends, in part, on whether the active compound is liquid or solid and which granulating aids, fillers, etc. are used.
  • the content of active ingredient is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight.
  • the active substance formulations mentioned optionally contain the customary adhesion, wetting, dispersing, emulsifying, penetrating, preserving, antifreezing and solvent, fillers, carriers and dyes, antifoams, evaporation inhibitors and the pH and the Viscosity-influencing agent.
  • combinations with other pesticidally active substances e.g. Insecticides, acaricides, herbicides, fungicides, as well as with safeners, fertilizers and / or growth regulators, e.g. in the form of a ready-made formulation or as a tank mix.
  • pesticidally active substances e.g. Insecticides, acaricides, herbicides, fungicides, as well as with safeners, fertilizers and / or growth regulators, e.g. in the form of a ready-made formulation or as a tank mix.
  • safeners e.g. in the form of a ready-made formulation or as a tank mix.
  • fertilizers and / or growth regulators e.g. in the form of a ready-made formulation or as a tank mix.
  • combination partners for the compounds according to the invention in mixture formulations or in the tank mix for example, known active compounds which are based on an inhibition of, for example
  • Acetolactate synthase acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate-3-phosphate synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase,
  • Photosystem I, photosystem II, protoporphyrinogen oxidase can be used, as e.g. from Weed Research 26 (1986) 441-445 or "The Pesticide Manual", 15th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2009 and cited therein.
  • herbicides or plant growth regulators which can be combined with the compounds according to the invention are e.g. the following active ingredients (the compounds are either with the "common name” according to the International Organization for Standardization (ISO) or with the chemical name or with the code number called) and always include all
  • flucarbazone flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazine, fluometuron, flurenol, flurenol-butyl, - dimethylammonium and -methyl, fluoroglycofen, fluoroglycofen-ethyl, flupropanate, flupyrsulfuron, flupyrsulfuron-methyl-sodium, fluridone, flurochloridone, fluroxypyr, fluroxypyr-meptyl, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, fomesafen-sodium, foramsulfuron, fosamine, glufosinate, glufosinate-ammonium, glufosinate-p-s
  • met.zothiazuron metambazothiazuron, metam, metamifop, metamitron, metazachlor, metazosulfuron, methabenzthiazuron, methiopyrsulfuron, methiozoline, methyl isothiocyanate, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, molinate, monolinuron, monosulfuron, monosulfuron ester, MT-5950, ie N- [3-chloro -4- (1-methylethyl) phenyl] -2-methylpentanamide, NGGC-011, napropamide, NC-310, ie 4- (2,4-dichlorobenzoyl) -l-methyl-5-benzyloxypyrazole, neburon, nicosulfuron, nonanoic acid
  • plant growth regulators as possible mixing partners are:
  • Salicylic acid strigolactone, tecnazene, thidiazuron, triacontanol, trinexapac, trinexapac-ethyl, tsitodef, uniconazole, uniconazole-P.
  • the formulations present in commercial form are optionally diluted in a customary manner, e.g. for wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules by means of water. Dust-like preparations, soil or
  • Spreading granulates and sprayable solutions are usually no longer diluted with other inert substances before use.
  • the type of herbicide used u.a. varies the required application rate of the compounds of formula (I). It can vary within wide limits, e.g. between 0.001 and 1.0 kg / ha or more of active substance, but is preferably between 0.005 and 750 g / ha.
  • Benzothiophene 7.20 (s, 1H, pyridine), 5.50 (s, 2H, CH 2 -phenyl), 4.70 (bs, 2H, NH 2).
  • the 1H NMR data of selected examples are noted in terms of 1H NMR peak lists. For each signal peak, first the ⁇ value in ppm and then the signal intensity in round brackets are listed. The ⁇ -value signal intensity number pairs of different signal peaks are listed separated by semicolons.
  • the peak list of an example therefore has the form: ⁇ (intensity ⁇ ; 82 (intensity 2);; ⁇ ; (intensity ⁇ ;; ⁇ ⁇ (intensity n )
  • the intensity of sharp signals correlates with the height of the signals in a printed example of an NMR spectrum in cm and shows the true ratios of the signal intensities. In broad
  • Signals can show multiple peaks or the center of the signal and their relative intensity compared to the most intense signal in the spectrum.
  • peaks of stereoisomers of the target compounds and / or peaks of impurities usually have on average a lower intensity than the peaks of the target compounds (for example with a purity of> 90%).
  • Such stereoisomers and / or impurities may be typical of each
  • An expert calculating the peaks of the target compounds by known methods can isolate the peaks of the target compounds as needed, using additional intensity filters if necessary. This isolation would be similar to peak picking in classical 1H NMR interpretation.
  • 8,203 (1.0); 8,200 (1.0); 7,877 (0.6); 7,872 (0.6); 7,855 (0.8); 7,851 (0.7); 7,829 (0.7); 7,655 (1.4); 7,650 (1.4); 7,558 (0.7); 7,556 (0.9); 7,554 (0.6); 7,536 (0.9); 7,535 (1.0); 7,533 (0.6); 7,518 (0.9); 7,259 (49.0); 7,163 (4.0); 6.82 6 (1.0); 6,823 (1.0); 6,820 (1.1); 6,818 (1.0); 5,513 (3.1); 4,786 (0.8); 1,538 (16.0); 0008 (0.6); 0,000 (19.9); -
  • a dust is obtained by mixing 10 parts by weight of a compound of general formula (I) and 90 parts by weight of talc as an inert material and comminuting in a hammer mill.
  • a wettable powder readily dispersible in water is obtained by mixing 25 parts by weight of a compound of the general formula (I), 64 parts by weight of kaolin-containing quartz as an inert substance, 10 parts by weight of potassium lignosulfonate and 1 part by weight of oleoylmethyltaurine sodium as a wetting and dispersing agent, and grinded in a pin mill. 3. Dispersion concentrate
  • a dispersion concentrate readily dispersible in water is obtained by reacting 20 parts by weight of a compound of the general formula (I), 6 parts by weight of alkylphenol polyglycol ether (®Triton X 207), 3 parts by weight of isotridecanol polyglycol ether (8 EO) and 71% by weight.
  • Parts of paraffinic mineral oil (boiling range, for example, about 255 to about 277 ° C) mixed and ground in a ball mill to a fineness of less than 5 microns.
  • An emulsifiable concentrate is obtained from 15 parts by weight of a compound of general formula (I), 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of ethoxylated nonylphenol as emulsifier. 5.
  • Water-dispersible granules are obtained from 15 parts by weight of a compound of general formula (I), 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of ethoxylated nonylphenol as emulsifier. 5.
  • a water-dispersible granule is obtained by
  • a water-dispersible granule is also obtained by
  • Seeds of monocotyledonous or dicotyledonous weed or crop plants are laid out in sandy loam in wood fiber pots and covered with soil.
  • the compounds of the invention formulated in the form of wettable powders (WP) or as emulsion concentrates (EC) are then applied to the surface of the cover soil as an aqueous suspension or emulsion having a water application rate of 600 to 800 l / ha with the addition of 0.2% wetting agent applied.
  • WP wettable powders
  • EC emulsion concentrates
  • compounds according to the invention leave gramineous crops such as barley, wheat, rye, millet, maize or rice in the pre-emergence process practically undamaged even at high doses of active ingredient.
  • some substances also protect dicotyledonous crops such as soya, cotton, rapeseed, sugar beet or potatoes.
  • Some of the compounds according to the invention show high selectivity and are therefore suitable in the pre-emergence process for controlling undesirable plants ECHC Gwuchs in agricultural crops.
  • the following tables show by way of example the herbicidal action of the compounds according to the invention in the pre-emergence, wherein the
  • herbicidal activity is given in percent.
  • PE Pre-emergence herbicidal action

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Es werden Benzylcarbonsäurederivate von Benzoheterocyclylpyridinen und Benzoheterocyclylpyrimidinen der allgemeinen Formel (I) und ihre Verwendung als Herbizide beschrieben, wobei X für CH oder CF, A für einen benzokondensierten Heterocyclus, R1 für H, Hal oder organische Reste wie Alkyl und R2 für Cl oder F steht.

Description

Bayer CropScience AG
Substituierte Benzyl-4-aminopicolinsäureester und Pyrimidin-4-carbonsäureester, Verfahren zu deren Herstellung sowie deren Verwendung als Herbizide und Pflanzenwachstumsregulatoren Beschreibung
Die Erfindung betrifft das technische Gebiet der Herbizide, insbesondere das der Herbizide zur selektiven Bekämpfung von Unkräutern und Ungräsern in Nutzpflanzenkulturen. Aus verschiedenen Schriften ist bekannt, dass substituierte Picolinsäurederivate und Pyrimidin-4- carbonsäurederivate herbizide Eigenschaften aufweisen: In WO 2003/011853 AI werden poly- substituierte 6-Phenylpicolinsäurederivate mit herbizider Wirkung beschrieben. WO 2009/029735 AI und WO 2010/125332 AI beschreiben herbizide Wirkungen für polysubstituierte 2-Phenyl-4-pyrimidin- carbonsäurederivate. Heteroaromatisch-substituierte Picolin- und Pyrimidmcarbonsäuren mit herbiziden Eigenschaften werden in WO 2009/138712 A2 offenbart. Benzheteroaromatisch-substituierte Picolin- und 4-Pyrimidincarbonsäuren werden in WO 2013/014165 als Herbizide beansprucht. In
WO 2007/080382 AI und WO 2009/007751 A2 werden heteroaromatisch-substituierte Picolin- und Pyrimidmcarbonsäuren mit pharmakologischen Wirkungen beschrieben. Die dort beschriebenen Verbindungen zeigen jedoch häufig eine nicht ausreichende herbizide
Wirksamkeit und/oder eine nicht ausreichende Selektivität in Nutzpflanzenkulturen.
Es wurden substituierte Benzyl-4-aminopicolinsäureester und Pyrimidin-4-carbonsäureester gefunden, die besonders gut als Herbizide geeignet sind.
Ein Gegenstand der vorliegenden Erfindung sind Benzylpicolinsäure- und Pyrimidin-4-carbonsäureester der allgemeinen Formel (I), deren N-Oxide oder deren agrochemisch verträglichen Salze,
A bedeutet einen Rest der Gruppe bestehend aus AI bis A20,
bedeutet Halogen, CN, N02, OH, NH2, (Ci-C6)-Alkyl, (Ci-C6)-Alkoxy, (Ci-C6)-Haloalkyl, (Ci C6)-Haloalkoxy, (C2-C6)-Alkenyl, Halogen-(C2-C6)-alkenyl, (C2-C6)-Alkinyl, Halogen-(C3-C6) alkinyl, (C3-C6)-Cycloalkyl, Halogen-(C3-C6)-cycloalkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl, Halogen-(C3-C6)-cycloalkyl-(Ci-C6)-alkyl, (Ci-C6)-Alkylcarbonyl, (Ci-C6)-Alkylcarboxy, (Ci- C6)-Alkylamm, di(Ci-C6)-Alkylamin, (Ci-C6)-Alkyl-S(0)n oder (Ci-C6)-Alkyl-S(0)2NH, R2 bedeutet Chlor oder Fluor,
R3 bedeutet Wasserstoff,
R4 bedeutet Wasserstoff,
R5 bedeutet Wasserstoff, Halogen, OH, NH2, CN, (Ci-C3)-Alkyl, (Ci-C3)-Alkoxy, C1-C3)- Alkylamino oder Cyclopropyl,
R6 bedeutet Wasserstoff, Halogen, OH, NH2, CN, (Ci-C3)-Alkyl, (Ci-C3)-Alkoxy, Cyclopropyl oder Vinyl,
R7 bedeutet Wasserstoff, Halogen, (Ci-C3)-Alkyl, (Ci-C3)-Alkoxy, (Ci-C3)-Alkylthio, Cyclopropyl, (Ci-C3)-Alkylamino oder Phenyl, R8 bedeutet Wasserstoff, (Ci-C6)-Alkyl, (Ci-C4)-Alkylcarbonyl, (Ci-C6)-Alkoxycarbonyl oder
Phenyl,
X bedeutet CH oder CF, m bedeutet 1, 2, 3, 4 oder 5, und n bedeutet 0, 1 oder 2.
Eine erste Ausführungsform der vorliegenden Erfingung umfasst Verbindungen der allgemeinen Formel (I), in welchen
A bevorzugt ausgewählt ist aus der Gruppe bestehend aus AI bis A3, A7 bis AI 5, und AI 7 bis AI 8
A1 A2 A3
A13 A14 A15
A17 A18 rzugt ausgewählt aus der Gruppe bestehend aus den Resten AI bis A3 und AI 3 A ist am meisten bevorzugt A2 oder AI 5.
Eine zweite Ausführungsform der vorliegenden Erfingung umfasst Verbindungen der allgemeinen Formel (I), in welchen
R1 bevorzugt Halogen, CN, N02, OH, NH2, (Ci-C6)-Alkyl, (Ci-C6)-Alkoxy, (Ci-C6)-Haloalkyl oder (Ci-C6)-Haloalkoxy bedeutet, besonders Halogen, und am meisten bevorzugt Fluor bedeutet. Eine dritte Ausführungsform der vorliegenden Erfingung umfasst Verbindungen der allgemeinen Formel (I), in welchen
R2 bevorzugt Chlor bedeutet. Eine vierte Ausführungsform der vorliegenden Erfingung umfasst Verbindungen der allgemeinen Formel (I), in welchen
R3 bevorzugt Wasserstoff bedeutet. Eine fünfte Ausführungsform der vorliegenden Erfingung umfasst Verbindungen der allgemeinen Formel (I), in welchen
R4 bevorzugt Wasserstoff bedeutet. Eine sechste Ausführungsform der vorliegenden Erfingung umfasst Verbindungen der allgemeinen Formel (I), in welchen
R5 bevorzugt Wasserstoff oder Halogen, und besonders bevorzugt Wasserstoff oder Fluor bedeutet. Eine siebte Ausführungsform der vorliegenden Erfingung umfasst Verbindungen der allgemeinen Formel (I), in welchen
R6 bevorzugt Wasserstoff oder Halogen, und besonders bevorzugt Wasserstoff bedeutet. Eine achte Ausführungsform der vorliegenden Erfingung umfasst Verbindungen der allgemeinen Formel (I), in welchen R7 bevorzugt Wasserstoff, Halogen oder (Ci-C3)-Alkyl, und besonders bevorzugt Wasserstoff bedeutet.
Eine neunte Ausführungsform der vorliegenden Erfmgung umfasst Verbindungen der allgemeinen Formel (I), in welchen
R8 bevorzugt Wasserstoff, (Ci-C i)-Alkyl, (Ci-C4)-Alkylcarbonyl oder (Ci-C4)-Alkoxycarbonyl, besonders bevorzugt Wasserstoff, (Ci-C3)-Alkyl, (Ci-C4)-Alkylcarbonyl oder (C1-C4)- Alkoxycarbonyl, und am meisten bevorzugt Wasserstoff bedeutet.
Eine zehnte Ausführungsform der vorliegenden Erfmgung umfasst Verbindungen der allgemeinen Formel (I), in welchen
X bevorzugt CH oder CF bedeutet.
Eine elfte Ausführungsform der vorliegenden Erfmgung umfasst Verbindungen der allgemeinen Formel (I), in welchen m bevorzugt 1, 2 oder 3, besonders bevorzugt 1 oder 2 und am meisten bevorzugt 1 bedeutet.
Eine zwölfte Ausführungsform der vorliegenden Erfmgung umfasst Verbindungen der allgemeinen Formel (I), in welchen n bevorzugt 0 oder 1 , und besonders bevorzugt 0 bedeutet.
Im Rahmen der vorliegenden Erfindung ist es möglich, die einzelnen bevorzugten, besonders bevorzugten und ganz besonders bevorzugten Bedeutungen für die Substituenten A, R1 bis R8 und X beliebig miteinander zu kombinieren, wobei die Laufzahl n 0, 1 oder 2 ist, bevorzugt 0 oder 1, und ganz besonders bevorzugt 0 ist, und die Laufzahl m 1, 2, 3, 4 oder 5 ist, bevorzugt 1, 2, oder 3 ist, besonders bevorzugt 1 oder 2 ist und am meisten bevorzugt 1 ist.
Das heißt, dass Verbindungen der allgemeinen Formel (I) von der vorliegenden Erfindung umfasst sind, in welchen beispielsweise der Rest A eine bevorzugte Bedeutung aufweist und die Substituenten R1 bis R7 die allgemeine Bedeutung aufweisen oder aber der Substituent R2 eine bevorzugte Bedeutung aufweist, der Substituent R4 eine besonders bevorzugte Bedeutung aufweist und die übrigen
Substituenten eine allgemeine Bedeutung aufweisen.
Drei dieser Kombinationen der oben für die Substituenten A, R1 bis R8 und X, sowie für die Laufzahlen n und m gegebenen Definitionen werden nachfolgend beispielhaft erläutert und jeweils als weitere Ausführungsformen aus Gründen der Klarheit explizit offenbart:
Eine dreizehnte Ausführungsform der vorliegenden Erfingung umfasst Verbindungen der allgemeinen Formel (I), in welchen
A ausgewählt ist aus AI bis A3 und AI 3 bis AI 5,
R1 Halogen, CN, N02, OH, NH2, (Ci-C6)-Alkyl, (Ci-Ce)-Alkoxy, (Ci-C6)-Haloalkyl oder (Ci-Ce)- Haloalkoxy bedeutet,
R2 Chlor bedeutet,
R3 Wasserstoff bedeutet,
R4 Wasserstoff bedeutet,
R" Wasserstoff oder Fluor bedeutet,
R6 Wasserstoff oder Halogen bedeutet,
R7 Wasserstoff, Halogen oder (G-C3)-Alkyl bedeutet,
R8 Wasserstoff, (Ci-C4)-Alkyl, (Ci-C4)-Alkylcarbonyl oder (Ci-C4)-Alkoxycarbonyl bedeutet,
X CH oder CF bedeutet,
n 0 oder 1 bedeutet, und
m 1, 2 oder 3 bedeutet. Eine vierzehnte Ausführungsform der vorliegenden Erfingung umfasst Verbindungen der allgemeinen Formel (I), in welchen
A ausgewählt ist aus AI bis A3 und AI 3 bis AI 5,
R1 Halogen bedeutet,
R2 Chlor bedeutet,
R3 Wasserstoff bedeutet,
R4 Wasserstoff bedeutet,
R5 Wasserstoff oder Fluor bedeutet,
R6 Wasserstoff bedeutet,
R7 Wasserstoff bedeutet,
R8 Wasserstoff, (Ci-C3)-Alkyl, (Ci-C4)-Alkylcarbonyl oder (Ci-C4)-Alkoxycarbonyl bedeutet,
X CH oder CF bedeutet,
n 0 oder 1 bedeutet, und
m 1 , oder 2 bedeutet. Eine fünfzehnteAusführangsform der vorliegenden Erfingung umfasst Verbindungen der allgemeinen Formel (I), in welchen
A A2 oder AI 5 bedeutet,
R1 Fluor bedeutet,
R2 Chlor bedeutet,
R3 Wasserstoff bedeutet,
R4 Wasserstoff bedeutet,
R5 Wasserstoff oder Fluor bedeutet,
R6 Wasserstoff bedeutet,
R7 Wasserstoff bedeutet,
R8 Wasserstoff, (Ci-C3)-Alkyl, (Ci-C i)-Alkylcarbonyl oder (Ci-C i)-Alkoxycarbonyl bedeutet,
X CH oder CF bedeutet,
n 0 oder 1 bedeutet, und
m 1 bedeutet.
Alkylcarbonyl (Alkyl-C(=0)-) bedeutet gesättigte, geradkettige oder verzweigte Alkylreste, die über -C(=0)- an das Gerüst gebunden sind, wie (Ci-Cio)-, (CI-CÖ)- oder (Ci-C i)-Alkylcarbonyl. Die Anzahl der C-Atome bezieht sich dabei auf den Alkylrest in der Alkylcarbonylgruppe. Alkyl bedeutet gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 1 bis 10 Kohlenstoffatomen, z.B. Ci-Ce- Alkyl wie Methyl, Ethyl, Propyl, 1 -Methylethyl, Butyl, 1 -Methyl-propyl, 2- Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1 -Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Di- methylpropyl, 1 -Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, l,2-Dimethylpropyl,l-Methylpentyl, 2- Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethylbutyl, 1 ,2-Dimethylbutyl, 1,3- Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1 -Ethylbutyl, 2-Ethylbutyl, 1 , 1 ,2-Trimethylpropyl, 1 ,2,2-Trimethylpropyl, 1 -Ethyl- 1 -methylpropyl und l-Ethyl-2-methylpropyl.
Halogenalkyl bedeutet geradkettige oder verzweigte Alkylgruppen mit 1 bis 8 Kohlenstoffatomen, wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome ersetzt sein können, z.B. Ci-C2-Halogenalkyl wie Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1-Chlorethyl, 1-Bromethyl, 1 -Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2- fluorethyl, 2-Chlor,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl und 1,1,1 -Trifluorprop-2-yl. Alkenyl bedeutet ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 8
Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z.B. C2-C6- Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1 -Methylethenyl, 1 -Butenyl, 2-Butenyl, 3 -Butenyl, 1 -Methyl- 1- propenyl, 2-Methyl-l-propenyl, l-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3- Pentenyl, 4-Pentenyl, 1 -Methyl- 1 -butenyl, 2-Methyl- 1 -butenyl, 3 -Methyl- 1 -butenyl, 1 -Methyl-2- butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, l-Methyl-3 -butenyl, 2-Methyl-3 -butenyl, 3 -Methyl-3 - butenyl, l,l-Dimethyl-2-propenyl, 1,2-Dimethyl-l-propenyl, 1 ,2-Dimethyl-2-propenyl, 1-Ethyl-l - propenyl, 1 -Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-l- pentenyl, 2-Methyl- 1 -pentenyl, 3 -Methyl- 1 -pentenyl, 4-Methyl-l -pentenyl, 1 -Methyl-2-pentenyl, 2- Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, l-Methyl-3 -pentenyl, 2-Methyl-3- pentenyl, 3 -Methyl-3 -pentenyl, 4-Methyl-3 -pentenyl, 1 -Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3- Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1 , 1 -Dimethyl-2-butenyl, 1 , 1 -Dimethyl-3 -butenyl, 1,2- Dimethyl-1 -butenyl, 1 ,2-Dimethyl-2-butenyl, 1 ,2-Dimethyl-3 -butenyl, 1, 3 -Dimethy 1-1 -butenyl, 1,3- Dimethy 1-2 -butenyl, l,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3 -butenyl, 2,3-Dimethyl-l-butenyl, 2,3- Dimethy 1-2 -butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-l-butenyl, 3,3-Dimethyl-2-butenyl, 1-Ethyl- 1 -butenyl, 1 -Ethyl-2-butenyl, l-Ethyl-3 -butenyl, 2-Ethyl-l -butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3- butenyl, l,l,2-Trimethyl-2-propenyl, l-Ethyl-l-methyl-2-propenyl, l-Ethyl-2-methyl-l -propenyl und 1- Ethyl-2-methyl-2-propenyl. Alkinyl bedeutet geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 8 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, z.B. C2-C6- Alkinyl wie Ethinyl, 1-Propinyl, 2- Propinyl (oder Propargyl), 1-Butinyl, 2-Butinyl, 3-Butinyl, 1 -Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 3 -Methyl- 1-butinyl, l-Methyl-2-butinyl, 1 -Methyl-3 -butinyl, 2-Methyl-3-butinyl, 1 , 1 -Dimethyl-2-propinyl, 1 -Ethyl-2-propinyl, 1-Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 3 -Methyl- 1 -pentinyl, 4-Methyl- 1 -pentinyl, 1 -Methyl-2-pentinyl, 4-Methyl-2-pentinyl, 1 -Methyl-3 - pentinyl, 2-Methyl-3 -pentinyl, 1 -Methyl-4-pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, 1,1- Dimethy 1-2 -butinyl, 1,1 -Dimethyl-3 -butinyl, 1 ,2-Dimethyl-3 -butinyl, 2,2-Dimethyl-3 -butinyl, 3,3- Dimethyl- 1 -butinyl, 1 -Ethyl-2-butinyl, l-Ethyl-3 -butinyl, 2-Ethyl-3 -butinyl und l-Ethyl-l-methyl-2- propinyl.
Alkoxy bedeutet gesättigte, geradkettige oder verzweigte Alkoxyreste mit 1 bis 8 Kohlenstoffatomen, z.B. C1-C6- Alkoxy wie Methoxy, Ethoxy, Propoxy, 1 -Methylethoxy, Butoxy, 1 -Methyl-propoxy, 2- Methylpropoxy, 1 , 1 -Dimethylethoxy, Pentoxy, 1 -Methylbutoxy, 2-Methylbutoxy, 3-Methylbutoxy, 2,2- Di-methylpropoxy, 1 -Ethylpropoxy, Hexoxy, 1,1-Dimethylpropoxy, l,2-Dimethylpropoxy,l-Methyl- pentoxy, 2-Methylpentoxy, 3-Methylpentoxy, 4-Methylpentoxy, 1,1-Dimethylbutoxy, 1,2-
Dimethylbutoxy, 1,3-Dimethylbutoxy, 2,2-Dimethylbutoxy, 2,3-Dimethylbutoxy, 3,3-Dimethylbutoxy, 1 -Ethylbutoxy, 2-Ethylbutoxy, 1,1,2-Trimethylpropoxy, 1 ,2,2-Trimethylpropoxy, 1-Ethyl-l - methylpropoxy und l-Ethyl-2-methylpropoxy;
Halogenalkoxy bedeutet geradkettige oder verzweigte Alkoxygruppen mit 1 bis 8 Kohlenstoffatomen (wie vorstehend genannt), wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können, z.B. Ci-C2-Halogenalkoxy wie Chlor- methoxy, Brommethoxy, Dichlormethoxy, Trichlormethoxy, Fluormethoxy, Difluormethoxy, Trifluor- methoxy, Chlorfluormethoxy, Dichlorfluormethoxy, Chlordifluormethoxy, 1 -Chlorethoxy, 1 - Bromethoxy, 1 -Fluorethoxy, 2-Fluorethoxy, 2,2-Difluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-2- fluorethoxy, 2-Chlor,2-difluorethoxy, 2,2-Dichlor-2-fluorethoxy, 2,2,2-Trichlorethoxy, Pentafluor- ethoxy und 1,1,1 -Trifluorprop-2-oxy.
Alkylthio bedeutet gesättigte, geradkettige oder verzweigte Alkylthioreste mit 1 bis 8 Kohlenstoffatomen, z.B. CI-CÖ- Alkylthio wie Methylthio, Ethylthio, Propylthio, 1 -Methylethylthio, Butylthio, 1-Methyl-propylthio, 2-Methylpropylthio, 1,1-Dimethylethylthio, Pentylthio, 1 -Methylbutylthio, 2- Methylbutylthio, 3 -Methylbutylthio, 2,2-Di-methylpropylthio, 1 -Ethylpropylthio, Hexylthio, 1,1- Dimethylpropylthio, l,2-Dimethylpropylthio,l-Methylpentylthio, 2-Methylpentylthio, 3-Methyl- pentylthio, 4-Methylpentylthio, 1,1-Dimethylbutylthio, 1 ,2-Dimethylbutylthio, 1,3-Dimethyl-butylthio, 2,2-Dimethylbutylthio, 2,3-Dimethylbutylthio, 3,3-Dimethylbutylthio, 1 -Ethylbutylthio, 2-Ethyl- butylthio, 1,1,2-Trimethylpropylthio, 1 ,2,2-Trimethylpropylthio, 1-Ethyl-l -methylpropyl-thio und 1- Ethyl-2-methylpropylthio;
Halogenalkylthio bedeutet geradkettige oder verzweigte Alkylthiogruppen mit 1 bis 8
Kohlenstoffatomen (wie vorstehend genannt), wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können, z.B. C1-C2- Halogenalkylthio wie Chlormethylthio, Brommethylthio, Dichlormethylthio, Trichlormethylthio, Fluormethylthio, Difluormethylthio, Trifluormethylthio, Chlorfluormethylthio, Dichlorfluor-methylthio, Chlordifluormethylthio, 1 -Chlorethylthio, 1 -Bromethylthio, 1 -Fluorethylthio, 2-Fluorethylthio, 2,2- Difluorethylthio, 2,2,2-Trifluorethylthio, 2-Chlor-2-fluorethylthio, 2-Chlor,2-difluorethylthio, 2,2- Dichlor-2-fluorethylthio, 2,2,2-Trichlorethylthio, Pentafluorethylthio und l,l,l-Trifluorprop-2-ylthio.
Aryl bedeutet Phenyl oder Naphthyl.
Die Verbindungen der Formel (I) können, auch in Abhängigkeit von der Art der Substituenten, als geometrische und/oder optische Isomere oder Isomeren-gemische, in unterschiedlicher Zusammensetzung vorliegen, die gegebenenfalls in üblicher Art und Weise getrennt werden können. Sowohl die reinen Isomeren als auch die Isomerengemische, deren Herstellung und Verwendung sowie diese enthaltende Mittel sind Gegenstand der vorliegenden Erfindung. Im Folgenden wird der Einfachheit halber jedoch stets von Verbindungen der Formel (I) gesprochen, obwohl sowohl die reinen
Verbindungen als gegebenenfalls auch Gemische mit unterschiedlichen Anteilen an isomeren
Verbindungen gemeint sind.
Ein Metallionäquivalent bedeutet ein Metallion mit einer positiven Ladung wie Na+, K+, (Mg2+) i/2, (Ca2+)i/2, MgH+, CaH+, (Al3+) i/3 (Fe2+)i/2 oder (Fe3+)i/3.
Halogen bedeutet Fluor, Chlor, Brom und Jod.
Ist eine Gruppe mehrfach durch Reste substituiert, so ist darunter zu verstehen, daß diese Gruppe durch ein oder mehrere gleiche oder verschiedene der genannten Reste substituiert ist.
Je nach Art der oben definierten Substituenten weisen die Verbindungen der Formel (I) saure oder basische Eigenschaften auf und können mit anorganischen oder organischen Säuren oder mit Basen oder mit Metallionen Salze, gegebenenfalls auch innere Salze oder Addukte bilden. Tragen die Verbindungen der Formel (I) Amino, Alkylamino oder andere, basische Eigenschaften induzierende Gruppen, so können diese Verbindungen mit Säuren zu Salzen umgesetzt werden oder fallen durch die Synthese direkt als Salze an.
Beispiele für anorganische Säuren sind Halogenwasserstoffsäuren wie Fluorwasserstoff,
Chlorwasserstoff, Bromwasserstoff und Iodwasserstoff, Schwefelsäure, Phosphorsäure und
Salpetersäure und saure Salze wie NaHSC und KHSO4. Als organische Säuren kommen beispielsweise Ameisensäure, Kohlensäure und Alkansäuren wie Essigsäure, Trifluoressigsäure, Trichloressigsäure und Propionsäure sowie Glycolsäure, Thiocyansäure, Milchsäure, Bernsteinsäure, Zitronensäure,
Benzoesäure, Zimtsäure, Oxal-säure, Alkylsulfonsäuren (Sulfonsäuren mit geradkettigen oder verzweigten Alkylresten mit 1 bis 20 Kohlenstoffatomen), Arylsulfonsäuren oder -disulfonsäuren (aromatische Reste wie Phenyl und Naphthyl welche ein oder zwei Sulfonsäuregruppen tragen), Alkylphosphon-säuren (Phosphonsäuren mit geradkettigen oder verzweigten Alkylresten mit 1 bis 20 Kohlenstoffatomen), Arylphosphonsäuren oder - diphosphonsäuren (aromatische Reste wie Phenyl und Naphthyl welche ein oder zwei Phosphonsäurereste tragen), wobei die Alkyl- bzw. Arylreste weitere Substituenten tragen können, z.B. p-Toluolsulfonsäure, Salicylsäure, p-Aminosalicylsäure, 2- Phenoxybenzoesäure, 2-Acetoxybenzoesäure etc.
Als Metallionen kommen insbesondere die Ionen der Elemente der zweiten Hauptgruppe, insbesondere Calzium und Magnesium, der dritten und vierten Hauptgruppe, insbesondere Aluminium, Zinn und Blei, sowie der ersten bis achten Nebengruppe, insbesondere Chrom, Mangan, Eisen, Kobalt, Nickel, Kupfer, Zink und andere in Betracht. Besonders bevorzugt sind die Metallionen der Elemente der vierten Periode. Die Metalle können dabei in den verschiedenen ihnen zukommenden Wertigkeiten vorliegen.
Tragen die Verbindungen der Formel (I) Hydroxy, Carboxy oder andere, saure Eigenschaften induzierende Gruppen, so können diese Verbindungen mit Basen zu Salzen umgesetzt werden.
Geeignete Basen sind beispielsweise Hydroxide, Carbonate, Hydrogencarbonate der Alkali- und Erdalkalimetalle, insbesondere die von Natrium, Kalium, Magnesium und Calcium, weiterhin
Ammoniak, primäre, sekundäre und teritäre Amine mit (Ci-C i-)-Alkyl-Gruppen, Mono-, Di- und Trialkanolamine von (Ci-C i)-Alkanolen, Cholin sowie Chlorcholin.
Die Verbindungen der allgemeinen Formel (I) können je nach Art und Verknüpfung der Substituenten als Stereoisomere vorliegen. Sind beispielsweise ein oder mehrere asymmetrisch substiuierte Kohlenstoffatome oder Sulfoxide vorhanden, so können Enantiomere und Diastereomere auftreten.
Stereoisomere lassen sich aus den bei der Herstellung anfallenden Gemischen nach üblichen
Trennmethoden, beispielsweise durch chromatographische Trennverfahren, erhalten. Ebenso können Stereoisomere durch Einsatz stereoselektiver Reaktionen unter Verwendung optisch aktiver Ausgangsund/oder Hilfsstoffe selektiv hergestellt werden. Die Erfindung betrifft auch alle Stereoisomeren und deren Gemische, die von der allgemeinen Formel (I) umfaßt, jedoch nicht spezifisch definiert sind. In allen nachfolgend genannten Formeln haben die Substituenten und Symbole, sofern nicht anders definiert, dieselbe Bedeutung wie unter Formel (I) beschrieben.
Verbindungen der Formel (I), können beispielsweise gemäß nachfolgendem Schema durch
basenkatalysierte Veresterung einer Carbonsäure der Formel II mit einem Benzylbromid der Formel III hergestellt werden. In diesem Schema steht Het für die an den Phenylring ankondensierten Heterocyclen der Gru en AI bis A24.
Die Carbonsäuren der Formel (II) sind beispielsweise aus WO2013/14165 AI bekannt, oder können nach dem Fachmann an sich bekannten Methoden hergestellt werden. Die Benzyl-Derivate der Formel (III) sind kommerziell erhältlich, oder können nach dem Fachmann an sich bekannten Methoden hergestellt werden. Bevorzugt sind die in der folgenden Tabelle 1 enannten Verbindungen der Formel (I),
mit X = C-Y, R2 = C1, R3 = R4 = H
Tabelle 1
Nummer A Y PhenyH 1)™
1-01 1 -Benzothiophen-6-yl H 2-Fluorphenyl
1-02 1 -Benzofuran-6-yl H 3-Fluorphenyl
1-03 1 -Benzofuran-6-yl F 4-Methoxyphenyl
1-04 1 -Benzofuran-6-yl F 4-Fluorphenyl
1-05 1 -Benzofuran-5-yl H 4-Fluorphenyl
1-06 1 -Benzofuran-5-yl H 2,4,5-Trifluorphenyl
1-07 1 -Benzothiophen-6-yl H 4-Fluorphenyl
2,4-Difluor-3-
1-08 1 -Benzothiophen-6-yl H
methoxyphenyl
1-09 1 -Benzothiophen-5-yl H 3-Fluorphenyl
1-10 1 -Benzothiophen-6-yl H 3-Fluorphenyl
1-11 1 -Benzofuran-5-yl H 3 -(Trifluormethyl)phenyl
1-12 1 -Benzothiophen-6-yl H 2,4-Difluorphenyl
1-13 1 -Benzofuran-5-yl H 2,3,4-Trifluorphenyl
1-14 1 -Benzothiophen-6-yl H 4-Chlorphenyl
1-15 1 -Benzofuran-6-yl F 4-Chlorphenyl
1-16 1 -Benzothiophen-5-yl H 4-(Trifluormethyl)phenyl
2,4-Difluor-3-
1-17 1 -Benzofuran-5-yl H
methoxyphenyl
1-18 1 -Benzothiophen-5-yl H 2,4-Difluorphenyl
1-19 1 -Benzothiophen-5-yl H 4-Chlorphenyl
1-20 1 -Benzofuran-5-yl H 2,4,6-Trifluorphenyl
1-21 1 -Benzothiophen-5-yl H 3 -(Trifluormethyl)phenyl
2,4-Difluor-3-
1-22 1 -Benzothiophen-5-yl H
methoxyphenyl Nummer A Y PhenyH 1)™
1-23 1 -Benzofuran-6-yl H 2,3,4-Trifluorphenyl
1-24 1 -Benzofuran-5-yl H 2,4-Difluorphenyl
1-25 1 -Benzothiophen-6-yl H 2,3,4,5, 6-Pentafluorphenyl
1-26 1 -Benzofuran-6-yl H 4-Fluorphenyl
1-27 1 -Benzofuran-6-yl H 2,4,5-Trifluorphenyl
2,4-Difluor-3-
1-28 1 -Benzofuran-6-yl H
methoxyphenyl
1-29 1 -Benzothiophen-5-yl F 4-Fluorphenyl
1-30 1 -Benzofuran-6-yl H 4-Chlorphenyl
1-31 1 -Benzofuran-5-yl H 4-Chlorphenyl
1-32 1 -Benzothiophen-6-yl H 2,4,6-Trifluorphenyl
7-Fluor- 1 -benzofuran-6-
1-33 H 3-Chlorphenyl yi
1-34 1 -Benzofüran-5-yl F 4-Fluorphenyl
1-35 1 -Benzofuran-6-yl F 2,4-Dimethoxyphenyl
1-36 1 -Benzofuran-5-yl H 4-(Trifluormethyl)phenyl
1-37 1 -Benzofuran-5-yl H 2-(Trifluormethyl)phenyl
1-38 1 -Benzofuran-5-yl H 3-Chlorphenyl
1-39 1 ,3-Benzothiazol-6-yl H 2,4-Difluorphenyl
1-40 1 -Benzothiophen-5-yl H 3-Chlorphenyl
1-41 1 ,3-Benzothiazol-6-yl H 3-Fluorphenyl
1-42 1 -Benzothiophen-6-yl F 2,4-Difluorphenyl
1-43 1 -Benzofuran-6-yl H 2,4-Difluorphenyl
1-44 1 -Benzothiophen-6-yl H 2-Chlorphenyl
1-45 1 -Benzothiophen-6-yl F 4-Chlorphenyl
1-46 1 -Benzothiophen-6-yl H 2,3,4-Trifluorphenyl
1-47 1 -Benzofuran-5-yl F 4-Chlorphenyl
1-48 1 -Benzofuran-5-yl F 2,4-Difluorphenyl
7-Fluor- 1 -benzofuran-6-
1-49 H 4-Chlorphenyl yi
1-50 1 -Benzothiophen-6-yl H 3-Chlorphenyl
1-51 1 -Benzofuran-6-yl F 2,4-Dichlorphenyl
1-52 1 -Benzofuran-5-yl F 2,4,6-Trifluorphenyl
1-53 1 -Benzothiophen-6-yl F 4-Fluorphenyl
1-54 1 -Benzofuran-6-yl H 2,3,4,5, 6-Pentafluorphenyl Nummer A Y PhenyH 1)™
1-55 1 -Benzothiophen-6-yl F 2,4,6-Trifluorphenyl
1-56 1 -Benzothiophen-5-yl F 2,4-Difluorphenyl
3,6-Dichlor-2-
1-57 1 -Benzofuran-5-yl H
methoxyphenyl
6-Fluor- 1-
1-58 F 4-Chlorphenyl benzothiophen-5-yl
1-59 1 -Benzothiophen-5-yl F 2,4,6-Trifluorphenyl
1-60 1 ,3-Benzothiazol-6-yl H 3-Chlorphenyl
1-61 1 -Benzothiophen-6-yl H 2,3,4,5-Tetrafluorphenyl
1-62 1 -Benzofuran-5-yl H 2-Nitrophenyl
1-63 1 -Benzofuran-5-yl F 2,4-Dichlorphenyl
1-64 1 ,3-Benzothiazol-6-yl F 4-Chlorphenyl
1-65 1 -Benzothiophen-5-yl F 4-Chlorphenyl
6-Fluor- 1 -benzofuran-5-
1-66 F 2,4-Difluorphenyl yi
1-67 1 -Benzofuran-6-yl H 2,3,4,5-Tetrafluorphenyl
6-Fluor- 1 -benzofuran-5-
1-68 F 4-Chlorphenyl yi
1-69 1 ,3-Benzothiazol-6-yl H 4-Chlorphenyl
1-70 1 ,3-Benzothiazol-6-yl F 3-Fluorphenyl
6-Fluor- 1 -benzofuran-5-
1-71 F 4-Fluorphenyl yi
1-72 1 ,3-Benzothiazol-6-yl H 4-(Trifluormethyl)phenyl
1-73 1 -Benzothiophen-5-yl H 2,3,4,5-Tetrafluorphenyl
1-74 1 -Benzofuran-5-yl H 2,3,4,5-Tetrafluorphenyl
6-Fluor- 1-
1-75 F 2,4-Difluorphenyl benzothiophen-5-yl
1-76 1 -Benzothiophen-6-yl F 2,4-Dichlorphenyl
6-Fluor- 1-
1-77 F 4-Fluorphenyl benzothiophen-5-yl
1-78 1 ,3-Benzothiazol-6-yl H 2,4-Dichlorphenyl
6-Fluor- 1 -benzofuran-5-
1-79 F 2,4,6-Trifluorphenyl yi
6-Fluor- 1-
1-80 F 2,4-Dichlorphenyl benzothiophen-5-yl Nummer A Y PhenyH 1)™
6-Fluor- 1 -benzofuran-5-
1-81 F 2,4-Dichlorphenyl
yi
1-82 1 -Benzothiophen-5-yl F 2,4-Dichlorphenyl
1-83 1 ,3-Benzothiazol-6-yl F 4-Fluorphenyl
1-84 7-Fluor- 1 H-indol-6-yl F 3-Fluorphenyl
Kollektionen aus Verbindungen der Formel (I) und/oder deren Salzen, die nach den oben genannten Reaktionen synthetisiert werden können, können auch in parallelisierter Weise hergestellt werden, wobei dies in manueller, teilweise automatisierter oder vollständig automatisierter Weise geschehen kann. Dabei ist es beispielsweise möglich, die Reaktionsdurchführung, die Aufarbeitung oder die Reinigung der Produkte bzw. Zwischenstufen zu automatisieren. Insgesamt wird hierunter eine
Vorgehensweise verstanden, wie sie beispielsweise durch D. Tiebes in Combinatorial Chemistry - Synthesis, Analysis, Screening (Herausgeber Günther Jung), Verlag Wiley 1999, auf den Seiten 1 bis 34 beschrieben ist.
Zur parallelisierten Reaktionsdurchführung und Aufarbeitung können eine Reihe von im Handel erhältlichen Geräten verwendet werden, beispielsweise Calpyso-Reaktionsblöcke (Caylpso reaction blocks) der Firma Barnstead International, Dubuque, Iowa 52004-0797, USA oder Reaktionsstationen (reaction stations) der Firma Radleys, Shirehill, Saffron Waiden, Essex, CB 11 3AZ, England oder MultiPROBE Automated Workstations der Firma Perkin Elmar, Waltham, Massachusetts 02451 , USA. Für die parallelisierte Aufreinigung von Verbindungen der Formel (I) und deren Salzen beziehungsweise von bei der Herstellung anfallenden Zwischenprodukten stehen unter anderem
Chromatographieapparaturen zur Verfügung, beispielsweise der Firma ISCO, Inc., 4700 Superior Street, Lincoln, NE 68504, USA.
Die aufgeführten Apparaturen führen zu einer modularen Vorgehensweise, bei der die einzelnen Arbeitsschritte automatisiert sind, zwischen den Arbeitsschritten jedoch manuelle Operationen durchgeführt werden müssen. Dies kann durch den Einsatz von teilweise oder vollständig integrierten Automationssystemen umgangen werden, bei denen die jeweiligen Automationsmodule beispielsweise durch Roboter bedient werden. Derartige Automationssysteme können zum Beispiel von der Firma Caliper, Hopkinton, MA 01748, USA bezogen werden.
Die Durchführung einzelner oder mehrerer Syntheseschritte kann durch den Einsatz von Polymer- supported reagents/Scavanger-Harze unterstützt werden. In der Fachliteratur sind eine Reihe von Versuchsprotokollen beschrieben, beispielsweise in ChemFiles, Vol. 4, No. 1, Polymer-Supported Scavengers and Reagents for Solution-Phase Synthesis (Sigma-Aldrich). Neben den hier beschriebenen Methoden kann die Herstellung von Verbindungen der Formel (I) und deren Salzen vollständig oder partiell durch Festphasen unterstützte Methoden erfolgen. Zu diesem Zweck werden einzelne Zwischenstufen oder alle Zwischenstufen der Synthese oder einer für die entsprechende Vorgehensweise angepassten Synthese an ein Syntheseharz gebunden. Festphasen- unterstützte Synthesemethoden sind in der Fachliteratur hinreichend beschrieben, z.B. Barry A. Bunin in "The Combinatorial Index", Verlag Academic Press, 1998 und Combinatorial Chemistry - Synthesis, Analysis, Screening (Herausgeber Günther Jung), Verlag Wiley, 1999. Die Verwendung von
Festphasen- unterstützten Synthesemethoden erlaubt eine Reihe von literaturbekannten Protokollen, die wiederum manuell oder automatisiert ausgeführt werden können. Die Reaktionen können beispielsweise mittels IRORI-Technologie in Mikroreaktoren (microreactors) der Firma Nexus Biosystems, 12140 Community Road, Poway, CA92064, USA durchgeführt werden.
Sowohl an fester als auch in flüssiger Phase kann die Durchführung einzelner oder mehrerer
Syntheseschritte durch den Einsatz der Mikrowellen-Technologie unterstützt werden. In der
Fachliteratur sind eine Reihe von Versuchsprotokollen beschrieben, beispielsweise in Microwaves in Organic and Medicinal Chemistry (Herausgeber C. O. Kappe und A. Stadler), Verlag Wiley, 2005.
Die Herstellung gemäß der hier beschriebenen Verfahren liefert Verbindungen der Formel (I) und deren Salze in Form von Substanzkollektionen, die Bibliotheken genannt werden. Gegenstand der vorliegenden Erfindung sind auch Bibliotheken, die mindestens zwei Verbindungen der Formel (I) und deren Salzen enthalten.
Die erfindungsgemäßen Verbindungen der Formel (I) (und/oder deren Salze), im folgenden zusammen als„erfindungsgemäße Verbindungen" bezeichnet, weisen eine ausgezeichnete herbizide Wirksamkeit gegen ein breites Spektrum wirtschaftlich wichtiger mono- und dikotyler annueller Schadpflanzen auf. Auch schwer bekämpfbare perennierende Schadpflanzen, die aus Rhizomen, Wurzelstöcken oder anderen Dauerorganen austreiben, werden durch die Wirkstoffe gut erfaßt. Gegenstand der vorliegenden Erfindung ist daher auch ein Verfahren zur Bekämpfung von
unerwünschten Pflanzen oder zur Wachstumsregulierung von Pflanzen, vorzugsweise in
Pflanzenkulturen, worin eine oder mehrere erfindungsgemäße Verbindung(en) auf die Pflanzen (z.B. Schadpflanzen wie mono- oder dikotyle Unkräuter oder unerwünschte Kulturpflanzen), das Saatgut (z.B. Körner, Samen oder vegetative Vermehrungsorgane wie Knollen oder Sprossteile mit Knospen) oder die Fläche, auf der die Pflanzen wachsen (z.B. die Anbaufläche), ausgebracht werden. Dabei können die erfindungsgemäßen Verbindungen z.B. im Vorsaat- (ggf. auch durch Einarbeitung in den Boden), Vorauflauf- oder Nachauflaufverfahren ausgebracht werden. Im einzelnen seien beispielhaft einige Vertreter der mono- und dikotylen Unkrautflora genannt, die durch die erfindungsgemäßen Verbindungen kontrolliert werden können, ohne dass durch die Nennung eine Beschränkung auf bestimmte Arten erfolgen soll. Monokotyle Schadpflanzen der Gattungen: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata, Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum.
Dikotyle Unkräuter der Gattungen: Abutilon, Amaranthus, Ambrosia, Anoda, Anthemis, Aphanes, Artemisia, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erysimum, Euphorbia, Galeopsis, Galinsoga, Galium, Hibiscus, Ipomoea, Kochia, Lamium, Lepidium, Lindernia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio, Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium.
Werden die erfindungsgemäßen Verbindungen vor dem Keimen auf die Erdoberfläche appliziert, so wird entweder das Auflaufen der Unkrautkeimlinge vollständig verhindert oder die Unkräuter wachsen bis zum Keimblattstadium heran, stellen jedoch dann ihr Wachstum ein und sterben schließlich nach Ablauf von drei bis vier Wochen vollkommen ab.
Bei Applikation der Wirkstoffe auf die grünen Pflanzenteile im Nachauflaufverfahren tritt nach der Behandlung Wachstumsstop ein und die Schadpflanzen bleiben in dem zum Applikationszeitpunkt vorhandenen Wachstumsstadium stehen oder sterben nach einer gewissen Zeit ganz ab, so dass auf diese Weise eine für die Kulturpflanzen schädliche Unkrautkonkurrenz sehr früh und nachhaltig beseitigt wird. Obgleich die erfindungsgemäßen Verbindungen eine ausgezeichnete herbizide Aktivität gegenüber mono- und dikotylen Unkräutern aufweisen, werden Kulturpflanzen wirtschaftlich bedeutender Kulturen z.B. dikotyler Kulturen der Gattungen Arachis, Beta, Brassica, Cucumis, Cucurbita, Helianthus, Daucus, Glycine, Gossypium, Ipomoea, Lactuca, Linum, Lycopersicon, Nicotiana, Phaseolus, Pisum, Solanum, Vicia, oder monokotyler Kulturen der Gattungen Allium, Ananas, Asparagus, Avena, Hordeum, Oryza, Panicum, Saccharum, Seeale, Sorghum, Triticale, Triticum, Zea, insbesondere Zea und Triticum, abhängig von der Struktur der jeweiligen erfindungsgemäßen Verbindung und deren Aufwandmenge nur unwesentlich oder gar nicht geschädigt. Die vorliegenden Verbindungen eignen sich aus diesen Gründen sehr gut zur selektiven Bekämpfung von unerwünschtem Pflanzenwuchs in Pflanzenkulturen wie landwirtschaftlichen Nutzpflanzungen oder Zierpflanzungen.
Darüberhinaus weisen die erfindungsgemäßen Verbindungen (abhängig von ihrer jeweiligen Struktur und der ausgebrachten Aufwandmenge) hervorragende wachstumsregulatorische Eigenschaften bei Kulturpflanzen auf. Sie greifen regulierend in den pflanzeneigenen Stoffwechsel ein und können damit zur gezielten Beeinflussung von Pflanzeninhaltsstoffen und zur Ernteerleichterung wie z.B. durch Auslösen von Desikkation und Wuchsstauchung eingesetzt werden. Desweiteren eignen sie sich auch zur generellen Steuerung und Hemmung von unerwünschtem vegetativen Wachstum, ohne dabei die Pflanzen abzutöten. Eine Hemmung des vegetativen Wachstums spielt bei vielen mono- und dikotylen Kulturen eine große Rolle, da beispielsweise die Lagerbildung hierdurch verringert oder völlig verhindert werden kann.
Aufgrund ihrer herbiziden und pflanzenwachstumsregulatorischen Eigenschaften können die Wirkstoffe auch zur Bekämpfung von Schadpflanzen in Kulturen von bekannten oder noch zu entwickelnden gentechnisch veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistenzen gegenüber bestimmten Pestiziden, vor allem bestimmten Herbiziden, Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten wie bestimmten Insekten oder Mikroorganismen wie Pilzen, Bakterien oder Viren. Andere besondere Eigenschaften betreffen z.B. das Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer
Fettsäurezusammensetzung des Ernteguts bekannt. Weitere besondere Eigenschaften können in einer Toleranz oder Resistenz gegen abiotische Stressoren z.B. Hitze, Kälte, Trockenheit, Salz und ultraviolette Strahlung liegen.
Bevorzugt ist die Anwendung der erfindungsgemäßen Verbindungen der Formel (I) oder deren Salze in wirtschaftlich bedeutenden transgenen Kulturen von Nutz-und Zierpflanzen, z.B. von Getreide wie Weizen, Gerste, Roggen, Hafer, Hirse, Reis, Maniok und Mais oder auch Kulturen von Zuckerrübe, Baumwolle, Soja, Raps, Kartoffel, Tomate, Erbse und anderen Gemüsesorten.
Vorzugsweise können die Verbindungen der Formel (I) als Herbizide in Nutzpflanzenkulturen eingesetzt werden, welche gegenüber den phytotoxischen Wirkungen der Herbizide resistent sind bzw. gentechnisch resistent gemacht worden sind.
Herkömmliche Wege zur Herstellung neuer Pflanzen, die im Vergleich zu bisher vorkommenden Pflanzen modifizierte Eigenschaften aufweisen, bestehen beispielsweise in klassischen Züchtungsverfahren und der Erzeugung von Mutanten. Alternativ können neue Pflanzen mit veränderten Eigenschaften mit Hilfe gentechnischer Verfahren erzeugt werden (siehe z.B. EP 0221044,
EP 0131624). Beschrieben wurden beispielsweise in mehreren Fällen - gentechnische Veränderungen von Kulturpflanzen zwecks Modifikation der in den Pflanzen
synthetisierten Stärke (z.B. WO 92/011376 A, WO 92/014827 A, WO 91/019806 A), transgene Kulturpflanzen, welche gegen bestimmte Herbizide vom Typ Glufosinate (vgl. z.B. EP 0242236 A, EP 0242246 A) oder Glyphosate (WO 92/000377 A) oder der Sulfonylharnstoffe (EP 0257993 A, US 5,013,659) oder gegen Kombinationen oder Mischungen dieser Herbizide durch „gene stacking" resistent sind, wie transgenen Kulturpflanzen z. B. Mais oder Soja mit dem
Handelsnamen oder der Bezeichnung Optimum™ GAT™ (Glyphosate ALS Tolerant), transgene Kulturpflanzen, beispielsweise Baumwolle, mit der Fähigkeit Bacillus thuringiensis- Toxine (Bt-Toxine) zu produzieren, welche die Pflanzen gegen bestimmte Schädlinge resistent machen (EP 0142924 A, EP 0193259 A).
- transgene Kulturpflanzen mit modifizierter Fettsäurezusammensetzung (WO 91/013972 A). gentechnisch veränderte Kulturpflanzen mit neuen Inhalts- oder Sekundärstoffen z.B. neuen Phytoalexinen, die eine erhöhte Krankheitsresistenz verursachen (EP 0309862 A, EP 0464461 A) gentechnisch veränderte Pflanzen mit reduzierter Photorespiration, die höhere Erträge und höhere Stresstoleranz aufweisen (EP 0305398 A)
- transgene Kulturpflanzen, die pharmazeutisch oder diagnostisch wichtige Proteine produzieren („molecular pharming")
transgene Kulturpflanzen, die sich durch höhere Erträge oder bessere Qualität auszeichnen transgene Kulturpflanzen die sich durch eine Kombinationen z.B. der o. g. neuen Eigenschaften auszeichnen („gene stacking")
Zahlreiche molekularbiologische Techniken, mit denen neue transgene Pflanzen mit veränderten Eigenschaften hergestellt werden können, sind im Prinzip bekannt; siehe z.B. I. Potrykus und G.
Spangenberg (eds.) Gene Transfer to Plants, Springer Lab Manual (1995), Springer Verlag Berlin, Heidelberg, oder Christou, "Trends in Plant Science" 1 (1996) 423-431).
Für derartige gentechnische Manipulationen können Nucleinsäuremoleküle in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA- Sequenzen erlauben. Mit Hilfe von Standardverfahren können z.B. Basenaustausche vorgenommen, Teilsequenzen entfernt oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden, siehe z.B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; oder Winnacker "Gene und Klone", VCH Weinheim 2. Auflage 1996.
Die Herstellung von Pflanzenzellen mit einer verringerten Aktivität eines Genprodukts kann beispielsweise erzielt werden durch die Expression mindestens einer entsprechenden antisense-RNA, einer sense-RNA zur Erzielung eines Cosuppressionseffektes oder die Expression mindestens eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte des obengenannten Genprodukts spaltet. Hierzu können zum einen DNA-Moleküle verwendet werden, die die gesamte codierende Sequenz eines Genprodukts einschließlich eventuell vorhandener flankierender Sequenzen umfassen, als auch DNA- Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense-Effekt zu bewirken. Möglich ist auch die Verwendung von DNA- Sequenzen, die einen hohen Grad an Homologie zu den codiereden Sequenzen eines Genprodukts aufweisen, aber nicht vollkommen identisch sind.
Bei der Expression von Nucleinsäuremolekülen in Pflanzen kann das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein. Um aber die Lokalisation in einem bestimmten Kompartiment zu erreichen, kann z.B. die codierende Region mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in einem bestimmten Kompartiment gewährleisten. Derartige Sequenzen sind dem Fachmann bekannt (siehe beispielsweise Braun et al., EMBO J. 11 (1992), 3219- 3227; Wolter et al., Proc. Natl. Acad. Sei. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106). Die Expression der Nukleinsäuremoleküle kann auch in den Organellen der Pflanzenzellen stattfinden.
Die transgenen Pflanzenzellen können nach bekannten Techniken zu ganzen Pflanzen regeneriert werden. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen
Pflanzenspezies handeln, d.h., sowohl monokotyle als auch dikotyle Pflanzen. So sind transgene Pflanzen erhältlich, die veränderte Eigenschaften durch Überexpression, Suppression oder Inhibierung homologer (= natürlicher) Gene oder Gensequenzen oder Expression heterologer (= fremder) Gene oder Gensequenzen aufweisen.
Vorzugsweise können die erfindungsgemäßen Verbindungen (I) in transgenen Kulturen eingesetzt werden, welche gegen Wuchsstoffe, wie z.B. 2,4 D, Dicamba oder gegen Herbizide, die essentielle Pflanzenenzyme, z.B. Acetolactatsynthasen (ALS), EPSP Synthasen, Glutaminsynthasen (GS) oder Hydoxyphenylpyruvat Dioxygenasen (HPPD) hemmen, respektive gegen Herbizide aus der Gruppe der Sulfonylharnstoffe, der Glyphosate, Glufosinate oder Benzoylisoxazole und analogen Wirkstoffe, oder gegen beliebige Kombinationen dieser Wirkstoffe, resistent sind.
Besonders bevorzugt können die erfindungsgemäßen Verbindungen in transgenen Kulturpflanzen eingesetzt werden, die gegen eine Kombination von Glyphosaten und Glufosinaten, Glyphosaten und Sulfonylharnstoffen oder Imidazolinonen resistent sind. Ganz besonders bevorzugt können die erfindungsgemäßen Verbindungen in transgenen Kulturpflanzen wie z. B. Mais oder Soja mit dem Handelsnamen oder der Bezeichnung Optimum™ GAT™ (Glyphosate ALS Tolerant) eingesetzt werden.
Bei der Anwendung der erfindungsgemäßen Wirkstoffe in transgenen Kulturen treten neben den in anderen Kulturen zu beobachtenden Wirkungen gegenüber Schadpflanzen oftmals Wirkungen auf, die für die Applikation in der jeweiligen transgenen Kultur spezifisch sind, beispielsweise ein verändertes oder speziell erweitertes Unkrautspektrum, das bekämpft werden kann, veränderte Aufwandmengen, die für die Applikation eingesetzt werden können, vorzugsweise gute Kombinierbarkeit mit den Herbiziden, gegenüber denen die transgene Kultur resistent ist, sowie Beeinflussung von Wuchs und Ertrag der transgenen Kulturpflanzen.
Gegenstand der Erfindung ist deshalb auch die Verwendung der erfindungsgemäßen Verbindungen der Formel (I) als Herbizide zur Bekämpfung von Schadpflanzen in transgenen Kulturpflanzen.
Die erfindungsgemäßen Verbindungen können in Form von Spritzpulvern, emulgierbaren Konzentraten, versprühbaren Lösungen, Stäubemitteln oder Granulaten in den üblichen Zubereitungen angewendet werden. Gegenstand der Erfindung sind deshalb auch herbizide und pflanzenwachstumsregulierende Mittel, welche die erfindungsgemäßen Verbindungen enthalten.
Die erfindungsgemäßen Verbindungen können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch-physikalischen Parameter vorgegeben sind. Als
Formulierungsmöglichkeiten kommen beispielsweise in Frage: Spritzpulver (WP), wasserlösliche Pulver (SP), wasserlösliche Konzentrate, emulgierbare Konzentrate (EC), Emulsionen (EW), wie
Öl-in- Wasser- und Wasser-in-Öl-Emulsionen, versprühbare Lösungen, Suspensionskonzentrate (SC), Dispersionen auf Öl- oder Wasserbasis, ölmischbare Lösungen, Kapselsuspensionen (CS), Stäubemittel (DP), Beizmittel, Granulate für die Streu- und Bodenapplikation, Granulate (GR) in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), wasserlösliche Granulate (SG), ULV-Formulierungen, Mikrokapseln und Wachse.
Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl. 1986, Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker, N.Y., 1973, K. Martens, "Spray Drying" Handbook, 3rd Ed. 1979, G. Goodwin Ltd.
London. Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J., H.v. Olphen, "Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y., C. Marsden, "Solvents Guide", 2nd Ed., Interscience, N.Y. 1963, McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J., Sisley and Wood, "Encyclopedia of
Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964, Schönfeldt, "Grenzflächenaktive
Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1976, Winnacker-Küchler, "Chemische
Technologie", Band 7, C. Hanser Verlag München, 4. Aufl. 1986. Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix. Geeignete Safener sind beispielsweise Mefenpyr-diethyl, Cyprosulfamid, Isoxadifen-ethyl,
Cloquintocet-mexyl und Dichlormid.
Die Safener sind vorzugsweise ausgewählt aus der Gruppe bestehend aus:
Sl) Verbindungen der Formel (Sl),
wobei die Symbole und Indizes folgende Bedeutungen haben: nA ist eine natürliche Zahl von 0 bis 5, vorzugsweise 0 bis 3;
RA 1 ist Halogen, (Ci-C4)Alkyl, (Ci-C4)Alkoxy, Nitro oder (Ci-C4)Haloalkyl; WA ist ein unsubstituierter oder substituierter divalenter heterocyclischer Rest aus der Gruppe der teilungesättigten oder aromatischen Fünfring-Heterocyclen mit 1 bis 3 Heteroringatomen aus der Gruppe N und O, wobei mindestens ein N-Atom und höchstens ein O-Atom im Ring enthalten ist, vorzugsweise ein Rest aus der Gruppe (WA1) bis (WA4),
niA ist 0 oder 1 ;
RA ist ORA , SRA oder NRA RA oder ein gesättigter oder ungesättigter 3- bis 7-gliedriger
Heterocyclus mit mindestens einem N-Atom und bis zu 3 Heteroatomen, vorzugsweise aus der Gruppe O und S, der über das N-Atom mit der Carbonylgruppe in (Sl) verbunden ist und unsubstituiert oder durch Reste aus der Gruppe (Ci-C i)Alkyl, (Ci-C i)Alkoxy oder
gegebenenfalls substituiertes Phenyl substituiert ist, vorzugsweise ein Rest der Formel ORA3, NHRa 4 oder N(CH3)2, insbesondere der Formel ORA3;
RA 3 ist Wasserstoff oder ein unsubstituierter oder substituierter aliphatischer Kohlenwasserstoffrest, vorzugsweise mit insgesamt 1 bis 18 C-Atomen;
RA4 ist Wasserstoff, (Ci-C6)Alkyl, (Ci-Ce)Alkoxy oder substituiertes oder unsubstituiertes Phenyl;
RA5 ist H, (Ci-C8)Alkyl, (Ci-C8)Haloalkyl, (Ci-C4)Alkoxy(Ci-C8)Alkyl, Cyano oder COORA9, worin RA 9 Wasserstoff, (Ci-C8)Alkyl, (Ci-C8)Haloalkyl, (Ci-C4)Alkoxy-(Ci-C4)alkyl,
(Ci-C6)Hydroxyalkyl, (C3-Ci2)Cycloalkyl oder Tri-(Ci-C4)-alkyl-silyl ist;
RA6, RA7, RA8 sind gleich oder verschieden Wasserstoff, (Ci-C8)Alkyl, (Ci-C8)Haloalkyl, (C3- Ci2)Cycloalkyl oder substituiertes oder unsubstituiertes Phenyl; vorzugsweise: a) Verbindungen vom Typ der Dichlorphenylpyrazolin-3-carbonsäure (Sla), vorzugsweise
Verbindungen wie 1 -(2,4-Dichlorphenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazolin-3-carbon- säure, l-(2,4-Dichlorphenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazolin-3-carbonsäureethylester (Sl-1) ("Mefenpyr-diethyl"), und verwandte Verbindungen, wie sie in der WO-A-91/07874 beschrieben sind; b) Derivate der Dichlorphenylpyrazolcarbonsäure (S lb), vorzugsweise Verbindungen wie 1 -(2,4-Dichlorphenyl)-5-methyl-pyrazol-3-carbonsäureethylester (S 1 -2),
1 -(2,4-Dichlorphenyl)-5-isopropyl-pyrazol-3 -carbonsäureethylester (S 1 -3),
1 -(2,4-Dichlorphenyl)-5-(l , 1 -dimethyl-ethyl)pyrazol-3-carbonsäureethyl-ester (S 1 -4) und verwandte Verbindungen, wie sie in EP-A-333 131 und EP-A-269 806 beschrieben sind; c) Derivate der l ,5-Diphenylpyrazol-3-carbonsäure (S lc), vorzugsweise Verbindungen wie
1 -(2,4-Dichlorphenyl)-5-phenylpyrazol-3-carbonsäureethylester (S 1 -5),
l -(2-Chlorphenyl)-5-phenylpyrazol-3-carbonsäuremethylester (S l -6) und verwandte
Verbindungen wie sie beispielsweise in der EP-A-268554 beschrieben sind; d) Verbindungen vom Typ der Triazolcarbonsäuren (Sld), vorzugsweise Verbindungen wie
Fenchlorazol(-ethylester), d.h. l -(2,4-Dichlorphenyl)-5-trichlormethyl-(lH)-l ,2,4-triazol-3- carbonsäureethylester (S l -7), und verwandte Verbindungen wie sie in EP-A-174 562 und EP-A-346 620 beschrieben sind; e) Verbindungen vom Typ der 5-Benzyl- oder 5-Phenyl-2-isoxazolin-3- carbonsäure oder der 5,5- Diphenyl-2-isoxazolin-3-carbonsäure (Sle), vorzugsweise Verbindungen wie
5-(2,4-Dichlorbenzyl)-2-isoxazolin-3 -carbonsäureethylester (S l -8) oder
5-Phenyl-2-isoxazolin-3-carbonsäureethylester (S l -9) und verwandte Verbindungen, wie sie in WO-A-91/08202 beschrieben sind, bzw. 5,5-Diphenyl-2-isoxazolin-3-carbonsäure (S l -10) oder 5,5-Diphenyl-2-isoxazolin-3-carbonsäureethylester (Sl -1 1) ("Isoxadifen-ethyl")
oder -n-propylester (S l -12) oder der 5-(4-Fluorphenyl)-5-phenyl-2-isoxazolin-3- carbonsäureethylester (Sl -13), wie sie in der Patentanmeldung WO-A-95/07897 beschrieben sind.
S2) Chinolinderivate der Formel (S2), wobei die Symbole und Indizes folgende Bedeutungen haben:
RB1 ist Halogen, (Ci-C4)Alkyl, (Ci-C4)Alkoxy, Nitro oder (Ci-C4)Haloalkyl; ne ist eine natürliche Zahl von 0 bis 5, vorzugsweise 0 bis 3; RB 2 ist ORB 3, SRb 3 oder NRB 3RB 4 oder ein gesättigter oder ungesättigter 3- bis 7-gliedriger Heterocyclus mit mindestens einem N-Atom und bis zu 3 Heteroatomen, vorzugsweise aus der Gruppe O und S, der über das N-Atom mit der
Carbonylgruppe in (S2) verbunden ist und unsubstituiert oder durch Reste aus der Gruppe (Ci- C i)Alkyl, (Ci-C i)Alkoxy oder gegebenenfalls substituiertes Phenyl substituiert ist, vorzugsweise ein Rest der Formel ORB3, NHRB4 oder N(CH3)2, insbesondere der Formel ORB3;
RB3 ist Wasserstoff oder ein unsubstituierter oder substituierter aliphatischer Kohlenwasserstoffrest, vorzugsweise mit insgesamt 1 bis 18 C-Atomen;
RB4 ist Wasserstoff, (Ci-C6)Alkyl, (Ci-Ce)Alkoxy oder substituiertes oder unsubstituiertes Phenyl;
TB ist eine (Ci oder C2)-Alkandiylkette, die unsubstituiert oder mit einem oder zwei (Ci- C i)Alkylresten oder mit [(Ci-C3)-Alkoxy]-carbonyl substituiert ist; vorzugsweise: a) Verbindungen vom Typ der 8-Chinolinoxyessigsäure (S2a), vorzugsweise
(5-Chlor-8-chinolinoxy)essigsäure-(l -methylhexyl)ester ("Cloquintocet-mexyl") (S2-1), (5-Chlor-8-chinolinoxy)essigsäure-(l ,3-dimethyl-but-l -yl)ester (S2-2),
(5-Chlor-8-chinolinoxy)essigsäure-4-allyloxy-butylester (S2-3),
(5-Chlor-8-chinolinoxy)essigsäure-l -allyloxy-prop-2-ylester (S2-4),
(5-Chlor-8-chinolinoxy)essigsäureethylester (S2-5),
(5-Chlor-8-chinolinoxy)essigsäuremethylester (S2-6),
(5-Chlor-8-chinolinoxy)essigsäureallylester (S2-7),
(5-Chlor-8-chinolinoxy)essigsäure-2-(2-propyliden-iminoxy)-l -ethylester (S2-8), (5-Chlor-8- chinolinoxy)essigsäure-2-oxo-prop-l -ylester (S2-9) und verwandte Verbindungen, wie sie in EP-A-86 750, EP-A-94 349 und EP-A-191 736 oder EP-A-0 492 366 beschrieben sind, sowie (5-Chlor-8-chinolinoxy)essigsäure (S2-10), deren Hydrate und Salze, beispielsweise deren Lithium-, Natrium- Kalium-, Kalzium-, Magnesium-, Aluminium-, Eisen-, Ammonium-, quartäre Ammonium-, Sulfonium-, oder Phosphoniumsalze wie sie in der WO-A-2002/34048 beschrieben sind; b) Verbindungen vom Typ der (5-Chlor-8-chinolinoxy)malonsäure (S2b), vorzugsweise
Verbindungen wie (5-Chlor-8-chinolinoxy)malonsäurediethylester,
(5-Chlor-8-chinolinoxy)malonsäurediallylester, (5-Chlor-8-chinolin- oxy)malonsäure-methyl-ethylester und verwandte Verbindungen, wie sie in EP-A-0 582 198 beschrieben sind.
S3) Verbindungen der Formel (S3)
wobei die Symbole und Indizes folgende Bedeutungen haben:
Rc1 ist (Ci-C4)Alkyl, (Ci-C4)Haloalkyl, (C2-C4)Alkenyl, (C2-C4)Haloalkenyl, (C3-C7)Cycloalkyl, vorzugsweise Dichlormethyl;
Rc2, Rc3 sind gleich oder verschieden Wasserstoff, (Ci-C4)Alkyl, (C2-C4)Alkenyl, (C2-C4)Alkinyl, (Ci- C4)Haloalkyl, (C2-C4)Haloalkenyl, (Ci-C4)Alkylcarbamoyl-(Ci-C4)alkyl, (C2- C4)Alkenylcarbamoyl-(Ci-C4)alkyl, (Ci-C4)Alkoxy-(Ci-C4)alkyl, Dioxolanyl-(Ci-C4)alkyl, Thiazolyl, Furyl, Furylalkyl, Thienyl, Piperidyl, substituiertes oder unsubstituiertes Phenyl, oder Rc2 und Rc3 bilden zusammen einen substituierten oder unsubstituierten heterocyclischen Ring, vorzugsweise einen Oxazolidin-, Thiazolidin-, Piperidin-, Morpholin-, Hexahydropyrimidin- oder Benzoxazinring; vorzugsweise:
Wirkstoffe vom Typ der Dichloracetamide, die häufig als Vorauflaufsafener (bodenwirksame
Safener) angewendet werden, wie z. B.
"Dichlormid" (N,N-Diallyl-2,2-dichloracetamid) (S3-1),
"R-29148" (3-Dichloracetyl-2,2,5-trimethyl-l ,3-oxazolidin) der Firma Stauffer (S3-2), "R-28725" (3-Dichloracetyl-2,2,-dimethyl-l ,3-oxazolidin) der Firma Stauffer (S3-3),
"Benoxacor" (4-Dichloracetyl-3,4-dihydro-3-methyl-2H-l ,4-benzoxazin) (S3-4),
"PPG-1292" (N-Allyl-N-[(l ,3-dioxolan-2-yl)-methyl]-dichloracetamid) der Firma PPG
Industries (S3-5),
"DKA-24" (N-Allyl-N-[(allylaminocarbonyl)methyl]-dichloracetamid) der Firma Sagro-Chem (S3-6),
"AD-67" oder "MON 4660" (3-Dichloracetyl-l -oxa-3-aza-spiro[4,5]decan) der Firma
Nitrokemia bzw. Monsanto (S3-7),
"TI-35" (1 -Dichloracetyl-azepan) der Firma TRI-Chemical RT (S3-8),
"Diclonon" (Dicyclonon) oder "BAS 145138" oder "LAB 145138" (S3-9)
((RS)-l -Dichloracetyl-3,3,8a-trimethylperhydropyrrolo[l ,2-a]pyrimidin-6-on) der Firma BASF, "Furilazol" oder "MON 13900" ((RS)-3-Dichloracetyl-5-(2-furyl)-2,2-dimethyloxazolidin) (S3-10); sowie dessen (R)-Isomer (S3-1 1).
N-Acylsulfonamide der Formel (S4) und ihre Salze,
worin die Symbole und Indizes folgende Bedeutungen haben:
AD ist S02-NRD 3-CO oder CO-NRD 3-S02
RD1 ist CO-NRD5RD6 oder NHCO-RD7;
RD2 ist Halogen, (Ci-C4)Haloalkyl, (Ci-C4)Haloalkoxy, Nitro, (Ci-C4)Alkyl, (Ci-C4)Alkoxy, (Ci- C4)Alkylsulfonyl, (Ci-C4)Alkoxycarbonyl oder (Ci-C4)Alkylcarbonyl;
RD3 ist Wasserstoff, (Ci-C4)Alkyl, (C2-C4)Alkenyl oder (C2-C4)Alkinyl;
RD4 ist Halogen, Nitro, (Ci-C4)Alkyl, (Ci-C4)Haloalkyl, (Ci-C4)Haloalkoxy, (C3-C6)Cycloalkyl,
Phenyl, (Ci-C4)Alkoxy, Cyano, (Ci-C4)Alkylthio, (Ci-C4)Alkylsulfmyl, (Ci-C4)Alkylsulfonyl, (Ci-C4)Alkoxycarbonyl oder (Ci-C4)Alkylcarbonyl;
RD5 ist Wasserstoff, (Ci-C6)Alkyl, (C3-C6)Cycloalkyl, (C2-C6)Alkenyl, (C2-C6)Alkinyl, (C5-
C6)Cycloalkenyl, Phenyl oder 3- bis 6-gliedriges Heterocyclyl enthaltend VD Heteroatome aus der Gruppe Stickstoff, Sauerstoff und Schwefel, wobei die sieben letztgenannten Reste durch VD Substituenten aus der Gruppe Halogen, (Ci-C6)Alkoxy, (Ci-C6)Haloalkoxy, (Ci- C2)Alkylsulfmyl, (Ci-C2)Alkylsulfonyl, (C3-C6)Cycloalkyl, (Ci-C4)Alkoxycarbonyl, (Ci- C4)Alkylcarbonyl und Phenyl und im Falle cyclischer Reste auch (Ci-C4) Alkyl und (Ci- C4)Haloalkyl substituiert sind;
RD6 ist Wasserstoff, (Ci-C6)Alkyl, (C2-C6)Alkenyl oder (C2-C6)Alkinyl, wobei die drei
letztgenannten Reste durch VD Reste aus der Gruppe Halogen, Hydroxy, (Ci-C4)Alkyl, (Ci-C4)Alkoxy und (Ci-C4)Alkylthio substituiert sind, oder RD5 und RD6 gemeinsam mit dem dem sie tragenden Stickstoffatom einen Pyrrolidinyl- oder
Piperidinyl-Rest bilden;
RD7 ist Wasserstoff, (Ci-C4)Alkylamino, Di-(Ci-C4)alkylamino, (Ci-C6)Alkyl, (C3-C6)Cycloalkyl, wobei die 2 letztgenannten Reste durch VD Substituenten aus der Gruppe Halogen, (Ci- C4)Alkoxy, (Ci-C6)Haloalkoxy und (Ci-C4)Alkylthio und im Falle cyclischer Reste auch (Ci- C4)Alkyl und (Ci-C4)Haloalkyl substituiert sind; nD ist 0, 1 oder 2; niD ist 1 oder 2;
VD ist 0, 1 , 2 oder 3; davon bevorzugt sind Verbindungen vom Typ der N-Acylsulfonamide, z.B. der nachfolgenden Formel (S4a), die z. B. bekannt sind aus WO-A-97/45016
worin
RD7 (Ci-C6)Alkyl, (C3-C6)Cycloalkyl, wobei die 2 letztgenannten Reste durch VD Substituenten aus der Gruppe Halogen, (Ci-C4)Alkoxy, (Ci-C6)Haloalkoxy und (Ci-C4)Alkylthio und im Falle cyclischer Reste auch (Ci-C4)Alkyl und (Ci-C4)Haloalkyl substituiert sind;
RD4 Halogen, (Ci-C4)Alkyl, (Ci-C4)Alkoxy, CF3; niD 1 oder 2;
VD ist 0, 1 , 2 oder 3 bedeutet; sowie
Acylsulfamoylbenzoesäureamide, z.B. der nachfolgenden Formel (S4b), die z.B. bekannt sind aus WO-A-99/16744,
z.B. solche worin
RD 5 = Cyclopropyl und (RD 4) = 2-OMe ist ("Cyprosulfamide", S4-1),
RD 5 = Cyclopropyl und (RD 4) = 5-Cl-2-OMe ist (S4-2),
RD 5 = Ethyl und (RD 4) = 2-OMe ist (S4-3),
RD 5 = Isopropyl und (RD 4) = 5-Cl-2-OMe ist (S4-4) und
RD 5 = Isopropyl und (RD 4) = 2-OMe ist (S4-5). sowie
Verbindungen vom Typ der N-Acylsulfamoylphenylharnstoffe der Formel (S4C), die bekannt sind aus der EP-A-365484,
worin
RD 8 und RD 9 unabhängig voneinander Wasserstoff, (Ci-Cg)Alkyl, (C3-Cg)Cycloalkyl, (C3-C6)Alkenyl, (C3-C6)Alkinyl,
RD4 Halogen, (Ci-C4)Alkyl, (Ci-C4)Alkoxy, CF3, niD 1 oder 2 bedeutet; beispielsweise
1 - [4-(N-2-Methoxybenzoylsulfamoyl)phenyl] -3 -methylharnstoff,
1 - [4-(N-2-Methoxybenzoylsulfamoyl)phenyl] -3 ,3 -dimethylharnstoff,
l-[4-(N-4,5-Dimethylbenzoylsulfamoyl)phenyl]-3-methylharnstoff, sowie
N-Phenylsulfonylterephthalamide der Formel (S4d), die z.B. bekannt sind aus CN 101838227, O
D 'mD
N (S4d)
H z.B. solche worin
RD 4 Halogen, (Ci-C4)Alkyl, (Ci-C4)Alkoxy, CF3; niD 1 oder 2;
RD 5 Wasserstoff, (Ci-C6)Alkyl, (C3-C6)Cycloalkyl, (C2-C6)Alkenyl, (C2-C6)Alkinyl, (C5- Ce)Cycloalkenyl bedeutet.
55) Wirkstoffe aus der Klasse der Hydroxyaromaten und der aromatisch-aliphatischen
Carbonsäurederivate (S5), z.B.
3,4,5-Triacetoxybenzoesäureethylester, 3,5-Dimethoxy-4-hydroxybenzoesäure, 3,5- Dihydroxybenzoesäure, 4-Hydroxysalicylsäure, 4-Fluorsalicyclsäure, 2-Hydroxyzimtsäure, 2,4- Dichlorzimtsäure, wie sie in der WO-A-2004/084631, WO-A-2005/015994, WO-A- 2005/016001 beschrieben sind.
56) Wirkstoffe aus der Klasse der l,2-Dihydrochinoxalin-2-one (S6), z.B.
l-Methyl-3-(2-thienyl)-l,2-dihydrochinoxalin-2-on, l-Methyl-3-(2-thienyl)-l,2-dihydro- chinoxalin-2-thion, l-(2-Aminoethyl)-3-(2-thienyl)-l,2-dihydro-chinoxalin-2-on-hydrochlorid, l-(2-Methylsulfonylaminoethyl)-3-(2-thienyl)-l,2-dihydro-chinoxalin-2-on, wie sie in der WO- A-2005/112630 beschrieben sind.
Verbindungen der Formel (S7), wie sie in der WO-A- 1998/38856 beschrieben sind, die Symbole und Indizes folgende Bedeutungen haben: RE1, RE2 sind unabhängig voneinander Halogen, (Ci-C i)Alkyl, (Ci-C4)Alkoxy, (Ci-C4)Haloalkyl,
(Ci-C4)Alkylamino, Di-(Ci-C4)Alkylamino, Nitro;
AE ist COORE3 oder COSRE 4,
RE3, RE4 sind unabhängig voneinander Wasserstoff, (Ci-C4)Alkyl, (C2-Ce)Alkenyl,
(C2-C4)Alkinyl, Cyanoalkyl, (Ci-C4)Haloalkyl, Phenyl, Nitrophenyl, Benzyl,
Halobenzyl, Pyridinylalkyl und Alkylammonium, ηε1 ist 0 oder 1 , ηε2, ηε3 sind unabhängig voneinander 0, 1 oder 2, vorzugsweise:
Diphenylmethoxyessigsäure,
Diphenylmethoxyessigsäureethylester,
Diphenylmethoxyessigsäuremethylester (CAS-Reg.Nr. 41858-19-9) (S7-1).
Verbindungen der Formel (S8),wie sie in der WO-A-98/27049 beschrieben sind
worin
nF für den Fall, dass XF=N ist, eine ganze Zahl von 0 bis 4, und für den Fall, dass XF=CH ist, eine ganze Zahl von 0 bis 5 ,
RF1 Halogen, (Ci-C4)Alkyl, (Ci-C4)Haloalkyl, (Ci-C4)Alkoxy, (Ci-C4)Haloalkoxy, Nitro, (Ci-
C4)Alkylthio, (Ci-C4)-Alkylsulfonyl, (Ci-C4)Alkoxycarbonyl, ggf. substituiertes. Phenyl, ggf. substituiertes Phenoxy,
RF2 Wasserstoff oder (Ci-C4)Alkyl,
Wasserstoff, (Ci-Cg)Alkyl, (C2-C4)Alkenyl, (C2-C4)Alkinyl, oder Aryl, wobei jeder der vorgenannten C-haltigen Reste unsubstituiert oder durch einen oder mehrere, vorzugsweise bis zu drei gleiche oder verschiedene Reste aus der Gruppe, bestehend aus Halogen und Alkoxy substituiert ist; bedeuten, oder deren Salze, vorzugsweise Verbindungen worin
nF eine ganze Zahl von 0 bis 2 ,
RF1 Halogen, (Ci-C4)Alkyl, (Ci-C4)Haloalkyl, (Ci-C4)Alkoxy, (Ci-C4)Haloalkoxy, RF2 Wasserstoff oder (Ci-C4)Alkyl,
RF3 Wasserstoff, (Ci-Cg)Alkyl, (C2-C4)Alkenyl, (C2-C4)Alkinyl, oder Aryl, wobei jeder der
vorgenannten C-haltigen Reste unsubstituiert oder durch einen oder mehrere, vorzugsweise bis zu drei gleiche oder verschiedene Reste aus der Gruppe, bestehend aus Halogen und Alkoxy substituiert ist, bedeuten,
oder deren Salze.
S9) Wirkstoffe aus der Klasse der 3-(5-Tetrazolylcarbonyl)-2-chinolone (S9), z.B.
1 ,2-Dihydro-4-hydroxy- 1 -ethyl-3-(5-tetrazolylcarbonyl)-2-chinolon (CAS-Reg.Nr. 219479- 18- 2), l ,2-Dihydro-4-hydroxy-l -methyl-3-(5-tetrazolyl-carbonyl)-2-chinolon (CAS-Reg.Nr. 95855- 00-8), wie sie in der WO-A- 1999/000020 beschrieben sind.
S 10) Verbindungen der Formeln (S 10a) oder (S 10b) wie sie in der WO-A-2007/023719 und WO-A-2007/023764 beschrieben sind
(S10a) (S10b) worin
RG1 Halogen, (Ci-C4)Alkyl, Methoxy, Nitro, Cyano, CF3, OCF3, YG, ZG unabhängig voneinander O oder S, no eine ganze Zahl von 0 bis 4, (Ci-Ci6)Alkyl, (C2-C6)Alkenyl, (C3-C6)Cycloalkyl, Aryl; Benzyl, Halogenbenzyl, Wasserstoff oder (Ci-Ce)Alkyl bedeutet. ) Wirkstoffe vom Typ der Oxyimino- Verbindungen (Si l), die als Saatbeizmittel bekannt sind, wie z. B.
"Oxabetrinil" ((Z)-l ,3-Dioxolan-2-ylmethoxyimino(phenyl)acetonitril) (Sl 1 -1), das als
Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist,
"Fluxofenim" (l -(4-Chlorphenyl)-2,2,2-trifluor-l -ethanon-0-(l ,3-dioxolan-2-ylmethyl)-oxim) (S l 1 -2), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist, und
"Cyometrinil" oder "CGA-43089" ((Z)-Cyanomethoxyimino(phenyl)acetonitril) (Sl l -3), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist. ) Wirkstoffe aus der Klasse der Isothiochromanone (S 12), wie z.B. Methyl- [(3 -oxo-lH-2- benzothiopyran-4(3H)-yliden)methoxy]acetat (CAS-Reg.Nr. 205121 -04-6) (S 12-1) und verwandte Verbindungen aus WO-A-1998/13361. ) Eine oder mehrere Verbindungen aus Gruppe (S13): "Naphthalic anhydrid" (1 ,8-Naphthalindicarbonsäureanhydrid) (S13-1), das als Saatbeiz-Safener für Mais gegen Schäden von Thiocarbamatherbiziden bekannt ist,
"Fenclorim" (4,6-Dichlor-2-phenylpyrimidin) (S 13-2), das als Safener für Pretilachlor in gesätem Reis bekannt ist,
"Flurazole" (Benzyl-2-chlor-4-trifluormethyl-l ,3-thiazol-5-carboxylat) (S 13-3), das als Saatbeiz-Safener für Hirse gegen Schäden von Alachlor und Metolachlor bekannt ist,
"CL 304415" (CAS-Reg.Nr. 31541 -57-8)
(4-Carboxy-3,4-dihydro-2H-l -benzopyran-4-essigsäure) (S13-4) der Firma American
Cyanamid, das als Safener für Mais gegen Schäden von Imidazolinonen bekannt ist,
"MG 191 " (CAS-Reg.Nr. 96420-72-3) (2-Dichlormethyl-2-methyl-l ,3-dioxolan) (S13-5) der Firma Nitrokemia, das als Safener für Mais bekannt ist,
"MG 838" (CAS-Reg.Nr. 133993-74-5)
(2-propenyl l -oxa-4-azaspiro[4.5]decan-4-carbodithioat) (S13-6) der Firma Nitrokemia,
"Disulfoton" (0,0-Diethyl S-2-ethylthioethyl phosphordithioat) (S 13-7), "Dietholate" (0,0-Diethyl-O-phenylphosphorothioat) (S 13-8),
"Mephenate" (4-Chlorphenyl-methylcarbamat) (S 13-9).
S 14) Wirkstoffe, die neben einer herbiziden Wirkung gegen Schadpflanzen auch Safenerwirkung an Kulturpflanzen wie Reis aufweisen, wie z. B.
"Dimepiperate" oder "MY 93" (S-\ -Methyl- 1 -phenylethyl-piperidin-l -carbothioat), das als
Safener für Reis gegen Schäden des Herbizids Molinate bekannt ist,
"Daimuron" oder "SK 23" (l -(l -Methyl-l -phenylethyl)-3-p-tolyl-harnstoff), das als Safener für Reis gegen Schäden des Herbizids Imazosulfuron bekannt ist,
"Cumyluron" = "JC 940" (3-(2-Chlorphenylmethyl)-l -(l -methyl-l -phenyl-ethyl)harnstoff, siehe JP-A-60087254), das als Safener für Reis gegen Schäden einiger Herbizide bekannt ist,
"Methoxyphenon" oder "NK 049" (3,3'-Dimethyl-4-methoxy-benzophenon), das als Safener für Reis gegen Schäden einiger Herbizide bekannt ist,
"CSB" (l -Brom-4-(chlormethylsulfonyl)benzol) von Kumiai, (CAS-Reg.Nr. 54091 -06-4), das als Safener gegen Schäden einiger Herbizide in Reis bekannt ist. S 15) Verbindungen der Formel (S15) oder deren Tautomere
wie sie in der WO-A-2008/131861 und WO-A-2008/131860 beschrieben sind worin
RH1 einen (Ci-C6)Haloalkylrest bedeutet, und RH2 Wasserstoff oder Halogen bedeutet, und
RH3, RH4 unabhängig voneinander Wasserstoff, (Ci-Ci6)Alkyl, (C2-Ci6)Alkenyl oder (C2-Ci6)Alkinyl, wobei jeder der letztgenannten 3 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Hydroxy, Cyano, (Ci-C i)Alkoxy, (Ci-C i)Haloalkoxy, (Ci-C4)Alkylthio, (Ci-C4)Alkylamino, Di[(Ci-C4)alkyl]-amino, [(Ci-C4)Alkoxy]- carbonyl, [(Ci-C4)Haloalkoxy]-carbonyl, (C3-C6)Cycloalkyl, das unsubstituiert oder substituiert ist, Phenyl, das unsubstituiert oder substituiert ist, und Heterocyclyl, das unsubstituiert oder substituiert ist, substituiert ist, oder (C3-C6)Cycloalkyl, (C4-C6)Cycloalkenyl, (C3-C6)Cycloalkyl, das an einer Seite des Rings mit einem 4 bis 6-gliedrigen gesättigten oder ungesättigten carbocyclischen Ring kondensiert ist, oder (C4-C6)Cycloalkenyl, das an einer Seite des Rings mit einem 4 bis 6-gliedrigen gesättigten oder ungesättigten carbocyclischen Ring kondensiert ist, wobei jeder der letztgenannten 4 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Hydroxy, Cyano, (Ci-C4)Alkyl, (Ci-C4)Haloalkyl, (Ci-C4)Alkoxy, (Ci-C4)Haloalkoxy, (Ci-C4)Alkylthio, (Ci-C4)Alkylamino, Di[(Ci- C4)alkyl]-amino, [(Ci-c4)Alkoxy]-carbonyl, [(Ci-C4)Haloalkoxy]-carbonyl,
(C3-C6)Cycloalkyl, das unsubstituiert oder substituiert ist, Phenyl, das unsubstituiert oder substituiert ist, und Heterocyclyl, das unsubstituiert oder substituiert ist, substituiert ist, bedeutet oder
RH3 (Ci-C4)-Alkoxy, (C2-C4)Alkenyloxy, (C2-C6)Alkinyloxy oder (C2-C4)Haloalkoxy bedeutet, und RH4 Wasserstoff oder (Ci-C4)-Alkyl bedeutet, oder
RH3 und RH4 zusammen mit dem direkt gebundenen N-Atom einen vier- bis achtgliedrigen
heterocyclischen Ring, der neben dem N-Atom auch weitere Heteroringatome, vorzugsweise bis zu zwei weitere Heteroringatome aus der Gruppe N, O und S enthalten kann und der unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Cyano, Nitro, (Ci- C4)Alkyl, (Ci-C4)Haloalkyl, (Ci-C4)Alkoxy, (Ci-C4)Haloalkoxy und (Ci-C4)Alkylthio substituiert ist, bedeutet.
S 16) Wirkstoffe, die vorrangig als Herbizide eingesetzt werden, jedoch auch Safenerwirkung auf Kulturpflanzen aufweisen, z.B.
(2,4-Dichlorphenoxy)essigsäure (2,4-D),
(4-Chlorphenoxy)essigsäure,
(R,S)-2-(4-Chlor-o-tolyloxy)propionsäure (Mecoprop),
4-(2,4-Dichlorphenoxy)buttersäure (2,4-DB),
(4-Chlor-o-tolyloxy)essigsäure (MCPA),
4-(4-Chlor-o-tolyloxy)buttersäure, 4-(4-Chlorphenoxy)buttersäure,
3,6-Dichlor-2-methoxybenzoesäure (Dicamba),
l-(Ethoxycarbonyl)ethyl-3,6-dichlor-2-methoxybenzoat (Lactidichlor-ethyl).
Bevorzugte Safener sind: Cloquintocet-mexyl, Cyprosulfamid, Fenchlorazol-ethylester, Isoxadifen- ethyl, Mefenpyr-diethyl, Fenclorim, Cumyluron, S4-1 und S4-5, besonders bevorzugt sind:
Cloquintocet-mexyl, Cyprosulfamid, Isoxadifen-ethyl und Mefenpyr-diethyl.
Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Tenside ionischer und/oder nichtionischer Art (Netzmittel, Dispergiermittel), z.B. polyoxyethylierte Alkylphenole, polyoxethylierte Fettalkohole, polyoxethylierte Fettamine, Fettalkoholpolyglykolethersulfate, Alkansulfonate, Alkylbenzolsulfonate, ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleoylmethyltaurinsaures Natrium enthalten. Zur Herstellung der Spritzpulver werden die herbiziden Wirkstoffe beispielsweise in üblichen Apparaturen wie Hammermühlen, Gebläsemühlen und Luftstrahlmühlen feingemahlen und gleichzeitig oder anschließend mit den Formulierungshilfsmitteln vermischt.
Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen oder Mischungen der organischen Lösungsmittel unter Zusatz von einem oder mehreren Tensiden ionischer und/oder nichtionischer Art (Emulgatoren) hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calzium-Salze wie
Ca-Dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester,
Alkylarylpolyglykolether, Fettalkoholpolyglykolether,
Propylenoxid-Ethylenoxid-Kondensationsprodukte, Alkylpolyether, Sorbitanester wie z.B.
Sorbitanfettsäureester oder Polyoxethylensorbitanester wie z.B. Polyoxyethylensorbitanfettsäureester.
Stäubemittel erhält man durch Vermählen des Wirkstoffes mit fein verteilten festen Stoffen, z.B.
Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophyllit, oder Diatomeenerde.
Suspensionskonzentrate können auf Wasser- oder Ölbasis sein. Sie können beispielsweise durch Naß-Vermahlung mittels handelsüblicher Perlmühlen und gegebenenfalls Zusatz von Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, hergestellt werden. Emulsionen, z.B. Öl-in- Wasser-Emulsionen (EW), lassen sich beispielsweise mittels Rührern, Kolloidmühlen und/oder statischen Mischern unter Verwendung von wäßrigen organischen Lösungsmitteln und gegebenenfalls Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, herstellen.
Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete
Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.
Wasserdispergierbare Granulate werden in der Regel nach den üblichen Verfahren wie Sprühtrocknung, Wirbelbett-Granulierung, Teller-Granulierung, Mischung mit Hochgeschwindigkeitsmischern und Extrusion ohne festes Inertmaterial hergestellt. Zur Herstellung von Teller-, Fließbett-, Extruder- und Sprühgranulate siehe z.B. Verfahren in
"Spray-Drying Handbook" 3rd ed. 1979, G. Goodwin Ltd., London, J.E. Browning, "Agglomeration", Chemical and Engineering 1967, Seiten 147 ff, "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, S. 8-57. Für weitere Einzelheiten zur Formulierung von Pflanzenschutzmitteln siehe z.B. G.C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, Seiten 81-96 und J.D. Freyer, S.A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, Seiten 101-103. Die agrochemischen Zubereitungen enthalten in der Regel 0.1 bis 99 Gew.-%, insbesondere 0.1 bis 95 Gew.-%, erfindungsgemäße Verbindungen.
In Spritzpulvern beträgt die Wirkstoffkonzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.- % besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 1 bis 90, vorzugsweise 5 bis 80 Gew.-% betragen. Staubförmige
Formulierungen enthalten 1 bis 30 Gew.-% Wirkstoff, vorzugsweise meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen enthalten etwa 0.05 bis 80, vorzugsweise 2 bis 50 Gew.-% Wirkstoff. Bei wasserdispergierbaren Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden. Bei den in Wasser dispergierbaren Granulaten liegt der Gehalt an Wirkstoff beispielsweise zwischen 1 und 95 Gew.-%, vorzugsweise zwischen 10 und 80 Gew.-%. Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Konservierungs-, Frostschutz- und Lösungsmittel, Füll-, Träger- und Farbstoffe, Entschäumer, Verdunstungshemmer und den pH- Wert und die Viskosität beeinflussende Mittel.
Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix. Als Kombinationspartner für die erfindungsgemäßen Verbindungen in Mischungsformulierungen oder im Tank-Mix sind beispielsweise bekannte Wirkstoffe, die auf einer Inhibition von beispielsweise
Acetolactat-Synthase, Acetyl-CoA-Carboxylase, Cellulose-Synthase, Enolpyruvylshikimat-3-phosphat- Synthase, Glutamin-Synthetase, p-Hydroxyphenylpyruvat-Dioxygenase, Phytoendesaturase,
Photosystem I, Photosystem II, Protoporphyrinogen-Oxidase beruhen, einsetzbar, wie sie z.B. aus Weed Research 26 (1986) 441-445 oder "The Pesticide Manual", 15th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2009 und dort zitierter Literatur beschrieben sind. Als bekannte Herbizide oder Pflanzenwachstumsregulatoren, die mit den erfindungsgemäßen Verbindungen kombiniert werden können, sind z.B. folgende Wirkstoffe zu nennen (die Verbindungen sind entweder mit dem "common name" nach der International Organization for Standardization (ISO) oder mit dem chemischen Namen oder mit der Codenummer bezeichnet) und umfassen stets sämtliche
Anwendungsformen wie Säuren, Salze, Ester und Isomere wie Stereoisomere und optische Isomere. Dabei sind beispielhaft eine und zum Teil auch mehrere Anwendungsformen genannt:
Acetochlor, acifluorfen, acifluorfen-sodium, aclonifen, alachlor, allidochlor, alloxydim, alloxydim- sodium, ametryn, amicarbazone, amidochlor, amidosulfuron, 4-amino-3-chloro-6-(4-chloro-2-fluoro-3- methylphenyl)-5-fluoropyridine-2-carboxylic acid, aminocyclopyrachlor, aminocyclopyrachlor- potassium, aminocyclopyrachlor-methyl, aminopyralid, amitrole, ammoniumsulfamate, anilofos, asulam, atrazine, azafenidin, azimsulfuron, beflubutamid, benazolin, benazolin-ethyl, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone, benzobicyclon, benzofenap, bicyclopyron, bifenox, bilanafos, bilanafos-sodium, bispyribac, bispyribac-sodium, bromacil, bromobutide, bromofenoxim, bromoxynil, bromoxynil-butyrate, -potassium, -heptanoate und -octanoate, busoxinone, butachlor, butafenacil, butamifos, butenachlor, butralin, butroxydim, butylate, cafenstrole, carbetamide, carfentrazone, carfentrazone-ethyl, chloramben, chlorbromuron, chlorfenac, chlorfenac- sodium, chlorfenprop, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, chlorophthalim, chlorotoluron, chlorthal-dimethyl, chlorsulfuron, cinidon, cinidon-ethyl, cinmethylin, cinosulfuron, clacyfos, clethodim, clodinafop, clodinafop-propargyl, clomazone, clomeprop, clopyralid, cloransulam, cloransulam-methyl, cumyluron, cyanamide, cyanazine, cycloate, cyclopyrimorate, cyclosulfamuron, cycloxydim, cyhalofop, cyhalofop-butyl, cyprazine, 2,4-D, 2,4-D-butotyl, -butyl, - dimethylammonium, -diolamin, -ethyl, 2-ethylhexyl, -isobutyl, -isooctyl, -isopropylammonium, - potassium, -triisopropanolammonium und -trolamine, 2,4-DB, 2,4-DB-butyl, -dimethylammonium, isooctyl, -potassium und -sodium, daimuron (dymron), dalapon, dazomet, n-decanol, desmedipham, detosyl-pyrazolate (DTP), dicamba, dichlobenil, 2-(2,4-dichlorobenzyl)-4,4-dimethyl-l,2-oxazolidin-3- one, 2-(2,5-dichlorobenzyl)-4,4-dimethyl-l,2-oxazolidin-3-one, dichlorprop, dichlorprop-P, diclofop, diclofop-methyl, diclofop-P-methyl, diclosulam, difenzoquat, diflufenican, diflufenzopyr, diflufenzopyr- sodium, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimetrasulfuron, dinitramine, dinoterb, diphenamid, diquat, diquat-dibromid, dithiopyr, diuron, DNOC, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron, ethametsulfuron-methyl, ethiozin, ethofumesate, ethoxyfen, ethoxyfen- ethyl, ethoxysulfuron, etobenzanid, F-9600, F-5231, i.e. N-[2- Chlor-4-fluor-5-[4-(3-fluorpropyl)-4,5-dihydro-5-oxo-lH-tetrazol-l-yl]-phenyl]-ethansulfonamid, F- 7967, i.e. 3-[7-Chlor-5-fluor-2-(trifluormethyl)-lH-benzimidazol-4-yl]-l-methyl-6- (trifluormethyl)pyrimidin-2,4(lH,3H)-dion, fenoxaprop, fenoxaprop-P, fenoxaprop-ethyl, fenoxaprop-P- ethyl, fenoxasulfone, fenquinotrione, fentrazamide, flamprop, flamprop-M-isopropyl, flamprop-M- methyl, flazasulfuron, florasulam, fluazifop, fluazifop-P, fluazifop-butyl, fluazifop-P-butyl,
flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazin, fluometuron, flurenol, flurenol-butyl, - dimethylammonium und -methyl, fluoroglycofen, fluoroglycofen-ethyl, flupropanate, flupyrsulfuron, flupyrsulfuron-methyl-sodium, fluridone, flurochloridone, fluroxypyr, fluroxypyr-meptyl, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, fomesafen-sodium, foramsulfuron, fosamine, glufosinate, glufosinate-ammonium, glufosinate-P-sodium, glufosinate-P-ammonium, glufosinate-P-sodium, glyphosate, glyphosate-ammonium, -isopropylammonium, -diammonium, -dimethylammonium, - potassium, -sodium und -trimesium, H-9201, i.e. 0-(2,4-Dimethyl-6-nitrophenyl)-0-ethyl- isopropylphosphoramidothioat, halauxifen, halauxifen-methyl, halosafen, halosulfuron, halosulfuron- methyl, haloxyfop, haloxyfop-P, haloxyfop-ethoxyethyl, haloxyfop-P-ethoxyethyl, haloxyfop-methyl, haloxyfop-P-methyl, hexazinone, HW-02, i.e. l-(Dimethoxyphosphoryl)-ethyl-(2,4- dichlorphenoxy)acetat, imazamethabenz, Imazamethabenz-methyl, imazamox, imazamox-ammonium, imazapic, imazapic-ammonium, imazapyr, imazapyr-isopropylammonium, imazaquin, imazaquin- ammonium, imazethapyr, imazethapyr-immonium, imazosulfuron, indanofan, indaziflam, iodosulfuron, iodosulfuron-methyl-sodium, ioxynil, ioxynil-octanoate, -potassium und sodium, ipfencarbazone, isoproturon, isouron, isoxaben, isoxaflutole, karbutilate, KUH-043, i.e. 3-({[5-(Difluormethyl)-l - methyl-3-(trifluormethyl)- 1 H-pyrazol-4-yl]methyl} sulfonyl)-5,5-dimethyl-4,5-dihydro- 1 ,2-oxazol, ketospiradox, lactofen, lenacil, linuron, MCPA, MCPA-butotyl, -dimethylammonium, -2-ethylhexyl, - isopropylammonium, -potassium und -sodium, MCPB, MCPB-methyl, -ethyl und -sodium, mecoprop, mecoprop-sodium, und -butotyl, mecoprop-P, mecoprop-P-butotyl, -dimethylammonium, -2-ethylhexyl und -potassium, mefenacet, mefluidide, mesosulfuron, mesosulfuron-methyl, mesotrione,
methabenzthiazuron, metam, metamifop, metamitron, metazachlor, metazosulfuron, methabenzthiazuron, methiopyrsulfuron, methiozolin, methyl isothiocyanate, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, molinat, monolinuron, monosulfuron, monosulfuron-ester, MT-5950, i.e. N-[3-chlor-4-(l-methylethyl)- phenyl]-2-methylpentanamid, NGGC-011, napropamide, NC-310, i.e. 4-(2,4-Dichlorbenzoyl)-l-methyl- 5-benzyloxypyrazol, neburon, nicosulfuron, nonanoic acid (Pelargonsäure), norflurazon, oleic acid (fatty acids), orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefon, oxyfluorfen, paraquat, paraquat dichloride, pebulate, pendimethalin, penoxsulam, pentachlorphenol, pentoxazone, pethoxamid, petroleum oils, phenmedipham, picloram, picolinafen, pinoxaden, piperophos, pretilachlor, primisulfuron, primisulfuron-methyl, prodiamine, profoxydim, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propoxycarbazone-sodium, propyrisulfuron, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen, pyraflufen-ethyl, pyrasulfotole, pyrazolynate (pyrazolate), pyrazosulfuron, pyrazosulfuron- ethyl, pyrazoxyfen, pyribambenz, pyribambenz-isopropyl, pyribambenz-propyl, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobac, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, pyroxasulfone, pyroxsulam, quinclorac, quinmerac, quinoclamine, quizalofop, quizalofop-ethyl, quizalofop-P, quizalofop-P-ethyl, quizalofop-P-tefuryl, rimsulfuron, saflufenacil, sethoxydim, siduron, simazine, simetryn, SL-261, sulcotrion, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosulfuron, , SYN-523, SYP-249, i.e. l-Ethoxy-3-methyl-l-oxobut-3-en-2-yl- 5-[2-chlor-4-(trifluormethyl)phenoxy]-2-nitrobenzoat, SYP-300, i.e. l-[7-Fluor-3-oxo-4-(prop-2-in-l- yl)-3,4-dihydro-2H-l,4-benzoxazin-6-yl]-3-propyl-2-thioxoimidazolidin-4,5-dion, 2,3,6-TBA, TCA (Trifluoressigsäure), TCA-sodium, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbucarb, terbumeton, terbuthylazin, terbutryn, thenylchlor, thiazopyr, thiencarbazone, thiencarbazone- methyl, thifensulfuron, thifensulfuron-methyl, thiobencarb, tiafenacil, tolpyralate, topramezone, tralkoxydim, triafamone, tri-allate, triasulfuron, triaziflam, tribenuron, tribenuron-methyl, triclopyr, trietazine, trifloxysulfuron, trifloxysulfuron-sodium, trifludimoxazin, trifluralin, triflusulfuron, triflusulfuron-methyl, tritosulfuron, urea sulfate, vernolate, XDE-848, ZJ-0862, i.e. 3,4-Dichlor-N- {2- [(4,6-dimethoxypyrimidin-2-yl)oxy]benzyl}anilin, sowie die folgenden Verbindungen:
Beispiele für Pflanzenwachstumsregulatoren als mögliche Mischungspartner sind:
Acibenzolar, acibenzolar-S-methyl, 5-Aminolävulinsäure, ancymidol, 6-benzylaminopurine,
Brassinolid, Catechin, chlormequat chloride, cloprop, cyclanilide, 3-(Cycloprop-l-enyl)propionsäure, daminozide, dazomet, n-decanol, dikegulac, dikegulac-sodium, endothal, endothal- dipotassium, -disodium, und mono(N,N-dimethylalkylammonium), ethephon, flumetralin, flurenol, flurenol-butyl, flurprimidol, forchlorfenuron, gibberellic acid, inabenfide, indol-3-acetic acid (IAA), 4- indol-3-ylbutyric acid, isoprothiolane, probenazole, Jasmonsäure, Jasmonsäuremethylester, maleic hydrazide, mepiquat chloride, 1 -methylcyclopropene, 2-(l-naphthyl)acetamide, 1 -naphthylacetic acid, 2- naphthyloxyacetic acid, nitrophenolate-mixture, 4-0x0-4 [(2 -phenylethyl)amino]buttersäure, paclobutrazol, N-phenylphthalamic acid, prohexadione, prohexadione-calcium, prohydrojasmone,
Salicylsäure, Strigolacton, tecnazene, thidiazuron, triacontanol, trinexapac, trinexapac-ethyl, tsitodef, uniconazole, uniconazole-P.
Zur Anwendung werden die in handelsüblicher Form vorliegenden Formulierungen gegebenenfalls in üblicher Weise verdünnt z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Boden- bzw.
Streugranulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt. Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit, der Art des verwendeten Herbizids, u.a. variiert die erforderliche Aufwandmenge der Verbindungen der Formel (I). Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,001 und 1,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,005 und 750 g/ha.
Die nachstehenden Beispiele erläutern die Erfindung näher. A. Chemische Beispiele
1. Herstellung von 3-(Trifluormethyl)benzyl-4-amino-6-chlor-(l -benzothiophen-5-yl)-3- chlorpyridin-2-carboxylat (Beispiel Nr. 1-21 )
Zu einer Lösung von 0,08g (0,26mmol) 4-Amino-6-(l -benzothiophen-5-yl)-3-chlorpyridin-2- carbonsäure in 10ml THF gibt man nacheinander 0,075ml Triethylamin und 0,094g (0,39mmol) 3- Trifluorbenzylbromid, und rührt diese Reaktionsmischung 12 Stunden bei Raumtemperatur. Zur Aufarbeitung wird bis zur Trockne eingeengt und das so erhaltene Rohgemisch
säulenchromatographisch über Kieselgel (Heptan/Ethylacetat 2/8) gereinigt. Man erhält 0,1g (82%) Produkt als farbloses Öl. IH-NMR, CDC13; 8.40 (s, 1H, Benzothiophen), 7.90 (m, 2H, Benzothiophen), 7.70 (s, 1H, Phenyl), 7.70, 7.60 (2d, 2H, Phenyl), 7.50 (t, 1H, Phenyl), 7.49, 7.40 (2d, 2H,
Benzothiophen), 7.20 (s, 1H, Pyridin), 5.50 (s, 2H, CH2-phenyl), 4.70 (bs, 2H, NH2).
2. Herstellung von 4-Fluorbenzyl-4-amino-6-(l-benzothiophen-6-yl)-3-chlorpyridin-2-carboxylat (Beispiel Nr. 1-07)
Zu einer Lösung von 0,1g (0,33mmol) 4-Amino-6-(l -benzothiophen-6-yl)-3-chlorpyridin-2-carbonsäure in 10ml THF gibt man nacheinander 0,09ml Triethylamin und 0,093g (0,49mmol) 4-Fluorbenzylbromid, und rührt diese Reaktionsmischung 12 Stunden bei Raumtemperatur. Zur Aufarbeitung wird bis zur Trockne eingeengt und das so erhaltene Rohgemisch säulenchromatographisch über Kieselgel
(Heptan/Ethylacetat 2/8) gereinigt. Man erhält 0,09g (66%) Produkt als farbloses Öl. IH-NMR, CDC13; 8,50 (s, Benzothiophen), 7,85 (m, 2H, Benzothiophen), 7,50 (m, 3H, Benzyl, Benzothiophen), 7,35 (d, 1H, Benzothiophen), 7,25 (s, 1H, Pyridin), 7,08 (m, 2H, Benzyl), 5,95 (s, 2H, OCH2), 4,70 (bs, 2H, NH2). 3. Herstellung von 3-Fluorbenzyl-4-amino-3-chlor-5-fluor-6-(7-fluor-lH-indol-6-yl)pyridin-2- carboxylat (Beispiel Nr. 1-84)
Zu einer Lösung von 0,1g (0,31mmol) 4-Amino-3-chlor-5-fluor-6-(7-fluor-lH-indol-6-yl)pyridin-2- carbonsäure in 11ml THF gibt man nacheinander 0,09ml Triethylamin und 0,088g (0,47mmol) 3- Fluorbenzylbromid, erwärmt kurz auf 70°C und rührt diese Reaktionsmischung 12 Stunden bei Raumtemperatur. Zur Aufarbeitung wird bis zur Trockne eingeengt und das so erhaltene Rohgemisch säulenchromatographisch über Kieselgel (Heptan/Ethylacetat 2/8) gereinigt. Man erhält 0,1g (79%) Produkt als farbloses Öl. IH-NMR, CDC13; 8,45 (bs, NH, Indol), 7,50 (d, 1H, Indol), 7,30 (m, 5H, Indol, Benzyl), 7,20 (m, 1H, Benzyl), 6,60 (m, 1H, Indol), 5,40 (2H, CH2-benzyl), 4,90 (bs, 2H, NH2). NMR-Daten ausgewählter Beispiele
NMR-Peak-Listenverfahren
Die 1H-NMR-Daten ausgewählter Beispiele werden in Form von 1H-NMR-Peaklisten notiert. Zu jedem Signalpeak wird erst der δ-Wert in ppm und dann die Signalintensität in runden Klammern aufgeführt. Die δ-Wert - Signalintensitäts- Zahlenpaare von verschiedenen Signalpeaks werden durch Semikolons voneinander getrennt aufgelistet.
Die Peakliste eines Beispieles hat daher die Form: δι (Intensität^; 82 (Intensität2); ; δ; (Intensität^; ; δη (Intensitätn)
Die Intensität scharfer Signale korreliert mit der Höhe der Signale in einem gedruckten Beispiel eines NMR-Spektrums in cm und zeigt die wirklichen Verhältnisse der Signalintensitäten. Bei breiten
Signalen können mehrere Peaks oder die Mitte des Signals und ihre relative Intensität im Vergleich zum intensivsten Signal im Spektrum gezeigt werden.
Zur Kalibrierung der chemischen Verschiebung von 1H-NMR-Spektren benutzen wir Tetramethylsilan und/oder die chemische Verschiebung des Lösungsmittels, besondern im Falle von Spektren, die in DMSO gemessen werden. Daher kann in NMR-Peaklisten der Tetramethylsilan-Peak vorkommen, muss es aber nicht.
Die Listen der IH-NMR-Peaks sind ähnlich den klassischen IH-NMR- Ausdrucken und enthalten somit gewöhnlich alle Peaks, die bei einer klassischen NMR-Interpretation aufgeführt werden.
Darüber hinaus können sie wie klassische IH-NMR- Ausdrucke Lösungsmittelsignale, Signale von Stereoisomeren der Zielverbindungen, die ebenfalls Gegenstand der Erfindung sind, und/oder Peaks von Verunreinigungen zeigen.
Bei der Angabe von Verbindungssignalen im Delta-Bereich von Lösungsmitteln und/oder Wasser sind in unseren Listen von IH-NMR-Peaks die gewöhnlichen Lösungsmittelpeaks, zum Beispiel Peaks von DMSO in DMSO-D6 und der Peak von Wasser, gezeigt, die gewöhnlich im Durchschnitt eine hohe Intensität aufweisen.
Die Peaks von Stereoisomeren der Targetverbindungen und/oder Peaks von Verunreinigungen haben gewöhnlich im Durchschnitt eine geringere Intensität als die Peaks der Zielverbindungen (zum Beispiel mit einer Reinheit von >90 %). Solche Stereoisomere und/oder Verunreinigungen können typisch für das jeweilige
Herstellungsverfahren sein. Ihre Peaks können somit dabei helfen, die Reproduktion unseres
Herstellungsverfahrens anhand von "Nebenprodukt-Fingerabdrucken" zu erkennen.
Einem Experten, der die Peaks der Zielverbindungen mit bekannten Verfahren (MestreC, ACD- Simulation, aber auch mit empirisch ausgewerteten Erwartungswerten) berechnet, kann je nach Bedarf die Peaks der Zielverbindungen isolieren, wobei gegebenenfalls zusätzliche Intensitätsfilter eingesetzt werden. Diese Isolierung wäre ähnlich dem betreffenden Peak-Picking bei der klassischen 1H-NMR- Interpretation.
Weitere Details zu 1H-NMR-Peaklisten können der Research Disclosure Database Number 564025 entnommen werden.
Beispiel 1-01 : 1H-NMR(400.0 MHz, CDC13):
δ= 8.498(6.6);8.496(7.0);8.494(6.5);7.896(3.2);7.892(3.0);7.875(8.2);7.871(8.2);7.849(9.0);7.848(9.0);7 .828(3.4);7.604(1.6);7.600(1.7);7.586(3.3);7.581(3.3);7.567(1.7);7.563(1.8);7.501(12.2);7.488(14.5);7.3 65(1.1);7.360(1.1);7.351(1.4);7.345(8.8);7.343(8.2);7.332(7.5);7.330(7.1);7.326(2.4);7.321(1.5);7.312(1 .4);7.308(1.4);7.264(0.6);7.263(0.7);7.262(0.8);7.261(1.0);7.256(63.5);7.252(0.6);7.192(2.9);7.189(3.2); 7.173(4.9);7.170(5.3);7.159(19.8);7.154(2.5);7.151(2.4);7.122(2.7);7.119(2.4);7.101(2.3);7.097(3.6);7.0 94(2.5);7.076(2.1);7.073(2.0);5.543(16.0);5.294(8.7);4.779(6.3);1.565(1.6);0.008(0.8);0.000(28.9);-
0.008(0.8)
Beispiel 1-02: 1H-NMR(400.0 MHz, CDC13):
δ= 8.110(2.9);8.107(4.2);8.106(5.6);8.104(4.2);8.102(2.8);7.833(4.3);7.829(4.1);7.812(5.2);7.809(5.2);7 .678(8.7);7.672(8.7);7.642(5.3);7.641(5.3);7.622(4.4);7.621(4.2);7.384(0.8);7.382(0.7);7.369(1.2);7.366 (1.1);7.364(2.1);7.349(2.5);7.343(1.6);7.329(2.0);7.280(3.1);7.278(2.4);7.262(4.9);7.260(5.3);7.258(53.
5) ;7.254(1.7);7.252(1.1);7.240(1.3);7.239(1.4);7.238(1.1);7.234(1.7);7.230(1.2);7.157(18.4);7.058(1.0); 7.056(1.0);7.052(0.9);7.049(0.9);7.037(1.5);7.034(1.7);7.030(1.4);7.028(1.5);7.016(0.8);7.013(0.8);7.01 0(0.8);7.007(0.8);6.788(5.5);6.785(5.7);6.782(5.6);6.780(5.3);5.452(16.0);5.296(0.8);4.788(4.1);1.549(1
0.2);0.008(0.7);0.000(22.6);-0.008(0.6)
Beispiel 1-03: 1H-NMR(400.0 MHz, CDC13):
δ= 8.111(1.4);7.880(0.6);7.876(1.1);7.872(0.6);7.860(0.7);7.856(1.3);7.852(0.7);7.705(0.6);7.700(2.9);7 .695(2.9);7.692(0.8);7.673(1.8);7.652(1.4);7.442(2.4);7.437(1.1);7.425(0.8);7.420(2.6);7.308(0.7);7.286 (0.7);7.258(49.5);6.925(3.0);6.920(1.0);6.908(1.5);6.903(3.0);6.886(0.8);6.858(0.5);6.806(1.6);6.803(1.
6) ;6.800(1.6);6.798(1.5);6.661(0.6);5.384(6.1);4.852(1.4);4.632(0.6);4.617(0.6);3.817(16.0);3.812(4.7);
3.778(2.9);1.536(13.4);0.008(0.7);0.000(21.0);-0.008(0.6)
Beispiel 1-04: 1H-NMR(400.0 MHz, CDC13):
δ= 8.196(0.9);8.115(4.4);7.969(0.7);7.949(0.9);7.882(2.0);7.878(3.5);7.874(2.0);7.861(2.4);7.857(4.3);7
.854(2.3);7.709(2.3);7.706(8.4);7.700(9.6);7.697(2.6);7.680(6.4);7.659(4.6);7.604(1.0);7.585(1.1);7.517
(1.0);7.499(3.7);7.494(1.6);7.486(3.9);7.477(4.2);7.469(1.7);7.464(4.1);7.409(1.2);7.356(1.0);7.343(1.1)
;7.334(1.3);7.320(1.3);7.309(0.7);7.258(157.8);7.209(1.1);7.155(1.0);7.151(1.0);7.135(1.0);7.132(1.0);7
.105(0.7);7.097(5.0);7.092(1.7);7.081(1.8);7.076(9.2);7.070(1.9);7.067(2.0);7.059(1.7);7.054(4.5);7.045
(2.8);7.039(0.6);7.023(1.2);6.994(0.9);6.929(0.7);6.915(0.8);6.907(1.0);6.893(1.1);6.828(1.2);6.826(1.2)
;6.822(1.8);6.816(1.6);6.814(1.8);6.811(5.4);6.808(5.6);6.806(5.9);6.803(5.2);6.785(1.9);6.763(0.8);5.4
08(16.0);5.004(1.2);4.872(4.2);4.675(1.8);4.661(1.8);4.380(1.0);1.623(0.6);1.609(1.2);1.594(0.6);1.533(
31.0);1.333(0.6);1.284(0.8);1.256(0.7);0.008(2.3);0.000(67.5);-0.008(2.3) Beispiel 1-05: 1H-NMR(400.0 MHz, CDC13):
δ= 8.166(5.1);8.162(5.2);7.853(3.2);7.848(3.1);7.831(3.7);7.827(3.6);7.647(6.9);7.641(6.9);7.542(4.5);7 .540(3.1);7.522(2.8);7.520(4.0);7.518(2.8);7.503(3.8);7.498(1.6);7.490(4.0);7.481(4.4);7.473(1.7);7.468 (4.1);7.258(66.9);7.122(16.1);7.101(0.6);7.093(5.2);7.088(1.6);7.077(1.9);7.072(9.7);7.066(1.7);7.055(1 .8);7.050(4.6);6.810(5.0);6.807(5.1);6.804(5.0);6.802(4.8);5.421(16.0);5.296(1.4);4.763(4.4);1.551(12.6
);0.008(0.8);0.000(25.2);-0.008(0.7)
Beispiel 1-06: 'H-NMR^OO.O MHZ, CDC13):
δ= 8.192(7.6);8.189(7.6);7.861(5.0);7.857(4.8);7.840(5.7);7.835(5.4);7.653(10.7);7.648(10.5);7.555(5.0)
;7.553(6.9);7.551(4.7);7.534(4.3);7.532(6.0);7.530(4.5);7.527(1.8);7.518(0.6);7.510(1.7);7.505(1.8);7.5
01(1.8);7.488(1.8);7.484(1.8);7.479(1.7);7.463(1.5);7.268(0.5);7.267(0.6);7.266(0.7);7.264(1.1);7.264(1
.3);7.259(87.5);7.255(0.8);7.254(0.6);7.209(0.6);7.164(0.5);7.151(27.6);7.005(2.2);6.995(0.7);6.989(2.3
);6.981(2.6);6.964(2.6);6.957(2.2);6.941(2.1);6.823(8.0);6.821(8.1);6.818(8.0);6.815(7.7);5.457(16.0);5.
297(11.7);4.795(6.5);1.552(9.8);1.255(0.6);0.008(1.2);0.000(37.8);-0.008(1.1)
Beispiel 1-08: 1H-NMR(400.0 MHz, CDC13):
δ= 8.495(2.5);8.493(2.7);8.491(2.6);7.893(1.0);7.890(1.0);7.872(3.2);7.868(3.3);7.854(3.6);7.852(3.5);7 .833(1.1);7.832(1.0);7.507(4.8);7.494(5.6);7.350(2.7);7.348(2.7);7.337(2.3);7.335(2.2);7.258(26.6);7.24 4(0.7);7.230(0.7);7.225(0.8);7.224(0.8);7.223(0.8);7.211(0.8);7.208(1.0);7.204(0.8);7.189(0.8);7.171(7. 6);6.946(1.0);6.940(1.0);6.924(1.0);6.919(1.6);6.915(1.1);6.898(0.9);6.893(0.9);5.477(4.9);5.476(5.1);5.
474(4.9);4.791(2.5);4.017(8.5);4.014(16.0);4.012(8.4);1.559(6.1);0.000(11.7)
Beispiel 1-09: 1H-NMR(400.0 MHz, CDC13):
δ= 8.411(4.8);8.409(4.6);7.931(1.7);7.910(7.2);7.899(5.0);7.895(4.7);7.878(1.2);7.874(1.2);7.474(4.9);7 .460(7.0);7.398(5.4);7.384(3.8);7.379(1.2);7.365(1.2);7.360(2.4);7.345(2.7);7.340(1.8);7.327(1.0);7.324 (1.6);7.280(2.0);7.275(3.9);7.273(4.2);7.257(45.7);7.184(14.8);7.059(0.9);7.057(1.0);7.053(0.9);7.050(0 .9);7.036(1.7);7.031(1.6);7.017(0.9);7.013(1.0);7.008(0.8);6.858(0.7);5.457(16.0);5.381(0.8);5.294(12.8
);4.797(4.4);1.561(1.2);0.008(0.5);0.000(15.8)
Beispiel 1-10: 1H-NMR(400.0 MHz, CDC13):
δ= 8.509(2.8);8.507(4.8);8.505(5.3);8.503(5.0);8.501(2.7);7.908(2.4);7.904(2.3);7.887(6.1);7.883(6.1);7 .861(6.2);7.860(6.3);7.840(2.4);7.839(2.3);7.508(8.1);7.494(9.4);7.384(1.3);7.369(1.2);7.363(3.1);7.357 (0.5);7.351(5.6);7.349(7.2);7.343(2.4);7.338(4.1);7.336(4.1);7.329(2.0);7.278(3.1);7.276(2.6);7.272(1.8) ;7.268(2.0);7.266(2.1);7.262(3.4);7.256(37.5);7.248(1.4);7.248(1.5);7.242(1.7);7.238(1.1);7.179(16.4);7 .061(0.9);7.058(1.0);7.055(0.9);7.052(0.9);7.040(1.6);7.038(1.6);7.033(1.5);7.032(1.4);7.019(0.8);7.016
(0.8);7.013(0.8);7.010(0.7);5.458(16.0);5.294(3.1);4.797(4.4);1.562(2.6);0.008(0.5);0.000(16.1)
Beispiel 1-11 : 1H-NMR(400.0 MHz, CDC13):
δ= 8.203(1.0);8.200(1.0);7.877(0.6);7.872(0.6);7.855(0.8);7.851(0.7);7.829(0.7);7.655(1.4);7.650(1.4);7 .558(0.7);7.556(0.9);7.554(0.6);7.536(0.9);7.535(1.0);7.533(0.6);7.518(0.9);7.259(49.0);7.163(4.0);6.82 6(1.0);6.823(1.0);6.820(1.1);6.818(1.0);5.513(3.1);4.786(0.8);1.538(16.0);0.008(0.6);0.000(19.9);-
0.008(0.6)
Beispiel 1-12: 1H-NMR(400.0 MHz, CDC13):
δ= 8.497(4.2);8.495(7.6);8.493(8.2);8.491(7.8);8.489(4.0);7.896(3.2);7.892(3.0);7.875(10.3);7.871(10.4) ;7.857(10.2);7.856(9.9);7.836(3.1);7.834(2.8);7.597(1.6);7.581(1.8);7.576(3.4);7.560(3.4);7.555(1.9);7. 538(1.8);7.517(0.6);7.509(12.5);7.495(14.7);7.352(7.5);7.350(7.3);7.338(6.3);7.336(6.2);7.258(76.0);7.1 72(27.0);6.936(1.4);6.933(1.3);6.930(1.6);6.927(1.6);6.915(2.1);6.913(2.2);6.908(2.6);6.906(2.8);6.894( 1.3);6.892(1.3);6.887(3.6);6.881(1.8);6.864(2.8);6.862(2.8);6.858(2.1);6.856(2.2);6.840(2.4);6.834(1.9);
5.486(16.0);5.296(6.0);4.785(6.6);1.553(8.3);0.008(0.9);0.000(32.3);-0.008(1.0)
Beispiel 1-13: 1H-NMR(400.0 MHz, CDC13):
δ= 8.166(7.9);8.163(8.0);7.852(5.2);7.847(5.0);7.830(5.9);7.826(5.6);7.651(11.0);7.645(10.9);7.548(5.2)
;7.546(7.2);7.544(4.8);7.526(4.5);7.524(6.2);7.522(4.2);7.518(0.6);7.341(1.1);7.335(1.1);7.327(1.2);7.3
21(2.0);7.319(1.9);7.313(1.4);7.309(1.2);7.303(1.8);7.301(2.0);7.295(1.2);7.287(1.2);7.281(1.2);7.269(0
.6);7.259(86.0);7.255(0.6);7.209(0.6);7.135(29.3);7.028(1.5);7.023(1.5);7.011(1.6);7.006(3.2);6.999(1.9
);6.995(0.7);6.988(1.9);6.982(2.9);6.977(1.3);6.965(1.2);6.960(1.2);6.814(8.6);6.811(8.5);6.808(8.4);6.8
06(8.0);5.485(14.9);5.484(16.0);5.482(14.5);5.297(2.7);4.783(6.8);1.554(9.9);0.008(1.2);0.000(38.3);-
0.008(1.0) Beispiel 1-14: 1H-NMR(400.0 MHz, CDC13):
δ= 8.500(2.6);8.498(4.7);8.496(5.0);8.494(4.8);8.492(2.4);7.900(2.0);7.896(1.9);7.879(6.4);7.876(6.5);7 .868(0.7);7.862(6.2);7.860(6.1);7.840(1.9);7.839(1.7);7.516(0.5);7.511(8.2);7.498(9.7);7.467(0.7);7.462
(5.4) ;7.460(4.5);7.456(1.8);7.445(2.4);7.440(8.4);7.434(1.1);7.382(1.6);7.376(10.9);7.371(2.9);7.360(2.
5) ;7.355(10.8);7.349(0.8);7.341(4.1);7.339(3.9);7.265(0.6);7.264(0.7);7.263(0.8);7.257(56.6);7.253(0.6) ;7.178(16.0);5.428(16.0);5.296(4.1);4.786(4.0);1.548(1.0);0.070(2.3);0.008(0.7);0.000(26.3);-0.008(0.8) Beispiel 1-15: 1H-NMR(400.0 MHz, CDC13):
δ= 8.197(0.9);8.118(3.9);7.971(0.6);7.951(0.8);7.885(1.7);7.881(3.1);7.877(1.7);7.865(2.1);7.861(3.8);7
.857(2.0);7.711(3.3);7.708(7.5);7.706(4.1);7.703(8.4);7.682(5.7);7.663(4.0);7.597(0.9);7.576(1.0);7.517
(0.9);7.450(4.7);7.445(1.9);7.434(2.4);7.428(8.2);7.407(1.2);7.379(1.6);7.374(10.5);7.369(3.0);7.358(2.
3);7.352(5.7);7.309(1.4);7.258(151.8);7.210(1.0);7.148(0.8);7.144(0.9);7.128(0.8);7.124(0.7);7.079(1.5)
;7.075(0.6);7.063(0.6);7.058(1.9);6.994(0.8);6.876(1.6);6.855(1.4);6.832(1.0);6.830(1.1);6.827(1.1);6.8
23(1.2);6.820(1.2);6.818(1.3);6.813(4.6);6.811(4.5);6.808(4.5);6.805(4.4);5.407(16.0);5.297(0.9);5.004( l .l);4.879(3.7);4.385(0.9);1.534(10.0);1.284(0.7);1.255(0.7);0.008(1.9);0.000(64.5);-0.008(2.3)
Beispiel 1-16: 1H-NMR(400.0 MHz, CDC13):
δ= 8.396(6.0);8.394(5.7);8.392(5.4);7.938(2.6);7.917(9.1);7.903(6.1);7.899(5.8);7.881(1.7);7.877(1.7);7 .669(2.7);7.653(2.6);7.647(13.6);7.636(11.5);7.615(2.4);7.482(6.3);7.468(8.4);7.395(6.3);7.394(6.5);7.3 81(4.7);7.380(4.7);7.257(58.5);7.193(20.3);6.875(1.0);5.516(16.0);5.444(0.8);5.294(2.7);4.802(5.7);1.54
8(9.3);1.257(0.5);0.071(0.7);0.008(0.8);0.000(23.9);-0.008(0.7)
Beispiel 1-17: 1H-NMR(400.0 MHz, CDC13):
δ= 8.086(3.1);7.801(2.1);7.797(2.0);7.780(2.6);7.777(2.5);7.670(4.8);7.664(4.8);7.624(3.2);7.604(2.6);7 .258(14.5);7.242(0.7);7.227(0.8);7.223(0.9);7.220(0.9);7.208(1.0);7.206(1.0);7.201(0.8);7.187(0.8);7.13 2(7.8);6.943(1.1);6.938(1.1);6.921(1.0);6.917(1.7);6.912(1.1);6.895(1.0);6.890(0.9);6.780(3.0);6.777(3.
0) ;6.774(3.0);6.772(2.8);5.470(5.7);5.468(5.9);5.467(5.5);5.294(14.4);4.792(2.9);4.014(8.8);4.012(16.0)
;4.009(8.5);0.000(6.2)
Beispiel 1-18: 1H-NMR(400.0 MHz, CDC13):
δ= 8.385(7.0);8.383(6.8);7.925(3.2);7.903(10.8);7.888(7.0);7.884(6.8);7.867(2.0);7.863(2.2);7.592(1.6); 7.576(1.8);7.571(3.4);7.555(3.4);7.550(1.9);7.534(1.8);7.474(7.7);7.460(10.3);7.388(7.6);7.387(7.7);7.3 75(5.6);7.374(5.5);7.257(75.6);7.169(24.4);6.929(1.3);6.926(1.3);6.923(1.6);6.920(1.6);6.908(2.2);6.906 (2.2);6.901(2.8);6.899(2.9);6.887(1.5);6.884(3.3);6.878(2.9);6.861(3.0);6.859(3.0);6.855(2.1);6.852(2.3) ;6.848(1.1);6.836(2.5);6.830(2.0);5.484(16.0);5.415(0.6);5.295(8.2);4.781(6.5);1.550(16.9);0.008(0.9);0
■000(28.4);-0.008(0.8)
Beispiel 1-19: 1H-NMR(400.0 MHz, CDC13):
δ= 8.386(4.4);8.383(4.2);8.382(4.0);7.930(1.3);7.928(2.3);7.926(1.3);7.908(4.1);7.907(7.2);7.905(4.1);7 .890(4.4);7.886(4.2);7.869(1.3);7.865(1.4);7.476(4.8);7.462(7.1);7.457(5.6);7.456(4.7);7.452(2.0);7.441
(2.5) ;7.435(8.7);7.430(1.4);7.391(4.8);7.390(5.0);7.377(4.8);7.371(11.2);7.366(3.1);7.355(2.4);7.350(6.
6) ;7.344(0.8);7.263(0.5);7.262(0.6);7.262(0.8);7.257(52.0);7.173(15.7);5.426(16.0);5.294(7.4);4.785(4.0
);1.556(2.1);0.008(0.6);0.000(19.6);-0.008(0.6)
Beispiel 1-20: 1H-NMR(400.0 MHz, CDC13):
δ= 8.165(6.8);8.164(7.1);8.160(7.1);8.159(6.6);7.847(4.6);7.842(4.4);7.825(5.2);7.820(5.0);7.654(0.7);7 .647(0.8);7.642(10.0);7.637(9.9);7.536(4.8);7.534(6.2);7.532(4.7);7.518(1.0);7.514(4.1);7.512(5.5);7.51 0(4.0);7.269(0.6);7.269(0.6);7.268(0.7);7.267(0.8);7.266(0.9);7.265(1.1);7.265(1.4);7.264(1.6);7.263(2.
1) ;7.262(2.8);7.259(115.9);7.256(1.7);7.255(1.1);7.254(0.8);7.253(0.6);7.252(0.5);7.209(0.8);7.156(0.5) ;7.114(30.2);6.995(0.6);6.807(7.8);6.805(7.9);6.802(7.8);6.799(7.5);6.750(0.6);6.742(1.0);6.734(5.3);6. 728(0.8);6.716(6.7);6.712(6.8);6.700(0.9);6.694(5.2);6.691(2.3);6.686(1.0);5.489(16.0);5.297(4.9);4.755 (6.0);4.130(0.6);4.112(0.6);3.636(0.5);3.476(0.8);2.043(2.8);1.551(9.0);1.282(0.5);1.276(1.0);1.258(2.7)
; 1.240(1.0);0.938(0.6);0.920(1.4);0.902(0.6);0.008(1.4);0.000(53.4);-0.008(l .4)
Beispiel 1-22: 1H-NMR(400.0 MHz, CDC13):
δ= 8.373(1.6);8.371(1.6);7.913(0.7);7.891(2.2);7.874(1.6);7.870(1.5);7.849(0.5);7.467(1.7);7.454(2.3);7 .378(1.7);7.364(1.3);7.257(7.6);7.214(0.6);7.199(0.6);7.195(0.5);7.153(4.0);6.936(0.6);6.931(0.6);6.914 (0.6);6.910(1.0);6.905(0.6);6.888(0.5);6.883(0.5);5.471(3.4);5.293(16.0);4.794(1.8);4.009(4.9);4.007(8. 5);4.004(5.0);1.256(0.5);0.000(3.2) Beispiel 1-23: 1H-NMR(400.0 MHz, CDC13):
δ= 8.105(1.8);8.103(2.5);8.101(3.3);8.100(2.4);8.097(1.7);7.819(2.6);7.815(2.4);7.799(3.2);7.795(3.1);7
.684(5.1);7.678(5.0);7.645(3.1);7.644(3.1);7.625(2.5);7.624(2.4);7.338(0.7);7.337(0.7);7.320(0.7);7.318
(0.7);7.269(0.5);7.267(0.7);7.266(0.8);7.259(74.4);7.255(0.5);7.209(0.5);7.168(11.6);7.041(0.5);7.036(0
.5);7.024(0.6);7.018(1.1);7.012(0.7);7.000(0.7);6.995(1.5);6.794(3.2);6.791(3.4);6.788(3.2);6.786(3.2);5
■491(5.2);5.489(5.7);5.488(5.0);5.298(0.6);4.788(2.4);1.538(16.0);0.008(1.0);0.000(32.3);-0.008(0.9)
Beispiel 1-24: 1H-NMR(400.0 MHz, CDC13):
δ= 8.164(7.2);8.160(7.3);7.850(4.5);7.846(4.3);7.829(5.1);7.824(4.9);7.646(9.8);7.640(9.8);7.586(1.7);7 .570(1.8);7.565(3.5);7.549(3.5);7.544(2.3);7.541(4.7);7.539(6.5);7.528(1.9);7.517(5.8);7.258(75.8);7.12 0(21.7);6.927(1.3);6.924(1.3);6.921(1.6);6.918(1.7);6.906(2.2);6.904(2.2);6.897(3.0);6.885(1.4);6.882(3 .3);6.876(2.8);6.859(2.9);6.857(2.9);6.853(2.1);6.850(2.3);6.834(2.5);6.828(2.0);6.808(6.9);6.805(7.0);6 ■802(7.0);6.800(6.7);5.477(16.0);5.295(2.5);4.768(6.3);1.555(18.5);0.008(0.8);0.000(27.3);-0.008(0.8) Beispiel 1-25: 1H-NMR(400.0 MHz, CDC13):
δ= 8.487(4.4);8.485(8.0);8.484(8.6);8.482(8.5);8.480(4.4);7.892(2.6);7.888(2.3);7.871(10.9);7.868(11.3)
;7.859(10.9);7.858(10.9);7.838(2.4);7.837(2.2);7.517(0.9);7.513(13.7);7.506(0.5);7.499(15.9);7.353(7.8)
;7.351(7.8);7.339(6.7);7.337(6.6);7.267(0.6);7.266(0.6);7.266(0.8);7.265(0.9);7.264(1.1);7.263(1.3);7.2
58(91.8);7.255(2.8);7.254(2.0);7.253(1.6);7.252(1.2);7.252(1.0);7.251(0.8);7.250(0.7);7.249(0.6);7.248(
0.5);7.248(0.5);7.208(0.7);7.184(26.0);5.542(9.0);5.538(16.0);5.534(9.1);5.296(8.1);4.799(6.8);2.044(1.
6);1.550(12.3);1.276(0.6);1.258(1.5);1.240(0.6);0.008(1.3);0.006(0.5);0.005(0.6);0.000(40.9);-
0.003(2.0);-0.004(0.8);-0.005(0.6);-0.008(1.2)
Beispiel 1-26: 1H-NMR(400.0 MHz, CDC13):
δ= 8.110(1.7);8.108(2.4);8.106(3.3);8.105(2.4);8.102(1.6);7.821(2.6);7.818(2.5);7.801(3.3);7.797(3.1);7 .681(5.1);7.676(5.1);7.642(3.1);7.641(3.1);7.622(2.5);7.620(2.5);7.518(0.8);7.512(2.2);7.507(0.8);7.499 (2.3);7.496(1.2);7.490(2.5);7.482(0.9);7.477(2.4);7.269(0.8);7.268(0.9);7.266(1.2);7.259(114.2);7.255(1 .0);7.254(0.7);7.209(0.6);7.158(11.5);7.101(2.9);7.096(0.9);7.085(1.0);7.079(5.4);7.074(0.9);7.063(0.9); 7.057(2.6);6.995(0.6);6.792(3.4);6.789(3.3);6.786(3.4);6.784(3.2);5.426(8.6);4.769(2.3);1.536(16.0);0.0
08(1.4);0.000(51.6);-0.008(1.5)
Beispiel 1-27: 1H-NMR(400.0 MHz, CDC13):
δ= 8.107(2.3);8.105(3.3);8.103(4.2);8.102(3.2);8.099(2.0);7.836(3.1);7.832(2.9);7.816(3.8);7.812(3.6);7 .685(6.2);7.679(6.1);7.651(4.0);7.650(3.8);7.631(3.2);7.630(3.1);7.510(0.8);7.494(0.8);7.489(0.9);7.485 (0.9);7.472(0.9);7.468(0.9);7.463(0.8);7.446(0.8);7.259(65.7);7.176(13.5);7.008(1.0);6.992(1.1);6.985(1 .3);6.969(1.3);6.961(1.0);6.944(1.0);6.794(3.9);6.792(4.0);6.789(3.9);6.786(3.7);5.458(7.8);5.298(1.1);4
■798(3.2);1.540(16.0);0.008(0.9);0.000(28.3);-0.008(0.8)
Beispiel 1-28: 1H-NMR(400.0 MHz, CDC13):
δ= 8.102(1.6);8.100(2.4);8.098(3.0);8.097(2.4);8.095(1.5);7.813(2.3);7.809(2.2);7.793(2.7);7.789(2.7);7
.676(4.8);7.670(4.8);7.634(3.0);7.633(2.9);7.613(2.4);7.612(2.3);7.264(0.5);7.259(31.1);7.246(0.7);7.23
2(0.8);7.228(0.8);7.226(0.8);7.225(0.8);7.213(0.8);7.210(0.9);7.206(0.8);7.192(0.8);7.150(9.5);6.947(1.
1);6.942(1.1);6.925(1.0);6.920(1.6);6.916(1.1);6.899(0.9);6.894(0.9);6.786(3.0);6.784(3.1);6.781(3.0);6.
778(3.0);5.473(5.1);5.471(5.2);5.469(5.0);5.297(0.7);4.783(2.5);4.018(8.7);4.015(16.0);4.012(8.6);1.552
(3.0);0.000(13.6)
Beispiel 1-29: 1H-NMR(400.0 MHz, CDC13):
δ= 8.397(4.9);7.971(2.2);7.950(8.2);7.937(2.8);7.933(5.0);7.930(2.7);7.912(1.5);7.908(0.9);7.518(2.4);7 .498(4.2);7.494(6.8);7.485(4.6);7.480(9.7);7.476(4.9);7.468(1.7);7.463(4.3);7.414(5.8);7.402(3.9);7.259 (419.7);7.250(0.9);7.102(0.7);7.095(5.5);7.090(1.7);7.078(1.7);7.073(10.0);7.068(1.8);7.057(1.6);7.051(
4.8) ;6.995(2.2);5.412(16.0);4.876(4.1);1.532(135.8);1.264(0.8);0.882(1.6);0.865(0.6);0.146(0.6);0.008(5
■ l);0.000(171.1);-0.008(4.6)
Beispiel 1-30: 1H-NMR(400.0 MHz, CDC13):
δ= 8.102(3.9);8.101(4.9);8.099(3.8);7.818(3.6);7.814(3.4);7.798(4.4);7.794(4.3);7.680(7.9);7.675(7.8);7 .640(5.0);7.639(4.8);7.620(3.9);7.466(0.7);7.461(5.2);7.460(4.4);7.455(1.9);7.444(2.5);7.439(8.3);7.433 (1.2);7.381(1.7);7.375(10.8);7.370(2.8);7.359(2.3);7.354(6.0);7.348(0.6);7.258(59.4);7.153(13.9);6.790(
4.9) ;6.787(5.0);6.784(4.9);6.782(4.6);5.423(16.0);5.296(11.6);4.779(3.9);1.544(8.7);0.008(1.0);0.000(28 ■0);-0.008(0.7) Beispiel 1-31 : 1H-NMR(400.0 MHz, CDC13):
δ= 8.179(4.6);8.176(4.5);7.866(2.8);7.861(2.7);7.844(3.1);7.840(3.0);7.654(5.6);7.648(5.6);7.552(4.0);7 .530(3.4);7.518(2.0);7.458(5.4);7.442(2.3);7.437(8.2);7.379(1.6);7.373(9.9);7.368(2.7);7.357(2.3);7.352 (5.8);7.292(0.5);7.259(339.7);7.251(1.2);7.247(0.5);7.209(0.7);7.144(14.7);7.037(0.6);6.995(1.9);6.820( 4.1);6.818(4.5);6.815(4.5);6.812(4.3);5.422(16.0);4.765(4.0);1.532(55.4);1.370(0.8);1.333(1.7);1.284(2.
5) ;1.256(1.3);0.008(4.3);0.000(132.2);-0.008(3.8)
Beispiel 1-32: 'H-NMR^OO.O MHZ, CDC13):
δ= 8.487(6.9);8.485(7.4);8.483(7.0);8.481(3.7);7.887(2.9);7.884(2.7);7.866(9.1);7.862(9.2);7.848(9.4);7 .847(9.4);7.827(2.9);7.826(2.7);7.517(0.5);7.503(13.0);7.489(15.1);7.346(7.2);7.344(7.1);7.332(6.1);7.3 30(6.0);7.258(84.1);7.254(0.6);7.208(0.6);7.159(21.9);6.755(0.6);6.746(1.1);6.738(5.3);6.733(0.8);6.720 (6.6);6.717(6.6);6.704(0.8);6.698(5.1);6.691(1.0);5.498(16.0);5.296(10.0);4.774(6.2);1.555(10.4);0.008(
1.0);0.000(37.4);-0.008(1.0)
Beispiel 1-33: 1H-NMR(400.0 MHz, CDC13):
δ= 7.942(3.2);7.925(3.3);7.921(3.7);7.905(3.5);7.715(7.7);7.710(7.8);7.528(3.9);7.518(5.4);7.444(6.2);7 .423(5.8);7.365(1.9);7.357(2.2);7.334(4.8);7.325(7.4);7.322(7.2);7.320(4.8);7.314(3.0);7.310(4.8);7.292
(1.0) ;7.290(1.8);7.282(1.3);7.259(985.9);7.250(2.4);7.237(0.8);7.224(1.5);7.209(0.8);6.995(5.4);6.837(4 .0);6.832(4.0);6.829(4.3);6.824(3.9);5.428(16.0);4.871(1.9);1.534(20.7);0.331(0.8);0.157(1.2);0.146(1.0
);0.008(11.2);0.000(368.4);-0.008(9.8);-0.035(0.8);-0.150(1.0)
Beispiel 1-34: 1H-NMR(400.0 MHz, CDC13):
δ= 8.173(2.7);8.169(4.8);8.166(2.8);7.899(1.7);7.895(3.2);7.891(1.7);7.878(1.9);7.873(3.5);7.869(1.8);7
.664(7.1);7.658(7.0);7.586(3.3);7.584(4.8);7.582(3.5);7.564(3.0);7.562(4.2);7.560(3.0);7.492(3.9);7.486
(1.6);7.478(4.1);7.477(3.3);7.475(2.3);7.473(2.2);7.470(4.5);7.462(1.7);7.456(4.3);7.449(0.5);7.258(60.
4);7.098(0.6);7.091(5.3);7.086(1.6);7.074(1.8);7.069(9.8);7.064(1.8);7.053(1.7);7.047(4.7);6.833(5.5);6.
831(5.6);6.828(5.6);6.825(5.4);5.404(16.0);5.295(4.7);4.864(4.0);1.547(10.3);0.008(0.7);0.000(24.2);-
0.008(0.7)
Beispiel 1-35: 1H-NMR(400.0 MHz, CDC13):
δ= 7.694(0.6);7.689(0.6);7.258(12.0);7.177(1.5);7.156(1.5);6.475(2.1);6.470(2.2);6.462(1.6);6.456(0.7); 6.442(1.2);6.436(0.9);5.432(1.4);4.620(1.8);4.605(1.8);3.850(3.4);3.844(14.9);3.813(3.7);3.807(16.0);3.
780(0.7);3.663(0.6);2.118(0.6);1.559(0.7);0.000(5.1)
Beispiel 1-36: 1H-NMR(400.0 MHz, CDC13):
δ= 8.174(5.7);8.170(5.7);7.862(3.6);7.858(3.4);7.841(4.1);7.836(4.0);7.666(2.9);7.652(9.4);7.646(16.0); 7.631(10.2);7.610(2.4);7.552(3.6);7.551(5.0);7.549(3.4);7.531(3.2);7.529(4.3);7.258(42.9);7.142(17.1);6 .813(5.5);6.810(5.6);6.807(5.5);6.805(5.1);5.509(15.1);5.295(2.7);4.791(5.3);2.043(0.9);1.558(4.7);1.25
7(0.8);0.008(0.6);0.000(19.4);-0.008(0.6)
Beispiel 1-37: 1H-NMR(400.0 MHz, CDC13):
δ= 8.199(8.3);8.195(8.2);7.886(5.4);7.881(5.2);7.864(6.1);7.859(5.8);7.836(3.8);7.816(4.4);7.752(0.6);7 .712(4.0);7.692(4.6);7.660(0.7);7.651(11.2);7.646(11.2);7.605(2.1);7.586(4.2);7.567(2.4);7.553(5.1);7.5 51(7.3);7.550(5.1);7.532(4.4);7.530(6.4);7.528(4.5);7.517(0.6);7.460(2.5);7.441(4.0);7.421(1.6);7.258(9 1.3);7.208(0.8);7.149(28.2);6.817(8.3);6.814(8.5);6.811(8.3);6.809(8.0);5.672(16.0);5.296(4.4);4.786(7.
4);1.920(0.5);1.902(0.5);1.554(3.6);1.282(0.5);1.256(1.3);0.008(1.2);0.000(38.2);-0.008(1.1)
Beispiel 1-38: 'H-NMR^OO.O MHZ, CDC13):
δ= 8.198(4.5);8.194(4.6);7.874(2.7);7.869(2.6);7.852(3.1);7.848(3.0);7.648(5.7);7.642(5.7);7.549(7.5);7 .528(3.4);7.382(0.8);7.378(0.9);7.369(2.0);7.367(1.9);7.359(1.9);7.355(2.0);7.349(0.6);7.345(0.7);7.341 (0.6);7.334(0.6);7.330(0.7);7.324(7.4);7.322(6.7);7.320(4.7);7.314(2.7);7.310(4.4);7.309(4.3);7.258(49.
6) ;7.143(13.3);6.819(4.0);6.817(4.3);6.814(4.3);6.811(4.1);5.432(16.0);5.296(1.4);4.779(4.1);1.547(2.6)
;1.371(0.5);1.333(0.5);1.285(0.7);1.282(0.8);1.256(0.6);0.008(0.6);0.000(19.1);-0.008(0.6)
Beispiel 1-39: 1H-NMR(400.0 MHz, CDC13):
δ= 9.045(0.6);9.039(16.0);8.625(5.5);8.621(5.5);8.179(4.5);8.178(4.6);8.157(6.0);8.156(6.0);8.023(5.0); 8.018(4.9);8.001(3.8);7.997(3.8);7.588(1.2);7.572(1.3);7.568(2.5);7.551(2.4);7.546(1.5);7.530(1.2);7.51 8(1.0);7.259(167.7);7.199(16.9);6.995(1.0);6.938(1.0);6.935(1.0);6.931(1.1);6.929(1.2);6.915(1.6);6.908
(2.1) ;6.896(1.0);6.892(2.2);6.887(1.9);6.870(2.0);6.868(2.0);6.861(1.6);6.845(1.7);6.839(1.4);5.489(11. 4);5.297(1.5);4.833(4.1);4.027(0.7);1.557(8.4);1.333(2.2);1.283(3.0);1.256(2.6);0.880(0.5);0.008(2.0);0. 000(62.9);-0.008(1.8) Beispiel 1-40: 1H-NMR(400.0 MHz, CDC13):
δ= 8.414(4.5);8.411(3.8);7.937(1.1);7.916(7.0);7.910(5.5);7.906(5.0);7.889(0.8);7.885(0.8);7.552(3.7);7 .550(3.6);7.548(3.0);7.476(4.7);7.462(6.9);7.403(5.2);7.389(3.8);7.383(1.0);7.379(0.8);7.374(2.0);7.372 (1.9);7.364(2.0);7.360(1.9);7.354(0.6);7.350(0.6);7.344(0.6);7.336(0.6);7.332(0.6);7.326(7.6);7.324(6.5) ;7.322(4.6);7.317(3.1);7.313(4.5);7.312(4.8);7.257(59.6);7.191(12.6);5.439(16.0);5.295(3.3);4.794(4.0);
1.546(4.9);0.008(0.7);0.000(22.5);-0.008(0.6)
Beispiel 1-41 : 1H-NMR(400.0 MHz, CDC13):
δ= 9.039(15.2);8.644(5.2);8.640(5.2);8.183(4.4);8.182(4.3);8.162(5.8);8.161(5.7);8.034(4.8);8.029(4.7); 8.012(3.6);8.008(3.6);7.518(0.6);7.389(1.2);7.374(1.3);7.368(3.1);7.354(2.4);7.348(2.2);7.334(1.8);7.27 5(5.0);7.268(2.9);7.259(109.3);7.252(2.3);7.245(1.9);7.210(16.1);7.068(0.9);7.065(1.0);7.062(0.9);7.059 (0.9);7.045(1.7);7.040(1.6);7.023(0.8);7.019(0.8);7.017(0.7);6.995(0.6);5.462(16.0);5.297(2.4);4.846(4. 3);4.026(0.5);3.155(0.7);1.559(4.0); 1.371 (0.6); 1.334(1.7); 1.286(1.1 ); 1.282(2.5); 1.256(2.2);0.008(1.2);0.
000(39.4);-0.008(1.2)
Beispiel 1-42: 1H-NMR(400.0 MHz, CDC13):
δ= 8.494(6.8);7.979(2.4);7.975(4.3);7.971(2.4);7.958(4.1);7.954(7.3);7.950(4.2);7.901(8.7);7.881(4.9);7
.583(1.7);7.567(1.9);7.562(3.6);7.547(15.7);7.541(2.5);7.534(15.4);7.525(1.9);7.517(2.9);7.377(7.4);7.3
75(7.5);7.364(6.3);7.362(6.4);7.259(500.2);7.251(1.6);7.208(0.6);6.994(2.7);6.935(1.3);6.932(1.4);6.929
(1.8);6.926(1.6);6.912(2.2);6.905(2.9);6.888(3.9);6.884(2.1);6.863(3.0);6.857(2.3);6.841(2.5);6.835(2.0)
;5.470(16.0);4.881(5.9);1.529(134.3);1.306(0.8);1.265(3.3);0.899(1.8);0.882(6.6);0.864(2.4);0.146(0.6);
0.008(6.1);0.000(203.7);-0.008(5.4);-0.150(0.7)
Beispiel 1-43: 1H-NMR(400.0 MHz, CDC13):
δ= 8.109(1.3);8.107(1.9);8.106(2.6);8.104(1.9);8.102(1.3);7.822(2.0);7.818(2.0);7.801 (2.5);7.798(2.4);7 .681(4.0);7.676(4.0);7.642(2.4);7.641(2.4);7.622(2.0);7.620(1.9);7.601(0.5);7.585(0.5);7.580(1.0);7.564 (1.0);7.559(0.6);7.543(0.5);7.518(0.5);7.259(91.0);7.209(0.6);7.161(9.0);6.919(0.6);6.910(0.8);6.892(0.
5) ;6.888(0.9);6.881(0.6);6.865(0.9);6.862(0.8);6.858(0.6);6.856(0.7);6.840(0.7);6.834(0.6);6.791(2.6);6. 789(2.6);6.786(2.5);6.783(2.4);5.483(4.8);5.298(3.2);4.773(1.8);1.536(16.0);0.008(1.1);0.000(38.0);-
0.008(1.1)
Beispiel 1-44: 1H-NMR(400.0 MHz, CDC13):
δ= 8.540(1.3);8.538(2.3);8.536(2.4);8.534(2.3);8.532(1.2);7.932(1.4);7.928(1.3);7.911(2.8);7.907(2.8);7
.874(2.6);7.872(2.6);7.853(1.3);7.667(0.9);7.661(0.8);7.660(0.9);7.652(0.6);7.650(0.6);7.649(0.8);7.643
(1.0);7.518(0.6);7.514(4.0);7.501(4.7);7.431(1.1);7.426(0.7);7.423(0.6);7.415(1.2);7.413(1.1);7.408(1.5)
;7.361(2.2);7.359(2.2);7.347(1.8);7.345(1.8);7.329(0.5);7.315(1.8);7.310(1.5);7.308(1.7);7.300(4.4);7.2
92(1.5);7.289(1.3);7.284(1.2);7.270(0.6);7.269(0.5);7.268(0.5);7.267(0.6);7.266(0.9);7.265(1.0);7.265(1
.1);7.264(1.3);7.263(1.6);7.259(88.5);7.256(1.4);7.255(0.8);7.254(0.6);7.209(0.7);7.205(8.2);6.995(0.5);
5.589(7.4);5.588(7.4);4.791(1.8);2.044(0.6);1.538(16.0);1.326(0.5);1.258(0.6);0.882(0.8);0.008(1.1);0.0
00(39.3);-0.008(1.0)
Beispiel 1-45: 1H-NMR(400.0 MHz, CDC13):
δ= 8.494(3.5);8.492(3.9);7.978(1.5);7.974(2.5);7.969(1.4);7.957(2.6);7.952(4.4);7.948(2.5);7.903(5.3);7 .902(5.3);7.882(3.0);7.880(2.8);7.547(7.5);7.534(8.6);7.457(0.6);7.451(4.9);7.450(4.1);7.446(1.8);7.435 (2.3);7.429(8.2);7.424(1.2);7.380(2.0);7.377(5.6);7.375(13.9);7.369(3.0);7.364(4.0);7.362(4.0);7.358(2.
3) ;7.353(5.9);7.347(0.6);7.257(61.5);5.412(16.0);5.295(3.4);4.884(3.6);1.536(16.5);0.008(0.8);0.000(26.
6) ;-0.008(0.7)
Beispiel 1-46: 1H-NMR(400.0 MHz, CDC13):
δ= 8.495(7.0);8.493(7.7);8.491(7.4);7.899(2.4);7.896(2.2);7.878(8.9);7.875(9.1);7.864(10.3);7.863(10.3)
;7.843(2.6);7.515(13.5);7.501(16.0);7.357(7.8);7.355(8.2);7.347(1.5);7.343(6.8);7.342(7.0);7.333(1.9);7
.332(1.8);7.325(1.3);7.321(1.2);7.315(1.8);7.313(1.9);7.307(1.2);7.299(1.1);7.293(1.2);7.267(0.7);7.258
(96.6);7.254(0.6);7.209(0.7);7.188(20.4);7.038(1.4);7.032(1.4);7.020(1.4);7.015(3.0);7.009(1.8);6.997(1
.8);6.994(1.4);6.992(2.8);6.986(1.4);6.974(1.2);6.969(1.2);5.495(14.1);5.493(15.4);5.492(13.9);4.802(6.
4) ;1.555(14.8);0.008(1.2);0.000(43.6);-0.008(1.1)
Beispiel 1-47: 1H-NMR(400.0 MHz, CDC13):
δ= 8.176(4.3);7.902(2.5);7.880(2.6);7.669(7.4);7.664(7.3);7.590(4.1);7.569(3.6);7.518(3.4);7.445(5.5);7 .429(2.7);7.423(9.7);7.375(2.0);7.370(13.4);7.364(3.4);7.353(2.9);7.348(7.2);7.292(0.7);7.271(2.1);7.26 8(2.7);7.266(4.2);7.265(4.6);7.259(626.6);7.251(2.5);7.251(2.2);7.250(1.8);7.247(1.2);7.244(0.8);7.228( 0.7);6.995(3.4);6.841(5.1);6.838(5.2);6.835(5.1);6.833(5.0);5.405(16.0);4.870(4.0);1.530(136.4);0.146(0 ■7);0.008(7.4);0.000(239.8);-0.008(6.4);-0.150(0.7) Beispiel 1-48: 1H-NMR(400.0 MHz, CDC13):
δ= 8.178(4.0);8.175(7.1);8.171(4.1);7.904(2.4);7.899(4.4);7.895(2.5);7.882(2.8);7.878(5.1);7.874(2.7);7 .666(10.3);7.660(10.4);7.588(4.9);7.586(7.0);7.584(5.0);7.572(1.8);7.566(4.4);7.564(6.1);7.562(4.4);7.5 56(1.8);7.551(3.5);7.535(3.5);7.530(2.1);7.518(2.1);7.514(2.0);7.259(349.6);6.995(1.9);6.926(1.4);6.923 (1.4);6.920(1.7);6.917(1.8);6.903(2.3);6.896(3.2);6.883(3.4);6.877(2.9);6.861(3.1);6.858(3.1);6.852(2.4) ;6.836(10.5);6.834(8.8);6.831(9.4);6.828(8.8);5.461(16.0);4.867(5.6);4.130(0.8);4.113(0.8);2.043(3.6);1
■598(2.2);1.276(l . l);1.258(2.3);1.240(l .l);0.008(3.9);0.000(134.4);-0.008(4.0)
Beispiel 1-49: 1H-NMR(400.0 MHz, CDC13):
δ= 7.897(2.7);7.881(2.8);7.876(3.1);7.860(2.9);7.710(7.0);7.705(7.1);7.518(0.5);7.446(5.0);7.441(2.0);7 .428(8.2);7.425(9.0);7.419(1.4);7.408(5.6);7.373(1.6);7.367(10.4);7.362(2.8);7.350(2.1);7.346(5.9);7.34 0(0.7);7.300(6.3);7.296(6.5);7.259(90.1);6.995(0.5);6.832(3.5);6.826(3.8);6.824(3.9);6.818(3.4);5.413(1 6.0);5.297(1.2);4.830(3.2);1.561(0.9);1.476(0.6);1.432(2.8);1.428(1.0);1.255(0.6);0.070(2.0);0.008(1.0);
0.000(34.0);-0.008(l .l)
Beispiel 1-50: 1H-NMR(400.0 MHz, CDC13):
δ= 8.521(2.5);8.519(4.4);8.517(4.8);8.515(4.5);8.513(2.4);7.916(2.4);7.912(2.3);7.895(5.5);7.891(5.5);7
.865(5.6);7.864(5.6);7.844(2.4);7.843(2.2);7.554(1.6);7.552(2.9);7.550(3.6);7.548(3.6);7.546(2.9);7.544
(1.6);7.510(7.9);7.496(9.4);7.390(0.9);7.386(0.9);7.379(2.3);7.376(1.8);7.373(1.2);7.371(0.8);7.368(2.0)
;7.366(1.4);7.364(2.0);7.357(0.8);7.354(4.8);7.352(4.7);7.349(0.7);7.346(0.9);7.340(3.9);7.338(4.2);7.3
34(0.6);7.329(6.4);7.327(8.0);7.324(4.0);7.318(3.3);7.316(4.2);7.314(6.2);7.262(0.6);7.262(0.7);7.261(0
.9);7.260(1.2);7.257(48.2);7.253(0.5);7.187(15.1);5.440(16.0);5.295(2.2);4.795(3.9);1.546(1.7);0.071(5.
4);0.008(0.7);0.000(22.7);-0.008(0.6)
Beispiel 1-51 : 1H-NMR(400.0 MHz, CDC13):
δ= 8.137(2.1);7.906(1.0);7.903(1.7);7.899(1.0);7.886(1.2);7.882(2.2);7.878(1.2);7.714(4.1);7.708(4.4);7 .698(0.9);7.690(3.0);7.670(2.3);7.588(2.1);7.568(2.5);7.560(0.6);7.518(1.8);7.453(7.1);7.442(3.3);7.437 (4.2);7.433(9.3);7.405(0.7);7.385(10.6);7.380(11.7);7.352(0.6);7.310(0.7);7.304(1.9);7.298(2.0);7.287(7 .9);7.282(8.3);7.277(3.0);7.273(1.8);7.272(2.0);7.266(9.0);7.266(7.6);7.265(6.7);7.259(319.4);7.253(6.3 );7.252(5.7);7.252(4.9);7.251(4.3);7.250(4.2);7.249(3.9);7.248(3.6);7.248(3.5);7.247(3.4);7.246(3.3);7.2 45(3.2);7.244(3.0);7.242(2.8);7.241(2.8);7.231(7.8);7.209(1.5);6.995(1.8);6.974(0.9);6.970(1.3);6.825(0 .5);6.818(2.9);6.815(2.8);6.812(3.2);6.810(3.0);5.510(8.5);5.136(0.6);4.896(2.2);4.766(15.6);4.750(16.0 );4.723(0.8);2.043(0.5);1.888(6.0);1.873(12.3);1.857(6.1);1.533(79.6);1.505(2.3);1.265(1.3);0.899(0.7);
0.882(2.3);0.864(0.9);0.008(4.2);0.000(140.3);-0.008(5.0);-0.028(3.2);-0.050(0.7)
Beispiel 1-52: 1H-NMR(400.0 MHz, CDC13):
δ= 8.172(3.8);8.169(6.6);8.165(3.9);7.897(2.2);7.892(4.3);7.888(2.4);7.875(2.6);7.871(4.7);7.866(2.5);7 .674(0.8);7.669(1.2);7.666(1.2);7.658(9.6);7.652(9.6);7.577(4.7);7.575(6.3);7.573(4.5);7.555(4.0);7.553 (5.8);7.551(4.0);7.517(0.7);7.458(0.5);7.421(0.5);7.258(105.9);6.994(0.6);6.852(0.6);6.850(0.6);6.847(0 .6);6.844(0.6);6.829(7.2);6.827(7.3);6.823(7.4);6.821(7.0);6.750(0.6);6.742(1.1);6.734(5.5);6.729(1.4);6 .726(1.3);6.724(1.0);6.716(7.1);6.712(7.2);6.700(1.0);6.694(5.2);6.686(1.4);6.678(0.6);6.416(0.8);5.474 (16.0);5.437(0.9);5.296(15.7);5.045(0.9);5.011(0.6);4.853(5.4);1.539(19.3);0.008(1.4);0.000(45.3);-
0.008(1.2)
Beispiel 1-53: 1H-NMR(400.0 MHz, CDC13):
δ= 8.488(4.8);7.973(1.7);7.969(2.9);7.965(1.6);7.952(3.0);7.948(5.1);7.944(2.9);7.898(6.2);7.877(3.5);7 .544(8.9);7.530(10.3);7.500(4.0);7.494(1.6);7.486(4.2);7.478(4.4);7.470(1.7);7.464(4.3);7.374(5.2);7.37 2(5.1);7.360(4.5);7.358(4.4);7.257(56.1);7.105(0.6);7.098(5.4);7.092(1.6);7.081(1.8);7.076(10.0);7.070( 1.8);7.059(1.6);7.054(4.8);5.413(16.0);5.294(5.2);4.877(4.2);1.541(3.3);0.008(0.7);0.000(24.3);-
0.008(0.7)
Beispiel 1-54: 1H-NMR(400.0 MHz, CDC13):
δ= 8.092(2.0);8.090(2.9);8.089(3.7);8.087(2.8);8.085(1.9);7.813(2.8);7.810(2.6);7.793(3.5);7.789(3.4);7 .681(5.5);7.676(5.5);7.641(3.6);7.640(3.5);7.620(2.9);7.259(72.1);7.164(12.2);6.790(3.5);6.787(3.5);6.7 84(3.4);6.782(3.3);5.537(4.1);5.533(7.1);5.530(3.9);4.787(3.0);1.537(16.0);0.008(1.0);0.000(31.9);-
0.008(0.9)
Beispiel 1-55: 1H-NMR(400.0 MHz, CDC13):
δ= 8.484(5.8);8.483(5.2);7.970(2.2);7.965(3.6);7.961(2.1);7.949(3.6);7.944(6.3);7.940(3.6);7.890(7.3);7 .889(7.4);7.869(4.3);7.868(4.2);7.539(11.4);7.525(13.2);7.517(0.6);7.368(6.4);7.366(6.4);7.354(5.5);7.3 52(5.5);7.258(109.2);6.994(0.6);6.747(1.0);6.740(4.9);6.734(0.8);6.721(6.2);6.718(6.2);6.705(0.8);6.700 (4.8);6.692(1.0);5.482(14.4);5.296(16.0);4.867(5.1);1.537(32.2);0.008(1.3);0.000(43.5);-0.008(1.2) Beispiel 1-56: 1H-NMR(400.0 MHz, CDC13):
δ= 8.400(6.7);7.971(3.0);7.949(11.7);7.948(6.9);7.939(4.1);7.935(7.2);7.931(3.7);7.914(2.0);7.578(1.7); 7.561(1.8);7.557(3.5);7.541(3.4);7.535(1.9);7.518(4.1);7.493(8.0);7.479(11.3);7.414(8.1);7.400(5.8);7.3 82(0.6);7.342(0.5);7.259(581.0);7.228(0.6);7.210(0.6);6.995(3.3);6.925(1.4);6.922(1.7);6.919(1.6);6.905
(2.2) ;6.899(3.0);6.885(3.6);6.878(3.0);6.860(3.0);6.854(2.2);6.838(2.6);6.832(2.1);5.468(16.0);4.878(5.
8) ;1.532(172.4);0.146(0.6);0.008(7.2);0.000(237.4);-0.008(6.6);-0.150(0.7)
Beispiel 1-57: 1H-NMR(400.0 MHz, CDC13):
δ= 8.147(2.3);8.143(2.3);7.837(1.2);7.832(1.2);7.815(1.4);7.811(1.4);7.643(2.6);7.637(2.6);7.525(1.9);7 .504(1.6);7.355(2.4);7.334(3.0);7.259(31.3);7.176(2.9);7.155(2.3);7.117(5.5);6.799(2.0);6.793(2.0);5.62
7(9.2);5.297(4.9);4.748(2.5);3.995(16.0);1.546(4.3);0.000(9.9)
Beispiel 1-58: 'H-NMR^OO.O MHZ, CDC13):
δ= 8.027(5.0);8.011(5.0);7.660(3.7);7.635(3.6);7.505(0.5);7.437(6.4);7.423(11.4);7.421(5.1);7.417(2.1); 7.406(2.5);7.401(9.2);7.395(1.5);7.360(2.3);7.357(5.7);7.355(13.9);7.349(3.4);7.344(3.6);7.342(3.6);7.3 38(2.4);7.333(6.0);7.327(0.7);7.266(0.7);7.265(0.7);7.258(73.8);5.393(16.0);5.296(4.3);4.911(3.8);1.539
(22.9);1.257(0.6);0.008(0.9);0.000(30.6);-0.008(0.8)
Beispiel 1-59: 1H-NMR(400.0 MHz, CDC13):
δ= 8.397(6.1);8.395(6.4);7.961(2.5);7.940(11.1);7.938(6.6);7.931(4.2);7.928(7.0);7.924(3.7);7.910(0.9); 7.906(1.6);7.903(0.9);7.517(1.4);7.485(7.4);7.471(10.7);7.410(7.5);7.408(7.9);7.396(5.3);7.395(5.4);7.2 58(243.0);6.994(1.3);6.753(0.6);6.745(1.1);6.737(5.4);6.718(6.8);6.715(6.9);6.702(0.9);6.697(5.3);6.689
(l . l);6.681(0.5);5.480(16.0);4.865(5.6);1.534(96.9);0.008(3.0);0.000(97.0);-0.008(2.6)
Beispiel 1-60: 1H-NMR(400.0 MHz, CDC13):
δ= 9.044(11.9);8.659(3.7);8.657(4.1);8.654(4.0);8.653(3.9);8.189(3.4);8.188(3.5);8.168(4.5);8.166(4.6); 8.040(3.9);8.035(3.9);8.018(3.0);8.014(3.0);7.560(1.3);7.556(3.0);7.554(2.8);7.552(2.5);7.518(1.1);7.38 8(0.7);7.384(0.7);7.379(0.5);7.377(1.0);7.375(1.6);7.372(1.6);7.365(1.8);7.361(1.8);7.354(0.7);7.353(0.
9) ;7.351(0.7);7.346(0.6);7.341(0.6);7.336(6.9);7.334(5.9);7.332(4.1);7.326(2.3);7.323(3.7);7.321(3.4);7. 275(0.5);7.274(0.5);7.273(0.6);7.272(0.6);7.271(0.7);7.271(0.8);7.270(0.9);7.269(1.0);7.268(1.2);7.267( 1.3);7.267(1.5);7.266(1.8);7.265(2.1);7.264(2.7);7.263(3.6);7.259(199.4);7.255(3.2);7.254(2.1);7.254(1.
4) ;7.253(1.0);7.252(0.8);7.251(0.6);7.250(0.6);7.234(0.6);7.230(10.8);7.226(0.6);6.995(1.1);5.447(13.6) ;4.888(2.0);4.148(1.1);4.130(3.4);4.113(3.4);4.095(1.1);2.050(0.6);2.043(16.0);1.598(0.6);1.283(0.7);1. 276(5.2);1.258(10.5);1.241(4.9);0.008(2.2);0.006(0.6);0.000(81.2);-0.005(1.0);-0.006(0.8);-0.007(0.7);-
0.008(2.3)
Beispiel 1-61 : 1H-NMR(400.0 MHz, CDC13):
δ= 8.512(1.5);8.510(2.7);8.508(2.9);8.506(2.7);8.504(1.4);7.920(1.1);7.916(1.0);7.899(3.6);7.895(3.7);7 .881(3.5);7.880(3.5);7.860(1.0);7.859(1.0);7.525(4.8);7.518(0.6);7.511(5.6);7.366(2.7);7.364(2.6);7.353
(2.3) ;7.351(2.2);7.324(0.5);7.320(0.6);7.305(0.5);7.299(0.6);7.259(83.1);7.255(0.7);7.220(9.6);7.209(0.
5) ;5.488(4.3);5.487(5.2);5.485(4.3);4.823(2.1);1.543(16.0);0.008(1.1);0.004(0.5);0.002(1.4);0.000(34.9)
;-0.008(1.0)
Beispiel 1-62: 1H-NMR(400.0 MHz, CDC13):
δ= 8.226(5.5);8.222(5.7);8.196(3.2);8.193(3.4);8.175(3.4);8.172(3.5);7.961(2.7);7.942(3.2);7.916(3.2);7 .911(3.2);7.894(3.6);7.889(3.6);7.711(1.8);7.692(3.4);7.673(2.4);7.665(6.8);7.660(6.5);7.574(5.0);7.552 (4.0);7.531(1.9);7.518(3.5);7.492(1.4);7.259(521.2);7.223(0.9);7.191(15.3);6.995(2.8);6.836(5.1);6.832( 4.8);6.830(4.8);5.901(16.0);5.523(1.0);5.298(1.9);4.806(5.2);1.530(124.6);1.332(0.8);1.284(1.2);1.256(1
■0);0.145(0.7);0.008(6.5);0.000(189.9);-0.008(5.8);-0.150(0.7)
Beispiel 1-63: 1H-NMR(400.0 MHz, CDC13):
δ= 8.199(2.4);8.195(4.1);8.192(2.4);7.926(1.5);7.922(2.7);7.918(1.5);7.905(1.6);7.900(3.0);7.896(1.6);7 .671(6.1);7.666(6.1);7.597(3.0);7.595(4.1);7.593(3.1);7.576(2.8);7.573(5.6);7.572(6.6);7.551(4.5);7.517 (0.5);7.440(5.3);7.435(5.6);7.290(3.7);7.284(3.6);7.269(3.6);7.264(4.1);7.258(97.8);7.252(0.6);6.994(0. 5);6.842(4.9);6.840(5.0);6.837(4.9);6.834(4.8);5.507(16.0);4.884(3.6);1.533(21.7);0.008(1.3);0.000(44.2 );-0.008(l . l) Beispiel 1-64: 1H-NMR(400.0 MHz, CDC13):
δ= 9.071(14.0);9.036(1.8);8.585(4.5);8.242(0.7);8.237(0.7);8.231(0.8);8.222(4.3);8.201(5.9);8.200(5.8); 8.132(2.3);8.127(4.4);8.123(2.3);8.110(1.5);8.106(2.8);8.101(1.4);7.833(0.6);7.828(0.6);7.807(0.5);7.51 8(0.9);7.447(4.8);7.442(1.8);7.431(2.3);7.426(8.6);7.420(1.3);7.382(1.7);7.376(11.0);7.371(3.0);7.360(2 .2);7.355(5.8);7.349(0.9);7.345(1.7);7.339(0.8);7.329(1.4);7.323(7.3);7.319(1.9);7.310(5.4);7.304(1.0);7 .294(0.6);7.288(1.5);7.259(160.5);6.995(0.9);5.414(16.0);4.925(3.7);4.676(6.1);3.016(1.3);1.552(2.7);1.
370(0.8);1.286(1.2);1.255(0.8);0.008(1.8);0.000(59.7);-0.008(1.6)
Beispiel 1-65: 1H-NMR(400.0 MHz, CDC13):
δ= 8.399(4.1);7.974(2.2);7.954(4.0);7.953(7.3);7.951(4.1);7.940(2.4);7.936(4.2);7.932(2.3);7.919(0.6);7 .914(1.2);7.911(0.7);7.517(1.5);7.496(4.7);7.482(6.7);7.449(5.1);7.444(1.9);7.432(2.5);7.427(8.7);7.422 (1.5);7.418(5.0);7.417(5.1);7.405(3.5);7.403(3.5);7.377(1.7);7.372(11.2);7.366(3.0);7.355(2.3);7.350(6. 1);7.344(0.7);7.259(274.2);6.995(1.5);5.411(16.0);4.882(3.6);2.043(1.4); 1.531(81.3); 1.276(0.5);1.258(1.
0);0.008(3.4);0.000(113.4);-0.008(3.0)
Beispiel 1-66: 1H-NMR(400.0 MHz, CDC13):
δ= 7.797(8.8);7.780(8.7);7.653(11.8);7.647(11.9);7.543(1.7);7.527(1.9);7.522(3.5);7.518(1.0);7.506(3.5)
;7.501(2.1);7.485(1.9);7.319(5.3);7.318(5.4);7.295(5.2);7.294(5.3);7.293(5.5);7.267(0.9);7.266(1.0);7.2
59(110.0);6.995(0.6);6.910(1.4);6.908(1.4);6.904(1.8);6.901(1.8);6.889(2.1);6.887(2.3);6.881(3.3);6.869
(3.4);6.863(2.6);6.860(2.1);6.848(3.0);6.846(3.0);6.842(2.0);6.839(2.3);6.823(2.7);6.817(2.2);6.799(8.1)
;6.797(8.3);6.794(8.3);6.791(8.0);5.447(16.0);5.296(2.0);4.896(5.9);1.543(22.2);1.257(0.6);0.008(1.4);0
■000(44.2);-0.008(1.2)
Beispiel 1-67: 1H-NMR(400.0 MHz, CDC13):
δ= 8.108(1.0);8.106(1.4);8.105(1.8);8.103(1.3);8.101(1.0);7.838(1.5);7.834(1.4);7.817(1.8);7.814(1.8);7 .690(2.8);7.684(2.8);7.658(1.7);7.657(1.7);7.638(1.4);7.636(1.4);7.259(76.5);7.255(0.5);7.192(6.8);6.79 9(1.9);6.797(1.9);6.794(1.9);6.791(1.8);5.482(2.6);5.480(3.2);5.478(2.7);4.810(1.3);1.533(16.0);0.008(1
■ 1);0.004(0.6);0.002(1.5);0.000(33.4);-0.003(1.4);-0.008(1.0)
Beispiel 1-68: 1H-NMR(400.0 MHz, CDC13):
δ= 7.797(5.3);7.779(5.3);7.657(7.1);7.651(7.2);7.518(1.0);7.427(0.7);7.421(4.9);7.420(4.0);7.416(1.8);7 .405(2.4);7.400(9.0);7.394(1.5);7.361(1.9);7.355(11.6);7.350(3.0);7.339(2.2);7.334(5.6);7.324(3.3);7.32 2(3.3);7.299(3.2);7.298(3.4);7.259(179.7);6.995(1.0);6.804(4.9);6.802(5.0);6.798(5.0);6.796(4.9);5.390(
16.0);4.898(3.6);1.535(43.9);1.255(0.6);0.008(2.1);0.000(70.1);-0.008(2.0)
Beispiel 1-69: 1H-NMR(400.0 MHz, CDC13):
δ= 9.040(10.6);8.622(3.4);8.621(3.6);8.618(3.6);8.616(3.4);8.179(3.1);8.178(3.1);8.158(4.1);8.156(4.1); 8.022(3.5);8.017(3.4);8.000(2.7);7.996(2.7);7.459(3.9);7.458(3.2);7.454(1.4);7.443(1.8);7.438(6.3);7.43 2(1.0);7.385(1.2);7.379(8.0);7.374(2.2);7.362(1.9);7.357(4.8);7.352(0.8);7.259(78.8);7.254(0.5);7.199(1 2.0);5.431(11.8);5.297(16.0);4.839(2.8);1.427(0.5); 1.422(0.8); 1.371 (1.3); 1.333(8.5); 1.286(2.7); 1.282(12
■0);1.256(6.4);1.232(0.8);0.880(1.4);0.862(0.6);0.008(0.9);0.000(32.7);-0.008(1.0)
Beispiel 1-70: 1H-NMR(400.0 MHz, CDC13):
δ= 9.073(13.3);8.606(4.7);8.229(3.7);8.228(3.6);8.207(6.1);8.206(6.1);8.149(2.5);8.145(4.6);8.141(2.4); 8.128(1.5);8.123(2.7);8.119(1.4);7.518(1.7);7.387(1.2);7.372(1.8);7.367(3.1);7.352(2.5);7.346(2.0);7.33 3(1.8);7.292(0.7);7.259(316.7);7.247(3.8);7.232(1.5);7.227(1.6);7.225(1.4);7.066(1.0);7.062(1.0);7.045( 1.8);7.040(1.5);7.024(0.9);7.020(0.8);6.995(1.7);5.446(16.0);4.934(4.0);1.536(65.6);1.333(1.0);1.284(1.
6);1.256(1.8);0.008(3.8);0.000(123.8);-0.008(3.4)
Beispiel 1-71 : 'H-NMR^OO.O MHZ, CDC13):
δ= 7.794(6.1);7.777(6.1);7.654(8.2);7.648(8.3);7.471(4.0);7.466(1.6);7.458(4.3);7.455(2.2);7.449(4.6);7 .442(1.8);7.436(4.4);7.429(0.5);7.320(3.7);7.319(3.8);7.296(3.8);7.294(3.8);7.268(0.5);7.266(0.8);7.258 (86.2);7.086(0.7);7.078(5.5);7.073(1.7);7.069(0.6);7.062(1.8);7.056(10.0);7.051(1.8);7.040(1.6);7.035(4 .8);7.027(0.5);6.799(5.7);6.796(5.8);6.793(5.8);6.791(5.7);5.391(16.0);5.296(1.4);4.894(4.1);1.543(18.2
);1.256(0.6);0.008(1.0);0.000(34.6);-0.008(0.9)
Beispiel 1-72: 1H-NMR(400.0 MHz, CDC13):
δ= 9.045(16.0);8.635(5.2);8.634(5.8);8.631(5.6);8.629(5.4);8.190(4.8);8.189(4.9);8.169(6.3);8.168(6.3); 8.037(5.4);8.033(5.3);8.016(4.2);8.011(4.1);7.676(2.8);7.655(9.8);7.638(8.6);7.617(2.5);7.518(1.2);7.25 9(205.7);7.250(0.5);7.220(18.6);6.995(1.2);5.521(13.5);4.850(4.5);4.027(0.8);3.227(1.0);1.548(21.2);1.3 33(3.3);1.283(4.6);1.257(3.6);0.880(0.8);0.008(2.4);0.000(83.2);-0.008(2.4) Beispiel 1-73: 1H-NMR(400.0 MHz, CDC13):
δ= 8.417(5.1);8.414(4.9);7.952(1.7);7.950(3.2);7.948(1.7);7.930(4.6);7.929(8.3);7.927(4.6);7.906(5.0);7
.902(4.6);7.885(1.8);7.881(1.9);7.518(1.0);7.492(5.3);7.478(7.5);7.413(5.5);7.411(5.6);7.399(4.0);7.398
(3.9);7.359(0.7);7.354(0.7);7.341(1.4);7.335(1.3);7.326(1.0);7.319(0.9);7.313(1.2);7.309(0.8);7.300(0.8)
;7.294(0.8);7.273(0.6);7.272(0.6);7.271(0.6);7.270(0.7);7.270(0.8);7.269(0.9);7.268(1.0);7.267(1.2);7.2
66(1.3);7.266(1.5);7.265(1.8);7.264(2.3);7.263(3.2);7.259(172.2);7.254(2.2);7.253(1.6);7.252(1.2);7.252
(1.0);7.251(0.8);7.250(0.6);7.249(0.5);7.222(21.1);7.209(1.1);6.995(1.0);5.489(8.8);5.487(10.8);5.485(9
■4);5.298(0.6);4.819(4.5);1.537(16.0);1.258(0.5);0.008(2.0);0.000(75.0);-0.008(2.2)
Beispiel 1-74: 1H-NMR(400.0 MHz, CDC13):
δ= 8.394(2.2);8.377(1.0);8.373(1.0);8.348(2.8);8.345(2.6);7.946(0.8);7.925(3.2);7.906(2.2);7.904(3.7);7 .902(2.1);7.886(0.9);7.882(0.9);7.864(0.6);7.857(2.3);7.854(2.2);7.836(1.2);7.832(1.2);7.518(0.7);7.480 (3.9);7.467(5.5);7.405(1.4);7.404(1.4);7.398(3.0);7.397(3.0);7.392(1.0);7.390(1.0);7.385(2.1);7.383(2.1) ;7.259(119.0);7.237(0.7);7.223(0.8);7.216(0.9);7.209(0.8);7.201(0.9);7.197(0.8);7.182(0.8);7.123(3.0);7 .044(6.5);6.995(0.9);6.961(0.5);6.953(0.9);6.939(2.0);6.934(1.6);6.920(1.1);6.916(2.2);6.912(2.8);6.908 (1.2);6.891(2.7);6.886(2.1);6.869(0.6);6.864(0.7);5.472(5.1);5.429(0.6);5.414(1.2);5.398(0.6);4.588(2.8) ;4.573(2.6);4.029(8.6);4.027(12.4);4.024(8.2);4.012(8.6);4.010(16.0);4.007(8.5);1.545(3.4);1.255(1.0);0
.008(1.4);0.000(51.0);-0.008(l .4)
Beispiel 1-75: 1H-NMR(400.0 MHz, CDC13):
δ= 8.029(8.2);8.013(8.2);7.732(0.6);7.730(0.6);7.657(6.0);7.632(6.0);7.545(1.8);7.529(1.9);7.525(3.7);7
.517(1.0);7.509(3.6);7.504(2.9);7.488(2.0);7.435(10.5);7.421(14.8);7.356(7.6);7.354(7.9);7.342(5.5);7.3
40(5.5);7.269(0.7);7.269(0.7);7.268(0.7);7.267(0.7);7.265(1.3);7.264(1.5);7.258(132.2);7.251(0.5);6.994
(0.7);6.911(1.5);6.908(1.5);6.904(1.8);6.902(1.9);6.890(2.2);6.888(2.3);6.883(3.0);6.881(3.5);6.870(3.3)
;6.863(2.5);6.860(2.2);6.848(3.0);6.846(3.2);6.842(2.1);6.840(2.4);6.824(2.5);6.818(2.0);5.451(16.0);5.
296(1.5);4.907(6.3);1.540(36.8);1.258(0.7);0.008(1.4);0.000(53.5);-0.008(1.5)
Beispiel 1-76: 1H-NMR(400.0 MHz, CDC13):
δ= 8.520(2.6);8.518(3.5);8.517(3.9);8.001(1.6);7.996(2.8);7.992(1.6);7.979(2.5);7.975(4.5);7.971(2.5);7 .912(5.2);7.910(5.2);7.890(3.2);7.889(3.1);7.588(3.9);7.567(4.5);7.553(7.9);7.540(9.2);7.517(0.7);7.445 (5.4);7.440(5.8);7.383(4.5);7.381(4.5);7.369(3.8);7.368(3.8);7.302(3.6);7.297(3.4);7.281(3.2);7.276(3.1)
;7.258(123.4);6.994(0.7);5.515(16.0);4.900(3.8);1.531(35.1);0.008(1.7);0.000(52.5);-0.008(1.4)
Beispiel 1-77: 1H-NMR(400.0 MHz, CDC13):
δ= 8.027(5.4);8.011(5.4);7.658(4.0);7.634(4.0);7.517(0.7);7.505(0.6);7.503(0.6);7.492(0.6);7.481(0.5);7 .474(3.8);7.469(1.7);7.461(4.0);7.458(2.4);7.455(2.2);7.452(4.5);7.444(1.7);7.439(4.6);7.436(7.8);7.422 (9.7);7.355(5.2);7.353(5.4);7.341(3.8);7.340(3.8);7.266(0.8);7.258(87.9);7.086(0.6);7.079(5.3);7.074(1. 7);7.062(1.7);7.057(9.7);7.052(1.8);7.041(1.5);7.035(4.6);5.396(16.0);5.296(2.8);4.904(4.4);1.538(25.2)
;1.258(0.6);0.008(1.2);0.000(36.6);-0.008(1.0)
Beispiel 1-78: 1H-NMR(400.0 MHz, CDC13):
δ= 9.051(15.7);9.039(1.8);8.648(4.8);8.647(5.2);8.644(5.1);8.643(4.9);8.586(0.6);8.401(1.0);8.194(4.9);
8.193(4.6);8.173(6.5);8.171(6.0);8.045(5.0);8.040(4.9);8.023(4.0);8.019(4.1);8.003(0.6);7.998(0.6);7.59
0(4.1);7.569(4.7);7.520(3.1);7.453(5.8);7.448(6.2);7.312(0.7);7.307(3.9);7.302(3.5);7.286(3.7);7.281(3.
7);7.270(3.4);7.262(553.5);7.255(2.3);7.254(1.9);7.253(1.4);7.252(0.9);7.252(0.9);7.251(0.9);7.250(0.8)
;7.249(0.7);7.248(0.6);7.248(0.6);7.247(0.6);7.234(0.6);7.225(17.8);7.212(1.1);7.136(1.9);6.998(3.0);5.
537(16.0);5.302(2.0);4.849(4.2);1.551(125.9);1.333(2.6);1.284(3.8);1.255(2.0);0.882(0.7);0.146(0.6);0.0
08(6.5);0.000(207.3);-0.006(1.5);-0.007(1.3);-0.008(5.5);-0.150(0.6)
Beispiel 1-79: 1H-NMR(400.0 MHz, CDC13):
δ= 7.798(8.3);7.780(8.2);7.648(11.1);7.642(11.2);7.518(0.7);7.309(5.2);7.308(5.1);7.285(4.9);7.283(5.2) ;7.270(0.6);7.268(0.7);7.259(116.9);6.995(0.6);6.796(7.8);6.794(8.0);6.791(7.9);6.788(7.7);6.739(0.6);6 .731(1.1);6.723(5.5);6.717(1.0);6.705(6.8);6.702(6.9);6.689(0.8);6.683(5.2);6.676(1.1);5.462(16.0);5.29
7(4.8);4.882(5.6);2.042(0.6);1.541(36.3);1.258(0.9);0.008(1.4);0.000(46.7);-0.008(1.3)
Beispiel 1-80: 'H-NMR^OO.O MHZ, CDC13):
δ= 8.045(4.9);8.028(4.9);7.669(3.8);7.645(3.7);7.535(4.2);7.518(6.2);7.514(5.2);7.445(6.5);7.431(10.1); 7.424(6.6);7.378(1.0);7.364(4.8);7.352(3.6);7.309(1.3);7.274(5.9);7.269(7.4);7.259(1013.5);7.249(4.5);6 .995(5.4);5.499(16.0);4.923(4.1);1.530(299.2);0.146(1.3);0.008(12.5);0.000(401.7);-0.008(10.7);- 0.150(1.2) Beispiel 1-81 : 1H-NMR(400.0 MHz, CDC13):
δ= 7.811(5.5);7.794(5.4);7.661(7.4);7.655(7.5);7.529(4.0);7.518(2.7);7.509(4.7);7.428(6.1);7.423(6.5);7 .330(3.4);7.307(3.4);7.305(3.4);7.274(4.9);7.269(5.9);7.259(480.7);7.248(3.6);6.995(2.5);6.809(5.1);6.8 07(5.2);6.804(5.2);6.801(5.2);5.495(16.0);4.911(3.8);1.532(126.2);1.258(0.6);0.146(0.5);0.008(5.8);0.00
0(185.6);-0.008(4.8);-0.150(0.6)
Beispiel 1-82: 1H-NMR(400.0 MHz, CDC13):
δ= 8.423(4.0);8.421(4.2);7.982(0.9);7.961(7.2);7.959(6.9);7.955(5.6);7.952(3.0);7.934(0.7);7.580(4.0);7 .559(4.6);7.517(1.0);7.500(5.2);7.486(7.3);7.443(5.9);7.438(6.2);7.420(5.6);7.407(3.8);7.293(3.7);7.287 (3.6);7.272(3.7);7.266(4.0);7.258(185.5);7.250(0.8);7.249(0.6);6.994(1.0);5.513(16.0);4.898(3.8);1.532(
59.6);0.008(2.3);0.000(74.0);-0.008(2.1)
Beispiel 1-83: 1H-NMR(400.0 MHz, CDC13):
δ= 9.071(14.2);8.584(4.8);8.221(4.0);8.220(4.0);8.200(6.4);8.198(6.3);8.131(2.6);8.126(4.8);8.122(2.5); 8.109(1.7);8.105(3.1);8.100(1.6);7.518(1.8);7.498(3.6);7.493(1.5);7.485(3.8);7.476(4.2);7.468(1.6);7.46 3(4.0);7.259(318.6);7.108(0.5);7.100(4.9);7.095(1.5);7.084(1.7);7.079(9.1);7.074(1.6);7.062(1.4);7.057( 4.3);6.995(1.8);5.417(16.0);5.298(1.4);4.917(4.2);1.536(33.0);1.370(0.8);1.333(1.0);1.284(1.7);1.256(1. 7);0.008(3.8);0.000(120.5);-0.008(3.3)
B. Formulierungsbeispiele 1. Stäubemittel
Ein Stäubemittel wird erhalten, indem man 10 Gew. -Teile einer Verbindung der allgemeinen Formel (I) und 90 Gew. -Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert.
2. Dispergierbares Pulver
Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile einer Verbindung der allgemeinen Formel (I), 64 Gewichtsteile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gew. -Teil oleoylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt. 3. Dispersionskonzentrat
Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gewichtsteile einer Verbindung der allgemeinen Formel (I), 6 Gew.-Teile Alkylphenolpolyglykolether (®Triton X 207), 3 Gew.-Teile Isotridecanolpolyglykolether (8 EO) und 71 Gew.-Teile paraffinischem Mineralöl (Siedebereich z.B. ca. 255 bis über 277°C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.
4. Emulgierbares Konzentrat
Ein emulgierbares Konzentrat wird erhalten aus 15 Gew. -Teilen einer Verbindung der allgemeinen Formel (I), 75 Gew.Teilen Cyclohexanon als Lösemittel und 10 Gew. -Teilen oxethyliertes Nonylphenol als Emulgator. 5. Wasserdispergierbares Granulat
Ein in Wasser dispergierbares Granulat wird erhalten, indem man
75 Gew. -Teile einer Verbindung der allgemeinen Formel (I),
ligninsulfonsaures Calcium,
Natriumlaurylsulfat,
Polyvinylalkohol und
Kaolin
mischt, auf einer Stiftmühle mahlt und das Pulver in einem Wirbelbett durch Aufsprühen von Wasser als Granulierflüssigkeit granuliert.
Ein in Wasser dispergierbares Granulat wird auch erhalten, indem man
25 Gew. -Teile einer Verbindung der allgemeinen Formel (I),
5 " 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium,
2 " oleoylmethyltaurinsaures Natrium,
1 " Polyvinylalkohol,
17 " Calciumcarbonat und
50 " Wasser
auf einer Kolloidmühle homogenesiert und vorzerkleinert, anschließend auf einer Perlmühle mahlt und die so erhaltene Suspension in einem Sprühturm mittels einer Einstoffdüse zerstäubt und trocknet.
C. Biologische Beispiele
1. Herbizide Wirkung gegen Schadpflanzen im Vorauflauf
Samen von mono- bzw. dikotylen Unkraut- bzw. Kulturpflanzen werden in Holzfasertöpfen in sandiger Lehmerde ausgelegt und mit Erde abgedeckt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen werden dann als wäßrige Suspension bzw. Emulsion mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 1/ha unter Zusatz von 0,2% Netzmittel auf die Oberfläche der Abdeckerde appliziert. Nach der Behandlung werden die Töpfe im Gewächshaus aufgestellt und unter guten Wachstumsbedingungen für die Testpflanzen gehalten. Die visuelle Bonitur der Schäden an den Versuchspflanzen erfolgt nach einer Versuchszeit von
3 Wochen im Vergleich zu unbehandelten Kontrollen (herbizide Wirkung in Prozent (%>): 100%
Wirkung = Pflanzen sind abgestorben, 0 % Wirkung = wie Kontrollpflanzen). Dabei zeigten zahlreiche erfindungsgemäße Verbindungen bei einer Aufwandmenge von 0,32 kg oder weniger pro Hektar eine mindestens 80%>-ige Wirkung gegen eine Vielzahl bedeutender Schadpflanzen. Gleichzeitig lassen erfindungsgemäße Verbindungen Gramineenkulturen wie Gerste, Weizen, Roggen, Hirse, Mais oder Reis im Vorauflaufverfahren selbst bei hohen Wirkstoffdosierungen praktisch ungeschädigt. Einige Substanzen schonen darüber hinaus auch zweikeimblättrige Kulturen wie Soja, Baumwolle, Raps, Zuckerrüben oder Kartoffeln. Die erfindungsgemäßen Verbindungen zeigen teilweise eine hohe Selektivität und eignen sich deshalb im Vorauflaufverfahren zur Bekämpfung von unerwünschtem Pflanzen ECHCGwuchs in landwirtschaftlichen Kulturen. Die nachfolgenden Tabellen zeigen beispielhaft die herbizide Wirkung der erfindungsgemäßen Verbindungen im Vorauflauf, wobei die
SETVI
herbizide Wirkung in Prozent angegeben ist.
AMARE Tabelle 2: Herbizide Wirkung im Vorauf VIOTRlauf (PE)
ABUTH
ALOMY
Herbizide Wirkung gegen [%]
POLCO
Beispiel- Dosierung
Nr. [g/ha]
1-09 320 100 90 90 60 70 20 90
1-03 320 90 40 100 90 80 20 50
1-07 320 100 90 100 50 80 90 100
1-05 320 90 90 90 50 50 30 90
1-06 320 100 90 100 60 20 80 100
1-16 320 100 80 80 30 80 30 70
1-04 320 90 70 100 40 90 40 50
1-01 320 100 90 100 70 80 60 100
1-08 320 100 90 100 20 0 60 100
1-02 320 100 90 100 70 30 80 100
1-13 320 90 100 100 30 30 80 100
1-36 320 90 90 100 0 90 50 90
1-20 320 100 100 100 40 50 70 100
1-10 320 100 90 100 40 30 70 0
1-12 320 100 90 100 20 20 70 100
1-18 320 100 70 100 20 40 30 10 Tabelle 3 : Herbizide Wirkung im Vorauflauf (PE)
ECHCG
AMARE
Tabelle 4: Herbizide Wirkung im Vorauflauf (PE)
Herbizide Wirkung
gegen [%]
Beispiel- Dosierung
Nr. [g/ha]
1-40 320 10 80
1-33 320 20 90
1-28 320 90 100
1-48 320 10 90
1-45 320 40 100
1-37 320 90 100
1-17 320 90 100
1-50 320 70 80
1-34 320 50 100
1-27 320 60 100
1-56 320 30 80
1-59 320 30 80
1-41 320 90 50 Herbizide Wirkung
gegen [%]
Beispiel- Dosierung
Nr. [g/ha]
1-53 320 70 100
1-24 320 60 90
1-23 320 9 ECHCG0 100
1-51 320 20 70
1-35 320 40 100
1-55 320 40 1 AMARE00
1-44 320 60 90
1-46 320 60 100
1-26 320 70 100
1-43 320 0 100
1-54 320 0 80
2. Herbizide Wirkung gegen Schadpflanzen im Nachauflauf
Samen von mono- bzw. dikotylen Unkraut- bzw. Kulturpflanzen werden in Holzfasertöpfen in sandigem Lehmboden ausgelegt, mit Erde abgedeckt und im Gewächshaus unter guten Wachstumsbedingungen angezogen. 2 bis 3 Wochen nach der Aussaat werden die Versuchspflanzen im Einblattstadium behandelt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen werden dann als wäßrige Suspension bzw. Emulsion mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 1/ha unter Zusatz von 0,2% Netzmittel auf die grünen Pflanzenteile gesprüht. Nach ca. 3 Wochen Standzeit der Versuchspflanzen im Gewächshaus unter optimalen Wachstumsbedingungen wird die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen bonitiert (herbizide Wirkung in Prozent (%>): 100% Wirkung = Pflanzen sind abgestorben, 0 % Wirkung = wie Kontrollpflanzen). Dabei zeigten zahlreiche erfindungsgemäße Verbindungen bei einer Aufwandmenge von 0,08 kg oder weniger pro Hektar eine mindestens 80%>-ige Wirkung gegen eine Vielzahl bedeutender Schadpflanzen. Gleichzeitig lassen erfindungsgemäße Verbindungen Gramineenkulturen wie Gerste, Weizen, Roggen, Hirse, Mais oder Reis im
Nachauflaufverfahren selbst bei hohen Wirkstoffdosierungen praktisch ungeschädigt. Einige Substanzen schonen darüber hinaus auch zweikeimblättrige Kulturen wie Soja, Baumwolle, Raps, Zuckerrüben oder Kartoffeln. Die erfindungsgemäßen Verbindungen zeigen teilweise eine hohe Selektivität und eignen sich deshalb im Nachauflaufverfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs in landwirtschaftlichen Kulturen. Die nachfolgenden Tabellen zeigen beispielhaft die herbizide Wirkung der erfindungsgemäßen Verbindungen im Nachauflauf, wobei die herbizide Wirkung in Prozent angegeben ist. Tabelle 5: Herbizide Wirkung im Nachauflauf (PO)
Herbizide Wirkung gegen [%]
ARE AM
Tabelle 6: Herbizide Wirkung im Nachauflauf (PO)
Herbizide Wirkung
gegen [%]
ÜJ IE
Beispiel- Dosierung > Έ
LU
Nr. [g/ha] ÜJ O
<
1-33 320 80 100 90 90
1-49 320 80 100 90 90
1-38 320 90 100 100 100
Tabelle 7: Herbizide Wirkung im Nachauflauf (PO)
Herbizide Wirkung
gegen [%]
UJ DZ
Beispiel- Dosierung u > 1— < 1—
Z>
Nr. [g/ha] u UJ O
UJ l/l < <
1-69 320 90 80 100 90
1-60 320 90 80 80 90
1-43 320 80 90 100 90 Herbizide Wirkung
gegen [%]
Beispiel- Dosierung u > <
Nr. [g/ha] u
< <
1-50 320 90 40 100 90
1-17 320 90 100 100 90
1-54 320 80 ARE AM 80 100 80
Tabelle 8: Herbizide Wirkung im Nachauflauf (PO)
Tabelle 9: Herbizide Wirkung im Nachauflauf (PO)
Herbizide Wirkung
gegen [%]
Beispiel- Dosierung
Nr. [g/ha] <
1-61 320 90 80
1-46 320 100 90
1-58 320 100 90
1-51 320 90 80
1-63 320 80 80
1-32 320 100 90
1-68 320 80 80
1-62 320 40 100
1-71 320 80 40

Claims

Patentansprüche :
1. Verbindungen der Formel (I),
deren N-Oxide oder deren agrochemisch verträglichen Salze, in welchen
A einen Rest der Gruppe bestehend aus AI bis A20 bedeutet,
A5 A6 A7 A8
A9 A10 A1 1 A12
A13 A14 A15 A16
A1 7 A1 8 A19 A20 R1 Halogen, CN, N02, OH, NH2, (Ci-C6)-Alkyl, (Ci-C6)-Alkoxy, (Ci-C6)-Haloalkyl, (Ci-C6)- Haloalkoxy, (C2-C6)-Alkenyl, Halogen-(C2-C6)-alkenyl, (C2-C6)-Alkinyl, Halogen-(C3-C6)- alkinyl, (C3-C6)-Cycloalkyl, Halogen-(C3-C6)-cycloalkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl, Halogen-(C3-C6)-cycloalkyl-(Ci-C6)-alkyl, (Ci-C6)-Alkylcarbonyl, (Ci-C6)-Alkylcarboxy, (Ci- C6)-Alkylamm, di(Ci-C6)-Alkylamin, (Ci-C6)-Alkyl-S(0)n oder (Ci-C6)-Alkyl-S(0)2NH bedeutet,
R2 Chlor oder Fluor bedeutet,
R Wasserstoff bedeutet, R4 Wasserstoff bedeutet,
R5 bedeutet Wasserstoff, Halogen, OH, NH2, CN, (Ci-C3)-Alkyl, (Ci-C3)-Alkoxy, C1-C3)- Alkylamino oder Cyclopropyl, R6 bedeutet Wasserstoff, Halogen, OH, NH2, CN, (Ci-C3)-Alkyl, (Ci-C3)-Alkoxy, Cyclopropyl oder Vinyl,
R7 bedeutet Wasserstoff, Halogen, (Ci-C3)-Alkyl, (Ci-C3)-Alkoxy, (Ci-C3)-Alkylthio, Cyclopropyl, (Ci-C3)-Alkylamino oder Phenyl,
R8 bedeutet Wasserstoff, (Ci-C6)-Alkyl, (Ci-C i)-Alkylcarbonyl, (Ci-C6)-Alkoxycarbonyl oder
Phenyl, X bedeutet CH oder CF, m bedeutet 1 , 2, 3, 4 oder 5, und n bedeutet 0, 1 oder 2.
2. Verbindungen der Formel (I) gemäß Anspruch 1 , in welchen A einen Rest aus der Gruppe bestehend AI bis A3, A7 bis A15 und A17 bis A18 bedeutet.
A1 A2 A3
A9 A10 A1 1 A12
A13 A14 A15
A17 A18
3. Verbindungen der Formel (I) gemäß Anspruch 1 oder 2, in welchen R1 Halogen, CN, NO2, OH, NH2, (Ci-C6)-Alkyl, (Ci-C6)-Alkoxy, (Ci-C6)-Haloalkyl oder (Ci-C6)-Haloalkoxy bedeutet.
4. Verbindungen der Formel (I) gemäß einem der vorherigen Ansprüche, in welchen R2 Chlor
bedeutet.
5. Verbindungen der Formel (I) gemäß einem der vorherigen Ansprüche, in welchen R3 und R4 Wasserstoff bedeuten.
6. Verbindungen der Formel (I) gemäß einem der vorherigen Ansprüche, in welchen R5 Wasserstoff oder Halogen bedeutet.
7. Verbindungen der Formel (I) gemäß einem der vorherigen Ansprüche, in welchen R6 Wasserstoff oder Halogen bedeutet.
8. Verbindungen der Formel (I) gemäß einem der vorherigen Ansprüche, in welchen R7
Wasserstoff, Halogen oder (Ci-C3)-Alkyl bedeutet.
9. Verbindungen der Formel (I) gemäß einem der vorherigen Ansprüche, in welchen R8
Wasserstoff, (Ci-C i)-Alkyl, (Ci-C i)-Alkylcarbonyl oder (Ci-C i)-Alkoxycarbonyl bedeutet.
10. Verbindungen der Formel (I) gemäß einem der vorherigen Ansprüche, in welchen n 0 oder 1 bedeutet und m 1 , 2, oder 3 bedeutet.
11. Herbizide Mittel, gekennzeichnet durch einen herbizid wirksamen Gehalt an mindestens einer Verbindung der Formel (I) gemäß einem der Ansprüche 1 bis 10.
12. Herbizide Mittel gemäß Anspruch 11 in Mischung mit Formulierungshilfsmitteln.
13. Herbizide Mittel gemäß den Ansprüchen 11 oder 12 enthaltend mindestens einen weiteren
Pestizid wirksame Stoffen aus der Gruppe Insektizide, Akarizide, Herbizide, Fungizide, Safenern und Wachstumsregulatoren.
14. Herbizide Mittel gemäß Anspruch 11 oder 12 enthaltend einen Safener.
15. Herbizide Mittel nach Anspruch 14 enthaltend ein weiteres Herbizid.
16. Verfahren zur Bekämpfung unerwünschter Pflanzen, dadurch gekennzeichnet, daß man eine wirksame Menge mindestens einer Verbindung der Formel (I) gemäß einem der Ansprüche 1 bis 10 oder eines herbiziden Mittels nach einem der Ansprüche 11 bis 15 auf die Pflanzen oder auf den Ort des unerwünschten Pflanzenwachstums appliziert.
17. Verwendung von Verbindungen der Formel (I) gemäß einem der Ansprüche 1 bis 10 oder eines herbiziden Mittels nach einem der Ansprüche 11 bis 15 zur Bekämpfung unerwünschter Pflanzen.
18. Verwendung gemäß Anspruch 17, dadurch gekennzeichnet, daß die Verbindungen der Formel (I) zur Bekämpfung unerwünschter Pflanzen in Kulturen von Nutzpflanzen eingesetzt werden.
19. Verwendung gemäß Anspruch 18, dadurch gekennzeichnet, daß die Nutzpflanzen transgene
Nutzpflanzen sind.
EP18702514.3A 2017-02-13 2018-02-06 Substituierte benzyl-4-aminopicolinsäureester und pyrimidin-4-carbonsäureester, verfahren zu deren herstellung sowie deren verwendung als herbizide und pflanzenwachstumsregulatoren Withdrawn EP3580216A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP17155824 2017-02-13
PCT/EP2018/052911 WO2018146079A1 (de) 2017-02-13 2018-02-06 Substituierte benzyl-4-aminopicolinsäureester und pyrimidin-4-carbonsäureester, verfahren zu deren herstellung sowie deren verwendung als herbizide und pflanzenwachstumsregulatoren

Publications (1)

Publication Number Publication Date
EP3580216A1 true EP3580216A1 (de) 2019-12-18

Family

ID=58018003

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18702514.3A Withdrawn EP3580216A1 (de) 2017-02-13 2018-02-06 Substituierte benzyl-4-aminopicolinsäureester und pyrimidin-4-carbonsäureester, verfahren zu deren herstellung sowie deren verwendung als herbizide und pflanzenwachstumsregulatoren

Country Status (13)

Country Link
US (1) US20200187499A1 (de)
EP (1) EP3580216A1 (de)
JP (1) JP2020508293A (de)
KR (1) KR20190116987A (de)
CN (1) CN110267951A (de)
AR (1) AR110972A1 (de)
AU (1) AU2018219470A1 (de)
BR (1) BR112019016541A2 (de)
CA (1) CA3053214A1 (de)
EA (1) EA201991887A1 (de)
MX (1) MX2019009311A (de)
UY (1) UY37602A (de)
WO (1) WO2018146079A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023044364A1 (en) * 2021-09-15 2023-03-23 Enko Chem, Inc. Protoporphyrinogen oxidase inhibitors
IL314174A (en) 2022-01-14 2024-09-01 Enko Chem Inc Protoporphyrinogen oxidase inhibitors

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MA19709A1 (fr) 1982-02-17 1983-10-01 Ciba Geigy Ag Application de derives de quinoleine a la protection des plantes cultivees .
DE3382743D1 (de) 1982-05-07 1994-05-11 Ciba Geigy Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen.
WO1984002919A1 (en) 1983-01-17 1984-08-02 Monsanto Co Plasmids for transforming plant cells
BR8404834A (pt) 1983-09-26 1985-08-13 Agrigenetics Res Ass Metodo para modificar geneticamente uma celula vegetal
JPS6087254A (ja) 1983-10-19 1985-05-16 Japan Carlit Co Ltd:The 新規尿素化合物及びそれを含有する除草剤
DE3525205A1 (de) 1984-09-11 1986-03-20 Hoechst Ag, 6230 Frankfurt Pflanzenschuetzende mittel auf basis von 1,2,4-triazolderivaten sowie neue derivate des 1,2,4-triazols
BR8600161A (pt) 1985-01-18 1986-09-23 Plant Genetic Systems Nv Gene quimerico,vetores de plasmidio hibrido,intermediario,processo para controlar insetos em agricultura ou horticultura,composicao inseticida,processo para transformar celulas de plantas para expressar uma toxina de polipeptideo produzida por bacillus thuringiensis,planta,semente de planta,cultura de celulas e plasmidio
DE3680212D1 (de) 1985-02-14 1991-08-22 Ciba Geigy Ag Verwendung von chinolinderivaten zum schuetzen von kulturpflanzen.
EP0221044B1 (de) 1985-10-25 1992-09-02 Monsanto Company Pflanzenvektoren
DE3765449D1 (de) 1986-03-11 1990-11-15 Plant Genetic Systems Nv Durch gentechnologie erhaltene und gegen glutaminsynthetase-inhibitoren resistente pflanzenzellen.
WO1987006766A1 (en) 1986-05-01 1987-11-05 Honeywell Inc. Multiple integrated circuit interconnection arrangement
IL83348A (en) 1986-08-26 1995-12-08 Du Pont Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
DE3633840A1 (de) 1986-10-04 1988-04-14 Hoechst Ag Phenylpyrazolcarbonsaeurederivate, ihre herstellung und verwendung als pflanzenwachstumsregulatoren und safener
ES2037739T3 (es) 1986-10-22 1993-07-01 Ciba-Geigy Ag Derivados del acido 1,5-difenilpirazol-3-carboxilico para la proteccion de plantas de cultivo.
DE3733017A1 (de) 1987-09-30 1989-04-13 Bayer Ag Stilbensynthase-gen
DE3808896A1 (de) 1988-03-17 1989-09-28 Hoechst Ag Pflanzenschuetzende mittel auf basis von pyrazolcarbonsaeurederivaten
DE3817192A1 (de) 1988-05-20 1989-11-30 Hoechst Ag 1,2,4-triazolderivate enthaltende pflanzenschuetzende mittel sowie neue derivate des 1,2,4-triazols
ATE84302T1 (de) 1988-10-20 1993-01-15 Ciba Geigy Ag Sulfamoylphenylharnstoffe.
DE3939010A1 (de) 1989-11-25 1991-05-29 Hoechst Ag Isoxazoline, verfahren zu ihrer herstellung und ihre verwendung als pflanzenschuetzende mittel
DE3939503A1 (de) 1989-11-30 1991-06-06 Hoechst Ag Neue pyrazoline zum schutz von kulturpflanzen gegenueber herbiziden
ATE241007T1 (de) 1990-03-16 2003-06-15 Calgene Llc Dnas, die für pflanzliche desaturasen kodieren und deren anwendungen
RU2148081C1 (ru) 1990-06-18 2000-04-27 Монсанто Компани Способ получения генетически трансформированных растений с повышенным содержанием крахмала и рекомбинантная двухцепочечная днк-молекула
ATE213774T1 (de) 1990-06-25 2002-03-15 Monsanto Technology Llc Glyphosattolerante pflanzen
DE4107396A1 (de) 1990-06-29 1992-01-02 Bayer Ag Stilbensynthase-gene aus weinrebe
DE59108636D1 (de) 1990-12-21 1997-04-30 Hoechst Schering Agrevo Gmbh Neue 5-Chlorchinolin-8-oxyalkancarbonsäurederivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Antidots von Herbiziden
SE467358B (sv) 1990-12-21 1992-07-06 Amylogene Hb Genteknisk foeraendring av potatis foer bildning av staerkelse av amylopektintyp
DE4104782B4 (de) 1991-02-13 2006-05-11 Bayer Cropscience Gmbh Neue Plasmide, enthaltend DNA-Sequenzen, die Veränderungen der Karbohydratkonzentration und Karbohydratzusammensetzung in Pflanzen hervorrufen, sowie Pflanzen und Pflanzenzellen enthaltend dieses Plasmide
TW259690B (de) 1992-08-01 1995-10-11 Hoechst Ag
DE4331448A1 (de) 1993-09-16 1995-03-23 Hoechst Schering Agrevo Gmbh Substituierte Isoxazoline, Verfahren zu deren Herstellung, diese enthaltende Mittel und deren Verwendung als Safener
DE19621522A1 (de) 1996-05-29 1997-12-04 Hoechst Schering Agrevo Gmbh Neue N-Acylsulfonamide, neue Mischungen aus Herbiziden und Antidots und deren Verwendung
US6294504B1 (en) 1996-09-26 2001-09-25 Syngenta Crop Protection, Inc. Herbicidal composition
DE19652961A1 (de) 1996-12-19 1998-06-25 Hoechst Schering Agrevo Gmbh Neue 2-Fluoracrylsäurederivate, neue Mischungen aus Herbiziden und Antidots und deren Verwendung
US6071856A (en) 1997-03-04 2000-06-06 Zeneca Limited Herbicidal compositions for acetochlor in rice
DE19727410A1 (de) 1997-06-27 1999-01-07 Hoechst Schering Agrevo Gmbh 3-(5-Tetrazolylcarbonyl)-2-chinolone und diese enthaltende nutzpflanzenschützende Mittel
DE19742951A1 (de) 1997-09-29 1999-04-15 Hoechst Schering Agrevo Gmbh Acylsulfamoylbenzoesäureamide, diese enthaltende nutzpflanzenschützende Mittel und Verfahren zu ihrer Herstellung
AR031027A1 (es) 2000-10-23 2003-09-03 Syngenta Participations Ag Composiciones agroquimicas
AR037228A1 (es) 2001-07-30 2004-11-03 Dow Agrosciences Llc Compuestos del acido 6-(aril o heteroaril)-4-aminopicolinico, composicion herbicida que los comprende y metodo para controlar vegetacion no deseada
EP1610611A1 (de) 2003-03-26 2006-01-04 Bayer CropScience GmbH Verwendung von hydroxyaromaten als safener
DE10335725A1 (de) 2003-08-05 2005-03-03 Bayer Cropscience Gmbh Safener auf Basis aromatisch-aliphatischer Carbonsäuredarivate
DE10335726A1 (de) 2003-08-05 2005-03-03 Bayer Cropscience Gmbh Verwendung von Hydroxyaromaten als Safener
DE102004023332A1 (de) 2004-05-12 2006-01-19 Bayer Cropscience Gmbh Chinoxalin-2-on-derivate, diese enthaltende nutzpflanzenschützende Mittel und Verfahren zu ihrer Herstellung und deren Verwendung
JPWO2007023719A1 (ja) 2005-08-22 2009-02-26 クミアイ化学工業株式会社 薬害軽減剤及び薬害が軽減された除草剤組成物
JPWO2007023764A1 (ja) 2005-08-26 2009-02-26 クミアイ化学工業株式会社 薬害軽減剤及び薬害が軽減された除草剤組成物
GB0600483D0 (en) * 2006-01-11 2006-02-22 Astrazeneca Ab Novel compounds
CA2635997A1 (en) 2006-01-11 2007-07-19 Astrazeneca Ab Morpholino pyrimidine derivatives and their use in therapy
EP1987718A1 (de) 2007-04-30 2008-11-05 Bayer CropScience AG Verwendung von Pyridin-2-oxy-3-carbonamiden als Safener
EP1987717A1 (de) 2007-04-30 2008-11-05 Bayer CropScience AG Pyridoncarboxamide, diese enthaltende nutzpflanzenschützende Mittel und Verfahren zu ihrer Herstellung und deren Verwendung
CN101801963A (zh) 2007-07-09 2010-08-11 阿斯利康(瑞典)有限公司 用于治疗增殖性疾病的三取代的嘧啶衍生物
AU2008293462B2 (en) 2007-08-30 2013-08-15 Corteva Agriscience Llc 2-(substituted phenyl)-6-amino-5-alkoxy, thioalkoxy and aminoalkyl-4-pyrimidinecarboxylates and their use as herbicides
GB0808664D0 (en) * 2008-05-13 2008-06-18 Syngenta Ltd Chemical compounds
GB0907625D0 (en) 2009-05-01 2009-06-10 Syngenta Ltd Method of controlling undesired vegetation
CN101838227A (zh) 2010-04-30 2010-09-22 孙德群 一种苯甲酰胺类除草剂的安全剂
BR112014001882B1 (pt) 2011-07-27 2019-05-07 Bayer Intellectual Property Gmbh Composições herbicidas, uso de ácidos picolínicos e ácidos pirimidina-4-carboxílicos substituídos, e método para controlar plantas indesejadas
TWI689251B (zh) * 2014-09-15 2020-04-01 美商陶氏農業科學公司 源自於施用吡啶羧酸除草劑與合成生長素除草劑及/或生長素轉運抑制劑的協同性雜草控制
TWI685302B (zh) * 2014-09-15 2020-02-21 美商陶氏農業科學公司 包含吡啶羧酸除草劑之安全的除草組成物
AR101858A1 (es) * 2014-09-15 2017-01-18 Dow Agrosciences Llc Composiciones herbicidas protegidas que comprenden un herbicida de ácido piridincarboxílico
TWI689252B (zh) * 2014-09-15 2020-04-01 美商陶氏農業科學公司 源自於施用吡啶羧酸除草劑與乙醯乳酸合成酶(als)抑制劑的協同性雜草控制
TWI698178B (zh) * 2014-09-15 2020-07-11 美商陶氏農業科學公司 源自於施用吡啶羧酸除草劑與光系統ii抑制劑的協同性雜草控制

Also Published As

Publication number Publication date
CA3053214A1 (en) 2018-08-16
WO2018146079A1 (de) 2018-08-16
MX2019009311A (es) 2019-10-04
AR110972A1 (es) 2019-05-22
KR20190116987A (ko) 2019-10-15
JP2020508293A (ja) 2020-03-19
CN110267951A (zh) 2019-09-20
US20200187499A1 (en) 2020-06-18
EA201991887A1 (ru) 2020-02-20
UY37602A (es) 2018-08-31
AU2018219470A1 (en) 2019-08-22
BR112019016541A2 (pt) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2018228985A1 (de) Herbizid wirksame 3-phenylisoxazolin-5-carboxamide von tetrahydro- und dihydrofurancarbonsäuren und -estern
EP3793977A1 (de) 2-brom-6-alkoxyphenyl-substituierte pyrrolin-2-one und deren verwendung als herbizide
EP3975720A1 (de) 1-phenyl-5-azinylpyrazolyl-3-oxyalkylsäuren und deren verwendung zur bekämpfung unerwünschten pflanzenwachstums
WO2019219584A1 (de) Neue spirocyclohexylpyrrolin-2-one und deren verwendung als herbizide
EP3853219B1 (de) Herbizid wirksame substituierte phenylpyrimidinhydrazide
EP3938348A1 (de) Neue 3-(2-brom-4-alkinyl-6-alkoxyphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
EP3580216A1 (de) Substituierte benzyl-4-aminopicolinsäureester und pyrimidin-4-carbonsäureester, verfahren zu deren herstellung sowie deren verwendung als herbizide und pflanzenwachstumsregulatoren
WO2019228788A1 (de) 2-brom-6-alkoxyphenyl-substituierte pyrrolin-2-one und deren verwendung als herbizide
WO2019228787A1 (de) Speziell substituierte 2-alkyl-6-alkoxyphenyl-3-pyrrolin-2-one und deren verwendung als herbizide
EP3810588A1 (de) Substituierte 4-heteroaryloxypyridine sowie deren salze und ihre verwendung als herbizide wirkstoffe
EP3606915A1 (de) 2-amino-5-oxyalkyl-pyrimidinderivate und deren verwendung zur bekämpfung unerwünschten pflanzenwachstums
EP3898612B1 (de) Substituierte pyridinyloxybenzole sowie deren salze und ihre verwendung als herbizide wirkstoffe
WO2020187628A1 (de) Speziell substituierte 3-(2-alkoxy-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
EP3938347A1 (de) Speziell substituierte 3-phenyl-5-spirocyclopentyl-3-pyrrolin-2-one und deren verwendung als herbizide
WO2020187629A1 (de) 3-(2-brom-4-alkinyl-6-alkoxyphenyl)-substituierte 5-spirocyclohexyl-3-pyrrolin-2-one und deren verwendung als herbizide
EP3360872A1 (de) Unsubstituierte benzyl-4-aminopicolinsäureester und pyrimidin-4-carbonsäureester, verfahren zu deren herstellung sowie deren verwendung als herbizide und pflanzenwachstumsregulatoren
EP3938346A1 (de) Speziell substituierte 3-(2-halogen-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2024194026A1 (de) Herbizid wirksame 4-difluormethylbenzoesäureamide
WO2023274869A1 (de) 3-(4-alkenyl-phenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2019219588A1 (de) Speziell substituierte 2-alkyl-6-alkoxyphenyl-3-pyrroliin-2-one und deren verwendung als herbizide
WO2021028419A1 (de) Substituierte 3-(2-heteroaryloxyphenyl)isoxazoline sowie deren salze und ihre verwendung als herbizide wirkstoffe
WO2020245097A1 (de) Substituierte pyridinyloxypyridine sowie deren salze und ihre verwendung als herbizide wirkstoffe
WO2019219585A1 (de) Neue 3-(4-alkinyl-6-alkoxy-2-chlorphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
EP3720853A1 (de) 3-amino-[1,2,4]-triazolderivate und deren verwendung zur bekämpfung unerwünschten pflanzenwachstums
WO2024078871A1 (de) 1-pyridyl-5-phenylpyrazolyl-3-oxy- und -3-thioalkylsäuren und derivate und deren verwendung zur bekämpfung unerwünschten pflanzenwachstums

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190913

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20210602

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20210810