WO2022253700A1 - Speziell substituierte pyrrolin-2-one und deren verwendung als herbizide - Google Patents

Speziell substituierte pyrrolin-2-one und deren verwendung als herbizide Download PDF

Info

Publication number
WO2022253700A1
WO2022253700A1 PCT/EP2022/064398 EP2022064398W WO2022253700A1 WO 2022253700 A1 WO2022253700 A1 WO 2022253700A1 EP 2022064398 W EP2022064398 W EP 2022064398W WO 2022253700 A1 WO2022253700 A1 WO 2022253700A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
plants
methyl
alkoxy
compounds
Prior art date
Application number
PCT/EP2022/064398
Other languages
English (en)
French (fr)
Inventor
Hartmut Ahrens
Alfred Angermann
Lars ARVE
Guido Bojack
Estella BUSCATO
Hendrik Helmke
Birgit BOLLENBACH-WAHL
Elmar Gatzweiler
Elisabeth ASMUS
Jan Dittgen
Christopher Hugh Rosinger
Original Assignee
Bayer Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Aktiengesellschaft filed Critical Bayer Aktiengesellschaft
Publication of WO2022253700A1 publication Critical patent/WO2022253700A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/54Spiro-condensed
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/36Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
    • A01N43/38Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P13/00Herbicides; Algicides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/32Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • C07C235/36Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to acyclic carbon atoms and singly-bound oxygen atoms bound to the same carbon skeleton the carbon skeleton containing six-membered aromatic rings having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a ring other than a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/58Unsaturated compounds containing ether groups, groups, groups, or groups
    • C07C59/64Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/73Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of unsaturated acids
    • C07C69/734Ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated

Definitions

  • the present invention relates to new herbicidally active pyrrolin-2-ones and their agrochemically acceptable salts thereof, and their use for controlling weeds and grass weeds in crops of useful plants.
  • 4-Alkinyl-substituted-3-phenylpyrrolin-2-ones with herbicidal action are known, for example, from WO 96/25395, WO 01/74770, WO 09/039975, WO 19/219587 and WO 19/219584.
  • the object of the present invention is to provide further compounds which do not have the disadvantages mentioned.
  • the present invention therefore relates to new substituted pyrrolin-2-ones of the general formula (I), or an agrochemically acceptable salt thereof, wherein
  • X is Ci -C, - alkyl, C i -O, haloalkyl, C 3 -C 6 -cycloalkyl, Ci-C ö -alkoxy, C I -C ö -
  • Y is C i -Ce-alkoxy or C i -Cr,-haloalkoxy
  • R 1 is C 2 -C 6 difluoroalkoxy
  • R 2 is hydrogen, Ci-Cr, -alkyl, Ci-C 4 -alkoxy-Ci-C 4 -alkyl, Ci-C ö -haloalkyl, C 3 -C 6 -
  • cycloalkyl C 3 -C 6 cycloalkyl-C 1 -C 4 alkyl, C 2 -C 6 alkenyl, C 2 -C 6 alkynyl, C 1 -Cr 1 - alkoxy or C 1 -C 6 haloalkoxy;
  • G is hydrogen, a removable group L or a cation E, L is one of the following radicals,
  • R 3 is C 1 -C 4 -alkyl or C 1 -C 3 -alkoxy-C 1 -C 4 -alkyl;
  • R 4 is C 1 -C 4 alkyl
  • R 5 is Ci-C 4 -alkyl, phenyl or one or more times substituted by halogen, Ci-C 4 -alkyl, Ci-C 4 -haloalkyl, Ci-C 4 -alkoxy, Ci-C 4 -haloalkoxy, nitro or cyano substituted phenyl;
  • R 6 and R 6 ' independently represent methoxy or ethoxy
  • R 7 and R 8 are each independently methyl, ethyl, phenyl or
  • R 7 and R 8 together with the nitrogen atom to which they are attached form a saturated 5-, 6- or 7-membered ring wherein a ring carbon atom is optionally replaced by an oxygen or sulfur atom;
  • E represents an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent of aluminum, an ion equivalent of a transition metal, a magnesium halogen cation or an ammonium ion, optionally having one, two, three or all four Hydrogen atoms are replaced by identical or different radicals from the groups Ci-Cio-alkyl or C3-C7-cycloalkyl, each independently mono- or polysubstituted with fluorine, chlorine, bromine, cyano, hydroxy or by one or more oxygen or sulfur atoms may be interrupted, a cyclic secondary or tertiary aliphatic or heteroaliphatic ammonium ion such as morpholinium, thiomorpholinium, piperidinium, pyrrolidinium or in each case protonated 1,4-diazabicyclo[1.1.2]octane (DABCO) or 1,5-diazabicyclo[4.3.0]undec -7-
  • Alkyl means saturated, straight-chain or branched hydrocarbon radicals with the specified number of carbon atoms, for example (Ci-C ö j-alkyl such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methyl-propyl, 2-methylpropyl, 1, 1-dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 1-methylpentyl, 2- Methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethylbutyl, 1- Ethylbutyl
  • Haloalkyl means straight-chain or branched alkyl groups, some or all of the hydrogen atoms in these groups being replaced by halogen atoms, e.g. (C1-C2)-haloalkyl such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl , 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-
  • 2-fluoroethyl 2-chloro,2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl and 1,1,1-trifluoroprop-2-yl.
  • Alkenyl means unsaturated, straight-chain or branched hydrocarbon radicals with the specified number of carbon atoms and a double bond in any position, e.g. (C2-C6)-alkenyl such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl,
  • Alkynyl means straight-chain or branched hydrocarbon radicals with the specified number of carbon atoms and a triple bond in any position, e.g. C2-C6-alkynyl such as ethynyl, 1-propynyl, 2-propynyl (or propargyl), 1-butynyl, 2-butynyl, 3-butynyl,
  • 2-butynyl 1-methyl-3-butynyl, 2-methyl-3-butynyl, 1,1-dimethyl-2-propynyl, 1-ethyl-2-propynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 3-methyl-1-pentynyl, 4-methyl-1-pentynyl, 1-methyl-2-pentynyl, 4-methyl-2-pentynyl, 1-methyl-3-pentynyl, 2- methyl-3-pentynyl, 1-methyl-4-pentynyl, 2-methyl-4-pentynyl, 3-methyl-4-pentynyl, 1,1-dimethyl-2-butynyl, 1,1-dimethyl-3-butynyl, 1,2-dimethyl-3-butynyl, 2,2-dimethyl-3-butynyl, 3,3-dimethyl-1
  • Cycloalkyl means a carbocyclic, saturated ring system with preferably 3-8 ring carbon atoms, for example cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
  • cyclic systems with substituents are included, with substituents having a double bond on the cycloalkyl radical, e.g. an alkylidene group such as methylidene.
  • Alkoxy means saturated, straight-chain or branched alkoxy radicals with the specified number of carbon atoms, for example (C 1 -C 6 )-alkoxy such as methoxy, ethoxy, propoxy, 1-methylethoxy, butoxy, 1-methylpropoxy, 2-methylpropoxy, 1,1 -dimethylethoxy, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 1-methylpentoxy, 2-methylpentoxy , 3-methylpentoxy, 4-methylpentoxy, 1,1-dimethylbutoxy, 1,2-dimethylbutoxy, 1,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy,
  • Alkoxy substituted by halogen means straight-chain or branched alkoxy radicals having the specified number of carbon atoms, it being possible for the hydrogen atoms in these groups to be partially or completely replaced by halogen atoms as mentioned above, e.g.
  • (C1-C2)-haloalkoxy such as chloromethoxy, bromomethoxy, dichloromethoxy, trichloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 1-chloroethoxy, 1-bromoethoxy, 1-fluoroethoxy, 2-fluoroethoxy,
  • the compounds of the formula (I) can be present as geometric isomers (cis/trans isomerism) or isomer mixtures of varying composition.
  • the geometric isomers are defined as follows:
  • the isomer mixtures which may be obtained in the synthesis can be separated using the customary technical methods which are known in principle to those skilled in the art.
  • the present invention relates both to the pure isomers or tautomers and to the tautomer and isomer mixtures, their preparation and use, and compositions containing them. This also applies analogously to all isomers that result from the use of chiral substituents. For the sake of simplicity, however, reference is always made below to compounds of the formula (I), although both the pure compounds and, if appropriate, mixtures with different proportions of isomeric and tautomeric compounds are meant.
  • X means Ci-C4-alkyl, Ci-C4-haloalkyl, C3-C6-cycloalkyl, Ci-C4-alkoxy, C1-C4- haloalkoxy, bromo or fluoro;
  • Y is C 1 -C 4 alkoxy or C 1 -C 4 haloalkoxy
  • R 1 is C2-C4 difluoroalkoxy
  • R 2 is hydrogen, Ci-Ce-alkyl, Ci-C 4 -alkoxy-C 2 -C 4 -alkyl, Ci-C ö -haloalkyl, C 3 -C 6 - cycloalkyl, C 2 -C 6 -alkenyl or C C 2 -C 6 alkynyl;
  • G is hydrogen, a removable group L or a cation E,
  • R 3 is C 1 -C 4 alkyl or C 1 -C 3 alkoxy-C 1 -C 4 alkyl
  • R 4 is C1-C4 alkyl
  • R 5 is Ci-C4-alkyl, phenyl or phenyl which is mono- or polysubstituted by halogen, Ci-C4-alkyl, Ci-C4-haloalkyl or Ci-C4-alkoxy;
  • E is an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent of aluminum, an ion equivalent of a transition metal, a magnesium-halogen cation or an ammonium ion in which optionally one, two, three or all four hydrogen atoms are replaced by the same or different radicals the groups Ci-Cio-alkyl or C3-C7-cycloalkyl, which independently of one another can each be substituted one or more times by fluorine, chlorine, bromine, cyano, hydroxy or interrupted by one or more oxygen or sulfur atoms, a cyclic secondary or tertiary aliphatic or heteroaliphatic ammonium ion such as morpholinium, thiomorpholinium, piperidinium, pyrrolidinium or in each case protonated 1,4-diazabicyclo[1.1.2]octane (DABCO) or 1,5-diazabicyclo[4.3.0]undec-7-en
  • Y is C 1 -C 4 alkoxy or C 1 -C 4 haloalkoxy
  • R 1 is C 2 -C 4 difluoroalkoxy
  • R 2 is hydrogen, Ci-C 4 -alkyl, methoxyethyl or ethoxyethyl, Ci-C 2 -haloalkyl, cyclopropyl, C 2 -C 4 -alkenyl or C 2 -C 4 -alkynyl;
  • G is hydrogen, a removable group L or a cation E,
  • R 3 is C 1 -C 4 -alkyl or C 1 -C 2 -alkoxy-C 1 -C 2 -alkyl;
  • R 4 is C 1 -C 4 alkyl
  • E represents an alkali metal ion, an ion equivalent of an alkaline earth metal, an ion equivalent of aluminum, an ion equivalent of a transition metal, a magnesium halogen cation or an ammonium ion, optionally having one, two, three or all four
  • Hydrogen atoms are replaced by identical or different radicals from the groups Ci-Cio-alkyl or C 3 -C 7 -cycloalkyl.
  • Y is methoxy or ethoxy
  • R 1 is 2,2-difluoroethoxy, 2,2-difluoropropoxy or 3,3-difluoropropoxy;
  • R 2 is hydrogen or methyl
  • G is hydrogen, a removable group L or a cation E, L means one of the following radicals,
  • R 3 is methyl, ethyl, isopropyl or t-butyl;
  • R 4 is methyl or ethyl;
  • E means a sodium ion or a potassium ion.
  • Table 2 Compounds of the general formula (I) according to the invention, in which R 2 represents hydrogen and G represents a sodium ion.
  • Table 3 Compounds of the general formula (I) according to the invention, in which R 2 represents hydrogen and G represents a 2-methylpropionyl radical.
  • G represents a sodium ion.
  • Table 10 Compounds of the general formula (I) according to the invention, in which R 2 represents a methyl group and G represents an ethoxycarbonyl radical.
  • the compounds of the general formula (I) according to the invention can in principle be prepared by methods known to those skilled in the art, for example by a) a compound of the general formula (II), in which R 1 , R 2 , X, and Y have the meanings given above, and R 9 is alkyl, preferably methyl or ethyl, optionally in the presence of a suitable solvent or diluent, with a suitable base with formal elimination of the group R 9 OH cyclizes, or b) a compound of general formula (Ia), in which R 1 , R 2 , X and Y have the meanings given above, for example with a compound of the general formula (III),
  • Hal-L(III) in which L has the meaning given above and Hal can represent a halogen, preferably chlorine or bromine, if appropriate in the presence of a suitable solvent or diluent and of a suitable base.
  • the precursors of the general formula (II) can, in analogy to known processes, for example by reacting an amino ester of the general formula (IV) in which R 1 , R 2 and R 9 have the meaning described above, with a phenylacetic acid of the general formula ( V) in which X and Y have the meaning described above, optionally with the addition of a dehydrating agent and a suitable solvent or diluent.
  • the incorporation of the radical R 2 (in the event that R 2 is not hydrogen) to form the amino ester (IV) can be carried out based on methods known from the literature. It may be convenient to synthesize amino acids and amino esters in the form of their salts. Numerous phenylacetic acids of the general formula (V) are known, inter alia, from WO 15/040114, WO 15/032702 and WO 20/187627 or can be prepared analogously to processes known from the literature.
  • the propynyl group can be installed via a cross-coupling such as the Sonogashira coupling.
  • a suitable precursor (Vb) is used, for example as an ester, in which a suitable substituent Z is replaced by the propynyl radical. in the
  • Z are in particular the halogens bromine and iodine as well as sulfonic acid esters of the corresponding phenols such as the trifluoromethanesulfonic ester.
  • the radical R 10 stands for methyl or ethyl.
  • a further object of the present invention are thus the compounds of the formula (II) or an agrochemically acceptable salt thereof, where the radicals have the definitions of the general formula (I) described above, including the preferred, particularly preferred and very particularly preferred radical definitions.
  • Table 11 Compounds of the general formula (II) according to the invention, in which R 9 represents a methyl group.
  • Table 12 Compounds of the general formula (II) according to the invention, in which R 9 represents an ethyl group.
  • Table 13 Compounds of the general formula (V) according to the invention
  • the compounds of the general formula (Va) mentioned in the above preparation schemes are particularly suitable for the preparation of the compounds of the formula (I) according to the invention.
  • a further object of the present invention are thus the compounds of the formula (Va) mentioned in Table 14.
  • Table 14 Compounds of the general formula (Va) according to the invention
  • the compounds of the formula (I) (and/or salts thereof) according to the invention have excellent herbicidal activity against a broad spectrum of economically important monocotyledonous and dicotyledonous annual harmful plants.
  • the subject matter of the present invention is therefore also a method for controlling unwanted plants or for regulating the growth of plants, preferably in plant cultures, in which one or more compound(s) according to the invention are applied to the plants (e.g. harmful plants such as monocotyledonous or dicotyledonous weeds or unwanted crop plants), the seeds (e.g. grains, seeds or vegetative propagation organs such as tubers or parts of shoots with buds) or the area on which the plants grow (e.g. the area under cultivation) are placed.
  • the compounds according to the invention can, for example, before sowing (possibly also by Incorporation into soil), pre-emergence or post-emergence application.
  • some representatives of the monocotyledonous and dicotyledonous weed flora that can be controlled by the compounds according to the invention may be mentioned by way of example, without the naming of a restriction to specific species being intended.
  • the compounds according to the invention are applied to the surface of the soil before germination, either the emergence of the weed seedlings is completely prevented or the weeds grow up to the cotyledon stage, but then stop growing.
  • the compounds according to the invention can have selectivities in useful crops and can also be used as non-selective herbicides.
  • the active compounds can also be used to control harmful plants in crops of known or genetically modified plants that are still to be developed.
  • the transgenic plants are usually characterized by particularly advantageous properties, for example resistance to certain active ingredients used in the agricultural industry, especially certain herbicides, resistance to plant diseases or pathogens Plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses.
  • Other special properties concern, for example, the harvested crop in terms of quantity, quality, shelf life, composition and special ingredients.
  • transgenic plants with an increased starch content or altered starch quality or those with a different fatty acid composition in the harvested crop are known.
  • Other special properties are tolerance or resistance to abiotic stressors such as heat, cold, drought, salt and ultraviolet radiation.
  • the compounds of the formula (I) can be used as herbicides in crops of useful plants which are resistant to the phytotoxic effects of the herbicides or have been made resistant by genetic engineering.
  • EP 0221044 EP 0131624.
  • genetic modifications of crop plants have been described for the purpose of modifying the starch synthesized in the plants (e.g. WO 92/011376 A, WO 92/014827 A, WO 91/019806 A), transgenic crop plants which are active against certain herbicides of the glufosinate (see, for example, EP 0242236 A, EP 0242246 A) or glyphosate (WO 92/000377 A) or sulfonylureas (EP 0257993 A, US Pat . B. corn or soy with the trade name or designation OptimumTM GATTM (Glyphosate ALS Tolerant).
  • transgenic crop plants such as cotton, with the ability to produce Bacillus thuringiensis toxins (Bt toxins), which make the plants resistant to certain pests (EP 0142924 A, EP 0193259 A).
  • Bacillus thuringiensis toxins Bacillus thuringiensis toxins
  • transgenic crop plants with modified fatty acid composition WO 91/013972 A.
  • genetically modified crops with new ingredients or secondary substances such as new phytoalexins that cause increased disease resistance
  • EP 0309862 A, EP 0464461 A genetically modified plants with reduced photorespiration that have higher yields and higher stress tolerance
  • EP 0305398 A transgenic crops that pharmaceutically or diagnostically important proteins produce
  • molecular pharming transgenic crops that are characterized by higher yields or better quality transgenic crops that are characterized by a combination of, for example, the new properties mentioned above (“gene stacking”)
  • nucleic acid molecules can be introduced into plasmids, which allow mutagenesis or sequence modification by recombination of DNA sequences.
  • base exchanges can be made, partial sequences can be removed or natural or synthetic sequences can be added.
  • Adapters or linkers can be attached to the fragments to join the DNA fragments together, see, e.g., Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; or Winnacker "Genes and Clones", VCH Weinheim 2nd edition 1996
  • the production of plant cells with a reduced activity of a gene product can be achieved, for example, by expressing at least one corresponding antisense RNA, a sense RNA to achieve a cosuppression effect or the expression of at least one correspondingly constructed ribozyme that specifically cleaves transcripts of the above gene product.
  • DNA molecules can be used which include the entire coding sequence of a gene product, including any flanking sequences present, as well as DNA molecules which only include parts of the coding sequence, these parts having to be long enough to enter the cells produce an antisense effect. It is also possible to use DNA sequences which have a high degree of homology to the coding sequences of a gene product but are not completely identical.
  • the synthesized protein can be located in any compartment of the plant cell.
  • the coding region can be linked to DNA sequences, for example, which ensure localization in a specific compartment.
  • sequences are known to those skilled in the art (see, for example, Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sci. USA 85 (1988), 846-850; Sonnewald et al. (1991) Plant J. 1:95-106).
  • the expression of the nucleic acid molecules can also take place in the organelles of the plant cells.
  • the transgenic plant cells can be regenerated into whole plants using known techniques.
  • the compounds (I) according to the invention can preferably be used in transgenic cultures which are active against growth substances, such as 2,4-D, dicamba or against herbicides, the essential plant enzymes, e.g. acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or hydroxyphenylpyruvate Dioxygenases (HPPD) inhibit or are resistant to herbicides from the group of sulfonylureas, glyphosate, glufosinate or benzoylisoxazoles and analogous active substances, or to any combination of these active substances.
  • the essential plant enzymes e.g. acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or hydroxyphenylpyruvate Dioxygenases (HPPD) inhibit or are resistant to herbicides from the group of sulfonylureas, glyphosate, glufosinate or benzoyliso
  • the compounds according to the invention can particularly preferably be used in transgenic crop plants which are resistant to a combination of glyphosate and glufosinate, glyphosate and sulfonylureas or imidazolinones.
  • the compounds of the invention in transgenic crops such.
  • B. corn or soybean with the trade name or designation OptimumTM GATTM (Glyphosate ALS Tolerant) can be used.
  • the active compounds according to the invention are used in transgenic cultures, in addition to the effects observed in other cultures against harmful plants, there are often effects that are specific to the application in the respective transgenic culture, for example a modified or specially expanded spectrum of weeds that can be controlled Application rates that can be used for the application, preferably good combinability with the herbicides to which the transgenic crop is resistant, and influencing the growth and yield of the transgenic crop plants.
  • the invention therefore also relates to the use of the compounds of the formula (I) according to the invention as herbicides for controlling harmful plants in transgenic crop plants.
  • the compounds of the invention can in the form of wettable powders, emulsifiable concentrates, sprayable solutions, dusts or granules in the usual preparations are applied.
  • the invention therefore also relates to herbicidal and plant growth-regulating compositions which contain the compounds according to the invention.
  • the compounds according to the invention can be formulated in various ways, depending on which biological and/or chemico-physical parameters are given.
  • examples of possible formulations are: wettable powder (WP), water-soluble powder (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions , suspension concentrates (SC), oil- or water-based dispersions, oil-miscible solutions, capsule suspensions (CS), dusts (DP), dressings, granules for spreading and floor application, granules (GR) in the form of micro, spray, lift - and adsorption granules, water-dispersible granules (WG), water-soluble granules (SG), ULV formulations, microcapsules and waxes.
  • WP wettable powder
  • SP water-soluble powder
  • EC emulsifiable concentrates
  • Combination partners for the compounds of the general formula (I) in mixture formulations or in the tank-Mi are, for example, known active ingredients which are based on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate-3-phosphate synthase , glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase, photosystem I, photosystem II, protoporphyrinogen oxidase or as
  • Plant growth regulators act, can be used, such as those from Weed Research 26 (1986) 441-445 or "The Pesticide Manual", 14th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2006 and references cited therein.
  • Chlorthal chlorthal-dimethyl, chlorthal-monomethyl, cinidon, cinidon-ethyl, cinmethyline, exo-(+)-cinmethyline, i.e. (1R,2S,4S)-4-isopropyl-1-methyl-2-[(2-methylbenzyl )oxy]-7-oxabicyclo[2.2.1]heptane, exo-(-)-cinmethyline, i.e.
  • dicamba-biproamine dicamba-N,N-bis(3- aminopropyl)methylamine, dicamba-butotyl, dicamba-choline, dicamba-diglycolamine, dicamba-dimethylammonium, dicamba-diethanolamine-ammonium, dicamba-diethylammonium, dicamba-isopropylammonium, dicamba- methyl, dicamba monoethanolamine, dicamba olamine, dicamba potassium, dicamba sodium, dicamba triethanolamine), dichlobenil, 2-(2,4-dichlorobenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one , 2-(2,5-Dichlorobenzyl)-4,4-dimethyl-1,2-oxazolidin-3-one, dichloroprop, dichloropropbutotyl, dichloropropdimethylammonium, dichloropropetexyl, dichloropropethy
  • plant growth regulators as possible mixing partners are:
  • Abscisic acid and related analogues [e.g. (2Z,4E)-5-[6-ethynyl-l-hydroxy-2,6-dimethyl-4-oxocyclohex-2-en-l-yl]-3-methylpenta-2,4- dienoic acid, methyl (2Z,4E)-5-[6-ethynyl-l-hydroxy-2,6-dimethyl-4-oxocyclohex-2-en-l-yl]-3-methylpenta-2,4-dienoate, (2Z,4E)-3-ethyl-5-(1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)penta-2,4-dienoic acid, (2E,4E) -5-(1-Hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl)-3-(trifluoromethyl)penta-2,4-dienoic
  • COs differ from LCOs in that they have the LCOs characteristic fatty acid side chain is missing COs, in some cases as N-acetylchitooligosaccharides are also made up of GlcNAc units, but have side chains that distinguish them from chitin molecules [(C S H NO S ) !! , CAS NO. 1398-61-4] and chitosan molecules [( AHpNO, , CAS No.
  • jasmonic acid methyl ester jasmonic acid ethyl ester
  • lipochitooligosaccharides LCO, in some cases also referred to as symbiotic nodulation signals (Nod or Nod factors) or as Myc factors, consist of an oligo saccharide backbone composed of ß-l,4-linked /V-acetyl-D-glucosamine nuclei (“GlcNAc”) with an N-linked fatty acid side chain fused to the non-reducing end.
  • GlcNAc symbiotic nodulation signals
  • FCOs differ in the number of GlcNAc units in the backbone structure, in the catches and degree of saturation of the fatty acid chain, as well as in the substitution of the reducing and non-reducing sugar units), finoleic acid or its derivatives, finolenic acid or their derivatives, maleic hydrazide, mepiquat chloride, mepiquat pentaborate, 1-methylcyclopropene, 3-methylcyclopropene, methoxyvinylglycine (MVG), 3'-methylabscisic acid, 1-(4-methylphenyl)-N-(2-oxo-1-propyl-1,2, 3,4-tetrahydroquinolin-6-yl)methanesulfonamide and related substituted (tetrahydroquinolin-6-yl)methanesulfonamides, (3E,3aR,8bS)-3-( ⁇ [(2R)-4-methyl-5-oxo-2, 5-di
  • Safeners which can be used in combination with the compounds of the formula (I) according to the invention and optionally in combinations with other active ingredients such as insecticides, acaricides, herbicides, fungicides as listed above, are preferably selected from the group consisting of:
  • RA 1 is halo, (C1-C4)-alkyl, (Ci-C4)-alkoxy, nitro or halo-(Ci-C4)-alkyl;
  • WA is an unsubstituted or substituted divalent heterocyclic radical from the group of saturated or aromatic five-membered ring heterocycles having 1 to 3 hetero ring atoms from the group N and O, where at least one N atom and at most one O atom is contained in the ring, preferably one remainder from the group (WA 1 ) to (WA 4 ), ni A is 0 or 1 ;
  • R A 2 is OR A 3 , SR A 3 or NRA 3 R A 4 or a saturated or unsaturated 3- to 7-membered heterocycle having at least one N atom and up to 3 heteroatoms, preferably from the group O and S, which is connected via the N atom to the carbonyl group in (S1) and is unsubstituted or substituted by radicals from the group (C1-C4)-alkyl, (Ci-C4)-alkoxy or optionally substituted phenyl, preferably a radical of the formula OR A 3 , NHR A 4 or N(CH3) 2 , in particular of the formula OR A 3 ;
  • R A 3 is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably having a total of 1 to 18 carbon atoms;
  • R A 4 is hydrogen, (C I -C ⁇ ) - alkyl, (Ci-Ce) -alkoxy or substituted or unsubstituted phenyl;
  • R A 5 is H, (Ci -Cs) - alkyl, halo (Ci-C 8 ) alkyl, (Ci-C 4 ) -alkoxy (Ci-C 8 ) alkyl, cyano or COOR A 9 , wherein R A 9 is hydrogen, (Ci-C 8 )-alkyl, halo-(Ci-C 8 )-alkyl, (Ci-C 4 )-alkoxy-(Ci-C 4 alkyl, (Ci-Ce)-hydroxyalkyl, ( C3-Ci2)-cycloalkyl or tri-(Ci-C 4 )-alkyl-silyl;
  • RA 6 , RA 7 , RA 8 are identical or different and are hydrogen, (Ci-C 8 )-alkyl, halogeno-(Ci-C 8 )-alkyl, (C 3 - Ci2)-cycloalkyl or substituted or unsubstituted phenyl; preferably: a) compounds of the dichlorophenylpyrazoline-3-carboxylic acid (Sl a ) type, preferably compounds such as l-(2,4-dichlorophenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazoline-3-carboxylic acid, l -(2,4-Dichlorophenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazoline-3-carboxylic acid ethyl ester (S 1-1) ("Mefenpyr-diethyl”), and related compounds as described in WO- A-91/07874; b) derivatives of dichlorophenyl
  • RB 1 is halogen, (C1-C4) - alkyl, (Ci-C4) -alkoxy, nitro or halogen (Ci-C4) -alkyl;
  • P B is a natural number from 0 to 5, preferably 0 to 3;
  • RB 2 is ORB 3 , SRB 3 or NRB 3 RB 4 or a saturated or unsaturated 3- to 7-membered heterocycle having at least one N atom and up to 3 heteroatoms, preferably from the group O and S, which is connected via the N Atom is connected to the carbonyl group in (S2) and is unsubstituted or substituted by radicals from the group (C1-C4) - alkyl, (Ci-C4) -alkoxy or optionally substituted phenyl, preferably a radical of the formula OR B 3 , NHR B 4 or N(CH3)2, in particular of the formula OR B 3 ;
  • R B 3 is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably having a total of 1 to 18 carbon atoms;
  • R B 4 is hydrogen, (C I -C ⁇ ) - alkyl, (Ci-Ce) -alkoxy or substituted or unsubstituted phenyl;
  • TB is a (Ci or C2) alkanediyl chain which is unsubstituted or substituted with one or two (Ci-C4)alkyl radicals or with [(Ci-C3)-alkoxy]-carbonyl; preferably: a) compounds of the type of 8-quinolinoxyacetic acid ( S2a ), preferably (5-chloro-8-quinolinoxy)acetic acid (1-methylhexyl) ester ("cloquintocet-mexyl") (S2-1), (5- Chloro-8-quinolinoxy)acetic acid (1,3-dimethyl-but-l-yl) ester (S2-2), (5-Chloro-8-quinolinoxy)acetic acid 4-allyloxy-butyl ester (S2-3), (5-Chloro-8-quinolinoxy)acetic acid 1-allyloxy-prop-2-yl ester (S2-4), (5-Chloro-8-quinolinoxy)acetic acid ethyl ester (S
  • Rc 1 is (Ci-C4)-alkyl, halo-(Ci-C4)-alkyl, (C2-C4)-alkenyl, halo-(C2-C4)-alkenyl, (C3 - C7 )-cycloalkyl, preferably dichloromethyl;
  • Rc 2 , Rc 3 are identical or different hydrogen, (Ci-C4)-alkyl, (C2-C4)-alkenyl, (C2-C4)-alkynyl, halo-(Ci-C4)-alkyl, halo-(C2- C4) alkenyl, (Ci-C4)-alkylcarbamoyl-(Ci-C4)-alkyl, (C2-C4)- alkenylcarbamoyl-(C 1 -C4)-alkyl, (C 1 -C4)- alkoxy-(C 1 -C4)-alkyl, dioxolanyl-(C i-C4 )-alkyl, thiazolyl, furyl, furylalkyl, thienyl, piperidyl, substituted or unsubstituted phenyl, or Rc 2 and Rc 3 together form a substituted or unsubstituted heterocyclic ring, preferably an oxa
  • R-29148 (3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidine) from Stauffer (S3-2),
  • R-28725" (3-dichloroacetyl-2,2,-dimethyl-1,3-oxazolidine) from Stauffer (S3-3),
  • Benoxacor (4-dichloroacetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazine) (S3-4),
  • PPG-1292 N-allyl-N-[(l,3-dioxolan-2-yl)-methyl]-dichloroacetamide
  • AD-67 or "MON 4660” (3-dichloroacetyl-l-oxa-3-aza-spiro[4,5]decane) from Nitrokemia or Monsanto (S3-7),
  • TI-35 (1-dichloroacetyl-azepane) from TRI-Chemical RT (S3-8),
  • Diaclonone (Dicyclonone) or "BAS 145138” or “LAB 145138” (S3-9) ((RS)-l-Dichloroacetyl-3,3,8a-trimethylperhydropyrrolo[l,2-a]pyrimidin-6-one) from BASF, "Furilazol” or “MON 13900” ((RS)-3-dichloroacetyl-5-(2-furyl)-2,2-dimethyloxazolidine) (S3-10); and its (R)-isomer (S3-11).
  • a D is S0 2 -NR D 3 -C0 or C0-NR D 3 -S0 2
  • XD is CH or N
  • RD 1 is CO-NR D 5 RD 6 or NHCO-RD 7 ;
  • RD 2 is halo, halo(Ci-C4)-alkyl, halo(Ci-C4)-alkoxy, nitro, (C1-C4)-alkyl, (C1-C4)-alkoxy, (Ci-C4)-alkylsulfonyl , (Ci-C4)-alkoxycarbonyl or (Ci-C4)-alkylcarbonyl;
  • R D 3 is hydrogen, (Ci-C4)-alkyl, (C 2 -C4)-alkenyl or (C 2 -C4)-alkynyl;
  • RD 4 is halo, nitro, (C1-C4)-alkyl, halo-(Ci-C4)-alkyl, halo-(Ci-C4)-alkoxy, (C3-C6)-cycloalkyl, phenyl, (Ci-C4) -Alkoxy, cyano, (C 1-C4)- alkyl thio, (Ci-C4)-alkylsulphinyl, (C1-C4)- alkylsulfonyl, (Ci-C 4 )-alkoxycarbonyl or (Ci-C 4 )-alkylcarbonyl;
  • RD 5 is hydrogen, (Ci-Ce)-alkyl, (C 3 -Ce)-cycloalkyl, (C 2 -Ce)-alkenyl, (C 2 -C 6 )-alkynyl, (C5-C 6 )-cycloalkenyl, Phenyl or 3- to 6-membered heterocyclyl containing V D heteroatoms from the group of nitrogen, oxygen and sulfur, the latter seven radicals being substituted by V D substituents from the group of halogen, (Ci-Ce)-alkoxy, halogen-(Ci-C 6 )-alkoxy, (C 1 -C 2 )-alkylsulfinyl, (C 1 -C 2 )-alkylsulfonyl, (C 3 -C 6 )-cycloalkyl, (Ci-C 4 )-alkoxycarbonyl, (C 1 -C 4 ) - Alkylcarbonyl and phen
  • R D 6 is hydrogen, (Ci-Ce)-alkyl, (C 2 -Ce)-alkenyl or (C 2 -Ce)-alkynyl, the last three radicals mentioned being replaced by V D radicals from the group consisting of halogen, hydroxy, (C C 1 -C 4 )-alkyl, (C 1 -C 4 )-alkoxy and (Ci-C 4 )-alkylthio are substituted, or
  • R D 5 and R D 6 together with the nitrogen atom carrying them form a pyrrolidinyl or piperidinyl radical
  • RD 7 is hydrogen, (Ci-C 4 )-alkylamino, di-(Ci-C 4 )-alkylamino, (Ci-Ce)-alkyl, (C 3 -C 6 )-cycloalkyl, the latter 2 radicals being replaced by V D substituents from the group halogen, (Ci-C 4 ) alkoxy, halogen (Ci-C 6 ) alkoxy and (Ci-C 4 ) alkylthio and in the case of cyclic radicals also (C 1 -C 4 ) - alkyl and halo-(Ci-C 4 )-alkyl are substituted; nD is 0, 1 or 2; m D is 1 or 2;
  • VD is 0, 1, 2 or 3; Of these, preference is given to compounds of the N-acylsulfonamide type, for example of the formula ( S4a ) below, which, for. B. are known from WO-A-97/45016 wherein
  • R D 7 (C I -C ⁇ ) - alkyl, (C 3 -C 6 ) -cycloalkyl, where the last 2 radicals are replaced by V D substituents from the group halogen, (Ci-C 4 ) -alkoxy, halogen (Ci -C 6 )-alkoxy and (C 1 -C 4 )-alkyl thio and, in the case of cyclic radicals, also (C 1 -C 4 )-alkyl and halo-(C 1 -C 4 )-alkyl are substituted; R D 4 halogen, (Ci-C4)-alkyl, (Ci-C4)-alkoxy, CF3 ; m D 1 or 2;
  • V D is 0, 1, 2 or 3; and acylsulfamoylbenzoic acid amides, for example of the following formula (S4 b ), which are known, for example, from WO-A-99/16744, eg those in which
  • RD 8 and R ü 9 are independently hydrogen, (Ci-Cs)-alkyl, (C3-Cs)-cycloalkyl, (C3-C6)-alkenyl, (C3-Ce)-alkynyl,
  • R D 4 halogen, (Ci-C4)-alkyl, (Ci-C4)-alkoxy, CF3 m D is 1 or 2; for example l-[4-(N-2-methoxybenzoylsulfamoyl)phenyl]-3-methylurea, l-[4-(N-2-methoxybenzoylsulfamoyl)phenyl]-3,3-dimethylurea, l-[4-(N-4 ,5-dimethylbenzoylsulfamoyl)phenyl]-3-methylurea, as well as
  • R D 5 is hydrogen, (C I -C O )-alkyl, (C3-Ce)-cycloalkyl, (C2-Ce)-alkenyl, (C2-C6)-alkynyl, (Cs-Ce)-cycloalkenyl.
  • RE 1 , RE 2 are independently halogen, (C1-C4)-alkyl, (Ci-C4)-alkoxy, halo-(Ci-C4)-alkyl, (Ci-C4)-alkylamino, di-(Ci-C4 )-alkylamino, nitro;
  • a E is COORE 3 or COSRE 4
  • RE 3 , RE 4 are independently hydrogen, (Ci-C4)-alkyl, (C2-Ce)-alkenyl, (C2-C4)-alkynyl, cyanoalkyl, halo-(Ci-C4)-alkyl, phenyl, nitrophenyl, benzyl, halobenzyl, pyridinylalkyl and alkylammonium, he 1 is 0 or 1
  • P E 2 , np are independently 0, 1 or 2, preferably:
  • RF 1 halogen, (Ci-C4) alkyl, halogen (Ci-C4) alkyl, (Ci-C4) alkoxy, halogen (Ci-C4) alkoxy, nitro, (Ci-C4) alkylthio, (Ci-C4)-alkylsulfonyl, (Ci-C4)-alkoxycarbonyl, optionally substituted. phenyl, optionally substituted phenoxy,
  • RF 2 is hydrogen or (C 1 -C 4 )-alkyl
  • R F 3 hydrogen, (Ci-Cs) - alkyl, (C2-C4) alkenyl, (C2-C4) - alkynyl, or aryl, each of the aforementioned C-containing radicals unsubstituted or by one or more, preferably up to three identical or different radicals from the group consisting of halogen and alkoxy are substituted; mean, or salts thereof, preferably compounds wherein
  • n F an integer from 0 to 2 ,
  • RF 1 halogen, (Ci-C4)-alkyl, halogen-(Ci-C4)-alkyl, (C1-C4)-alkoxy, halogen-(Ci-C4)-alkoxy, RF 2 hydrogen or (C1-C4)- alkyl,
  • R F 3 is hydrogen, (Ci-Cs) - alkyl, (C2-C4) alkenyl, (C2-C4) alkynyl, or aryl, each of the aforementioned C-containing radicals being unsubstituted or by one or more, preferably up to three identical or different radicals from the group consisting of halogen and alkoxy are substituted, or their salts.
  • Y G , Z G independently of one another O or S, nc an integer from 0 to 4,
  • R G 2 (C I -C IO )-alkyl, (C2-Ce)-alkenyl, (C3-Ce)-cycloalkyl, aryl; benzyl, halobenzyl,
  • R G 3 is hydrogen or (C I -C ⁇ ) - alkyl.
  • Fluorofenim (1-(4-chlorophenyl)-2,2,2-trifluoro-1-ethanone-0-(1,3-dioxolan-2-ylmethyl)-oxime) (SII-2), which is used as a seed dressing Safener known for millet against damage from metolachlor, and
  • MG 191 (CAS Reg. No. 96420-72-3) (2-dichloromethyl-2-methyl-1,3-dioxolane) (S13-5) from Nitrokemia, which is known as a safener for corn,
  • COD l-bromo-4-(chloromethylsulfonyl)benzene
  • Kumiai CAS Reg. No. 54091-06-4
  • S 15 Compounds of the formula (S 15) or their tautomers as described in WO-A-2008/131861 and WO-A-2008/131860, in which R H 1 is a halo-(Ci-Ce)-alkyl radical and R H 2 is hydrogen or halogen and
  • R H 3 , R H 4 are independently hydrogen, (Ci-Ci 6 ) alkyl, (C2-Ci6) alkenyl or (C2-C16) - alkynyl, each of the latter 3 radicals unsubstituted or by one or more radicals from the group halogen, hydroxy, cyano, (Ci-C4)-alkoxy, halogen-(Ci-C4)-alkoxy, (Ci-C4)-alkylthio, (Ci-C4)-alkylamino, di[(Ci-C4)- alkyl]-amino, [(Ci-C4)-alkoxy]-carbonyl, [halo-(Ci-C4)-alkoxyj-carbonyl, (C3-C6)-cycloalkyl which is unsubstituted or substituted, phenyl which is unsubstituted or substituted and heterocyclyl which is unsubstituted or substituted, or (C3-C6)
  • R H 4 is hydrogen or (C1-C4)-alkyl or
  • R H 3 and R H 4 together with the directly bonded N atom form a four- to eight-membered heterocyclic ring which, in addition to the N atom, can also contain further hetero ring atoms, preferably up to two further hetero ring atoms from the group N, O and S and which is unsubstituted or by one or more radicals from the group halogen, cyano, nitro, (Ci-C4)-alkyl, halogen-(Ci-C4)-alkyl, (Ci-C4)-alkoxy, halogen-(Ci-C4) -alkoxy and (Ci-C4)-alkylthio is substituted.
  • Particularly preferred safeners are mefenpyr-diethyl, cyprosulfamide, isoxadifen-ethyl, cloquintocet-mexyl, dichlormide and metcamifen.
  • Wettable powders are preparations that are uniformly dispersible in water and which, in addition to the active ingredient, contain a diluent or inert substance as well as ionic and/or non-ionic surfactants (wetting agents, dispersing agents), e.g. sodium lignosulfonate, sodium 2,2'-dinaphthylmethane-6,6'-disulfonate, sodium dibutylnaphthalenesulfonate or sodium oleoylmethyltaurine.
  • wetting agents, dispersing agents e.g. sodium lignosulfonate, sodium 2,2'-dinaphthylmethane-6,6'-disulfonate, sodium dibutylnaphthalenesulfonate or sodium oleoylmethyltaurine.
  • the herbicidal active ingredients are finely ground, for example in conventional apparatus such as hammer mills, blower mills and air jet mills, and mixed
  • Emulsifiable concentrates are prepared by dissolving the active ingredient in an organic solvent, for example butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of organic solvents, with the addition of one or more ionic and/or nonionic surfactants (emulsifiers).
  • organic solvent for example butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of organic solvents.
  • alkylarylsulfonic acid calcium salts such as calcium dodecylbenzenesulfonate or nonionic emulsifiers
  • fatty acid polyglycol esters alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers, sorbitan esters such as sorbitan fatty acid esters or polyoxyethylene sorbitan esters such as polyoxyethylene sorbitan fatty acid esters.
  • Suspension concentrates can be water or oil based. They can be prepared, for example, by wet grinding using commercially available bead mills and optionally adding surfactants, such as those already listed above for the other types of formulation.
  • Emulsions e.g. oil-in-water emulsions (EW)
  • EW oil-in-water emulsions
  • Granules can either be produced by spraying the active ingredient onto adsorptive, granulated inert material or by applying active ingredient concentrates using adhesives, e.g. polyvinyl alcohol, sodium polyacrylic acid or mineral oils, to the surface of carriers such as sand, kaolinite or granulated inert material.
  • adhesives e.g. polyvinyl alcohol, sodium polyacrylic acid or mineral oils
  • Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules--if desired in a mixture with fertilizers.
  • Water-dispersible granules are usually produced without solid inert material by conventional methods such as spray drying, fluidized bed granulation, pan granulation, mixing with high-speed mixers and extrusion.
  • the agrochemical preparations generally contain 0.1 to 99% by weight, in particular 0.1 to 95% by weight, of compounds according to the invention.
  • the active substance concentration is about 10 to 90% by weight, the remainder to 100% by weight consists of the usual formulation components.
  • the active substance concentration can be about 1 to 90% by weight, preferably 5 to 80% by weight.
  • Formulations in dust form contain 1 to 30% by weight of active ingredient, preferably mostly 5 to 20% by weight of active ingredient, and sprayable solutions contain about 0.05 to 80% by weight, preferably 2 to 50% by weight of active ingredient.
  • the active ingredient content depends in part on whether the active compound is in liquid or solid form and on the granulation aids, fillers, etc. used.
  • the active substance content is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight.
  • the active ingredient formulations mentioned optionally contain the customary adhesives, wetting agents, dispersants, emulsifiers, penetration agents, preservatives, antifreeze agents and solvents, fillers, carriers and dyes, defoamers, evaporation inhibitors and the pH and the Viscosity affecting agents.
  • combinations with other pesticidally active substances such as insecticides, acaricides, herbicides, fungicides, and with safeners, fertilizers and/or growth regulators can also be produced, e.g. in the form of a ready-to-use formulation or as a tank mix.
  • the formulations which are in the commercially available form, are diluted, if appropriate, in the customary manner, e.g. with water in the case of wettable powders, emulsifiable concentrates, dispersions and water-dispersible granules.
  • Preparations in the form of dust, ground or granulated granules and sprayable solutions are usually not diluted with other inert substances before use.
  • the required application rate of the compounds of the formula (I) and their salts varies with the external conditions such as temperature, humidity, the type of herbicide used, etc. It can vary within wide limits, for example between 0.001 and 10.0 kg/ha or more active substance, but it is preferably between 0.005 and 5 kg/ha, more preferably im Range from 0.01 to 1.5 kg/ha, more preferably in the range from 0.05 to 1 kg/ha g/ha. This applies to both pre-emergence and post-emergence application.
  • Carrier means a natural or synthetic, organic or inorganic substance with which the active ingredients are mixed or combined for better applicability, especially for application to plants or parts of plants or seeds.
  • the carrier which may be solid or liquid, is generally inert and should be agriculturally useful.
  • Suitable solid or liquid carriers are: e.g. ammonium salts and ground natural minerals such as kaolin, clay, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth and ground synthetic minerals such as highly disperse silica, aluminum oxide and natural or synthetic silicates, resins, waxes, solid fertilizers, water, alcohols, especially butanol, organic solvents, mineral and vegetable oils and derivatives thereof. Mixtures of such excipients can also be used.
  • Suitable solid carriers for granules are: e.g.
  • broken and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granules made from inorganic and organic flours and granules made from organic material such as sawdust, coconut shells, corn cobs and tobacco stalks.
  • Suitable liquefied gaseous extenders or carriers are liquids which are gaseous at normal temperature and under normal pressure, e.g. aerosol propellants such as halogenated hydrocarbons, as well as butane, propane, nitrogen and carbon dioxide.
  • aerosol propellants such as halogenated hydrocarbons, as well as butane, propane, nitrogen and carbon dioxide.
  • Adhesives such as carboxymethylcellulose, natural and synthetic polymers in powder, granular or latic form can be used in the formulations, such as gum arabic, polyvinyl alcohol, polyvinyl acetate, and natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids. Further additives can be mineral and vegetable oils.
  • organic solvents can also be used as auxiliary solvents.
  • liquid solvents aromatics such as xylene, toluene or alkyl naphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylene or dichloromethane, aliphatic hydrocarbons such as cyclohexane or paraffins, for example petroleum fractions, mineral and vegetable oils, alcohols, such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • aromatics such as xylene, toluene or alkyl naphthalenes
  • chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylene or dichlorome
  • the agents according to the invention can also contain other components, such as surface-active substances.
  • Suitable surface-active substances are emulsifiers and/or foam-forming agents, dispersants or wetting agents with ionic or non-ionic properties or mixtures of these surface-active substances.
  • Examples include salts of polyacrylic acid, salts of lignosulphonic acid, salts of phenolsulphonic acid or naphthalenesulphonic acid, polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic esters, taurine derivatives (preferably alkyl taurates), phosphoric esters of polyethoxylated alcohols or phenols, fatty acid esters of polyols, and derivatives of compounds containing sulfates, sulfonates and phosphates, for example alkylaryl polyglycol ethers, alkyl sulfonates, alkyl sulfates, aryl sulfonates, protein hydrolysates, fignin sulfite waste liquor and methyl cellulose.
  • the presence of a surfactant is necessary when one of the active ingredients and/or one of the inert carriers is not water-soluble and when the application is in water.
  • the proportion of surface-active substances is between 5 and 40 percent by weight of the agent according to the invention.
  • Dyes such as inorganic pigments, eg iron oxide, titanium oxide, ferrocyanide and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc can be used.
  • additional components can also be included, e.g. protective colloids, binders, adhesives, thickeners, thixotropic substances, penetrants,
  • the active ingredients can be combined with any solid or liquid additive commonly used for formulation purposes.
  • the agents and formulations according to the invention contain between 0.05 and 99% by weight, 0.01 and 98% by weight, preferably between 0.1 and 95% by weight, particularly preferably between 0.5 and 90% Active ingredient, most preferably between 10 and 70 percent by weight.
  • the active ingredients or agents according to the invention can be used as such or depending on their respective physical and / or chemical properties in the form of their formulations or the use forms prepared therefrom, such as aerosols, capsule suspensions, cold mist concentrates, hot mist concentrates, encapsulated granules, fine granules, flowable concentrates for the treatment of seeds, ready-to-use solutions, dustable powders, emulsifiable concentrates, oil-in-water emulsions, water-in-oil emulsions, macrogranules, microgranules, oil-dispersible powders, oil-miscible flowable concentrates, oil-miscible liquids, foams, pastes, Pesticide-coated seeds, suspension concentrates, suspension-emulsion concentrates, soluble concentrates, suspensions, wettable powders, soluble powders, dusts and granules, water-soluble granules or tablets, water-soluble powders for seed treatment, wettable powders,
  • the formulations mentioned can be prepared in a manner known per se, e.g. by mixing the active ingredients with at least one customary extender, solvent or diluent, emulsifier, dispersant and/or binder or fixative, wetting agent, water repellent, optionally siccatives and UV stabilizers and optionally dyes and pigments, defoamers, preservatives, secondary thickeners, adhesives,
  • the agents according to the invention include not only formulations which are already ready for use and which can be applied to the plant or the seed using a suitable apparatus, but also commercial concentrates which have to be diluted with water before use.
  • the active ingredients according to the invention can be used as such or in their (commercially available) formulations and in the use forms prepared from these formulations as a mixture with other (known) active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, Fertilizers, safeners or semiochemicals are present.
  • active ingredients such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides, Fertilizers, safeners or semiochemicals are present.
  • the treatment according to the invention of the plants and parts of plants with the active ingredients or agents is carried out directly or by affecting their environment, living space or storage space according to the usual treatment methods, e.g. Atomizing, misting, (spreading) scattering, foaming, brushing, spreading, pouring (drenching), drip irrigation and with propagation material, especially seeds, also by dry dressing, wet dressing, slurry dressing, encrusting, single or multi-layer coating, etc. It is it is also possible to apply the active ingredients using the ultra-low-volume method or to inject the active ingredient preparation or the active ingredient itself into the soil.
  • transgenic seed As also described below, the treatment of transgenic seed with the active ingredients or agents according to the invention is of particular importance.
  • the heterologous gene in transgenic seed can, for example, be derived from microorganisms of the species Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
  • This heterologous gene preferably originates from Bacillus sp., the gene product having an effect against the corn borer (European corn borer) and/or western corn rootworm.
  • the heterologous gene is particularly preferably derived from Bacillus thuringiensis.
  • the agent according to the invention is applied to the seed alone or in a suitable formulation.
  • the seed is preferably treated in a state in which it is so stable that no damage occurs during the treatment.
  • the seed can be treated at any time between harvesting and sowing.
  • seeds are used which have been separated from the plant and freed from cobs, husks, stalks, husk, wool or pulp.
  • seed can be used that has been harvested, cleaned and dried to a moisture content of less than 15% by weight.
  • seeds can be used that, after drying, have been treated with e.g. water and then dried again.
  • care when treating the seed, care must be taken to ensure that the amount of the agent according to the invention and/or other additives applied to the seed is chosen such that the germination of the seed is not impaired or the resulting plant is not damaged. This is particularly important for active ingredients that can have phytotoxic effects when applied in certain quantities.
  • the agents according to the invention can be applied directly, ie without containing further components and without having been diluted.
  • suitable formulations and methods for seed treatment are known to those skilled in the art and are described, for example, in the following documents: US Pat. No. 4,272,417 A, US Pat. No. 4,245,432 A, US Pat A2.
  • the active compounds according to the invention can be converted into the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other coating materials for seed, and also UFV formulations.
  • These formulations are prepared in a known manner by mixing the active ingredients with customary additives, such as customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and water .
  • customary additives such as customary extenders and solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and water .
  • Suitable dyes which can be present in the seed-dressing formulations which can be used according to the invention are all dyes customary for such purposes. Both pigments which are sparingly soluble in water and dyes which are soluble in water can be used here. Examples which may be mentioned are the dyes known under the names Rhodamine B, CI Pigment Red 112 and CI Solvent Red 1.
  • Suitable wetting agents which can be present in the seed-dressing formulations which can be used according to the invention are all the wetting-promoting substances which are customary for the formulation of agrochemical active ingredients.
  • Alkyl naphthalene sulfonates such as diisopropyl or diisobutyl naphthalene sulfonates, can preferably be used.
  • Suitable dispersants and/or emulsifiers which can be present in the seed-dressing formulations which can be used according to the invention are all nonionic, anionic and cationic dispersants customary for the formulation of agrochemically active compounds.
  • Nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants can preferably be used.
  • Suitable nonionic dispersants include, in particular, ethylene oxide-propylene oxide block polymers, alkylphenol polyglycol ethers and tristryrylphenol polyglycol ethers and their phosphated or sulfated derivatives.
  • Ge suitable anionic dispersants are in particular lignin sulfonates, polyacrylic acid salts and aryl sulfonate-formaldehyde condensates.
  • foam-inhibiting substances customary for the formulation of agrochemical active substances can be present as foam-inhibiting agents in the seed-dressing formulations which can be used according to the invention.
  • Silicone defoamers and magnesium stearate can preferably be used.
  • All substances which can be used for such purposes in agrochemical agents can be present as preservatives in the seed dressing formulations which can be used according to the invention.
  • Examples include dichlorophene and benzyl alcohol hemiformal.
  • Secondary thickeners which can be present in the seed-dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Preference is given to cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and highly disperse silica.
  • Suitable adhesives which can be present in the mordant formulations which can be used according to the invention are all the customary binders which can be used in mordants.
  • Polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose may be mentioned as preferred.
  • the seed dressing formulations which can be used according to the invention can be used either directly or after prior dilution with water for the treatment of seed of all kinds, including seed of transgenic plants. Additional synergistic effects can also occur in interaction with the substances formed by expression.
  • the dressing is carried out by placing the seed in a mixer, adding the desired amount of dressing formulation either as such or after diluting it with water and mixing until the formulation is evenly distributed on the seed . If necessary, a drying process follows.
  • the active compounds according to the invention are suitable for the protection of plants and plant organs, for increasing crop yields and improving the quality of crops, while being well tolerated by plants, favorable toxicity to warm-blooded animals and good environmental compatibility. They can preferably be used as crop protection agents. They are active against normally sensitive and resistant species and against all or some developmental stages.
  • plants which can be treated according to the invention corn, soybeans, cotton, Brassica oilseeds such as Brassica napus (e.g. canola), Brassica rapa, B. juncea (e.g. (field) mustard) and Brassica carinata, rice, Wheat, sugar beet, sugarcane, oats, rye, barley, sorghum, triticale, flax, vines and various fruits and vegetables from various botanical taxa such as Rosaceae sp. (e.g.
  • pome fruits such as apples and pears, but also stone fruits such as apricots, cherries, almonds and peaches and berries such as strawberries), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (for example banana trees and plantations), Rubiaceae sp. (e.g. coffee), Theaceae sp., Sterculiceae sp., Rutaceae sp.
  • Solanaceae sp. for example tomatoes, potatoes, peppers, aubergines
  • Liliaceae sp. Compositae sp.
  • Compositae sp. e.g. lettuce, artichoke and chicory - including root chicory, endive or common chicory
  • Umbelliferae sp. for example carrot, parsley, celery and celeriac
  • Cucurbitaceae sp. e.g. cucumber - including gherkin, squash, watermelon, gourd and melons
  • Alliaceae sp. e.g. leeks and onions
  • Cruciferae sp. e.g.
  • plants and parts thereof can be treated according to the invention.
  • plant species and plant varieties that occur wild or are obtained by conventional biological breeding methods, such as crossing or protoplast fusion, and parts thereof are treated.
  • transgenic plants and plant cultivars which have been obtained by genetic engineering methods, if appropriate in combination with conventional methods (genetically modified organisms), and parts thereof are treated.
  • the term "parts” or “parts of plants” or “plant parts” has been explained above.
  • Plants of the plant varieties that are commercially available or in use are particularly preferably treated according to the invention.
  • Plant varieties are plants with new properties (“traits”) that have been bred by conventional breeding, by mutagenesis or by recombinant DNA techniques. This can be varieties, breeds, organic and genotypes.
  • the treatment method according to the invention can be used for the treatment of genetically modified organisms (GMOs), e.g. As plants or seeds can be used.
  • GMOs genetically modified organisms
  • Genetically modified plants are plants in which a heterologous gene has been stably integrated into the genome.
  • heterologous gene means essentially a gene that is provided or assembled outside of the plant and which, when introduced into the nuclear genome, the chloroplast genome or the mitochondrial genome of the transformed plant, confers new or improved agronomic or other traits by producing a trait of interest protein or polypeptide, or that it downregulates or turns off another gene(s) present in the plant (e.g., using antisense technology, cosuppression technology, or RNA interference [RNAi] technology).
  • a heterologous gene that is present in the genome is also called a transgene.
  • a transgene that is defined by its specific presence in the plant genome is referred to as a transformation or transgenic event.
  • the treatment according to the invention can also lead to superadditive (“synergistic”) effects.
  • superadditive additive
  • they are like that The following effects are possible, which go beyond the effects that can actually be expected: reduced application rates and/or extended spectrum of activity and/or increased effectiveness of the active ingredients and compositions that can be used according to the invention, better plant growth, increased tolerance to high or low temperatures, increased tolerance to Drought or water or soil salinity, increased flowering, easier harvesting, accelerated ripening, higher yields, larger fruits, taller plants, more intense green leaf color, earlier flowering, higher quality and/or higher nutritional value of the harvested products, higher sugar concentration in the fruits, better storage stability and/or processability of the harvested products.
  • Plants and plant cultivars which are preferably treated according to the invention include all plants which have genetic material which confers on these plants particularly advantageous, useful traits (whether this has been achieved by breeding and/or biotechnology).
  • nematode-resistant plants examples include e.g.
  • Plants that can be treated according to the invention are hybrid plants that already express the traits of heterosis or hybrid effect, which generally result in higher yield, higher vigor, better health and better resistance to biotic and abiotic stressors. Such plants are typically produced by crossing an inbred male-sterile parent line (the female parent) with another inbred male-fertile parent line (the male parent). The hybrid seed is typically harvested from the male-sterile plants and sold to propagators. Male-sterile plants can sometimes (e.g., in corn) be produced by detasseling (ie, mechanically removing the male reproductive organs or male flowers); however, it is more common that male sterility is due to genetic determinants in the plant genome.
  • male fertility in hybrid plants containing the genetic determinants responsible for male sterility will be completely restored. This can be accomplished by ensuring that the male parents possess appropriate fertility restorer genes capable of restoring male fertility in hybrid plants containing the genetic determinants responsible for male sterility.
  • Genetic determinants of male sterility may be located in the cytoplasm. Examples of cytoplasmic male sterility (CMS) have been described for Brassica species, for example. However, genetic determinants of male sterility can also be located in the nuclear genome. Male-sterile plants can also be obtained using plant biotechnology methods such as genetic engineering.
  • a particularly useful means of producing male-sterile plants is described in WO 89/10396, where for example a ribonuclease such as a barnase is selectively expressed in the tapetum cells in the stamens. Fertility can then be restored by expressing a ribonuclease inhibitor such as Barstar in the tapetum cells.
  • a ribonuclease such as a barnase
  • Plants or plant varieties obtained by methods of plant biotechnology, such as genetic engineering which can be treated according to the invention are herbicide-tolerant plants, i. H. Plants that have been made tolerant to one or more specified herbicides. Such plants can be obtained either by genetic transformation or by selection from plants containing a mutation conferring such herbicide tolerance.
  • Herbicide tolerant plants are, for example, glyphosate tolerant plants, ie plants which have been made tolerant to the herbicide glyphosate or its salts. Plants can be made tolerant to glyphosate using a variety of methods. For example, glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Comai et al., 1983, Science 221, 370-371), the CP4 gene of the bacterium Agrobacterium sp.
  • EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
  • Glyphosate tolerant plants can also be obtained by expressing a gene encoding a glyphosate oxidoreductase enzyme.
  • Glyphosate-tolerant plants can also be obtained by expressing a gene encoding a glyphosate acetyltransferase enzyme. Glyphosate tolerant plants can also be obtained by selecting plants containing naturally occurring mutations of the genes mentioned above. Plants expressing EPSPS genes conferring glyphosate tolerance are described. Plants harboring other genes conferring glyphosate tolerance, eg, decarboxylase genes, are described. Other herbicide-resistant plants are, for example, plants which have been made tolerant to herbicides which inhibit the enzyme glutamine synthase, such as bialaphos, phosphinotricin or glufosinate.
  • Such plants can be obtained by expressing an enzyme that detoxifies the herbicide or a mutant of the enzyme glutamine synthase that is resistant to inhibition.
  • a potent detoxifying enzyme is, for example, an enzyme encoding a phosphinotricin acetyltransferase (such as the bar or pat protein from Streptomyces species). Plants expressing an exogenous phosphinotricin acetyltransferase have been described.
  • hydroxyphenylpyruvate dioxygenase HPPD
  • HPPD hydroxyphenylpyruvate dioxygenase
  • the hydroxyphenylpyruvate dioxygenases are enzymes that catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is converted into homogentisate.
  • Plants that are tolerant to HPPD inhibitors can be transformed with a gene encoding a naturally occurring resistant HPPD enzyme or a gene encoding a mutated or chimeric HPPD enzyme, as in WO 96/38567 , WO 99/24585,
  • Tolerance to HPPD inhibitors can also be achieved by transforming plants with genes encoding certain enzymes that allow the formation of homogentisate despite inhibition of the native HPPD enzyme by the HPPD inhibitor. Such plants are described in WO 99/34008 and WO 02/36787.
  • the tolerance of plants to HPPD inhibitors can also be improved by transforming plants with a gene encoding a prephenate dehydrogenase enzyme in addition to a gene encoding an HPPD-tolerant enzyme, as in WO 2004/024928 is described.
  • plants can be made even more tolerant to HPPD inhibitors by inserting a gene into their genome that codes for an enzyme that metabolizes or degrades HPPD inhibitors, such as CYP450 enzymes (see WO 2007/103567 and WO 2008/150473 ).
  • ALS inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinyloxy(thio)benzoates and/or sulfonylaminocarbonyltriazolinone herbicides.
  • ALS also known as acetohydroxy acid synthase, AHAS
  • AHAS acetohydroxy acid synthase
  • plants that are tolerant to imidazolinones and/or sulfonylureas can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide, or by mutation breeding (cf. e.g. for soybean US 5,084,082, for rice WO 97/41218, for sugar beet US 5,773,702 and WO 99/057965, for lettuce US 5,198,599 or for sunflower WO 01/065922).
  • Plants or plant varieties which can also be treated according to the invention are tolerant to abiotic stressors. Such plants can be obtained by genetic transformation or by selection from plants containing a mutation conferring such stress resistance.
  • Particularly useful stress tolerant plants include the following: a. Plants containing a transgene capable of reducing the expression and/or activity of the poly(ADP-ribose) polymerase (PARP) gene in the plant cells or plants. b. Plants which contain a stress tolerance-promoting transgene which is able to reduce the expression and/or activity of the genes of the plants or plant cells which code for PARG; c.
  • PARP poly(ADP-ribose) polymerase
  • Plants which contain a stress tolerance-promoting transgene which codes for an enzyme of the nicotinamide adenine dinucleotide salvage biosynthesis pathway which is functional in plants including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyltransferase, nicotinamide adenine dinucleotide synthetase or nicotinamide phosphoribosyltransferase.
  • Plants or plant varieties obtained by methods of plant biotechnology, such as genetic engineering
  • Plants or plant varieties which can also be treated according to the invention, have an altered quantity, quality and/or shelf life of the harvested product and/or altered properties of certain components of the harvested product, such as:
  • Transgenic plants that synthesize a modified starch with regard to their chemical-physical properties, in particular the amylose content or the amylose/amylopectin ratio, the degree of branching, the average chain length, the distribution of the side chains, the viscosity behavior, the gel strength, the starch grain size and /or Starch commorphology is altered compared to the synthesized starch in wild-type plant cells or plants, such that this modified starch is more suitable for certain applications.
  • Transgenic plants or hybrid plants such as onions with certain characteristics such as "high soluble solids content", low pungency (LP) and/or long storage (LS ).
  • Plants or plant varieties which can also be treated according to the invention are plants such as cotton plants with altered fiber properties.
  • Such plants can be obtained by genetic transformation or by selection from plants containing a mutation conferring such altered fiber properties; these include: a) plants such as cotton plants which contain an altered form of cellulose synthase genes, b) plants such as cotton plants which contain an altered form of rsw2 or rsw3 homologous nucleic acids such as cotton plants with an increased expression of sucrose phosphate synthase; c) plants such as cotton plants with an increased expression of sucrose synthase; d) Plants, such as cotton plants, in which the timing of the passage control of the plasmodesmata at the base of the fiber cell is altered, e.g.
  • Plants or plant varieties which can also be treated according to the invention are plants such as oilseed rape or related Brassica plants with altered properties of the oil composition.
  • Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such altered oil properties; these include: a) plants such as oilseed rape which produce oil with a high oleic acid content; b) Plants such as oilseed rape that produce oil with a low linolenic acid content. c) Plants such as oilseed rape that produce oil with a low saturated fatty acid content.
  • Plants or plant varieties which can be obtained by methods of plant biotechnology, such as genetic engineering
  • plants which can also be treated according to the invention are plants such as potatoes which are virus-resistant, for example to potato virus Y (Event SY230 and SY233 from Tecnoplant, Argentina), or which are resistant to diseases such as late blight (potato late blight) (e.g. RB gene), or which show reduced cold-induced sweetness (carrying the genes Nt-Inh, II-INV) or which have the dwarf Show phenotype (gene A-20 oxidase).
  • viruses which are virus-resistant, for example to potato virus Y (Event SY230 and SY233 from Tecnoplant, Argentina), or which are resistant to diseases such as late blight (potato late blight) (e.g. RB gene), or which show reduced cold-induced sweetness (carrying the genes Nt-Inh, II-INV) or which have the dwarf Show phenotype (gene A-20 oxidas
  • Plants or plant varieties obtained by methods of plant biotechnology, such as genetic engineering
  • plants which can also be treated according to the invention are plants such as oilseed rape or related Brassica plants with altered seed shattering properties.
  • Such plants can be obtained by genetic transformation or by selection from plants containing a mutation conferring such altered traits and include plants such as oilseed rape with delayed or reduced seed set.
  • transgenic plants that can be treated according to the invention are plants with transformation events or combinations of transformation events which are the subject of issued or pending petitions in the USA with the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA). are for non-regulated status. Information on this is available at any time from APHIS (4700 River Road Riverdale, MD 20737, USA), e.g. via the website http://www.aphis.usda.gov/brs/not_reg.html. On the filing date of this application, the petitions with the following information were either issued or pending at APHIS:
  • - Petition Identification number of the petition.
  • the Technical Description of the Transformation Event can be found in the individual petition document available from APHIS on the website via the petition number. These descriptions are hereby disclosed by reference.
  • - Petition extension Reference to a previous petition for which an extension or renewal is requested.
  • - Transformation event or line the name of the event or events (sometimes referred to as line(s)) for which non-regulated status is requested.
  • APHIS Documente various documents published by APHIS regarding the petition or which can be obtained by APHIS upon request.
  • transgenic plants which can be treated according to the invention are plants having one or more genes coding for one or more toxins are the transgenic plants sold under the following trade names: YIELD GARD® (for example maize, cotton, soybeans), KnockOut® (e.g. corn), BiteGard® (e.g. corn), BT-Xtra® (e.g. corn), StarLink® (e.g. corn), Bollgard® (cotton),
  • YIELD GARD® for example maize, cotton, soybeans
  • KnockOut® e.g. corn
  • BiteGard® e.g. corn
  • BT-Xtra® e.g. corn
  • StarLink® e.g. corn
  • Bollgard® cotton
  • Nucotn® (cotton), Nucotn 33B® (cotton), NatureGard® (e.g. corn), Protecta® and NewLeaf® (potato).
  • Herbicide tolerant crops to mention are for example corn varieties, cotton varieties and soybean varieties sold under the following trade names: Roundup Ready® (glyphosate tolerance, e.g. corn, cotton, soybean), Liberty Link® (phosphinotricin tolerance, e.g. canola) , IMI® (imidazolinone tolerance) and SCS®
  • Step 1 Synthesis of 8-(2,2-Difluoroethoxy)-1,3-diazaspiro[4.5]decane-2,4-dione 116.1 g (1.21 mol) ammonium carbonate and 11.3 g (0.23 mol) sodium cyanide were dissolved in 500 ml
  • Step 2 Synthesis of l-amino-4-(2,2-difluoroethoxy)cyclohexanecarboxylic acid hydrochloride
  • Step 3 Synthesis of methyl 1-amino-4-(2,2-difluoroethoxy)cyclohexanecarboxylate hydrochloride
  • Step 4 Synthesis of Methyl l- ⁇ 2-[2-bromo-6-methoxy-4-(prop-l-yn-l-yl)phenyl]acetamido ⁇ -4-(2,2-difluoroethoxy)cyclohexanecarboxylate ( Example #11-5)
  • Step 5 Synthesis of cA-3-[2-Bromo-6-methoxy-4-(prop-1-yn-1-yl)phenyl]-8-(2,2-difluoroethoxy)-4-hydroxy-l- azaspiro[4.5]dec-3-en-2-one (example nos. 1-5) and from
  • the aqueous phase was adjusted to pH 2 with dilute hydrochloric acid. After extraction with ethyl acetate, the organic phase was dried and the filtrate was freed from solvent. The residue was purified by chromatography, yielding 120 mg of the cA-configured product as well as 25 mg of the /rans -configured product.
  • NMR peak list method The 1H NMR data of selected examples are reported in the form of 1H NMR peak lists. For each signal peak, first the d value in ppm and then the signal intensity is listed in round brackets. The d value - signal intensity number pairs from different signal peaks are listed separated by semicolons.
  • the peak list of an example therefore has the form: di (intensity ⁇ ; ⁇ 2 (intensity2); . ; öi (intensity ⁇ ; . ; d h (intensity n )
  • the intensity of sharp signals correlates with the height of the signals in a printed example of an NMR spectrum in cm and shows the true ratios of the signal intensities. For broad signals, multiple peaks or the center of the signal and their relative intensity compared to the most intense signal in the spectrum can be shown.
  • tetramethylsilane and/or the chemical shift of the solvent, especially in the case of spectra measured in DMSO. Therefore, the tetramethylsilane peak can, but does not have to, appear in NMR peak lists.
  • the peaks of stereoisomers of the target compounds and/or peaks of impurities usually have on average a lower intensity than the peaks of the target compounds (e.g. with a purity of >90%).
  • Such stereoisomers and/or impurities can be typical of the particular production process. Their peaks can thus help identify the reproduction of our manufacturing process using “by-product fingerprints”.
  • An expert who calculates the peaks of the target compounds with known methods can isolate the peaks of the target compounds as required, with additional intensity filters being used if necessary. This isolation would be similar to the peak picking involved in classical 1H NMR interpretation.
  • a dust is obtained by mixing 10 parts by weight of a compound of the formula (I) and/or salts thereof and 90 parts by weight of talcum as an inert substance and comminuting in a hammer mill.
  • a water-dispersible, wettable powder is obtained by mixing 25 parts by weight of a compound of the formula (I) and/or salts thereof, 64 parts by weight of kaolin-containing quartz as an inert substance, 10 parts by weight of potassium lignosulfonate and 1 part by weight of sodium oleoylmethyltaurine mixes as wetting and dispersing agent and grinds in a pin mill.
  • a dispersion concentrate that is easily dispersible in water is obtained by mixing 20 parts by weight of a compound of the formula (I) and/or salts thereof with 6 parts by weight of alkylphenol polyglycol ether ( ⁇ Triton X 207), 3 parts by weight of isotridecanol polyglycol ether (8 EO ) and 71 parts by wt.
  • An emulsifiable concentrate is obtained from 15 parts by weight of a compound of the formula (I) and/or salts thereof, 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of ethoxylated nonylphenol as emulsifier.
  • a water-dispersible granulate is obtained by 75 parts by weight of a compound of the formula (I) and/or salts thereof,
  • a water-dispersible granulate is also obtained by adding 25 parts by weight of a compound of the formula (I) and/or salts thereof, 5 parts by weight of 2,2'-dinaphthylmethane and 6,6'-sodium disulphonate,
  • ALOMY Alopecurus myosuroides
  • SETVI Setaria viridis
  • AMARE Amaranthus retroflexus AVEFA: Avena fatua
  • VERPE Veronica persica VIOTR: Viola tricolor
  • POLCO Polygonum convolvulus ABUTH: Abutylon threophrasti
  • PHBPU Pharbitis purpurea
  • MATIN Matricaria inodora
  • DIGSA Digitaria sanguinalis 1. Herbicidal effect or tolerability of crop plants post-emergence
  • Seeds of monocotyledonous or dicotyledonous weed plants or crop plants are laid out in sandy loam soil in wood fiber pots, covered with soil and grown in the greenhouse under good growth conditions. 2 to 3 weeks after sowing, the test plants are treated in the one-leaf stage.
  • the compounds according to the invention formulated in the form of wettable powders (WP) or as emulsion concentrates (EC) are then sprayed onto the green parts of the plant as an aqueous suspension or emulsion with a water application rate of the equivalent of 600 to 800 l/ha with the addition of 0.2% wetting agent .
  • WP wettable powders
  • EC emulsion concentrates
  • Table 3b Post-emergence effect at 80g/ha against AMARE in %
  • Table 4a Post-emergence effect at 20g/ha against ECHCG in %
  • Table 4b Post-emergence effect at 80g/ha against ECHCG in %
  • Table 5a Post-emergence effect at 20g/ha against LOLRI in %
  • Table 5b Post-emergence effect at 80g/ha against LOLRI in %
  • Table 6 Post-emergence effect at 80g/ha against MATIN in %
  • Table 7a Post-emergence effect at 20g/ha against PHBPU in %
  • Table 7b Post-emergence effect at 80g/ha against PHBPU in %
  • Table 9b Post-emergence effect at 80g/ha against SETVI in %
  • Table 10a Post-emergence effect at 20g/ha against VERPE in %
  • Table 10b Post-emergence effect at 80g/ha against VERPE in %
  • Table 12a Post-emergence effect at 20g/ha against AVEFA in %
  • Table 12b Post-emergence effect at 80g/ha against AVEFA in %
  • the compounds according to the invention have a good post-emergence herbicidal activity against a broad spectrum of weed grasses and weeds.
  • the examples given at an application rate of 80/20 g/ha show an 80-100% activity against, inter alia, Alopecurus myosuroides, Digitaria sanguinalis, Echinochloa crus-galli, Lolium rigidum and Setaria viridis.
  • the compounds according to the invention are therefore suitable for post-emergence control of undesired plant growth.
  • Seeds of monocotyledonous or dicotyledonous weed plants or crop plants are laid out in sandy loam soil in wood fiber pots and covered with soil.
  • the compounds according to the invention formulated in the form of wettable powders (WP) or as emulsion concentrates (EC), are then applied to the surface of the covering soil as an aqueous suspension or emulsion at a water application rate of the equivalent of 600 to 800 l/ha with the addition of 0.2% wetting agent .
  • Table 4b Pre-emergence effect at 320g/ha against AVEFA in %
  • Table 5a Pre-emergence effect at 80g/ha against ECHCG in %
  • Table 5b Pre-emergence effect at 320g/ha against ECHCG in %
  • Table 6a Pre-emergence effect at 80g/ha against LOLRI in %
  • Table 6b Pre-emergence effect at 320g/ha against LOLRI in %
  • Table 7 Pre-emergence effect at 320g/ha against PHBPU in %
  • Table 9a Pre-emergence effect at 80g/ha against SETVI in %
  • Table 9b Pre-emergence effect at 320g/ha against SETVI in %
  • Table 10a Pre-emergence effect at 80g/ha against VERPE in %
  • Table 10b Pre-emergence effect at 320g/ha against VERPE in %
  • the compounds according to the invention have a good pre-emergence herbicidal activity against a broad spectrum of weed grasses and weeds.
  • the compounds each show an 80-100% activity against, inter alia, Alopecurus myosuroides, Avenafatua, Digitaria sanguinalis, Echinochloa crus-galli, Lolium rigidum, Setaria viridis, Amaranthus retroflexus, Viola tricolor and Veronica persica.
  • the compounds according to the invention are therefore suitable in the pre-emergence method for combating undesired plant growth.

Abstract

Es werden substituierte Pyrrolin-2-one der allgemeinen Formel (I) und ihre Verwendung als Herbizide beschrieben. (I) In dieser Formel (I) stehen X, Y, R1, R2 und G für Reste wie Halogen, Alkoxy, Haloalkoxy, Alkyl, Cycloalkyl und Halogen.

Description

Bayer AG
Speziell substituierte Pyrrolin-2-one und deren Verwendung als Herbizide Beschreibung
Die vorliegende Erfindung betrifft neue herbizid wirksame Pyrrolin-2-one und deren agrochemisch akzeptable Salze davon, sowie deren Verwendung zur Bekämpfung von Unkräutern und Ungräsern in Nutzpflanzenkulturen.
4-Alkinyl-substituierte-3-Phenylpyrrolin-2-one mit herbizider Wirkung sind beispielsweise aus WO 96/25395, WO 01/74770, WO 09/039975, WO 19/219587 und WO 19/219584 bekannt.
Die Wirksamkeit dieser Herbizide gegen Schadpflanzen ist von zahlreichen Parametern abhängig, beispielsweise von der verwendeten Aufwandmenge, der Zubereitungsform (Formulierung), den jeweils zu bekämpfenden Schadpflanzen, dem Schadpflanzenspektrum, den Klima- und Bodenverhältnissen sowie der Dauer der Wirkung bzw. der Abbaugeschwindigkeit des Herbizids. Zahlreiche Herbizide aus der Gruppe der 3-Phenylpyrrolin-2-one erfordern, um eine ausreichende herbizide Wirkung zu entfalten, hohe Aufwandmengen und/oder sie haben ein zu schmales Unkrautspektrun, was deren Anwendung ökonomisch unattraktiv macht. Es besteht daher der Bedarf an alternativen Herbiziden, die verbesserte Eigenschaften aufweisen sowie ökonomisch attraktiv und gleichzeitig effizient sind.
Aufgabe der vorliegenden Erfindung ist die Bereitstellung von weiteren Verbindungen, die die genannten Nachteile nicht aufweisen.
Es wurde nun gefunden, daß Pyrrolin-2-one, die in 4-Stellung des Phenylrings einen Propinylrest und in 4-Stellung des Cyclohexylrestes einen C2-C6-Difluoralkoxyrest tragen, besonders gute Eigenschaften aufweisen.
Die vorliegende Erfindung betrifft daher neue substituierte Pyrrolin-2-one der allgemeinen Formel (I), oder ein agrochemisch akzeptables Salz davon,
Figure imgf000002_0001
worin
X bedeutet Ci -C,- Alkyl, C i -O,-Halogenal kyl , C3-C6-Cycloalkyl, Ci-Cö-Alkoxy, CI-CÖ-
Halogenalkoxy, Brom oder Fluor;
Y bedeutet C i -Ce- Alkoxy oder C i -Cr,-Halogenalkoxy ;
R1 bedeutet C2-C6-Difluoralkoxy;
R2 bedeutet Wasserstoff, Ci-Cr,-Alkyl, Ci-C4-Alkoxy-Ci-C4-alkyl, Ci-Cö-Halogenalkyl, C3-C6-
Cycloalkyl, C3-C6-Cycloalkyl-Ci-C4-alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, Ci -Cr,- Alkoxy oder C 1 -Cö-Halogenalkoxy ;
G bedeutet Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E, L bedeutet einen der folgenden Reste,
Figure imgf000003_0001
R3 bedeutet C 1 -C4- Alkyl oder C 1 -C3 - Alkoxy-C 1 -C4-alkyl ;
R4 bedeutet C1-C4- Alkyl;
R5 bedeutet Ci-C4-Alkyl, Phenyl oder ein einfach oder mehrfach durch Halogen, Ci-C4-Alkyl, Ci-C4-Halogenalkyl, Ci-C4-Alkoxy, Ci-C4-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl;
R6 und R6‘ bedeuten unabhängig voneinander Methoxy oder Ethoxy;
R7 und R8 bedeuten unabhängig voneinander jeweils Methyl, Ethyl, Phenyl oder
R7 und R8 bilden gemeinsam mit dem Stickstoff atom, an das sie gebunden sind, einen gesättigten 5-, 6- oder 7-gliedrigen Ring, wobei ein Ringkohlenstoffatom gegebenenfalls durch ein Sauerstoff- oder Schwefelatom ersetzt ist;
E bedeutet ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion ist, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen Ci- Cio-Alkyl oder C3-C7-Cycloalkyl, die unabhängig voneinander jeweils ein- oder mehrfach mit Fluor, Chlor, Brom, Cyano, Hydroxy substituiert oder durch ein oder mehrere Sauerstoff oder Schwefelatome unterbrochen sein können, ein cyclisches sekundäres oder tertiäres aliphatisches oder heteroaliphatisches Ammoniumion wiebeispielsweise Morpholinium, Thiomorpholinium, Piperidinium, Pyrrolidinium oder jeweils protoniertes 1,4- Diazabicyclo[1.1.2]octane (DABCO) oder l,5-Diazabicyclo[4.3.0]undec-7-en (DBU); ein heteroaromatisches Ammoniumkation wie beispielsweise jeweils protoniertes Pyridin, 2- Methylpyridin, 3-Methylpyridin, 4-Methylpyridin, 2,4-Dimethylpyridin, 2,5-Di- methylpyridin, 2,6-Dimethylpyridin, 5-Ethyl-2-methylpyridin, Collidin, Pyrrol, Imidazol, Chinolin, Chinoxalin, 1 ,2-Dimethylimidazol, 1,3-Dimethylimidazolium-methylsulfat oder Trimethylsulfoniumion.
Alkyl bedeutet gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen, z.B. (Ci-Cöj-Alkyl wie Methyl, Ethyl, Propyl, 1- Methylethyl, Butyl, 1-Methyl-propyl, 2-Methylpropyl, 1,1-Dimethylethyl, Pentyl, 1-Methylbutyl, 2- Methylbutyl, 3-Methylbutyl, 2,2-Di-methylpropyl, 1-Ethylpropyl, Hexyl, 1,1-Dimethylpropyl, 1,2- Dimethylpropyl,l-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,1-Dimethyl- butyl, 1 ,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3- Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1,1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-
1-methylpropyl und l-Ethyl-2-methylpropyl.
Halogenalkyl bedeutet geradkettige oder verzweigte Alkylgruppen, wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome ersetzt sein können, z.B. (Ci- C2)-Halogenalkyl wie Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1- Chlorethyl, 1-Bromethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-
2-fluorethyl, 2-Chlor,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl und l,l,l-Trifluorprop-2-yl.
Alkenyl bedeutet ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z.B. (C2-C6)-Alkenyl wie Ethenyl, 1-Propenyl, 2-Propenyl, 1-Methylethenyl, 1-Butenyl, 2-Butenyl,
3-Butenyl, 1 -Methyl- 1-propenyl, 2-Methyl-l-propenyl, l-Methyl-2-propenyl, 2-Methyl-2-propenyl, 1-Pentenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1 -Methyl- 1-butenyl, 2-Methyl-l-butenyl, 3-Methyl- 1-butenyl, l-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, l-Methyl-3-butenyl, 2- Methyl-3-butenyl, 3-Methyl-3-butenyl, l,l-Dimethyl-2-propenyl, 1,2-Dimethyl-l-propenyl, 1,2- Dimethyl-2-propenyl, 1-Ethyl-l-propenyl, l-Ethyl-2-propenyl, 1-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1 -Methyl- 1-pentenyl, 2-Methyl-l-pentenyl, 3-Methyl-l-pentenyl, 4-Methyl- 1-pentenyl, l-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, l-Methyl-3-pentenyl, 2-Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1-Methyl- 4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, l,l-Dimethyl-2- butenyl, l,l-Dimethyl-3-butenyl, 1,2-Dimethyl-l-butenyl, l,2-Dimethyl-2-butenyl, 1 ,2-Dimethyl-3- butenyl, 1,3-Dimethyl-l-butenyl, l,3-Dimethyl-2-butenyl, l,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3- butenyl, 2,3-Dimethyl-l-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3,3-Dimethyl-l- butenyl, 3,3-Dimethyl-2-butenyl, 1-Ethyl-l-butenyl, l-Ethyl-2-butenyl, l-Ethyl-3-butenyl, 2-Ethyl- 1-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, l,l,2-Trimethyl-2-propenyl, l-Ethyl-l-methyl-2- propenyl, l-Ethyl-2-methyl-l-propenyl und l-Ethyl-2-methyl-2-propenyl.
Alkinyl bedeutet geradkettige oder verzweigte Kohlenwasserstoffreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, z.B. C2- C6-Alkinyl wie Ethinyl, 1-Propinyl, 2-Propinyl (oder Propargyl), 1-Butinyl, 2-Butinyl, 3-Butinyl,
1-Methyl-2-propinyl, 1-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 3-Methyl-l-butinyl, 1-Methyl-
2-butinyl, l-Methyl-3-butinyl, 2-Methyl-3-butinyl, l,l-Dimethyl-2-propinyl, l-Ethyl-2-propinyl, 1- Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 3-Methyl-l-pentinyl, 4-Methyl-l-pentinyl, 1- Methyl-2-pentinyl, 4-Methyl-2-pentinyl, l-Methyl-3-pentinyl, 2-Methyl-3-pentinyl, l-Methyl-4- pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, l,l-Dimethyl-2-butinyl, l,l-Dimethyl-3- butinyl, l,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3,3-Dimethyl-l-butinyl, l-Ethyl-2-butinyl, l-Ethyl-3-butinyl, 2-Ethyl-3-butinyl und l-Ethyl-l-methyl-2-propinyl.
Cycloalkyl bedeutet ein carbocyclisches, gesättigtes Ringsystem mit vorzugsweise 3-8 Ring- C-Atomen, z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl. Im Falle von gegebenenfalls substituiertem Cycloalkyl werden cyclische Systeme mit Substituenten umfasst, wobei auch Substituenten mit einer Doppelbindung am Cycloalkylrest, z. B. eine Alkylidengruppe wie Methyliden, umfasst sind.
Alkoxy bedeutet gesättigte, geradkettige oder verzweigte Alkoxyreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen, z.B. (CI-CÖ)- Alkoxy wie Methoxy, Ethoxy, Propoxy, 1- Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy, 1,1-Dimethylethoxy, Pentoxy, 1- Methylbutoxy, 2-Methylbutoxy, 3-Methylbutoxy, 2,2-Di-methylpropoxy, 1-Ethylpropoxy, Hexoxy, 1,1-Dimethylpropoxy, l,2-Dimethylpropoxy,l-Methylpentoxy, 2-Methylpentoxy, 3- Methylpentoxy, 4-Methylpentoxy, 1,1-Dimethylbutoxy, 1,2-Dimethylbutoxy, 1,3-Dimethylbutoxy, 2.2-Dimethylbutoxy, 2,3-Dimethylbutoxy, 3,3-Dimethylbutoxy, 1-Ethylbutoxy, 2-Ethylbutoxy,
1.1.2-Trimethylpropoxy, 1 ,2,2-Trimethylpropoxy, 1-Ethyl-l-methylpropoxy und l-Ethyl-2-methyl- propoxy. Durch Halogen substitiertes Alkoxy bedeutet geradkettige oder verzweigte Alkoxyreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen, wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können, z.B. (Ci-C2)-Halogenalkoxy wie Chlormethoxy, Brommethoxy, Dichlormethoxy, Trichlormethoxy, Fluormethoxy, Difluormethoxy, Trifluormethoxy, Chlorfluormethoxy, Dichlor- fluormethoxy, Chlordifluormethoxy, 1-Chlorethoxy, 1 -Bromethoxy, 1-Fluorethoxy, 2-Fluorethoxy,
2.2-Difluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-2-fluorethoxy, 2-Chlor-l,2-difluorethoxy, 2,2- Dichlor-2-fluorethoxy, 2,2,2-Trichlorethoxy, Pentafluor-ethoxy und l,l,l-Trifluorprop-2-oxy.
Die Verbindungen der Formel (I) können als geometrische Isomere (cis-/trans-Isomerie) oder Isomerengemische in unterschiedlicher Zusammensetzung vorliegen. Die geometrischen Isomere sind folgendermaßen definiert:
Figure imgf000006_0001
Die gegebenfalls bei der Synthese anfallenden Isomerengemische können mit den üblichen technischen Methoden, die dem Fachmann grundsätzlich bekannt sind, getrennt werden.
Sowohl die reinen Isomeren bzw. Tautomere als auch die Tautomeren- und Isomerengemische, deren Herstellung und Verwendung sowie diese enthaltende Mittel sind Gegenstand der vorliegenden Erfindung. Dieses gilt analog auch für alle Isomere, die durch die Verwendung chiraler Substituenten entstehen. Im Folgenden wird der Einfachheit halber jedoch stets von Verbindungen der Formel (I) gesprochen, obwohl sowohl die reinen Verbindungen als auch gegebenenfalls Gemische mit unterschiedlichen Anteilen an isomeren und tautomeren Verbindungen gemeint sind.
Bevorzugt sind Verbindungen der allgemeinen Formel (I), worin
X bedeutet Ci-C4-Alkyl, Ci-C4-Halogenalkyl, C3-C6-Cycloalkyl, Ci-C4-Alkoxy, C1-C4- Halogenalkoxy, Brom oder Fluor;
Y bedeutet C i -C4- Alkoxy oder C 1 -C4-Halogenalkoxy ;
R1 bedeutet C2-C4-Difluoralkoxy;
R2 bedeutet Wasserstoff, Ci-Ce-Alkyl, Ci-C4-Alkoxy-C2-C4-alkyl, Ci-Cö-Halogenalkyl, C3-C6- Cycloalkyl, C2-C6-Alkenyl oder C2-C6-Alkinyl;
G bedeutet Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E,
L bedeutet einen der folgenden Reste,
Figure imgf000007_0001
R3 bedeutet C 1 -C4- Alkyl oder C 1 -C3 - Alkoxy-C 1 -C4-alkyl ;
R4 bedeutet C1-C4- Alkyl;
R5 bedeutet Ci-C4-Alkyl, Phenyl oder einfach oder mehrfach durch Halogen, Ci-C4-Alkyl, Ci- C4-Halogenalkyl oder Ci-C4-Alkoxy substituiertes Phenyl;
E bedeutet ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion ist, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen Ci- Cio-Alkyl oder C3-C7-Cycloalkyl, die unabhängig voneinander jeweils ein- oder mehrfach mit Fluor, Chlor, Brom, Cyano, Hydroxy substituiert oder durch ein oder mehrere Sauerstoff oder Schwefelatome unterbrochen sein können, ein cyclisches sekundäres oder tertiäres aliphatisches oder heteroaliphatisches Ammoniumion wie beispielsweise Morpholinium, Thiomorpholinium, Piperidinium, Pyrrolidinium oder jeweils protoniertes 1,4- Diazabicyclo[1.1.2]octane (DABCO) oder l,5-Diazabicyclo[4.3.0]undec-7-en (DBU); ein heteroaromatisches Ammoniumkation wie beispielsweise jeweils protoniertes Pyridin, 2- Methylpyridin, 3-Methylpyridin, 4-Methylpyridin, 2,4-Dimethylpyridin, 2,5-Di- methylpyridin, 2,6-Dimethylpyridin, 5-Ethyl-2-methylpyridin, Collidin, Pyrrol, Imidazol, Chinolin, Chinoxalin, 1 ,2-Dimethylimidazol, 1,3-Dimethylimidazolium-methylsulfat oder Trimethylsulfoniumion. Besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), worin X bedeutet Ci-C4-Alkyl, Ci-C4-Halogenalkyl, Cyclopropyl, Brom oder Fluor;
Y bedeutet C i -C4- Alkoxy oder C 1 -C4-Halogenalkoxy ;
R1 bedeutet C2-C4-Difluoralkoxy; R2 bedeutet Wasserstoff, Ci-C4-Alkyl, Methoxyethyl oder Ethoxyethyl, Ci-C2-Halogenalkyl, Cyclopropyl, C2-C4-Alkenyl oder C2-C4-Alkinyl;
G bedeutet Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E,
L bedeutet einen der folgenden Reste,
O O
AR
R3 bedeutet C 1 -C4- Alkyl oder C 1 -C2- Alkoxy-C 1 -C2-alkyl ;
R4 bedeutet C1-C4- Alkyl;
E bedeutet ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion, bei dem gegebenenfalls ein, zwei, drei oder alle vier
Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen Ci- Cio-Alkyl oder C3-C7-Cycloalkyl.
Ganz besonders bevorzugt sind Verbindungen der allgemeinen Formel (I), worin X bedeutet Methyl, Ethyl, Cyclopropyl, Brom oder Fluor;
Y bedeutet Methoxy oder Ethoxy;
R1 bedeutet 2,2-Difluorethoxy, 2,2-Difluorpropoxy oder 3,3-Difluorpropoxy;
R2 bedeutet Wasserstoff oder Methyl;
G bedeutet Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E, L bedeutet einer der folgenden Reste,
O O A,-'·
R3 bedeutet Methyl, Ethyl, Isopropyl oder t-Butyl; R4 bedeutet Methyl oder Ethyl;
E bedeutet ein Natriumion oder ein Kaliumion.
Ebenfalls ganz besonders bevorzugt sind die Verbindungen der allgemeinen Formel (I) in Tabelle 1 bis 10. Tabelle 1: Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin R2 sowie G jeweils Wasserstoff bedeuten.
Figure imgf000009_0001
Figure imgf000009_0002
Figure imgf000010_0001
Figure imgf000011_0002
Tabelle 2: Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin R2 für Wasserstoff steht, und G ein Natriumion bedeutet.
Figure imgf000011_0001
Figure imgf000011_0003
Figure imgf000012_0001
Figure imgf000013_0002
Tabelle 3: Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin R2 für Wasserstoff steht, und G ein 2-Methylpropionylrest bedeutet.
Figure imgf000013_0001
Figure imgf000013_0003
Figure imgf000014_0001
Figure imgf000015_0002
Tabelle 4: Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin R2 für
Wasserstoff steht, und G ein Methoxycarbonylrest bedeutet.
Figure imgf000015_0001
Figure imgf000015_0003
Figure imgf000016_0001
Figure imgf000017_0002
Tabelle 5: Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin R2 für
Wasserstoff steht, und G ein Ethoxycarbonylrest bedeutet.
Figure imgf000017_0001
Figure imgf000017_0003
Figure imgf000018_0001
Figure imgf000019_0002
Tabelle 6: Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin R2 für eine
Methylgruppe steht, und G Wasserstoff bedeutet.
Figure imgf000019_0001
Figure imgf000019_0003
Figure imgf000020_0001
Figure imgf000021_0002
Tabelle 7: Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin R2 für eine
Methylgruppe steht, und G ein Natriumion bedeutet.
Figure imgf000021_0001
Figure imgf000021_0003
Figure imgf000022_0001
Figure imgf000023_0002
Tabelle 8: Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin R2 für eine
Methylgruppe steht, und G ein 2-Methylpropionylrest bedeutet.
Figure imgf000023_0001
Figure imgf000023_0003
Figure imgf000024_0001
Figure imgf000025_0002
Tabelle 9: Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin R2 für eine
Methylgruppe steht, und G ein Methoxycarbonylrest bedeutet.
Figure imgf000025_0001
Figure imgf000025_0003
Figure imgf000026_0001
Figure imgf000027_0002
Tabelle 10: Erfindungsgemäße Verbindungen der allgemeinen Formel (I), worin R2 für eine Methylgruppe steht, und G ein Ethoxycarbonylrest bedeutet.
Figure imgf000027_0001
Figure imgf000027_0003
Figure imgf000028_0001
Figure imgf000029_0002
Eine ganz besonders bevorzugte Ausführungsform der vorliegenden Erfindung sind die folgenden Verbindungen:
1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-21, 1-22, 1-23, 1-24, 1-25, 1-26, 1-27, 1-28, 1-29,
1-30, 1-41, 1-42, 1-43, 1-44, 1-45, 1-46, 1-47, 1-48, 1-49, 1-50, 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, 2-7, 2-8,
2-9, 2-10, 2-21, 2-22, 2-23, 2-24, 2-25, 2-26, 2-27, 2-28, 2-29, 2-30, 2-41, 2-42, 2-43, 2-44, 2-45, 2- 46, 2-47, 2-48, 2-49 und 2-50. Die Herstellung der erfindungsgemäßen Verbindungen der allgemeinen Formel (I) kann grundsätzlich nach dem Fachmann bekannten Methoden erfolgen, beispielsweise indem man a) eine Verbindung der allgemeinen Formel (II),
Figure imgf000029_0001
in welcher R1, R2, X, und Y die oben angegebenen Bedeutungen haben, und R9 für Alkyl, bevorzugt für Methyl oder Ethyl steht, gegebenenfalls in Anwesenheit eines geeigneten Lösungs- oder Verdünnungsmittels, mit einer geeigneten Base unter formaler Abspaltung der Gruppe R9OH cyclisiert, oder b) eine Verbindung der allgemeinen Formel (Ia), in der R1, R2, X und Y die oben angegebenen Bedeutungen haben, beispielsweise mit einer Verbindung der allgemeinen Formel (III),
Hal-L (III) in der L die oben angegebene Bedeutung hat und Hai für ein Halogen, vorzugsweise Chlor oder Brom stehen kann, gegebenenfalls in Anwesenheit eines geeigneten Lösungs- oder Verdünnungsmittels sowie einer geeigneten Base, zur Reaktion bringt.
Die Vorstufen der allgemeinen Formel (II) können in Analogie zu bekannten Verfahren, beispielsweise durch Umsetzung eines Aminoesters der allgemeinen Formel (IV), in der R1, R2 und R9 die oben beschriebene Bedeutung haben, mit einer Phenylessigsäure der allgemeinen Formel (V), in der X und Y die oben beschriebene Bedeutung haben, gebenenfalls unter Zusatz eines wasserentziehenden Mittels und eines geeigneten Lösungs- bzw. Verdünnungsmittels, hergestellt werden.
Figure imgf000030_0001
(IV) (V) Aminoester der allgemeinen Formel (IV) sind beispielsweise synthetisch zugänglich über eine Difluoralkylierung des Cyclohexanols (VI), gefolgt von der Spaltung des Ketals (VII) zu dem substituierten Cyclohexanon (VIII). Anschließend erfolgt die Umsetzung zur Aminosäure (IX) (gegebenenfalls über eine Hydantoin-Z wischenstufe (X)) mit anschließender Veresterung zur Verbindung (IVa). Diese Umsetzungen zur Überführung einer Carbonylgruppe in die entsprechende Aminosäure bzw. -ester können in Analogie zu literaturbekannten Verfahren durchgeführt werden, siehe beispielsweise die Beschreibungen in WO 09/039975. Der Einbau des Restes R2 (für den Fall dass R2 nicht Wasserstoff bedeutet) zum Aminoester (IV) kann in Anlehnung an literaturbekannte Verfahren erfolgen. Eventuell ist es zweckmäßig, Aminosäuren und Aminoester in Form ihrer Salze zu synthetisieren. Zahlreiche Phenylessigsäuren der allgemeinen Formel (V) sind unter anderem aus WO 15/040114, WO 15/032702 und WO 20/187627 bekannt oder können in Analogie zu literaturbekannten Verfahren hergestellt werden. Beispielsweise kann die Propinylgruppe über eine Kreuzkupplung wie die Sonogashira-Kupplung installiert werden. Dazu wird eine geeignete Vorstufe (Vb) beispielsweise als Ester eingesetzt, bei der es zu einem Austausch eines geeigneten Substituenten Z durch den Propinylrest kommt. Im
Anschluss wird das Produkt (Va) verseift zur Phenylessigsäure (V). Beispiele für den Substituenten
Z sind insbesondere die Halogene Brom und Iod wie auch Sulfonsäureester der entsprechenden Phenole wie der Trifluormethansulfonsäureester. Der Rest R10 steht für Methyl oder Ethyl.
Figure imgf000031_0001
(V)
(Vb) (Va) Ein weiterer Gegenstand der vorliegenden Erfindung sind somit die Verbindungen der Formel (II) oder ein agrochemisch akzeptables Salz davon, wobei die Reste die oben beschriebenen Definitionen der allgemeinen Formel (I) aufweisen eingeschlossen der bevorzugten, besonders bevorzugten und ganz besonders bevorzugten Restedefinitionen.
Figure imgf000032_0001
Tabelle 11: Erfindungsgemäße Verbindungen der allgemeinen Formel (II), worin R9 für eine Methylgruppe steht.
Figure imgf000032_0002
Figure imgf000032_0003
Figure imgf000033_0001
Figure imgf000034_0002
Tabelle 12: Erfindungsgemäße Verbindungen der allgemeinen Formel (II), worin R9 für eine Ethylgruppe steht.
Figure imgf000034_0001
Figure imgf000034_0003
Figure imgf000035_0001
Figure imgf000036_0002
Die in den obigen Herstellschemata genannten Verbindungen der allgemeinen Formel (V) eignen sich besonders gut zur Herstellung der erfindungsgemäßen Verbindungen der Formel (I). Ein weiterer Gegenstand der vorliegenden Erfindung sind somit die in Tabelle 13 genannten Verbindungen der Formel (V).
Tabelle 13: Erfindungsgemäße Verbindungen der allgemeinen Formel (V)
Figure imgf000036_0001
Figure imgf000036_0003
Die in den obigen Herstellschemata genannten Verbindungen der allgemeinen Formel (Va) eignen sich besonders gut zur Herstellung der erfindungsgemäßen Verbindungen der Formel (I). Ein weiterer Gegenstand der vorliegenden Erfindung sind somit die in Tabelle 14 genannten Verbindungen der Formel (Va). Tabelle 14: Erfindungsgemäße Verbindungen der allgemeinen Formel (Va)
Figure imgf000037_0001
Figure imgf000037_0002
Die erfindungsgemäßen Verbindungen der Formel (I) (und/oder deren Salze), im Folgenden zusammen als „erfindungsgemäße Verbindungen“ bezeichnet, weisen eine ausgezeichnete herbizide Wirksamkeit gegen ein breites Spektrum wirtschaftlich wichtiger mono- und dikotyler annueller Schadpflanzen auf.
Gegenstand der vorliegenden Erfindung ist daher auch ein Verfahren zur Bekämpfung von unerwünschten Pflanzen oder zur Wachstumsregulierung von Pflanzen, vorzugsweise in Pflanzenkulturen, worin eine oder mehrere erfindungsgemäße Verbindung(en) auf die Pflanzen (z.B. Schadpflanzen wie mono- oder dikotyle Unkräuter oder unerwünschte Kulturpflanzen), das Saatgut (z.B. Körner, Samen oder vegetative Vermehrungsorgane wie Knollen oder Sprossteile mit Knospen) oder die Fläche, auf der die Pflanzen wachsen (z.B. die Anbaufläche), ausgebracht werden. Dabei können die erfindungsgemäßen Verbindungen z.B. im Vorsaat- (ggf. auch durch Einarbeitung in den Boden), Vorauflauf- oder Nachauflaufverfahren ausgebracht werden. Im Einzelnen seien beispielhaft einige Vertreter der mono- und dikotylen Unkrautflora genannt, die durch die erfindungsgemäßen Verbindungen kontrolliert werden können, ohne dass durch die Nennung eine Beschränkung auf bestimmte Arten erfolgen soll.
Monokotyle Schadpflanzen der Gattungen: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echinochloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, Imperata, Ischaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum.
Dikotyle Unkräuter der Gattungen: Abutilon, Amaranthus, Ambrosia, Anoda, Anthemis, Aphanes, Artemisia, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erysimum, Euphorbia, Galeopsis, Galinsoga, Galium, Hibiscus, Ipomoea, Kochia, Lamium, Lepidium, Lindernia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio, Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium.
Werden die erfindungsgemäßen Verbindungen vor dem Keimen auf die Erdoberfläche appliziert, so wird entweder das Auflaufen der Unkrautkeimlinge vollständig verhindert oder die Unkräuter wachsen bis zum Keimblattstadium heran, stellen jedoch dann ihr Wachstum ein.
Bei Applikation der Wirkstoffe auf die grünen Pflanzenteile im Nachauflaufverfahren tritt nach der Behandlung Wachstumsstop ein und die Schadpflanzen bleiben in dem zum Applikationszeitpunkt vorhandenen Wachstumsstadium stehen oder sterben nach einer gewissen Zeit ganz ab, so dass auf diese Weise eine für die Kulturpflanzen schädliche Unkrautkonkurrenz sehr früh und nachhaltig beseitigt wird.
Die erfindungsgemäßen Verbindungen können in Nutzkulturen Selektivitäten aufweisen und können auch als nichtselektive Herbizide eingesetzt werden.
Aufgrund ihrer herbiziden und pflanzenwachstumsregulatorischen Eigenschaften können die Wirkstoffe auch zur Bekämpfung von Schadpflanzen in Kulturen von bekannten oder noch zu entwickelnden gentechnisch veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistenzen gegenüber bestimmten in der Agrarindustrie verwendeten Wirkstoff , vor allem bestimmten Herbiziden, Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten wie bestimmten Insekten oder Mikroorganismen wie Pilzen, Bakterien oder Viren. Andere besondere Eigenschaften betreffen z.B. das Erntegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller Inhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Ernteguts bekannt. Weitere besondere Eigenschaften liegen in einer Toleranz oder Resistenz gegen abiotische Stressoren z.B. Hitze, Kälte, Trockenheit, Salz und ultraviolette Strahlung.
Bevorzugt ist die Anwendung der erfindungsgemäßen Verbindungen der Formel (I) oder deren Salze in wirtschaftlich bedeutenden transgenen Kulturen von Nutz-und Zierpflanzen,
Die Verbindungen der Formel (I) können als Herbizide in Nutzpflanzenkulturen eingesetzt werden, welche gegenüber den phytotoxischen Wirkungen der Herbizide resistent sind bzw. gentechnisch resistent gemacht wurden.
Herkömmliche Wege zur Herstellung neuer Pflanzen, die im Vergleich zu bisher vorkommenden Pflanzen modifizierte Eigenschaften aufweisen, bestehen beispielsweise in klassischen Züchtungsverfahren und der Erzeugung von Mutanten. Alternativ können neue Pflanzen mit veränderten Eigenschaften mit Hilfe gentechnischer Verfahren erzeugt werden (siehe z.B.
EP 0221044, EP 0131624). Beschrieben wurden beispielsweise in mehreren Fällen gentechnische Verändemngen von Kulturpflanzen zwecks Modifikation der in den Pflanzen synthetisierten Stärke (z.B. WO 92/011376 A, WO 92/014827 A, WO 91/019806 A), transgene Kulturpflanzen, welche gegen bestimmte Herbizide vom Typ Glufosinate (vgl. z.B. EP 0242236 A, EP 0242246 A) oder Glyphosate (WO 92/000377 A) oder der Sulfonylharnstoffe (EP 0257993 A, US 5,013,659) oder gegen Kombinationen oder Mischungen dieser Herbizide durch „gene stacking“ resistent sind, wie transgenen Kulturpflanzen z. B. Mais oder Soja mit dem Handelsnamen oder der Bezeichnung Optimum™ GAT™ (Glyphosate ALS Tolerant). transgene Kulturpflanzen, beispielsweise Baumwolle, mit der Fähigkeit Bacillus thuringiensis-Toxine (Bt-Toxine) zu produzieren, welche die Pflanzen gegen bestimmte Schädlinge resistent machen (EP 0142924 A, EP 0193259 A). transgene Kulturpflanzen mit modifizierter Fettsäurezusammensetzung (WO 91/013972 A). gentechnisch veränderte Kulturpflanzen mit neuen Inhalts- oder Sekundärstoffen z.B. neuen Phytoalexinen, die eine erhöhte Krankheitsresistenz verursachen (EP 0309862 A, EP 0464461 A) gentechnisch veränderte Pflanzen mit reduzierter Photorespiration, die höhere Erträge und höhere Stresstoleranz aufweisen (EP 0305398 A) transgene Kulturpflanzen, die pharmazeutisch oder diagnostisch wichtige Proteine produzieren („molecular pharming“) transgene Kulturpflanzen, die sich durch höhere Erträge oder bessere Qualität auszeichnen transgene Kulturpflanzen die sich durch eine Kombinationen z.B. der o. g. neuen Eigenschaften auszeichnen („gene stacking“)
Zahlreiche molekularbiologische Techniken, mit denen neue transgene Pflanzen mit veränderten Eigenschaften hergestellt werden können, sind im Prinzip bekannt; siehe z.B. I. Potrykus und G. Spangenberg (eds.) Gene Transfer to Plants, Springer Lab Manual (1995), Springer Verlag Berlin, Heidelberg oder Christou, "Trends in Plant Science" 1 (1996) 423-431).
Für derartige gentechnische Manipulationen können Nucleinsäuremoleküle in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA- Sequenzen erlauben. Mit Hilfe von Standard verfahren können z.B. Basenaustausche vorgenommen, Teilsequenzen entfernt oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden, siehe z.B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; oder Winnacker "Gene und Klone", VCH Weinheim 2. Auflage 1996
Die Herstellung von Pflanzenzellen mit einer verringerten Aktivität eines Genprodukts kann beispielsweise erzielt werden durch die Expression mindestens einer entsprechenden antisense- RNA, einer sense-RNA zur Erzielung eines Cosuppressionseffektes oder die Expression mindestens eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte des obengenannten Genprodukts spaltet. Hierzu können zum einen DNA-Moleküle verwendet werden, die die gesamte codierende Sequenz eines Genprodukts einschließlich eventuell vorhandener flankierender Sequenzen umfassen, als auch DNA-Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense- Effekt zu bewirken. Möglich ist auch die Verwendung von DNA-Sequenzen, die einen hohen Grad an Homologie zu den codiereden Sequenzen eines Genprodukts aufweisen, aber nicht vollkommen identisch sind.
Bei der Expression von Nucleinsäuremolekülen in Pflanzen kann das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein. Um aber die Lokalisation in einem bestimmten Kompartiment zu erreichen, kann z.B. die codierende Region mit DNA- Sequenzen verknüpft werden, die die Lokalisierung in einem bestimmten Kompartiment gewährleisten. Derartige Sequenzen sind dem Fachmann bekannt (siehe beispielsweise Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad. Sei. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106). Die Expression der Nukleinsäuremoleküle kann auch in den Organellen der Pflanzenzellen stattfinden.
Die transgenen Pflanzenzellen können nach bekannten Techniken zu ganzen Pflanzen regeneriert werden. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen Pflanzenspezies handeln, d.h., sowohl monokotyle als auch dikotyle Pflanzen. So sind transgene Pflanzen erhältlich, die veränderte Eigenschaften durch Überexpression, Suppression oder Inhibierung homologer (= natürlicher) Gene oder Gensequenzen oder Expression heterologer (= fremder) Gene oder Gensequenzen aufweisen.
Vorzugsweise können die erfindungsgemäßen Verbindungen (I) in transgenen Kulturen eingesetzt werden, welche gegen Wuchsstoffe, wie z.B. 2,4-D, Dicamba oder gegen Herbizide, die essentielle Pflanzenenzyme, z.B. Acetolactatsynthasen (ALS), EPSP Synthasen, Glutaminsynthasen (GS) oder Hydoxyphenylpyruvat Dioxygenasen (HPPD) hemmen, respektive gegen Herbizide aus der Gruppe der Sulfonylharnstoffe, der Glyphosate, Glufosinate oder Benzoylisoxazole und analogen Wirkstoffe, oder gegen beliebige Kombinationen dieser Wirkstoffe, resistent sind.
Besonders bevorzugt können die erfindungsgemäßen Verbindungen in transgenen Kulturpflanzen eingesetzt werden, die gegen eine Kombination von Glyphosaten und Glufosinaten, Glyphosaten und Sulfonylharnstoffen oder Imidazolinonen resistent sind. Ganz besonders bevorzugt können die erfindungsgemäßen Verbindungen in transgenen Kulturpflanzen wie z. B. Mais oder Soja mit dem Handelsnamen oder der Bezeichnung OptimumTM GATTM (Glyphosate ALS Tolerant) eingesetzt werden.
Bei der Anwendung der erfindungsgemäßen Wirkstoffe in transgenen Kulturen treten neben den in anderen Kulturen zu beobachtenden Wirkungen gegenüber Schadpflanzen oftmals Wirkungen auf, die für die Applikation in der jeweiligen transgenen Kultur spezifisch sind, beispielsweise ein verändertes oder speziell erweitertes Unkrautspektrum, das bekämpft werden kann, veränderte Aufwandmengen, die für die Applikation eingesetzt werden können, vorzugsweise gute Kombinierbarkeit mit den Herbiziden, gegenüber denen die transgene Kultur resistent ist, sowie Beeinflussung von Wuchs und Ertrag der transgenen Kulturpflanzen.
Gegenstand der Erfindung ist deshalb auch die Verwendung der erfindungsgemäßen Verbindungen der Formel (I) als Herbizide zur Bekämpfung von Schadpflanzen in transgenen Kulturpflanzen.
Die erfindungsgemäßen Verbindungen können in Form von Spritzpulvern, emulgierbaren Konzentraten, versprühbaren Lösungen, Stäubemitteln oder Granulaten in den üblichen Zubereitungen angewendet werden. Gegenstand der Erfindung sind deshalb auch herbizide und pflanzenwachstumsregulierende Mittel, welche die erfindungsgemäßen Verbindungen enthalten.
Die erfindungsgemäßen Verbindungen können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch-physikalischen Parameter vorgegeben sind. Als Formulierungsmöglichkeiten kommen beispielsweise in Frage: Spritzpulver (WP), wasserlösliche Pulver (SP), wasserlösliche Konzentrate, emulgierbare Konzentrate (EC), Emulsionen (EW), wie Öl-in-Wasser- und Wasser-in-Öl-Emulsionen, versprühbare Lösungen, Suspensionskonzentrate (SC), Dispersionen auf Öl- oder Wasserbasis, ölmischbare Lösungen, Kapselsuspensionen (CS), Stäubemittel (DP), Beizmittel, Granulate für die Streu- und Bodenapplikation, Granulate (GR) in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), wasserlösliche Granulate (SG), ULV-Formulierungen, Mikrokapseln und Wachse. Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl. 1986, Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker, N.Y., 1973, K. Martens, "Spray Drying" Handbook, 3rd Ed. 1979, G. Goodwin Ltd. London.
Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J., H.v. Olphen, "Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y., C. Marsden, "Solvents Guide", 2nd Ed., Interscience, N.Y. 1963, McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J., Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964, Schönfeldt, "Grenzflächenaktive Äthylenoxid-addukte", Wiss. Verlagsgesell., Stuttgart 1976, Winnacker-Küchler, "Chemische Technologie", Band 7,
C. Hanser Verlag München, 4. Aufl. 1986.
Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen Wirkstoffen, wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix.
Als Kombinationspartner für die Verbindungen der allgemeinen Formel (I) in Mischungsformulierungen oder im Tank-Mi sind beispielsweise bekannte Wirkstoffe, die auf einer Inhibition von beispielsweise Acetolactat-Synthase, Acetyl-CoA-Carboxylase, Cellulose-Synthase, Enolpyruvylshikimat-3-phosphat- Synthase, Glutamin-Synthetase, p-Hydroxyphenylpyruvat-Dioxygenase, Phytoendesaturase, Photosystem I, Photosystem II, Protoporphyrinogen-Oxidase beruhen oder als
Pflanzenwuchsregulatoren wirken, einsetzbar, wie sie z.B. aus Weed Research 26 (1986) 441-445 oder "The Pesticide Manual", 14th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2006 und dort zitierter Literatur beschrieben sind.
Als bekannte Herbizide oder Pflanzenwachstumsregulatoren, die mit Verbindungen der allgemeinen Formel (I) kombiniert werden können, sind z.B. folgende Wirkstoffe zu nennen (die Verbindungen sind entweder mit dem "common name" nach der International Organization for Standardization (ISO) oder mit dem chemischen Namen oder mit der Codenummer bezeichnet) und umfassen stets sämtliche Anwendungsformen wie Säuren, Salze, Ester und Isomere wie Stereoisomere und optische Isomere. Dabei sind beispielhaft eine und zum Teil auch mehrere Anwendungsformen genannt:
Acetochlor, Acifluorfen, Acifluorfen-methyl, Acifluorfen-Natrium, Aclonifen, Alachlor, Allidochlor, Alloxydim, Alloxydim-Natrium, Ametryn, Amicarbazon, Amidochlor, Amidosulfuron, 4-Amino-3- chlor-6-(4-chlor-2-fluor-3-methylphenyl)-5-fluorpyridin-2-carbonsäure, Aminocyclopyrachlor, Aminocyclopyrachlor-Kalium, Aminocyclopyrachlor-methyl, Aminopyralid, Aminopyralid- dimethylammonium, Aminopyralid- tripromine, Amitrol, Ammoniumsulfamate, Anilofos, Asulam, Asulam-Kalium, Asulam-Natrium, Atrazin, Azafenidin, Azimsulfuron, Beflubutamid, (S)-(-)- Beflubutamid, Beflubutamid-M, Benazolin, Benazolin-ethyl, Benazolin-dimethylammonium, Benazolin-Klaium, Benfluralin, Benfuresate, Bensulfuron, Bensulfuron-methyl, Bensulid, Bentazon, Bentazon-Natrium, Benzobicyclon, Benzofenap, Bicyclopyrone, Bifenox, Bilanafos, Bilanafos-Natium, Bipyrazone, Bispyribac, Bispyribac-Natium, Bixlozon, Bromacil, Bromacil-lithium, Bromacil-Natrium, Bromobutid, Bromofenoxim, Bromoxynil, Bromoxynilbutyrat, Bromoxynil-Kalium, Bromoxynil- heptanoat und Bromoxynil-octanoat, Busoxinon, Butachlor, Butafenacil, Butamifos, Butenachlor, Butralin, Butroxydim, Butylat, Cafenstrol, Cambendichlor, Carbetamide, Carfentrazon, Carfentrazon- Ethyl, Chloramben, Chloramben-ammonium, Chloramben-diolamin, Chlroamben-methyl, Chloramben methylammonium, Chlor amben-Natium, Chlorbromuron, Chlorfenac, Chlorfenac-ammonium, Chlorfenac-Natium, Chlorfenprop, Chlorfenprop-methyl, Chlorflurenol, Chlorflurenol-methyl, Chloridazon, Chlorimuron, Chlorimuron-ethyl, Chlorophthalim, Chlorotoluron, Chlorsulfuron,
Chlorthal, Chlorthal-dimethyl, Chlorthal-monomethyl, Cinidon, Cinidon-ethyl, Cinmethylin, exo-(+)- Cinmethylin, d.h. (lR,2S,4S)-4-isopropyl-l-methyl-2-[(2-methylbenzyl)oxy]-7-oxabicyclo[2.2.1]heptan, exo-(-)-Cinmethylin, d.h. (lR,2S,4S)-4-isopropyl-l-methyl-2-[(2-methylbenzyl)oxy]-7- oxabicyclo[2.2.1]heptan, Cinosulfuron, Clacyfos, Clethodim, Clodinafop, Clodinafop-ethyl, Clodinafop- propargyl, Clomazon, Clomeprop, Clopyralid, Clopyralid-methyl, Clopyralid-olamin, Clopyralid- Kalium, Clopyralid-tripomin, Cloransulam, Cloransulam-methyl, Cumyluron, Cyanamide, Cyanazine, Cycloat, Cyclopyranil, Cyclopyrimorat, Cyclosulfamuron, Cycloxydim, Cyhalofop, Cyhalofop-butyl, Cyprazin, 2,4-D (sowie die Ammonium, Butotyl, Butyl, Cholin, Diethylammonium, Dimethylammonium, Diolamin, Doboxyl, Dodecylammonium, Etexyl, Ethyl, 2-Ethylhexyl, Heptylammonium, Isobutyl, Isooctyl, Isopropyl, Isopropylammonium, Lithium, Meptyl, Methyl,
Kalium, Tetradecylammonium, Triethylammonium, Triisopropanolammonium, Tripromin and Trolamin Salze davon), 2,4-DB, 2,4-DB-butyl, 2,4-DB-Dimethylammonium, 2,4-DB-isooctyl, 2,4-DB-Kalium und 2,4-DB-Natrium, Daimuron (Dymron), Dalapon, Dalapon-Calcium, Dalapon-Magnesium, Dalapon- Natium, Dazomet, Dazomet-Natrium, n-Decanol, 7-Deoxy-D-sedoheptulose, Desmedipham, Detosyl- pyrazolat (DTP), Dicamba und seine Salze (z.B. Dicamba-biproamin, Dicamba-N,N-Bis(3- aminopropyl)methylamin, Dicamba-butotyl, Dicamba-cholin, Dicamba-Diglycolamin, Dicamba- Dimethylammonium, Dicamba-Diethanolaminemmonium, Dicamba-Diethylammonium, Dicamba- isopropylammonium, Dicamba-methyl, Dicamba-monoethanolamin, Dicamba-olamin, Dicamba- Kalium, Dicamba-Natium, Dicamba-Triethanolamin), Dichlobenil, 2-(2,4-Dichlorbenzyl)-4,4-dimethyl- l,2-oxazolidin-3-on, 2-(2,5-Dichlorbenzyl)-4,4-dimethyl-l,2-oxazolidin-3-one, Dichlorprop, Dichlorprop-butotyl, Dichlorprop-Dimethylammonium, Dichhlorprop-etexyl, Dichlorprop- ethylammonium, Dichlorprop-isoctyl, Dichlorprop-methyl, Dichlorprop-Kalium, Dichlorprop-Natrium, Dichlorprop-P, Dichlorprop-P-Dimethylammonium, Dichlorprop-P-etexyl, Dichlorprop-P-Kalium, Dichlorprop-Natrium, Diclofop, Diclofop-methyl, Diclofop-P, Diclofop-P-methyl, Diclosulam, Difenzoquat, Difenzoquat-metilsulfate, Diflufenican, Diflufenzopyr, Diflufenzopyr-Natrium,
Dimefuron, Dimepiperate, Dimesulfazet, Dimethachlor, Dimethametryn, Dimethenamid, Dimethenamid-P, Dimetrasulfuron, Dinitramine, Dinoterb, Dinoterb-Acetate, Diphenamid, Diquat, Diquat-Dibromid, Diquat-Dichloride, Dithiopyr, Diuron, DNOC, DNOC-Ammonium, DNOC-Kalium, DNOC-Natrium, Endothal, Endothal-Diammonium, Endothal-Dikalium, Endothal-Dinatrium, Epyrifenacil (S-3100), EPTC, Esprocarb, Ethalfluralin, Ethametsulfuron, Ethametsulfuron-Methyl, Ethiozin, Ethofumesate, Ethoxyfen, Ethoxyfen-Ethyl, Ethoxysulfuron, Etobenzanid, F-5231, d.h. N-[2- Chlor-4-fluor-5-[4-(3-fluorpropyl)-4,5-dihydro-5-oxo-lH-tetrazol-l-yl]-phenyl]-ethansulfonamid, F- 7967, i.e. 3-[7-Chlor-5-fluor-2-(trifluormethyl)-lH-benzimidazol-4-yl]-l-methyl-6- (trifluormethyl)pyrimidin-2,4(lH,3H)-dion, Fenoxaprop, Fenoxaprop-P, Fenoxaprop-Ethyl, Fenoxaprop-P-Ethyl, Fenoxasulfone, Fenpyrazone, Fenquinotrione, Fentrazamid, Flamprop, Flamprop- Isoproyl, Flamprop-Methyl, Flamprop-M-Isopropyl, Flamprop-M-Methyl, Flazasulfuron, Florasulam, Florpyrauxifen, Florpyrauxifen-benzyl, Fluazifop, Fluazifop-Butyl, Fluazifop-Methyl, Fluazifop-P, Fluazifop-P-Butyl, Flucarbazone, Flucarbazone-Natrium, Flucetosulfuron, Fluchloralin, Flufenacet, Flufenpyr, Flufenpyr-Ethyl, Flumetsulam, Flumiclorac, Flumiclorac-Pentyl, Flumioxazin, Fluometuron, Flurenol, Flurenol-Butyl, -Dimethylammonium und -Methyl, Fluoroglycofen, Fluoroglycofen-Ethyl, Flupropanat, Flupropanat-Natrium, Flupyrsulfuron, Flupyrsulfuron-Methyl, Flupyrsulfuron-Methyl- Natrium, Fluridon, Flurochloridon, Fluroxypyr, Fluroxypyr-Butometyl, Fluroxypyr-Meptyl, Flurtamon, Fluthiacet, Fluthiacet-Methyl, Fomesafen, Fomesafen-Natrium, Foramsulfuron, Foramsulfuron-Natrium, Fosamine, Fosamine-Ammonium, Glufosinat, Glufosinat-Ammonium, Glufosinat-Natrium, F- Glufosinat-Ammonium, F-Glufosinat-Natrium, Glufosinat-P-Natrium, Glufosinat-P-Ammonium, Glyphosat, Glyphosat-Ammonium, Glyphosat-Isopropylammonium, Glyphosat-Diammonium, Glyphosat-Dimethylammonium, Glyphosat-Kalium, Glyphosat-Natrium, Glyphosat-Sesquinatrium und Glyphosat-Trimesium, H-9201, d.h. 0-(2,4-Dimethyl-6-nitrophenyl)-0-ethyl- isopropylphosphoramidothioat, Halauxifen, Halauxifen-methyl, Halosafen, Halosulfuron, Halosulfuron- Methyl, Haloxyfop, Haloxyfop-P, Haloxyfop-Ethoxyethyl, Haloxyfop-P-Ethoxyethyl, Haloxyfop- Methyl, Haloxyfop-P-Methyl, Haloxifop-Natrium, Hexazinon, HNPC-A8169, i.e. Prop-2-yn-l-yl (2S)- 2-{3-[(5-tert-butylpyridin-2-yl)oxy]phenoxy}propanoat, HW-02, d.h. l-(Dimethoxyphosphoryl)-ethyl- (2,4-dichlorphenoxy)acetat, Hydantocidin, Imazamethabenz, Imazamethabenz-Methyl, Imazamox, Imazamox-Ammonium, Imazapic, Imazapic-Ammonium, Imazapyr, Imazapyr-Isopropylammonium, Imazaquin, Imazaquin-Ammonium, Imazaquin-Methyl, Imazethapyr, Imazethapyr-Ammonium, Imazosulfuron, Indanofan, Indaziflam, Iodosulfuron, Iodosulfuron-Methyl, Iodosulfuron-Methyl- Natrium, Ioxynil, Ioxynil-Lithium, -Octanoat, -Kalium und Natrium, Ipfencarbazon, Isoproturon, Isouron, Isoxaben, Isoxaflutole, Karbutilat, KUH-043, d.h. 3-({[5-(Difluormethyl)-l-methyl-3- (trifluormethyl)-lH-pyrazol-4-yl]methyl}sulfonyl)-5,5-dimethyl-4,5-dihydro-l,2-oxazol, Ketospiradox, Ketospiradox-Kalium, Lactofen, Lenacil, Linuron, MCPA, MCPA-Butotyl, -Butyl, -Dimethyl- ammonium, -Diolamin, -2-Ethylhexyl, -Ethyl, -Isobutyl, Isoctyl, -Isopropyl, -Isopropylammonium, - Methyl, Olamin, -Kalium, -Natrium und -Trolamin, MCPB, MCPB-Methyl, -Ethyl und -Natrium, Mecoprop, Mecoprop-Butotyl, Mecoprop- dimethylammonium, Mecoprop-Diolamin, Mecoprop-Etexyl, Mecoprop-Ethadyl, Mecoprop-Isoctyl, Mecoprop-Methyl, Mecoprop-Kalium, Mecoprop-Natrium, und Mecoprop-Trolamin, Mecoprop-P, Mecoprop-P-Butotyl, -Dimethylammonium, -2-Ethylhexyl und - Kalium, Mefenacet, Mefluidid, Mefluidid-Diolamin, Mefluidid-Kalium, Mesosulfuron, Mesosulfuron- Methyl, Mesosulfuron-Natrium, Mesotrion, Methabenzthiazuron, Metam, Metamifop, Metamitron, Metazachlor, Metazosulfuron, Methabenzthiazuron, Methiopyrsulfuron, Methiozolin, Methyl isothiocyanat, Metobromuron, Metolachlor, S-Metolachlor, Metosulam, Metoxuron, Metribuzin, Metsulfuron, Metsulfuron-Methyl, Molinat, Monolinuron, Monosulfuron, Monosulfuron-Methyl, MT- 5950, d.h. N-[3-Chlor-4-(l-methylethyl)-phenyl]-2-methylpentanamid, NGGC-011, Napropamid, NC- 310, i.e. 4-(2,4-Dichlorbenzoyl)-l-methyl-5-benzyloxypyrazol, NC-656, i.e. 3- [(Isopropylsulfonyl)methyl]-N-(5-methyl-l,3,4-oxadiazol-2-yl)-5-(trifluormethyl)[l,2,4]triazolo-[4,3- a]pyridin-8-carboxamid, Neburon, Nicosulfuron, Nonansäure (Pelargonsäure), Norflurazon, Ölsäure (Fettsäuren), Orbencarb, Orthosulfamuron, Oryzalin, Oxadiargyl, Oxadiazon, Oxasulfuron, Oxaziclomefone, Oxyfluorfen, Paraquat, Paraquat-dichlorid, Paraquat-Dimethylsulfat, Pebulat, Pendimethalin, Penoxsulam, Pentachlorphenol, Pentoxazon, Pethoxamid, Petroleumöl, Phenmedipham, Phenmedipham-Ethyl, Picloram, Picloram-dimethylammonium, Picloram-Etexyl, Picloram-Isoctyl, Picloram-Methyl, Picloram-Olamin, Picloram-Kalium, Picloram-Triethylammonium, Picloram- Tripromin, Picloram-Trolamin, Picolinafen, Pinoxaden, Piperophos, Pretilachlor, Primisulfuron, Primisulfuron-Methyl, Prodiamine, Profoxydim, Prometon, Prometryn, Propachlor, Propanil, Propaquizafop, Propazine, Propham, Propisochlor, Propoxycarbazone, Propoxycarbazone-Natrium, Propyrisulfuron, Propyzamid, Prosulfocarb, Prosulfuron, Pyraclonil, Pyraflufen, Pyraflufen-Ethyl, Pyrasulfotol, Pyrazolynat (Pyrazolat), Pyrazosulfuron, Pyrazosulfuron-Ethyl, Pyrazoxyfen,
Pyribambenz, Pyribambenz-Isopropyl, Pyribambenz-Propyl, Pyribenzoxim, Pyributicarb, Pyridafol, Pyridat, Pyriftalid, Pyriminobac, Pyriminobac-Methyl, Pyrimisulfan, Pyrithiobac, Pyrithiobac-Natrium, Pyroxasulfon, Pyroxsulam, Quinclorac, Quinclorac-Dimethylammonium, Quinclorac-Methyl, Quinmerac, Quinoclamin, Quizalofop, Quizalofop-Ethyl, Quizalofop-P, Quizalofop-P-Ethyl, Quizalofop-P-Tefuryl, QYM201 , i.e. 1 - { 2-Chlor-3-[(3-cyclopropyl-5-hydroxy- 1 -methyl- lH-pyrazol-4- yl)carbonyl]-6-(trifluormethyl)phe-nyl}piperidin-2-on, Rimsulfuron, Saflufenacil, Sethoxydim, Siduron, Simazine, Simetryn, SL-261, Sulcotrione, Sulfentrazone, Sulfometuron, Sulfometuron-Methyl, Sulfosulfuron, , SYP-249, d.h. l-Ethoxy-3-methyl-l-oxobut-3-en-2-yl-5-[2-chlor-4- (trifluormethyl)phenoxy]-2-nitrobenzoat, SYP-300, i.e. l-[7-Fluor-3-oxo-4-(prop-2-in-l-yl)-3,4- dihydro-2H-l,4-benzoxazin-6-yl]-3-propyl-2-thioxoimidazolidin-4,5-dion, 2,3,6-TBA, TCA (Trichloressigsäure) und seine Salze, z.B. TCA-ammonium, TCA-Calcium, TCA-Ethyl, TCA- Magnesium, TCA-Natrium, Tebuthiuron, Tefuryltrione, Tembotrion, Tepraloxydim, Terbacil, Terbucarb, Terbumeton, Terbuthylazine, Terbutryn, Tetflupyrolimet, Thaxtomin, Thenylchlor, Thiazopyr, Thiencarbazone, Thiencarbazon-Methyl, Thifensulfuron, Thifensulfuron-Methyl, Thiobencarb, Tiafenacil, Tolpyralat, Topramezon, Tralkoxydim, Triafamon, Tri-allat, Triasulfuron, Triaziflam, Tribenuron, Tribenuron-Methyl, Triclopyr, Triclopyr-Butotyl, Triclopyr-Cholin, Triclopyr- Ethyl, Triclopyr-Triethylammonium, Trietazine, Trifloxysulfuron, Trifloxysulfuron-Natrium, Trifludimoxazin, Trifluralin, Triflusulfuron, Triflusulfuron-Methyl, Tritosulfuron, Harnstoffsulfat, Vernolat, XDE-848, ZJ-0862, d.h. 3,4-Dichlor-N-{2-[(4,6-dimethoxypyrimidin-2-yl)oxy]benzyl}anilin, 3-(2-Chlor-4-fluor-5-(3-methyl-2,6-dioxo-4-trifluormethyl-3,6-dihydropyrimidin-l(2H)-yl)phenyl)-5- methyl-4,5-dihydroisoxazole-5-carbonsäureethylester, Ethyl-[(3-{2-chlor-4-fluor-5-[3-methyl-2,6- dioxo-4-(trifluormethyl)-3,6-dihydropyrimidin-l(2H)-yl]phenoxy}pyridin-2-yl)oxy]acetat, 3-Chlor-2- [3-(difluormethyl)isoxazolyl-5-yl]phenyl-5-chlorpyrimidin-2-ylether, 2-(3,4-Dimethoxyphenyl)-4-[(2- hydroxy-6-oxocyclohex- 1 -en- 1 -yl)carbonyl] -6-methylpyridazine-3(2//)-on, 2-({2-[(2- Methoxyethoxy)methyl]-6-methylpyridin-3-yl}carbonyl)cyclohexane-l,3-dion, (5-Hydroxy-l-methyl- lH-pyrazol-4-yl)(3,3,4-trimethyl- 1 , 1 -dioxido-2,3-dihydro- 1 -benzothiophen-5-yl)methanon, 1 -Methyl-4- [(3,3,4-trimethyl- 1 , 1 -dioxido-2,3-dihydro- 1 -benzothiophen-5-yl)carbonyl]- lH-pyrazol-5-yl propan- 1 - sulfonat, 4- { 2-Chlor-3-[(3,5-dimethyl- lH-pyrazol- 1 -yl)methyl] -4-(methylsulfonyl)benzoyl } - 1 -methyl- lH-pyrazol-5-yl-l,3-dimethyl-lH-pyrazol-4-carboxylat; Cyanomethyl-4-amino-3-chlor-5-fluor-6-(7- fluor- 1 H-indol-6-yl)pyridin-2-carboxylat, Prop-2-yn- 1 -yl 4-amino-3-chlor-5-fluor-6-(7 -fluor- 1 H-indol- 6-yl)pyridin-2-carboxylat, Methyl-4-amino-3-chlor-5-fluor-6-(7-fluor-lH-indol-6-yl)pyridin-2- carboxylat, 4-Amino-3-chlor-5-fluor-6-(7-fluor-lH-indol-6-yl)pyridin-2-carbonsäure, Benzyl-4-amino- 3-chlor-5-fluor-6-(7-fluor-lH-indol-6-yl)pyridin-2-carboxylat, Ethyl-4-amino-3-chlor-5-fluor-6-(7- fluor- 1 H-indol-6-yl)pyridin-2-carboxylat, Methyl-4-amino-3-chlor-5-fluor-6-(7 -fluor- 1 -isobutyryl- 1 H- indol-6-yl)pyridin-2-carboxylat, Methyl 6-(l-acetyl-7-fluor-lH-indol-6-yl)-4-amino-3-chlor-5- fluorpyridin-2-carboxylat, Methyl-4-amino-3-chlor-6-[l-(2,2-dimethylpropanoyl)-7-fluor-lH-indol-6- yl]-5-fluorpyridin-2-carboxylat, Methyl-4-amino-3-chlor-5-fluor-6-[7-fluor-l-(methoxyacetyl)-lH- indol-6-yl]pyridin-2-carboxylat, Kalium 4-amino-3-chlor-5-fluor-6-(7-fluor-lH-indol-6-yl)pyridin-2- carboxylat, Natrium-4-amino-3-chlor-5-fluor-6-(7-fluor-lH-indol-6-yl)pyridin-2-carboxylat, Butyl-4- amino-3-chlor-5-fluoro-6-(7-fluoro-lH-indol-6-yl)pyridin-2-carboxylat, 4-Hydroxy-l-methyl-3-[4- (trifluoromethyl)pyridin-2-yl]imidazolidin-2-on, 3-(5-tert-butyl-l,2-oxazol-3-yl)-4-hydroxy-l- methylimidazolidin-2-on, 3-[5-Chlor-4-(trifluormethyl)pyridin-2-yl]-4-hydroxy-l-methylimidazolidin- 2-on, 4-Hydroxy-l-methoxy-5-methyl-3-[4-(trifluormethyl)pyridin-2-yl]imidazolidin-2-on, 6-[(2- Hydroxy-6-oxocyclohex- 1 -en- 1 -yl)carbonyl] - 1 ,5-dimethyl-3-(2-methylphenyl)chinazolin-2,4( 1H,3H)- dion, 3-(2,6-Dimethylphenyl)-6-[(2-hydroxy-6-oxocyclohex- 1 -en- 1 -yl)carbonyl] - 1 -methylchinazolin- 2,4(lH,3H)-dion, 2-[2-chlor-4-(methylsulfonyl)-3-(morpholin-4-ylmethyl)benzoyl]-3-hydroxycyclohex- 2-en-l-on, l-(2-carboxyethyl)-4-(pyrimidin-2-yl)pyridazin-l-iumsalz (mit passenden Anionen wie z.B Chlorid, Acetat oder Trifluoracetat), l-(2-Carboxyethyl)-4-(pyridazin-3-yl)pyridazin-l-iumsalz (mit passenden Anionen wie z.B. Chlorid, Acetat oder Trifluoracetat), 4-(Pyrimidin-2-yl)-l-(2- sulfoethyl)pyridazin-l-ium salz iumsalz (mit passenden Anionen wie z.B Chlorid, Acetat oder Trifluoracetat), 4-(Pyridazin-3-yl)-l-(2-sulfoethyl)pyridazin-l -iumsalz (mit passenden Anionen wie z.B Chlorid, Acetat oder Trifluoracetat), l-(2-Carboxyethyl)-4-(l,3-thiazol-2-yl)pyridazin-l-iumsalz (mit passenden Anionen wie z.B Chlorid, Acetat oder Trifluoracetat), l-(2-Carboxyethyl)-4-(l,3-thiazol-2- yl)pyridazin-l-ium salz (mit passenden Anionen wie z.B Chlorid, Acetat oder Trifluoracetat).
Beispiele für Pflanzenwachstumsregulatoren als mögliche Mischungspartner sind:
Abscisinsäure und verwandte Analoga [z.B. (2Z,4E)-5-[6-Ethynyl-l-hydroxy-2,6-dimethyl-4- oxocyclohex-2-en-l-yl]-3-methylpenta-2,4-diensäure, methyl-(2Z,4E)-5-[6-ethynyl-l-hydroxy-2,6- dimethyl-4-oxocyclohex-2-en-l-yl]-3-methylpenta-2,4-dienoat, (2Z,4E)-3-ethyl-5-(l-hydroxy-2,6,6- trimethyl-4-oxocyclohex-2-en-l-yl)penta-2,4-diensäure, (2E,4E)-5-(l-hydroxy-2,6,6-trimethyl-4- oxocyclohex-2-en-l-yl)-3-(trifluoromethyl)penta-2,4-diensäure, methyl (2E,4E)-5-(l-hydroxy-2,6,6- trimethyl-4-oxocyclohex-2-en-l-yl)-3-(trifluoromethyl)penta-2,4-dienoat, (2Z,4E)-5-(2-hydroxy-l,3- dimethyl-5-oxobicyclo[4.1.0]hept-3-en-2-yl)-3-methylpenta-2,4-diensäure], Acibenzolar, Acibenzolar- S-methyl, S-Adenosylhomocystein, Allantoin, 2-Aminoethoxyvinylglycin (AVG), Aminooxyessigsäure and verwandte Ester [z.B. (Isopropyliden)-aminooxyessigsäure-2-(methoxy)-2-oxoethylester, (Isopropyliden)-aminooxyessigsäure-2-(hexyloxy)-2-oxoethylester, (Cyclohexyliden)- aminooxyessigsäure-2-(isopropyloxy)-2-oxoethylester] , 1 -Aminocycloprop- 1 -ylcarbonsäure N-Methyl- 1-aminocy clopropyl- 1 -carbonsäure, 1-Aminocyclopropyl-l -carbonsäureamid, substituierte 1- Aminocyclopropyl-1 -carbonsäurederivate wie sie in DE3335514, EP30287, DE2906507 oder US5123951 beschrieben werden, 1-Aminocyclopropyl-l-hydroxamsäure, 5-Aminolevulinsäure, Ancymidol, 6-Benzylaminopurin, Bikinin, Brassinolid, Brassinolide-ethyl, L-Canalin, Catechin und catechine (z.B . (2S ,3R)-2-(3 ,4-Dihydroxyphenyl)-3 ,4-dihydro-2H-chromen-3 ,5 ,7 -triol) , Chitooligosaccharides (CO; COs unterscheiden sich von LCOs dadurch, daß ihnen die für LCOs charakteristische Fettsäureseitenkette fehlt. COs, in manchen Fähen als N-Acetylchitooligosaccharide bezeichnet, sind auch aus GlcNAc-Einheiten aufgebaut, aber haben Seitenketten, durch die sies ich von Chitinmolekülen unterscheiden [(CSH NOS)!!, CAS NO. 1398-61-4] und chitosan Moleküle [( AHpNO, , CAS No. 9012-76-4]), Chitin-artige Verbindungen, Chlormequat Chloride, Cloprop, Cyclanilide, 3-(Cycloprop-l-enyl)propionsäure, l-[2-(4-Cyano-3,5-dicyclopropylphenyl)acetamido] cyclohexancarbonsäure, 1 - [2-(4-Cyano-3-cyclopropylphenyl)acetamido] cy clohexancarbonsäure, 1 - Cyclopropenylmethanol, Daminozid, Dazomet, Dazomet-Natrium, n-Decanol, Dikegulac, Dikegulac- Natrium, Endothal, Endothal-di-Kalium, -di-Natrium, und mono(N,N-dimethylalkylammonium), Ethephon, l-Ethylcyclopropen,Flumetralin, Flurenol, Flurenol-butyl, Flurenol-methyl, Flurprimidol, Forchlorfenuron, Gibberellinsäure, Inabenfid, Indol-3-essigsäure (IAA), 4-Indol-3-ylbuttersäure, Isoprothiolan, Probenazole, Jasmonsäure, Jasmonsäureester oder andere Derivate (z.B. Jasmonsäuremethylester, Jasmonsäureethylester), Lipochitooligosaccharide (LCO, in manchen Fällen auch als Symbiotische Nodulationssignale (Nod oder Nod Faktoren) oder als Myc Faktoren bezeichnet, bestehen aus einem Oligosacchariderückgrat aus ß-l,4-verknüpften /V-Acctyl-D-Glucosami niesten (“GlcNAc”) mit einer N-verknüpften Fettsäureseitenkette, die am nicht reduzierenden Ende ankondensiert ist. Wie aus der Fiteratur zu entnehmen ist, unterscheiden sich FCOs in der Zahl an GlcNAc-Einheiten in der Rückgratstruktur, in der Fänge und dem Sättigungsgrad der Fettsäurekette sowie in der Substitution der reduzierenden und nicht-reduzierenden Zuckereinheiten), Finoleinsäure oder ihre Derivate, Finolensäure oder ihre Derivate, Maleinsäurehydrazid, Mepiquatchlorid, Mepiquatpentaborat, 1-Methylcyclopropen, 3-Methylcyclopropen, Methoxyvinylglycin (MVG), 3’- Methylabscisinsäure, 1 -(4-Methylphenyl)-N-(2-oxo- 1 -propyl- 1 ,2,3,4-tetrahydrochinolin-6- yl)methansulfonamid und verwandte substituierte (Tetrahydrochinolin-6-yl)methansulfonamide, (3E,3aR,8bS)-3-({[(2R)-4-Methyl-5-oxo-2,5-dihydrofuran-2-yl]oxy}methylen)-3,3a,4,8b-tetrahydro- 2H-indeno[l,2-b]furan-2-on und verwandte Faktone wie sie in EP2248421 beschrieben sind, 2-(l- Naphthyl)acetamid, 1-Naphthylessigsäure, 2- Naphthyloxyessigsäure, Nitrophenolatmischung, 4-Oxo- 4[(2-phenylethyl)amino]buttersäure, Paclobutrazol, 4-Phenylbuttersäure and ihre Salze (z.B. Natrium-4- phenylbutanoat, Kalium-4-phenylbutanoat), Phenylalanine, N-Phenylphthalamsäure, Prohexadione, Prohexadion-Calcium, , 1-n-Propylcyclopropen, Putrescin, Prohydrojasmon, Rhizobitoxin, Salicylsäure und Salicyclsäuremethylester, Sarcosin, Natriumcycloprop-l-en-l-ylacetat, Natriumcycloprop-2-en-l- ylacetat, Natrium-3-(cycloprop-2-en- 1 -yl)propanoat, Natrium-3-(cycloprop- 1 -en- 1 -yl)propanoat, Sidefungin, Spermidin, Spermine, Strigolactone, Tecnazene, Thidiazuron, Triacontanol, Trinexapac, Trinexapac-ethyl, Tryptophan, Tsitodef, Uniconazol, Uniconazol-P, 2-Fluoro-N-(3-methoxyphenyl)-9/7- purin-6-amin.
Safener, die in Kombination mit den erfindungsgemäßen Verbindungen der Formel (I) und ggf. in Kombinationen mit weiteren Wirkstoffen wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden wie oben aufgelistet, eingesetzt werden können, sind vorzugsweise ausgewählt aus der Gruppe bestehend aus:
S 1) Verbindungen der Formel (S 1),
Figure imgf000049_0001
wobei die Symbole und Indizes folgende Bedeutungen haben: PA ist eine natürliche Zahl von 0 bis 5, vorzugsweise 0 bis 3;
RA1 ist Halogen, (C1-C4)- Alkyl, (Ci-C4)-Alkoxy, Nitro oder Halogen-(Ci-C4)-alkyl;
WA ist ein unsubstituierter oder substituierter divalenter heterocyclischer Rest aus der Gruppe der teilungesättigten oder aromatischen Fünfring-Heterocyclen mit 1 bis 3 Heteroringatomen aus der Gruppe N und O, wobei mindestens ein N-Atom und höchstens ein O-Atom im Ring enthalten ist, vorzugsweise ein Rest aus der Gruppe (WA1) bis (WA4),
Figure imgf000049_0002
niA ist 0 oder 1 ;
RA 2 ist ORA 3, SRA 3 oder NRA 3RA 4 oder ein gesättigter oder ungesättigter 3- bis 7-gliedriger Heterocyclus mit mindestens einem N-Atom und bis zu 3 Heteroatomen, vorzugsweise aus der Gruppe O und S, der über das N-Atom mit der Carbonylgruppe in (Sl) verbunden ist und unsubstituiert oder durch Reste aus der Gruppe (C1-C4)- Alkyl, (Ci-C4)-Alkoxy oder gegebenenfalls substituiertes Phenyl substituiert ist, vorzugsweise ein Rest der Formel ORA 3, NHRA 4 oder N(CH3)2, insbesondere der Formel ORA 3;
RA 3 ist Wasserstoff oder ein unsubstituierter oder substituierter aliphatischer Kohlenwasserstoffrest, vorzugsweise mit insgesamt 1 bis 18 C-Atomen;
RA 4 ist Wasserstoff, (CI-CÖ)- Alkyl, (Ci-Ce)-Alkoxy oder substituiertes oder unsubstituiertes Phenyl; RA 5 ist H, (Ci -Cs)- Alkyl, Halogen-(Ci-C8)-alkyl, (Ci-C4)-Alkoxy-(Ci-C8)-alkyl, Cyano oder COORA 9, worin RA 9 Wasserstoff, (Ci-C8)- Alkyl, Halogen-(Ci-C8)-alkyl, (Ci-C4)-Alkoxy-(Ci-C4 alkyl, (Ci-Ce)-Hydroxyalkyl, (C3-Ci2)-Cycloalkyl oder Tri-(Ci-C4)-alkyl-silyl ist;
RA6, RA7, RA8 sind gleich oder verschieden Wasserstoff, (Ci-C8)-Alkyl, Halogen-(Ci-C8)-alkyl, (C3- Ci2)-Cycloalkyl oder substituiertes oder unsubstituiertes Phenyl; vorzugsweise: a) Verbindungen vom Typ der Dichlorphenylpyrazolin-3-carbonsäure (Sla), vorzugsweise Verbindungen wie l-(2,4-Dichlorphenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazolin-3-carbonsäure, l-(2,4-Dichlorphenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazolin-3-carbonsäureethylester (S 1-1) ("Mefenpyr-diethyl"), und verwandte Verbindungen, wie sie in der WO-A-91/07874 beschrieben sind; b) Derivate der Dichlorphenylpyrazolcarbonsäure (Slb), vorzugsweise Verbindungen wie l-(2,4-Dichlorphenyl)-5-methyl-pyrazol-3-carbonsäureethylester (S 1-2), l-(2,4-Dichlorphenyl)-5-isopropyl-pyrazol-3-carbonsäureethylester (S 1-3), l-(2,4-Dichlorphenyl)-5-(l,l-dimethyl-ethyl)pyrazol-3-carbonsäureethyl-ester (S 1-4) und verwandte Verbindungen, wie sie in EP-A-333 131 und EP-A-269 806 beschrieben sind; c) Derivate der l,5-Diphenylpyrazol-3-carbonsäure (Slc), vorzugsweise Verbindungen wie l-(2,4-Dichlorphenyl)-5-phenylpyrazol-3-carbonsäureethylester (S 1-5), l-(2-Chlorphenyl)-5-phenylpyrazol-3-carbonsäuremethylester (S 1-6) und verwandte Verbindungen wie sie beispielsweise in der EP-A-268554 beschrieben sind; d) Verbindungen vom Typ der Triazolcarbonsäuren (Sld), vorzugsweise Verbindungen wie Fenchlorazol(-ethylester), d.h. l-(2,4-Dichlorphenyl)-5-trichlormethyl-(lH)-l,2,4-triazol-3-carbon- säureethylester (S 1-7), und verwandte Verbindungen wie sie in EP-A-174562 und EP-A-346 620 beschrieben sind; e) Verbindungen vom Typ der 5-Benzyl- oder 5-Phenyl-2-isoxazolin-3- carbonsäure oder der 5,5-Diphenyl-2-isoxazolin-3-carbonsäure (Sle), vorzugsweise Verbindungen wie 5-(2,4-Dichlorbenzyl)-2-isoxazolin-3-carbonsäureethylester (S 1-8) oder 5-Phenyl-2-isoxazolin-3- carbonsäureethylester (S 1-9) und verwandte Verbindungen, wie sie in WO-A-91/08202 beschrieben sind, bzw. 5,5-Diphenyl-2-isoxazolin-3-carbonsäure (Sl-10) oder 5,5-Diphenyl-2-isoxazolin-3- carbonsäureethylester (Sl-11) ("Isoxadifen-ethyl") oder -n-propylester (Sl-12) oder der 5-(4-Fluorphenyl)-5-phenyl-2-isoxazolin-3-carbonsäureethylester (Sl-13), wie sie in der Patentanmeldung WO-A-95/07897 beschrieben sind.
S2) Chinolinderivate der Formel (S2),
Figure imgf000051_0001
wobei die Symbole und Indizes folgende Bedeutungen haben:
RB1 ist Halogen, (C1-C4)- Alkyl, (Ci-C4)-Alkoxy, Nitro oder Halogen-(Ci-C4)-alkyl; PB ist eine natürliche Zahl von 0 bis 5, vorzugsweise 0 bis 3;
RB2 ist ORB3, SRB3 oder NRB3RB4 oder ein gesättigter oder ungesättigter 3- bis 7-gliedriger Heterocyclus mit mindestens einem N-Atom und bis zu 3 Heteroatomen, vorzugsweise aus der Gruppe O und S, der über das N-Atom mit der Carbonylgruppe in (S2) verbunden ist und unsubstituiert oder durch Reste aus der Gruppe (C1-C4)- Alkyl, (Ci-C4)-Alkoxy oder gegebenenfalls substituiertes Phenyl substituiert ist, vorzugsweise ein Rest der Formel ORB 3, NHRB 4 oder N(CH3)2, insbesondere der Formel ORB 3;
RB 3 ist Wasserstoff oder ein unsubstituierter oder substituierter aliphatischer Kohlenwasserstoffrest, vorzugsweise mit insgesamt 1 bis 18 C-Atomen;
RB 4 ist Wasserstoff, (CI-CÖ)- Alkyl, (Ci-Ce)-Alkoxy oder substituiertes oder unsubstituiertes Phenyl;
TB ist eine (Ci oder C2)-Alkandiylkette, die unsubstituiert oder mit einem oder zwei (Ci- C4)Alkylresten oder mit [(Ci-C3)-Alkoxy]-carbonyl substituiert ist; vorzugsweise: a) Verbindungen vom Typ der 8-Chinolinoxyessigsäure (S2a), vorzugsweise (5-Chlor-8-chinolinoxy)essigsäure-(l-methylhexyl)ester ("Cloquintocet-mexyl") (S2-1), (5-Chlor-8-chinolinoxy)essigsäure-(l,3-dimethyl-but-l-yl)ester (S2-2), (5-Chlor-8-chinolinoxy)essigsäure-4-allyloxy-butylester (S2-3), (5-Chlor-8-chinolinoxy)essigsäure-l-allyloxy-prop-2-ylester (S2-4), (5-Chlor-8-chinolinoxy)essigsäureethylester (S2-5), (5-Chlor-8-chinolinoxy)essigsäuremethylester (S2-6),
(5-Chlor-8-chinolinoxy)essigsäureallylester (S2-7),
(5-Chlor-8-chinolinoxy)essigsäure-2-(2-propyliden-iminoxy)-l-ethylester (S2-8), (5-Chlor-8- chinolinoxy)essigsäure-2-oxo-prop-l-ylester (S2-9) und verwandte Verbindungen, wie sie in EP-A-86750, EP-A-94349 und EP-A-191 736 oder EP-A-0492366 beschrieben sind, sowie (5- Chlor-8-chinolinoxy)essigsäure (S2-10), deren Hydrate und Salze, beispielsweise deren Lithium-, Natrium- Kalium-, Kalzium-, Magnesium-, Aluminium-, Eisen-, Ammonium-, quartäre Ammonium-, Sulfonium-, oder Phosphoniumsalze wie sie in der WO-A-2002/34048 beschrieben sind; b) Verbindungen vom Typ der (5-Chlor-8-chinolinoxy)malonsäure (S2b), vorzugsweise Verbindungen wie (5-Chlor-8-chinolinoxy)malonsäurediethylester, (5-Chlor-8-chinolinoxy)malonsäurediallylester, (5-Chlor-8-chinolin- oxy)malonsäure-methyl-ethylester und verwandte Verbindungen, wie sie in EP-A-0582 198 beschrieben sind.
S3) Verbindungen der Formel (S3)
Figure imgf000052_0001
wobei die Symbole und Indizes folgende Bedeutungen haben:
Rc1 ist (Ci-C4)-Alkyl, Halogen-(Ci-C4)-alkyl, (C2-C4)-Alkenyl, Halogen-(C2-C4)-alkenyl, (C3-C7)- Cycloalkyl, vorzugsweise Dichlormethyl;
Rc2, Rc3 sind gleich oder verschieden Wasserstoff, (Ci-C4)-Alkyl, (C2-C4)-Alkenyl, (C2-C4)- Alkinyl, Halogen-(Ci-C4)-alkyl, Halogen-(C2-C4)-alkenyl, (Ci-C4)-Alkylcarbamoyl-(Ci-C4)-alkyl, (C2-C4)- Alkenylcarbamoyl-(C 1 -C4)-alkyl, (C 1 -C4)- Alkoxy-(C 1 -C4)-alkyl, Dioxolanyl-(C i-C4)-alkyl, Thiazolyl, Furyl, Furylalkyl, Thienyl, Piperidyl, substituiertes oder unsubstituiertes Phenyl, oder Rc2 und Rc3 bilden zusammen einen substituierten oder unsubstituierten heterocyclischen Ring, vorzugsweise einen Oxazolidin-, Thiazolidin-, Piperidin-, Morpholin-, Hexahydropyrimidin- oder Benzoxazinring; vorzugsweise:
Wirkstoffe vom Typ der Dichloracetamide, die häufig als Vorauflaufsafener (bodenwirksame Safener) angewendet werden, wie z. B.
"Dichlormid" (N,N-Diallyl-2,2-dichloracetamid) (S3-1),
"R-29148" (3-Dichloracetyl-2,2,5-trimethyl-l,3-oxazolidin) der Firma Stauffer (S3-2),
"R-28725" (3-Dichloracetyl-2,2,-dimethyl-l,3-oxazolidin) der Firma Stauffer (S3-3),
"Benoxacor" (4-Dichloracetyl-3,4-dihydro-3-methyl-2H-l,4-benzoxazin) (S3-4),
"PPG-1292" (N-Allyl-N-[(l,3-dioxolan-2-yl)-methyl]-dichloracetamid) der Firma PPG Industries (S3-5),
"DKA-24" (N-Allyl-N-[(allylaminocarbonyl)methyl]-dichloracetamid) der Firma Sagro-Chem (S3-6),
"AD-67" oder "MON 4660" (3-Dichloracetyl-l-oxa-3-aza-spiro[4,5]decan) der Firma Nitrokemia bzw. Monsanto (S3-7),
"TI-35" (1-Dichloracetyl-azepan) der Firma TRI-Chemical RT (S3-8),
"Diclonon" (Dicyclonon) oder "BAS 145138" oder "LAB 145138" (S3-9) ((RS)-l-Dichloracetyl-3,3,8a-trimethylperhydropyrrolo[l,2-a]pyrimidin-6-on) der Firma BASF, "Furilazol" oder "MON 13900" ((RS)-3-Dichloracetyl-5-(2-furyl)-2,2-dimethyloxazolidin) (S3-10); sowie dessen (R)-Isomer (S3-11).
S4) N-Acylsulfonamide der Formel (S4) und ihre Salze,
Figure imgf000053_0001
worin die Symbole und Indizes folgende Bedeutungen haben:
AD ist S02-NRD 3-C0 oder C0-NRD 3-S02
XD ist CH oder N;
RD1 ist CO-NRD 5RD6 oder NHCO-RD7;
RD2 ist Halogen, Halogen-(Ci-C4)-alkyl, Halogen-(Ci-C4)-alkoxy, Nitro, (C1-C4)- Alkyl, (C1-C4)- Alkoxy, (Ci-C4)-Alkylsulfonyl, (Ci-C4)-Alkoxycarbonyl oder (Ci-C4)-Alkylcarbonyl;
RD 3 ist Wasserstoff, (Ci-C4)-Alkyl, (C2-C4)-Alkenyl oder (C2-C4)-Alkinyl;
RD4 ist Halogen, Nitro, (C1-C4)- Alkyl, Halogen-(Ci-C4)-alkyl, Halogen-(Ci-C4)-alkoxy, (C3-C6)- Cycloalkyl, Phenyl, (Ci-C4)-Alkoxy, Cyano, (C 1-C4)- Alkyl thio, (Ci-C4)-Alkylsulfinyl, (C1-C4)- Alkylsulfonyl, (Ci-C4)-Alkoxycarbonyl oder (Ci-C4)-Alkylcarbonyl;
RD5 ist Wasserstoff, (Ci-Ce)-Alkyl, (C3-Ce)-Cycloalkyl, (C2-Ce)-Alkenyl, (C2-C6)-Alkinyl, (C5- C6)-Cycloalkenyl, Phenyl oder 3- bis 6-gliedriges Heterocyclyl enthaltend VD Heteroatome aus der Gruppe Stickstoff, Sauerstoff und Schwefel, wobei die sieben letztgenannten Reste durch VD Substituenten aus der Gruppe Halogen, (Ci-Ce)-Alkoxy, Halogen-(Ci-C6)-alkoxy, (C1-C2)- Alkylsulfinyl, (C1-C2)- Alkylsulfonyl, (C3-C6)-Cycloalkyl, (Ci-C4)-Alkoxycarbonyl, (C1-C4)- Alkylcarbonyl und Phenyl und im Falle cyclischer Reste auch (C1-C4)- Alkyl und Halogen-(Ci-C4)- alkyl substituiert sind;
RD 6 ist Wasserstoff, (Ci-Ce)-Alkyl, (C2-Ce)-Alkenyl oder (C2-Ce)-Alkinyl, wobei die drei letztgenannten Reste durch VD Reste aus der Gruppe Halogen, Hydroxy, (C1-C4)- Alkyl, (C1-C4)- Alkoxy und (Ci-C4)-Alkylthio substituiert sind, oder
RD 5 und RD 6 gemeinsam mit dem dem sie tragenden Stickstoffatom einen Pyrrolidinyl- oder Piperidinyl-Rest bilden;
RD7 ist Wasserstoff, (Ci-C4)-Alkylamino, Di-(Ci-C4)-alkylamino, (Ci-Ce)-Alkyl, (C3-C6)- Cycloalkyl, wobei die 2 letztgenannten Reste durch VD Substituenten aus der Gruppe Halogen, (Ci- C4)-Alkoxy, Halogen-(Ci-C6)-alkoxy und (Ci-C4)-Alkylthio und im Falle cyclischer Reste auch (C1-C4)- Alkyl und Halogen-(Ci-C4)-alkyl substituiert sind; nD ist 0, 1 oder 2; mD ist 1 oder 2;
VD ist 0, 1, 2 oder 3; davon bevorzugt sind Verbindungen vom Typ der N-Acylsulfonamide, z.B. der nachfolgenden Formel (S4a), die z. B. bekannt sind aus WO-A-97/45016
Figure imgf000054_0001
worin
RD 7 (CI-CÖ)- Alkyl, (C3-C6)-Cycloalkyl, wobei die 2 letztgenannten Reste durch VD Substituenten aus der Gruppe Halogen, (Ci-C4)-Alkoxy, Halogen-(Ci-C6)-alkoxy und (C1-C4)- Alkyl thio und im Falle cyclischer Reste auch (C1-C4)- Alkyl und Halogen-(Ci-C4)-alkyl substituiert sind; RD 4 Halogen, (Ci-C4)-Alkyl, (Ci-C4)-Alkoxy, CF3; mD 1 oder 2;
VD ist 0, 1, 2 oder 3 bedeutet; sowie Acylsulfamoylbenzoesäureamide, z.B. der nachfolgenden Formel (S4b), die z.B. bekannt sind aus WO-A-99/16744,
Figure imgf000055_0001
z.B. solche worin
RD5 = Cyclopropyl und (RD4) = 2-OMe ist ("Cyprosulfamide", S4-1), RD 5 = Cyclopropyl und (RD 4) = 5-Cl-2-OMe ist (S4-2),
RD5 = Ethyl und (RD 4) = 2-OMe ist (S4-3),
RD5 = Isopropyl und (RD4) = 5-Cl-2-OMe ist (S4-4) und RD5 = Isopropyl und (RD4) = 2-OMe ist (S4-5). sowie Verbindungen vom Typ der N-Acylsulfamoylphenylharnstoffe der Formel (S4C), die z.B. bekannt sind aus der EP-A-365484,
Figure imgf000055_0002
worin
RD8 und Rü 9unabhängig voneinander Wasserstoff, (Ci-Cs)- Alkyl, (C3-Cs)-Cycloalkyl, (C3-C6)- Alkenyl, (C3-Ce)-Alkinyl,
RD 4 Halogen, (Ci-C4)-Alkyl, (Ci-C4)-Alkoxy, CF3 mD 1 oder 2 bedeutet; beispielsweise l-[4-(N-2-Methoxybenzoylsulfamoyl)phenyl]-3-methylharnstoff, l-[4-(N-2-Methoxybenzoylsulfamoyl)phenyl]-3,3-dimethylharnstoff, l-[4-(N-4,5-Dimethylbenzoylsulfamoyl)phenyl]-3-methylharnstoff, sowie
N-Phenylsulfonylterephthalamide der Formel (S4d), die z.B. bekannt sind aus CN 101838227,
Figure imgf000056_0001
z.B. solche worin RD 4 Halogen, (Ci-C4)-Älkyl, (Ci-C4)-Älkoxy, CF3; mD 1 oder 2;
RD 5 Wasserstoff, (CI-CÖ)- Alkyl, (C3-Ce)-Cycloalkyl, (C2-Ce)-Alkenyl, (C2-C6)-Alkinyl, (Cs-Ce)- Cycloalkenyl bedeutet.
S5) Wirkstoffe aus der Klasse der Hydroxyaromaten und der aromatisch-aliphatischen Carbonsäurederivate (S5), z.B.
3 ,4,5-Triacetoxybenzoesäureethylester, 3 ,5-Dimethoxy-4-hydroxybenzoesäure, 3,5- Dihydroxybenzoesäure, 4-Hydroxysalicylsäure, 4-Fluorsalicyclsäure, 2-Hydroxyzimtsäure, 2,4- Dichlorzimtsäure , wie sie in der WO-A-2004/084631, WO-A-2005/015994, WO-A-2005/016001 beschrieben sind. S6) Wirkstoffe aus der Klasse der 1 ,2-Dihydrochinoxalin-2-one (S6), z.B.
1 -Methyl-3-(2-thienyl)- 1 ,2-dihydrochinoxalin-2-on, 1 -Methyl-3-(2-thienyl)- 1 ,2-dihydrochinoxalin- 2-thion, 1 -(2- Aminoethyl)-3-(2-thienyl)- 1 ,2-dihydro-chinoxalin-2-on-hydrochlorid, 1 -(2- Methylsulfonylaminoethyl)-3-(2-thienyl)-l,2-dihydro-chinoxalin-2-on, wie sie in der WO-A- 2005/112630 beschrieben sind. S7) Verbindungen der Formel (S7),wie sie in der WO-A-1998/38856 beschrieben sind
Figure imgf000057_0001
worin die Symbole und Indizes folgende Bedeutungen haben:
RE1, RE2 sind unabhängig voneinander Halogen, (C1-C4)- Alkyl, (Ci-C4)-Alkoxy, Halogen- (Ci-C4)-alkyl, (Ci-C4)-Alkylamino, Di-(Ci-C4)-Alkylamino, Nitro;
AE ist COORE3 oder COSRE4
RE3, RE4 sind unabhängig voneinander Wasserstoff, (Ci-C4)-Alkyl, (C2-Ce)-Alkenyl, (C2-C4)- Alkinyl, Cyanoalkyl, Halogen-(Ci-C4)-alkyl, Phenyl, Nitrophenyl, Benzyl, Halobenzyl, Pyridinylalkyl und Alkylammonium, he1 ist 0 oder 1
PE 2, np sind unabhängig voneinander 0, 1 oder 2, vorzugsweise:
Diphenylmethoxyessigsäure,
Diphenylmethoxyessigsäureethylester, Diphenylmethoxyessigsäuremethylester (CAS-Reg.Nr. 41858-19-9) (S7-1).
S8) Verbindungen der Formel (S8),wie sie in der WO-A-98/27049 beschrieben sind
Figure imgf000057_0002
worin
XE CH oder N, nF für den Fall, dass XF=N ist, eine ganze Zahl von 0 bis 4 und für den Fall, dass XF=CH ist, eine ganze Zahl von 0 bis 5 ,
RF1 Halogen, (Ci-C4)-Alkyl, Halogen-(Ci-C4)-alkyl, (Ci-C4)-Alkoxy, Halogen-(Ci-C4)-alkoxy, Nitro, (Ci-C4)-Alkylthio, (Ci-C4)-Alkylsulfonyl, (Ci-C4)-Alkoxycarbonyl, ggf. substituiertes. Phenyl, ggf. substituiertes Phenoxy,
RF2 Wasserstoff oder (C1-C4)- Alkyl
RF 3 Wasserstoff, (Ci-Cs)- Alkyl, (C2-C4)-Alkenyl, (C2-C4)— Alkinyl, oder Aryl, wobei jeder der vorgenannten C-haltigen Reste unsubstituiert oder durch einen oder mehrere, vorzugsweise bis zu drei gleiche oder verschiedene Reste aus der Gruppe, bestehend aus Halogen und Alkoxy substituiert ist; bedeuten, oder deren Salze, vorzugsweise Verbindungen worin
XF CH, nF eine ganze Zahl von 0 bis 2 ,
RF1 Halogen, (Ci-C4)-Alkyl, Halogen-(Ci-C4)-alkyl, (C1-C4)- Alkoxy, Halogen-(Ci-C4)-alkoxy, RF2 Wasserstoff oder (C1-C4)- Alkyl,
RF 3 Wasserstoff, (Ci-Cs)- Alkyl, (C2-C4)-Alkenyl, (C2-C4)-Alkinyl, oder Aryl, wobei jeder der vorgenannten C-haltigen Reste unsubstituiert oder durch einen oder mehrere, vorzugsweise bis zu drei gleiche oder verschiedene Reste aus der Gruppe, bestehend aus Halogen und Alkoxy substituiert ist, bedeuten, oder deren Salze.
S9) Wirkstoffe aus der Klasse der 3-(5-Tetrazolylcarbonyl)-2-chinolone (S9), z.B.
1.2-Dihydro-4-hydroxy-l-ethyl-3-(5-tetrazolylcarbonyl)-2-chinolon (CAS-Reg.Nr. 219479-18-2),
1.2-Dihydro-4-hydroxy-l-methyl-3-(5-tetrazolyl-carbonyl)-2-chinolon (CAS-Reg.Nr. 95855-00-8), wie sie in der WO-A- 1999/000020 beschrieben sind.
S 10) Verbindungen der Formeln (S 10a) oder (S 10b) wie sie in der WO-A-2007/023719 und WO-A-2007/023764 beschrieben sind RG 1 Halogen, (Ci-C4)-Alkyl, Methoxy, Nitro, Cyano, CF3, OCF3
YG, ZG unabhängig voneinander O oder S, nc eine ganze Zahl von 0 bis 4,
RG 2 (CI-C )- Alkyl, (C2-Ce)-Alkenyl, (C3-Ce)-Cycloalkyl, Aryl; Benzyl, Halogenbenzyl,
RG 3 Wasserstoff oder (CI-CÖ)- Alkyl bedeutet.
511) Wirkstoffe vom Typ der Oxyimino-Verbindungen (S 11), die als Saatbeizmittel bekannt sind, wie z. B. "Oxabetrinil" ((Z)-l,3-Dioxolan-2-ylmethoxyimino(phenyl)acetonitril) (Sll-1), das als Saatbeiz - Safener für Hirse gegen Schäden von Metolachlor bekannt ist,
"Fluxofenim" ( 1 -(4-Chlorphenyl)-2,2,2-trifluor- l-ethanon-0-( 1 ,3-dioxolan-2-ylmethyl)-oxim) (Sll-2), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist, und
"Cyometrinü" oder "CGA-43089" ((Z)-Cyanomethoxyimino(phenyl)acetonitril) (S 11-3), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist.
512) Wirkstoffe aus der Klasse der Isothiochromanone (S12), wie z.B. Methyl-[(3-oxo-lH-2- benzothiopyran-4(3H)-yliden)methoxy]acetat (CAS-Reg.Nr. 205121-04-6) (S12-1) und verwandte Verbindungen aus WO-A-1998/13361.
513) Eine oder mehrere Verbindungen aus Gruppe (S13): "Naphthalic anhydrid" (1,8-Naphthalindicarbonsäureanhydrid) (S13-1), das als Saatbeiz-Safener für Mais gegen Schäden von Thiocarbamatherbiziden bekannt ist,
"Fenclorim" (4,6-Dichlor-2-phenylpyrimidin) (S13-2), das als Safener für Pretilachlor in gesätem Reis bekannt ist, "Flurazole" (Benzyl-2-chlor-4-trifluormethyl-l,3-thiazol-5-carboxylat) (S13-3), das als Saatbeiz- Safener für Hirse gegen Schäden von Alachlor und Metolachlor bekannt ist,
"CL 304415" (CAS-Reg.Nr. 31541-57-8)
(4-Carboxy-3,4-dihydro-2H-l-benzopyran-4-essigsäure) (S13-4) der Firma American Cyanamid, das als Safener für Mais gegen Schäden von Imidazolinonen bekannt ist,
"MG 191" (CAS-Reg.Nr. 96420-72-3) (2-Dichlormethyl-2-methyl-l,3-dioxolan) (S13-5) der Firma Nitrokemia, das als Safener für Mais bekannt ist,
"MG 838" (CAS-Reg.Nr. 133993-74-5)
(2-propenyl l-oxa-4-azaspiro[4.5]decan-4-carbodithioat) (S13-6) der Firma Nitrokemia, "Disulfoton" (O,O-Diethyl S-2-ethylthioethyl phosphordithioat) (S13-7),
"Dietholate" (O,O-Diethyl-O-phenylphosphorothioat) (S13-8),
"Mephenate" (4-Chlorphenyl-methylcarbamat) (S13-9).
S14) Wirkstoffe, die neben einer herbiziden Wirkung gegen Schadpflanzen auch Safenerwirkung an Kulturpflanzen wie Reis aufweisen, wie z. B.
"Dimepiperate" oder "MY 93" (5-1 -Methyl- 1-phenylethyl -piperidin- 1-carbothioat), das als Safener für Reis gegen Schäden des Herbizids Molinate bekannt ist,
"Daimuron" oder "SK 23" (1 -(1 -Methyl- l-phenylethyl)-3-p-tolyl-harnstoff), das als Safener für Reis gegen Schäden des Herbizids Imazosulfuron bekannt ist,
"Cumyluron" = "JC 940" (3-(2-Chlorphenylmethyl)-l-(l-methyl-l-phenyl-ethyl)harnstoff, siehe JP- A-60087254), das als Safener für Reis gegen Schäden einiger Herbizide bekannt ist,
"Methoxyphenon" oder "NK 049" (3,3'-Dimethyl-4-methoxy-benzophenon), das als Safener für Reis gegen Schäden einiger Herbizide bekannt ist,
"CSB" (l-Brom-4-(chlormethylsulfonyl)benzol) von Kumiai, (CAS-Reg.Nr. 54091-06-4), das als Safener gegen Schäden einiger Herbizide in Reis bekannt ist. S 15) Verbindungen der Formel (S 15) oder deren Tautomere
Figure imgf000061_0001
wie sie in der WO-A-2008/131861 und WO-A-2008/131860 beschrieben sind, worin RH 1 einen Halogen-(Ci-Ce)-alkylrest bedeutet und RH 2 Wasserstoff oder Halogen bedeutet und
RH 3, RH 4 unabhängig voneinander Wasserstoff, (Ci-Ci6)-Alkyl, (C2-Ci6)-Alkenyl oder (C2-C16)- Alkinyl, wobei jeder der letztgenannten 3 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Hydroxy, Cyano, (Ci-C4)-Alkoxy, halogen-(Ci-C4)-alkoxy, (Ci-C4)-Alkylthio, (Ci-C4)-Alkylamino, Di[(Ci-C4)-alkyl]-amino, [(Ci-C4)-Alkoxy]-carbonyl, [Halogen-(Ci-C4)- alkoxyj-carbonyl, (C3-C6)-Cycloalkyl, das unsubstituiert oder substituiert ist, Phenyl, das unsubstituiert oder substituiert ist, und Heterocyclyl, das unsubstituiert oder substituiert ist, substituiert ist, oder (C3-C6)-Cycloalkyl, (C4-C6)-Cycloalkenyl, (C3-C6)-Cycloalkyl, das an einer Seite des Rings mit einem 4 bis 6-gliedrigen gesättigten oder ungesättigten carbocyclischen Ring kondensiert ist, oder (C4-C6)-Cycloalkenyl, das an einer Seite des Rings mit einem 4 bis 6-gliedrigen gesättigten oder ungesättigten carbocyclischen Ring kondensiert ist, wobei jeder der letztgenannten 4 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Hydroxy, Cyano, (Ci-C4)-Alkyl, Halogen-(Ci-C4)-alkyl, (Ci-C4)-Alkoxy, Halogen-(Ci-C4)-alkoxy, (C1-C4)- Alkyl thio, (Ci-C4)-Alkylamino, Di[(Ci-C4)-alkyl]-amino, [(Ci-C4)-Alkoxy]-carbonyl, [Halogen-(Ci-C4)-alkoxy]-carbonyl, (C3-C6)-Cycloalkyl, das unsubstituiert oder substituiert ist, Phenyl, das unsubstituiert oder substituiert ist, und Heterocyclyl, das unsubstituiert oder substituiert ist, substituiert ist, bedeutet oder RH 3 (Ci-C4)-Alkoxy, (C2-C4)-Alkenyloxy, (C2-Ce)-Alkinyloxy oder Halogen-(C2-C4)-alkoxy bedeutet und
RH 4 Wasserstoff oder (C1-C4)- Alkyl bedeutet oder
RH 3 und RH 4 zusammen mit dem direkt gebundenen N-Atom einen vier- bis achtgliedrigen heterocyclischen Ring, der neben dem N-Atom auch weitere Heteroringatome, vorzugsweise bis zu zwei weitere Heteroringatome aus der Gruppe N, O und S enthalten kann und der unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Cyano, Nitro, (Ci-C4)-Alkyl, Halogen-(Ci-C4)-alkyl, (Ci-C4)-Alkoxy, Halogen-(Ci-C4)-alkoxy und (Ci-C4)-Alkylthio substituiert ist, bedeutet.
S16) Wirkstoffe, die vorrangig als Herbizide eingesetzt werden, jedoch auch Safenerwirkung auf Kulturpflanzen aufweisen, z.B.
(2,4-Dichlorphenoxy)essigsäure (2,4-D),
(4-Chlorphenoxy)essigsäure,
(R,S)-2-(4-Chlor-o-tolyloxy)propionsäure (Mecoprop),
4-(2,4-Dichlorphenoxy)buttersäure (2,4-DB),
(4-Chlor-o-tolyloxy)essigsäure (MCPA),
4-(4-Chlor-o-tolyloxy)buttersäure,
4-(4-Chlorphenoxy)buttersäure,
3,6-Dichlor-2-methoxybenzoesäure (Dicamba), l-(Ethoxycarbonyl)ethyl-3,6-dichlor-2-methoxybenzoat (Lactidichlor-ethyl).
Besonders bevorzugte Safener sind Mefenpyr-diethyl, Cyprosulfamid, Isoxadifen-ethyl, Cloquintocet-mexyl, Dichlormid und Metcamifen.
Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Tenside ionischer und/oder nichtionischer Art (Netzmittel, Dispergiermittel), z.B. polyoxyethylierte Alkylphenole, polyoxethylierte Fettalkohole, polyoxethylierte Fettamine, Fettalkoholpolyglykolether-sulfate, Alkansulfonate, Alkylbenzolsulfonate, ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalin-sulfonsaures Natrium oder auch oleoylmethyltaurinsaures Natrium enthalten. Zur Herstellung der Spritzpulver werden die herbiziden Wirkstoffe beispielsweise in üblichen Apparaturen wie Hammermühlen, Gebläsemühlen und Fuftstrahlmühlen feingemahlen und gleichzeitig oder anschließend mit den Formulierungshilfsmitteln vermischt. Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen oder Mischungen der organischen Lösungsmittel unter Zusatz von einem oder mehreren Tensiden ionischer und/oder nichtionischer Art (Emulgatoren) hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calzium-Salze wie Ca-Dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepoly glykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylen- oxid-Kondensationsprodukte, Alkylpolyether, Sorbitanester wie z.B. Sorbitanfett-säureester oder Polyoxethylensorbitanester wie z.B. Polyoxyethylensorbitan-fettsäureester.
Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B. Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophyllit, oder Diatomeenerde.
Suspensionskonzentrate können auf Wasser- oder Ölbasis sein. Sie können beispielsweise durch Naß-Vermahlung mittels handelsüblicher Perlmühlen und gegebenenfalls Zusatz von Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, hergestellt werden.
Emulsionen, z.B. Öl-in- Wasser-Emulsionen (EW), lassen sich beispielsweise mittels Rührern, Kolloidmühlen und/oder statischen Mischern unter Verwendung von wäßrigen organischen Lösungsmitteln und gegebenenfalls Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, herstellen.
Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.
Wasserdispergierbare Granulate werden in der Regel nach den üblichen Verfahren wie Sprühtrocknung, Wirbelbett-Granulierung, Teller-Granulierung, Mischung mit Hochgeschwindigkeitsmischern und Extrusion ohne festes Inertmaterial hergestellt.
Zur Herstellung von Teller-, Fließbett-, Extruder- und Sprühgranulate siehe z.B. Verfahren in "Spray-Drying Handbook" 3rd ed. 1979, G. Goodwin Ltd., London, J.E. Browning, "Agglomeration", Chemical and Engineering 1967, Seiten 147 ff, "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, S. 8-57. Für weitere Einzelheiten zur Formulierung von Pflanzenschutzmitteln siehe z.B. G.C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, Seiten 81-96 und J.D. Freyer, S.A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, Seiten 101-103.
Die agrochemischen Zubereitungen enthalten in der Regel 0.1 bis 99 Gew.-%, insbesondere 0.1 bis 95 Gew.-%, erfindungsgemäße Verbindungen. In Spritzpulvern beträgt die Wirkstoff-konzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 1 bis 90, vorzugsweise 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten 1 bis 30 Gew.-% Wirkstoff, vorzugsweise meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen enthalten etwa 0.05 bis 80, vorzugsweise 2 bis 50 Gew.-% Wirkstoff. Bei wasser dispergierbaren Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden. Bei den in Wasser dispergierbaren Granulaten liegt der Gehalt an Wirkstoff beispielsweise zwischen 1 und 95 Gew.-%, vorzugsweise zwischen 10 und 80 Gew.-%.
Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Konservierungs-, Frostschutz- und Lösungsmittel, Füll-, Träger- und Farbstoffe, Entschäumer, Verdunstungshemmer und den pH-Wert und die Viskosität beeinflussende Mittel.
Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren herstellen, z.B. in Form einer Fertigformulierung oder als Tankmix.
Zur Anwendung werden die in handelsüblicher Form vorliegenden Formulierungen gegebenenfalls in üblicher Weise verdünnt z.B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Boden- bzw. Streugranulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.
Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit, der Art des verwendeten Herbizids, u.a. variiert die erforderliche Aufwandmenge der Verbindungen der Formel (I) und deren Salze. Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,001 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,005 bis 5 kg/ha, weiter bevorzugt im Bereich von 0,01 bis 1,5 kg/ha, insbesondere bevorzugt im Bereich von 0,05 bis 1 kg/ha g/ha. Dies gilt sowohl für die Anwendung im Vorauflauf oder im Nachauflauf.
Trägerstoff bedeutet eine natürliche oder synthetische, organische oder anorganische Substanz, mit welchen die Wirkstoffe zur besseren Anwendbarkeit, v.a. zum Aufbringen auf Pflanzen oder Pflanzenteile oder Saatgut, gemischt oder verbunden sind. Der Trägerstoff, welcher fest oder flüssig sein kann, ist im Allgemeinen inert und sollte in der Landwirtschaft verwendbar sein.
Als feste oder flüssige Trägerstoffe kommen infrage: z.B. Ammoniumsalze und natürliche Ge steinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und natürliche oder synthetische Silikate, Harze, Wachse, feste Düngemittel, Wasser, Alkohole, besonders Butanol, organische Solventien, Mineral- und Pflanzenöle sowie Derivate hiervon. Mischungen solcher Trägerstoffe können ebenfalls verwendet werden. Als feste Trägerstoffe für Granulate kommen infrage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organi schen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnussschalen, Maiskolben und Tabakstängel.
Als verflüssigte gasförmige Streckmittel oder Trägerstoffe kommen solche Flüssigkeiten infrage, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe, sowie Butan, Propan, Stickstoff und Kohlendioxid.
Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthe tische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabikum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.
Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im Wesentlichen infrage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Dichlormethan, alipha tische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Die erfindungsgemäßen Mittel können zusätzlich weitere Bestandteile enthalten, wie z.B. oberflächenaktive Stoffe. Als oberflächenaktive Stoffe kommen Emulgier- und/oder Schaum erzeugende Mittel, Dispergiermittel oder Benetzungsmittel mit ionischen oder nicht-ionischen Eigenschaften oder Mischungen dieser oberflächenaktiven Stoffe infrage. Beispiele hierfür sind Salze von Polyacrylsäure, Salze von Lignosulphonsäure, Salze von Phenolsulphonsäure oder Naphthalinsulphonsäure, Polykondensate von Ethylenoxid mit Fettalkoholen oder mit Fettsäuren oder mit Fettaminen, substituierten Phenolen (vorzugsweise Alkylphenole oder Arylphenole), Salze von Sulphobernsteinsäureestern, Taurinderivate (vorzugsweise Alkyltaurate), Phosphorsäureester von polyethoxylierten Alkoholen oder Phenole, Fettsäureester von Polyolen, und Derivate der Verbindungen enthaltend Sulphate, Sulphonate und Phosphate, z.B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate, Eiweißhydrolysate, Fignin-Sulfitablaugen und Methyl- cellulose. Die Anwesenheit einer oberflächenaktiven Substanz ist notwendig, wenn einer der Wirkstoff und/oder einer der inerten Trägerstoffe nicht in Wasser löslich ist und wenn die Anwendung in Wasser erfolgt. Der Anteil an oberflächenaktiven Stoffen hegt zwischen 5 und 40 Gewichtsprozent des erfindungsgemäßen Mittels. Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kup fer, Kobalt, Molybdän und Zink verwendet werden.
Gegebenenfalls können auch andere zusätzliche Komponenten enthalten sein, z.B. schützende Kolloide, Bindemittel, Klebstoffe, Verdicker, thixotrope Stoffe, Penetrationsförderer,
Stabilisatoren, Sequestiermittel, Komplexbildner. Im Allgemeinen können die Wirkstoffe mit jedem festen oder flüssigen Additiv, welches für Formulierungszwecke gewöhnlich verwendet wird, kombiniert werden. Im Allgemeinen enthalten die erfindungsgemäßen Mittel und Formulierungen zwischen 0,05 und 99 Gew.-%, 0,01 und 98 Gew.-%, vorzugsweise zwischen 0,1 und 95 Gew.-%, besonders bevorzugt zwischen 0,5 und 90 % Wirkstoff, ganz besonders bevorzugt zwischen 10 und 70 Gewichtsprozent. Die erfindungsgemäßen Wirkstoffe bzw. Mittel können als solche oder in Abhängigkeit von ihren jeweiligen physikalischen und/oder chemischen Eigenschaften in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie Aerosole, Kapselsuspensionen, Kaltnebelkonzentrate, Heißnebelkonzentrate, verkapselte Granulate, Feingranulate, fließfähige Konzentrate für die Behandlung von Saatgut, gebrauchsfertige Fösungen, verstäubbare Pulver, emulgierbare Konzentrate, Öl-in-Wasser-Emulsionen, Wasser-in-Öl -Emulsio nen, Makrogranulate, Mikrogranulate, Öl dispergierbare Pulver, Öl mischbare fließfähige Konzentrate, Öl mischbare Flüssigkeiten, Schäume, Pasten, Pestizid ummanteltes Saatgut, Suspensionskonzentrate, Suspensions-Emulsions-Konzentrate, lösliche Konzentrate, Suspensionen, Spritzpulver, lösliche Pulver, Stäubemittel und Granulate, wasserlösliche Granulate oder Tabletten, wasserlösliche Pulver für Saatgut-behandlung, benetzbare Pulver, Wirkstoff-imprägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen eingesetzt werden.
Die genannten Formulierungen können in an sich bekannter Weise hergestellt werden, z.B. durch Vermischen der Wirkstoffe mit mindestens einem üblichen Streckmittel, Lösungs- bzw. Ver dünnungsmittel, Emulgator, Dispergier- und/oder Binde- oder Fixiermittels, Netzmittel, Wasser- Repellent, gegebenenfalls Sikkative und UV-Stabilisatoren und gegebenenfalls Farbstoffen und Pigmenten, Entschäumer, Konservierungsmittel, sekundäre Verdickungsmittel, Kleber,
Gibberelline sowie weiteren Verarbeitungshilfsmitteln.
Die erfindungsgemäßen Mittel umfassen nicht nur Formulierungen, welche bereits anwendungsfertig sind und mit einer geeigneten Apparatur auf die Pflanze oder das Saatgut ausgebracht werden können, sondern auch kommerzielle Konzentrate, welche vor Gebrauch mit Wasser verdünnt werden müssen.
Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren (handelsüblichen) Formu lierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen (bekannten) Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Bakteriziden, Akariziden, Nematiziden, Fungiziden, Wachstumsregulatoren, Herbiziden, Düngemitteln, Safener bzw. Semiochemicals vorliegen.
Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen bzw. Mitteln erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, (Ver-)Spritzen, (Ver-)Sprühen, Berieseln, Verdampfen, Zerstäuben, Vernebeln, (Ver-)Streuen, Verschäumen, Bestreichen, Ver streichen, Gießen (drenchen), Tröpfchenbewässerung und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch Trockenbeizen, Nassbeizen, Schlämmbeizen, Inkrustieren, ein- oder mehrschichtiges Umhüllen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low- Volume-Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren.
Wie auch weiter unten beschrieben, ist die Behandlung von transgenem Saatgut mit den erfindungs gemäßen Wirkstoffen bzw. Mitteln von besonderer Bedeutung. Dies betrifft das Saatgut von Pflanzen, die wenigstens ein heterologes Gen enthalten, das die Expression eines Polypeptids oder Proteins mit insektiziden Eigenschaften ermöglicht. Das heterologe Gen in transgenem Saatgut kann z.B. aus Mikroorganismen der Arten Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus oder Gliocladium stammen. Bevorzugt stammt dieses heterologe Gen aus Bacillus sp., wobei das Genprodukt eine Wirkung gegen den Maiszünsler (European corn borer) und/oder Western Corn Rootworm besitzt. Besonders bevorzugt stammt das heterologe Gen aus Bacillus thuringiensis.
Im Rahmen der vorliegenden Erfindung wird das erfindungsgemäße Mittel alleine oder in einer ge eigneten Formulierung auf das Saatgut aufgebracht. Vorzugsweise wird das Saatgut in einem Zu stand behandelt, in dem so stabil ist, dass keine Schäden bei der Behandlung auftreten. Im Allge meinen kann die Behandlung des Saatguts zu jedem Zeitpunkt zwischen der Ernte und der Aussaat erfolgen. Üblicherweise wird Saatgut verwendet, das von der Pflanze getrennt und von Kolben, Schalen, Stängeln, Hülle, Wolle oder Fruchtfleisch befreit wurde. So kann zum Beispiel Saatgut verwendet werden, das geerntet, gereinigt und bis zu einem Feuchtigkeitsgehalt von unter 15 Gew.-% getrocknet wurde. Alternativ kann auch Saatgut verwendet werden, das nach dem Trocknen z.B. mit Wasser behandelt und dann erneut getrocknet wurde.
Im Allgemeinen muss bei der Behandlung des Saatguts darauf geachtet werden, dass die Menge des auf das Saatgut aufgebrachten erfindungsgemäßen Mittels und/oder weiterer Zusatzstoffe so gewählt wird, dass die Keimung des Saatguts nicht beeinträchtigt bzw. die daraus hervorgehende Pflanze nicht geschädigt wird. Dies ist vor allem bei Wirkstoffen zu beachten, die in bestimmten Aufwandmengen phytotoxische Effekte zeigen können.
Die erfindungsgemäßen Mittel können unmittelbar aufgebracht werden, also ohne weitere Komponenten zu enthalten und ohne verdünnt worden zu sein. In der Regel ist es vorzuziehen, die Mittel in Form einer geeigneten Formulierung auf das Saatgut aufzubringen. Geeignete Formulierungen und Verfahren für die Saatgutbehandlung sind dem Fachmann bekannt und werden z.B. in den folgenden Dokumenten beschrieben: US 4,272,417 A, US 4,245,432 A, US 4,808,430, US 5,876,739, US 2003/0176428 Al, WO 2002/080675 Al, WO 2002/028186 A2.
Die erfindungsgemäßen Wirkstoffe können in die üblichen Beizmittel-Formulierungen überführt werden, wie Fösungen, Emulsionen, Suspensionen, Pulver, Schäume, Slurries oder andere Hüllmassen für Saatgut, sowie UFV-Formulierungen.
Diese Formulierungen werden in bekannter Weise hergestellt, indem man die Wirkstoffe mit üblichen Zusatzstoffen vermischt, wie zum Beispiel übliche Streckmittel sowie Fösungs- oder Verdünnungsmittel, Farbstoffe, Netzmittel, Dispergiermittel, Emulgatoren, Entschäumer, Konser vierungsmittel, sekundäre Verdickungsmittel, Kleber, Gibberelline und auch Wasser. Als Farbstoffe, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle für derartige Zwecke üblichen Farbstoffe in Betracht. Dabei sind sowohl in Wasser wenig lösliche Pigmente als auch in Wasser lösliche Farbstoffe verwendbar. Als Beispiele genannt seien die unter den Bezeichnungen Rhodamin B, C.I. Pigment Red 112 und C.I. Solvent Red 1 bekannten Farbstoffe.
Als Netzmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen, die Benetzung fördernden Stoffe in Frage. Vorzugsweise verwendbar sind Alkylnaphthalin-Sulfonate, wie Diisopropyl- oder Diisobutyl-naphthalin-Sulfonate.
Als Dispergiermittel und/oder Emulgatoren, die in den erfindungsgemäß verwendbaren Beizmittel- Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen nichtionischen, anionischen und kationischen Dispergiermittel in Betracht. Vorzugsweise verwendbar sind nichtionische oder anionische Dispergiermittel oder Gemische von nichtionischen oder anionischen Dispergiermitteln. Als geeignete nichtionische Dispergiermittel sind insbesondere Ethylenoxid-Propylenoxid Blockpolymere, Alkylphenolpolyglykolether sowie Tristryrylphenolpolyglykolether und deren phosphatierte oder sulfatierte Derivate zu nennen. Ge eignete anionische Dispergiermittel sind insbesondere Ligninsulfonate, Polyacrylsäuresalze und Arylsulfonat-Formaldehydkondensate.
Als Entschäumer können in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen alle zur Formulierung von agrochemischen Wirkstoffen üblichen schaumhemmenden Stoffe enthalten sein. Vorzugsweise verwendbar sind Silikonentschäumer und Magnesiumstearat.
Als Konservierungsmittel können in den erfindungsgemäß verwendbaren Beizmittel-Formulierun- gen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe vorhanden sein. Beispielhaft genannt seien Dichlorophen und Benzylalkoholhemiformal.
Als sekundäre Verdickungsmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formu- lierungen enthalten sein können, kommen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe in Frage. Vorzugsweise in Betracht kommen Cellulosederivate, Acrylsäure derivate, Xanthan, modifizierte Tone und hochdisperse Kieselsäure.
Als Kleber, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle üblichen in Beizmitteln einsetzbaren Bindemittel in Frage. Vorzugsweise genannt seien Polyvinylpyrrolidon, Polyvinylacetat, Polyvinylalkohol und Tylose. Die erfindungsgemäß verwendbaren Beizmittel-Formulierungen können entweder direkt oder nach vorherigem Verdünnen mit Wasser zur Behandlung von Saatgut der verschiedensten Art, auch von Saatgut transgener Pflanzen, eingesetzt werden. Dabei können im Zusammenwirken mit den durch Expression gebildeten Substanzen auch zusätzliche synergistische Effekte auftreten.
Zur Behandlung von Saatgut mit den erfindungsgemäß verwendbaren Beizmittel-Formulierungen oder den daraus durch Zugabe von Wasser hergestellten Zubereitungen kommen alle üblicherweise für die Beizung einsetzbaren Mischgeräte in Betracht. Im einzelnen geht man bei der Beizung so vor, dass man das Saatgut in einen Mischer gibt, die jeweils gewünschte Menge an Beizmittel-For- mulierungen entweder als solche oder nach vorherigem Verdünnen mit Wasser hinzufügt und bis zur gleichmäßigen Verteilung der Formulierung auf dem Saatgut mischt. Gegebenenfalls schließt sich ein Trocknungsvorgang an.
Die erfindungsgemäßen Wirkstoffe eignen sich bei guter Pflanzenverträglichkeit, günstiger Warmblütertoxizität und guter Umweltverträglichkeit zum Schutz von Pflanzen und Pflanzenorganen, zur Steigerung der Ernteerträge, Verbesserung der Qualität des Erntegutes. Sie können vorzugsweise als Pflanzenschutzmittel eingesetzt werden. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam.
Als Pflanzen, welche erfindungsgemäß behandelt werden können, seien folgende Hauptanbaupflanzen erwähnt: Mais, Sojabohne, Baumwolle, Brassica Ölsaaten wie Brassica napus (z.B. Canola), Brassica rapa, B. juncea (z.B. (Acker-)Senf) und Brassica carinata, Reis, Weizen Zuckerrübe, Zurckerrohr, Hafer, Roggen, Gerste, Hirse, Triticale, Flachs, Wein und verschiedene Früchte und Gemüse von verschiedenen botanischen Taxa wie z.B. Rosaceae sp. (beispielsweise Kernfrüchte wie Apfel und Birne, aber auch Steinfrüchte wie Aprikosen, Kirschen, Mandeln und Pfirsiche und Beerenfrüchte wie Erdbeeren), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (beispielsweise Bananenbäume und -plantagen), Rubiaceae sp. (beispielsweise Kaffee), Theaceae sp., Sterculiceae sp., Rutaceae sp. (beispielsweise Zitronen, Organen und Grapefruit); Solanaceae sp. (beispielsweise Tomaten, Kartoffeln, Pfeffer, Auberginen), Liliaceae sp., Compositae sp. (beispielsweise Salat, Artischocke and Chicoree - einschließlich Wurzelchicoree, Endivie oder gemeinen Chicoree), Umbelliferae sp. (beispielsweise Karrotte, Petersilie, Stangensellerie und Knollensellerie), Cucurbitaceae sp. (beispielsweise Gurke - einschließlich Gewürzgurke, Kürbis, Wassermelone, Flaschenkürbis und Melonen), Alliaceae sp. (beispielsweise Lauch und Zwiebel), Cruciferae sp. (beispielsweise Weißkohl, Rotkohl, Brokkoli, Blumenkohl, Rosenkohl, Pak Choi, Kohlrabi, Radieschen, Meerrettich, Kresse und Chinakohl), Leguminosae sp. (beispielsweise Erdnüsse, Erbsen, und Rohnen - wie z.B. Stangenbohne und Ackerbohne), Chenopodiaceae sp. (beispielsweise Mangold, Futterrübe, Spinat, Rote Rübe), Malvaceae (beispielsweise Okra), Asparagaceae (beispielsweise Spargel); Nutzpflanzen und Zierpflanzen in Garten und Wald; sowie jeweils genetisch modifizierte Arten dieser Pflanzen.
Wie oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologi sche Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflan zensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Der Begriff „Teile“ bzw. „Teile von Pflanzen“ oder „Pflanzenteile“ wurde oben erläutert. Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzen Sorten versteht man Pflanzen mit neuen Eigenschaften („Traits“), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Rassen, Bio- und Genotypen sein.
Das erfindungsgemäße Behandlungsverfahren kann für die Behandlung von genetisch modifizierten Organismen (GMOs), z. B. Pflanzen oder Samen, verwendet werden. Genetisch modifizierte Pflanzen (oder transgene Pflanzen) sind Pflanzen, bei denen ein heterologes Gen stabil in das Genom integriert worden ist. Der Begriff "heterologes Gen" bedeutet im wesentlichen ein Gen, das außerhalb der Pflanze bereitgestellt oder assembliert wird und das bei Einführung in das Zellkerngenom, das Chloroplastengenom oder das Mitochondriengenom der transformierten Pflanze dadurch neue oder verbesserte agronomische oder sonstige Eigenschaften verleiht, dass es ein interessierendes Protein oder Polypeptid exprimiert oder dass es ein anderes Gen, das in der Pflanze vorliegt bzw. andere Gene, die in der Pflanze vorliegen, herunterreguliert oder abschaltet (zum Beispiel mittels Antisense-Technologie, Cosuppressionstechnologie oder RNAi-Technologie [RNA Interference]). Ein heterologes Gen, das im Genom vorliegt, wird ebenfalls als Transgen bezeichnet. Ein Transgen, das durch sein spezifisches Vorliegen im Pflanzengenom definiert ist, wird als Transformations- bzw. transgenes Event bezeichnet.
In Abhängigkeit von den Pflanzenarten oder Pflanzensorten, ihrem Standort und ihren Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) kann die erfindungsgemäße Behandlung auch zu überadditiven ("synergistischen") Effekten führen. So sind zum Beispiel die folgenden Effekte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen: verringerte Aufwandmengen und/oder erweitertes Wirkungsspektrum und/oder erhöhte Wirksamkeit der Wirkstoffe und Zusammensetzungen, die erfindungsgemäß eingesetzt werden können, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegenüber Trockenheit oder Wasser- oder Bodensalzgehalt, erhöhte Blühleistung, Ernteerleichterung, Reifebeschleunigung, höhere Erträge, größere Früchte, größere Pflanzenhöhe, intensiver grüne Farbe des Blatts, frühere Blüte, höhere Qualität und/oder höherer Nährwert der Ernteprodukte, höhere Zuckerkonzentration in den Früchten, bessere Lagerfähigkeit und/oder Verarbeitbarkeit der Ernteprodukte.
Zu Pflanzen und Pflanzensorten, die vorzugsweise erfindungsgemäß behandelt werden, zählen alle Pflanzen, die über Erbgut verfügen, das diesen Pflanzen besonders vorteilhafte, nützliche Merkmale verleiht (egal, ob dies durch Züchtung und/oder Biotechnologie erzielt wurde).
Beispiele für Nematoden-resistente Pflanzen sind z.B. folgenden US Patentanmeldungen beschrieben: 11/765,491, 11/765,494, 10/926,819, 10/782,020, 12/032,479, 10/783,417,
10/782,096, 11/657,964, 12/192,904, 11/396,808, 12/166,253, 12/166,239, 12/166,124, 12/166,209, 11/762,886, 12/364,335, 11/763,947, 12/252,453, 12/209,354, 12/491,396 und 12/497,221.
Pflanzen, die erfindungsgemäß behandelt werden können, sind Hybridpflanzen, die bereits die Eigenschaften der Heterosis bzw. des Hybrideffekts exprimieren, was im Allgemeinen zu höherem Ertrag, höherer Wüchsigkeit, besserer Gesundheit und besserer Resistenz gegen biotische und abiotische Stressfaktoren führt. Solche Pflanzen werden typischerweise dadurch erzeugt, dass man eine ingezüchtete pollensterile Elternlinie (den weiblichen Kreuzungspartner) mit einer anderen ingezüchteten pollenfertilen Elternlinie (dem männlichen Kreuzungspartner) kreuzt. Das Hybridsaatgut wird typischerweise von den pollensterilen Pflanzen geerntet und an Vermehrer verkauft. Pollensterile Pflanzen können manchmal (z. B. beim Mais) durch Entfahnen (d.h. mechanischem Entfernen der männlichen Geschlechtsorgane bzw. der männlichen Blüten), produziert werden; es ist jedoch üblicher, dass die Pollensterilität auf genetischen Determinanten im Pflanzengenom beruht. In diesem Fall, insbesondere dann, wenn es sich bei dem gewünschten Produkt, da man von den Hybridpflanzen ernten will, um die Samen handelt, ist es üblicherweise günstig, sicherzustehen, dass die Pollenfertilität in Hybridpflanzen, die die für die Pollensterilität verantwortlichen genetischen Determinanten enthalten, völlig restoriert wird. Dies kann erreicht werden, indem sichergestellt wird, dass die männlichen Kreuzungspartner entsprechende Fertilitätsrestorergene besitzen, die in der Lage sind, die Pollenfertilität in Hybridpflanzen, die die genetischen Determinanten, die für die Pollensterilität verantwortlich sind, enthalten, zu restorieren. Genetische Determinanten für Pollensterilität können im Cytoplasma lokalisiert sein. Beispiele für cytoplasmatische Pollensterilität (CMS) wurden zum Beispiel für Brassica- Arten beschrieben. Genetische Determinanten für Pollensterilität können jedoch auch im Zellkerngenom lokalisiert sein. Pollensterile Pflanzen können auch mit Methoden der pflanzlichen Biotechnologie, wie Gentechnik, erhalten werden. Ein besonders günstiges Mittel zur Erzeugung von pollensterilen Pflanzen ist in WO 89/10396 beschrieben, wobei zum Beispiel eine Ribonuklease wie eine Barnase selektiv in den Tapetumzellen in den Staubblättern exprimiert wird. Die Fertilität kann dann durch Expression eines Ribonukleasehemmers wie Barstar in den Tapetumzellen restoriert werden.
Pflanzen oder Pflanzensorten (die mit Methoden der Pflanzenbiotechnologie, wie der Gentechnik, erhalten werden), die erfindungsgemäß behandelt werden können, sind herbizidtolerante Pflanzen, d. h. Pflanzen, die gegenüber einem oder mehreren vorgegebenen Herbiziden tolerant gemacht worden sind. Solche Pflanzen können entweder durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solch eine Herbizidtoleranz verleiht, erhalten werden.
Herbizidtolerante Pflanzen sind zum Beispiel glyphosatetolerante Pflanzen, d. h. Pflanzen, die gegenüber dem Herbizid Glyphosate oder dessen Salzen tolerant gemacht worden sind. Pflanzen können mit verschiedenen Methoden tolerant gegenüber Glyphosate gemacht werden. So können zum Beispiel glyphosatetolerante Pflanzen durch Transformation der Pflanze mit einem Gen, das für das Enzym 5-Enolpyruvylshikimat-3-phosphatsynthase (EPSPS) kodiert, erhalten werden. Beispiele für solche EPSPS-Gene sind das AroA-Gen (Mutante CT7) des Bakterium Salmonella typhimurium (Comai et al., 1983, Science 221, 370-371), das CP4-Gen des Bakteriums Agrobacterium sp. (Barry et al., 1992, Curr. Topics Plant Physiol. 7, 139-145), die Gene, die für eine EPSPS aus der Petunie (Shah et al., 1986, Science 233, 478-481), für eine EPSPS aus der Tomate (Gasser et al., 1988, J. Biol. Chem. 263, 4280-4289) oder für eine EPSPS aus Eleusine (WO 01/66704) kodieren. Es kann sich auch um eine mutierte EPSPS handeln. Glyphosate tolerante Pflanzen können auch dadurch erhalten werden, dass man ein Gen exprimiert, das für ein Glyphosate-Oxidoreduktase-Enzym kodiert. Glyphosate-tolerante Pflanzen können auch dadurch erhalten werden, dass man ein Gen exprimiert, das für ein Glyphosate-acetyltransferase-Enzym kodiert. Glyphosatetolerante Pflanzen können auch dadurch erhalten werden, dass man Pflanzen, die natürlich vorkommende Mutationen der oben erwähnten Gene enthalten, selektiert. Pflanzen, die EPSPS Gene, welche Glyphosate-Toleranz verleihen, exprimieren, sind beschrieben. Pflanzen, welche andere Gene, die Glyphosate-Toleranz verleihen, z.B. Decarboxylase-Gene, sind beschrieben. Sonstige herbizidresistente Pflanzen sind zum Beispiel Pflanzen, die gegenüber Herbiziden, die das Enzym Glutaminsynthase hemmen, wie Bialaphos, Phosphinotricin oder Glufosinate, tolerant gemacht worden sind. Solche Pflanzen können dadurch erhalten werden, dass man ein Enzym exprimiert, das das Herbizid oder eine Mutante des Enzyms Glutaminsynthase, das gegenüber Hemmung resistent ist, entgiftet. Solch ein wirksames entgiftendes Enzym ist zum Beispiel ein Enzym, das für ein Phosphinotricin-acetyltransferase kodiert (wie zum Beispiel das bar- oder pat- Protein aus Streptomyces- Arten). Pflanzen, die eine exogene Phosphinotricin-acetyltransferase exprimieren, sind beschrieben.
Weitere herbizidtolerante Pflanzen sind auch Pflanzen, die gegenüber den Herbiziden, die das Enzym Hydroxyphenylpyruvatdioxygenase (HPPD) hemmen, tolerant gemacht worden sind. Bei den Hydroxyphenylpyruvatdioxygenasen handelt es sich um Enzyme, die die Reaktion, in der para- Hydroxyphenylpyruvat (HPP) zu Homogentisat umgesetzt wird, katalysieren. Pflanzen, die gegenüber HPPD-Hemmern tolerant sind, können mit einem Gen, das für ein natürlich vorkommendes resistentes HPPD-Enzym kodiert, oder einem Gen, das für ein mutiertes oder chimäres HPPD-Enzym kodiert, transformiert werden, wie in WO 96/38567, WO 99/24585,
WO 99/24586, WO 2009/144079, WO 2002/046387 oder US 6,768,044 beschrieben. Eine Toleranz gegenüber HPPD-Hemmern kann auch dadurch erzielt werden, dass man Pflanzen mit Genen transformiert, die für gewisse Enzyme kodieren, die die Bildung von Homogentisat trotz Hemmung des nativen HPPD-Enzyms durch den HPPD-Hemmer ermöglichen. Solche Pflanzen sind in WO 99/34008 und WO 02/36787 beschrieben. Die Toleranz von Pflanzen gegenüber HPPD-Hemmern kann auch dadurch verbessert werden, dass man Pflanzen zusätzlich zu einem Gen, das für ein HPPD-tolerantes Enzym kodiert, mit einem Gen transformiert, das für ein Prephenatdehydrogenase-Enzym kodiert, wie in WO 2004/024928 beschrieben ist. Außerdem können Pflanzen noch toleranter gegen HPPD-Hemmern gemacht werden, indem man ein Gen in ihr Genom einfügt, welches für ein Enzym kodiert, das HPPD-Hemmer metabolisiert oder abbaut, wie z.B. CYP450 Enzyme (siehe WO 2007/103567 und WO 2008/150473).
Weitere herbizidresistente Pflanzen sind Pflanzen, die gegenüber Acetolactatsynthase (ALS)- Hemmern tolerant gemacht worden sind. Zu bekannten ALS-Hemmern zählen zum Beispiel Sulfonylharnstoff, Imidazolinon, Triazolopyrimidine, Pyrimidinyloxy(thio)benzoate und/oder Sulfonylaminocarbonyltriazolinon-Herbizide. Es ist bekannt, dass verschiedene Mutationen im Enzym ALS (auch als Acetohydroxysäure-Synthase, AHAS, bekannt) eine Toleranz gegenüber unterschiedlichen Herbiziden bzw. Gruppen von Herbiziden verleihen wie z.B. in Tranel und Wright (Weed Science 2002, 50, 700-712) beschrieben ist. Die Herstellung von sulfonylhamstofftoleranten Pflanzen und imidazolinontoleranten Pflanzen ist beschrieben. Weitere Sulfonylharnstoff- und imidazolinontolerante Pflanzen sind auch beschrieben.
Weitere Pflanzen, die gegenüber Imidazolinonen und/oder Sulfonylharnstoffen tolerant sind, können durch induzierte Mutagenese, Selektion in Zellkulturen in Gegenwart des Herbizids oder durch Mutationszüchtung erhalten werden (vgl. z.B. für Sojabohne US 5,084,082, für Reis WO 97/41218, für Zuckerrübe US 5,773,702 und WO 99/057965, für Salat US 5,198,599 oder für Sonnenblume WO 01/065922).
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind gegenüber abiotischen Stressfaktoren tolerant. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solch eine Stressresistenz verleiht, erhalten werden. Zu besonders nützlichen Pflanzen mit Stresstoleranz zählen folgende: a. Pflanzen, die ein Transgen enthalten, das die Expression und/oder Aktivität des Gens für die Poly(ADP-ribose)polymerase (PARP) in den Pflanzenzellen oder Pflanzen zu reduzieren vermag. b. Pflanzen, die ein stresstoleranzförderndes Transgen enthalten, das die Expression und/oder Aktivität der für PARG kodierenden Gene der Pflanzen oder Pflanzenzellen zu reduzieren vermag; c. Pflanzen, die ein stresstoleranzfördemdes Transgen enthalten, das für ein in Pflanzen funktionelles Enzym des Nicotinamidadenindinukleotid-Salvage-Biosynthesewegs kodiert, darunter Ni- cotinamidase, Nicotinatphosphoribosyltransferase, Nicotinsäuremononukleotidadenyltransferase, Nicotinamidadenindinukleotidsynthetase oder Nicotinamidphosphoribosyltransferase.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, weisen eine veränderte Menge, Qualität und/oder Lagerfähigkeit des Ernteprodukts und/oder veränderte Eigenschaften von bestimmten Bestandteilen des Emteprodukts auf, wie zum Beispiel:
1) Transgene Pflanzen, die eine modifizierte Stärke synthetisieren, die bezüglich ihrer chemisch physikalischen Eigenschaften, insbesondere des Amylosegehalts oder des Amylose/Amylopektin- Verhältnisses, des Verzweigungsgrads, der durchschnittlichen Kettenlänge, der Verteilung der Seitenketten, des Viskositätsverhaltens, der Gelfestigkeit, der Stärkekomgröße und/oder Stärkekommorphologie im Vergleich mit der synthetisierten Stärke in Wildtyppflanzenzellen oder - pflanzen verändert ist, so dass sich diese modifizierte Stärke besser für bestimmte Anwendungen eignet. 2) Transgene Pflanzen, die Nichtstärkekohlenhydratpolymere synthetisieren, oder Nichtstärkekohlenhydratpolymere, deren Eigenschaften im Vergleich zu Wildtyppflanzen ohne genetische Modifikation verändert sind. Beispiele sind Pflanzen, die Polyfructose, insbesondere des Inulin- und Levantyps, produzieren, Pflanzen, die alpha-l,4-Glucane produzieren, Pflanzen, die alpha-l,6-verzweigte alpha-l,4-Glucane produzieren und Pflanzen, die Alternan produzieren.
3) Transgene Pflanzen, die Hyaluronan produzieren.
4) Transgene Pflanzen oder Hybridpflanzen wie Zwiebeln mit bestimmten Eigenschaften wie „hohem Anteil an löslichen Feststoffen“ (,high soluble solids content’), geringe Schärfe (,low pungency’, LP) und/oder lange Lagerfähigkeit (,long storage’, LS).
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Baumwollpflanzen mit veränderten Fasereigenschaften. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Fasereigenschaften verleiht, erhalten werden; dazu zählen: a) Pflanzen wie Baumwollpflanzen, die eine veränderte Form von Cellulosesynthasegenen enthalten, b) Pflanzen wie Baumwollpflanzen, die eine veränderte Form von rsw2- oder rsw3-homologen Nukleinsäuren enthalten, wie Baumwollpflanzen mit einer erhöhten Expression der Saccharosephos- phatsynthase; c) Pflanzen wie Baumwollpflanzen mit einer erhöhten Expression der Saccharosesynthase; d) Pflanzen wie Baumwollpflanzen bei denen der Zeitpunkt der Durchlaßsteuemng der Plasmodesmen an der Basis der Faserzelle verändert ist, z. B. durch Hemnterregulieren der faserselektiven ß-l,3-Glucanase; e) Pflanzen wie Baumwollpflanzen mit Fasern mit veränderter Reaktivität, z. B. durch Expression des N-Acetylglucosamintransferasegens, darunter auch nodC, und von Chitinsynthasegenen.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Raps oder verwandte Brassica-Pflanzen mit veränderten Eigenschaften der Ölzusammensetzung. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Öleigenschaften verleiht, erhalten werden; dazu zählen: a) Pflanzen wie Rapspflanzen, die Öl mit einem hohen Ölsäuregehalt produziere; b) Pflanzen wie Rapspflanzen, die Öl mit einem niedrigen Linolensäuregehalt produzieren. c) Pflanzen wie Rapspflanzen, die Öl mit einem niedrigen gesättigten Fettsäuregehalt produzieren.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten werden können), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Kartoffeln, welche Virus-resistent sind z.B. gegen den Kartoffelvirus Y (Event SY230 und SY233 von Tecnoplant, Argentinien), oder welche resistent gegen Krankheiten wie die Kraut- und Knollenfäule (potato late blight) (z.B. RB Gen), oder welche eine verminderte kälteinduzierte Süße zeigen (welche die Gene Nt-Inh, II-INV tragen) oder welche den Zwerg- Phänotyp zeigen (Gen A-20 Oxidase).
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Raps oder verwandte Brassica-Pflanzen mit veränderten Eigenschaften im Samenausfall (seed shattering). Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Eigenschaften verleihen, und umfassen Pflanzen wie Raps mit verzögertem oder vermindertem Samenausfall.
Besonders nützliche transgene Pflanzen, die erfindungsgemäß behandelt werden können, sind Pflanzen mit Transformationsevents oder Kombinationen von Transformationsevent, welche in den USA beim Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) Gegenstand von erteilten oder anhängigen Petitionen für den nicht-regulierten Status sind. Die Information hierzu ist jederzeit beim APHIS (4700 River Road Riverdale, MD 20737, USA) erhältlich, z.B. über die Internetseite http://www.aphis.usda.gov/brs/not_reg.html. Am Anmeldetag dieser Anmeldung waren beim APHIS die Petitionen mit folgenden Informationen entweder erteilt oder anhängig:
- Petition: Identifikationsnummer der Petition. Die Technische Beschreibung des Transformationsevents kann im einzelnen Petitionsdokument erhältlich von APHIS auf der Website über die Petitionsnummer gefunden werden. Diese Beschreibungen sind hiermit per Referenz offenbart. - Erweiterung einer Petition: Referenz zu einer frühere Petition, für die eine Erweiterung oder Verlängerung beantragt wird.
- Institution: Name der die Petition einreichenden Person.
- Regulierter Artikel: die betroffen Pflanzenspecies. - Transgener Phänotyp: die Eigenschaft („Trait“), die der Pflanze durch das
Transformationsevent verliehen wird.
- Transformationevent oder -linie: der Name des oder der Events (manchmal auch als Linie(n) bezeichnet), für die der nicht-regulierte Status beantragt ist.
- APHIS Documente: verschiedene Dokumente, die von APHIS bzgl. der Petition veröffentlicht warden oder von APHIS auf Anfrage erhalten werden können.
Besonders nützliche transgene Pflanzen, die erfindungsgemäß behandelt werden können, sind Pflanzen mit einem oder mehreren Genen, die für ein oder mehrere Toxine kodieren, sind die transgenen Pflanzen, die unter den folgenden Handelsbezeichnungen angeboten werden: YIELD GARD® (zum Beispiel Mais, Baumwolle, Sojabohnen), KnockOut® (zum Beispiel Mais), BiteGard® (zum Beispiel Mais), BT-Xtra® (zum Beispiel Mais), StarLink® (zum Beispiel Mais), Bollgard® (Baumwolle),
Nucotn® (Baumwolle), Nucotn 33B® (Baumwolle), NatureGard® (zum Beispiel Mais), Protecta® und NewLeaf® (Kartoffel). Herbizidtolerante Pflanzen, die zu erwähnen sind, sind zum Beispiel Maissorten, Baumwollsorten und Sojabohnensorten, die unter den folgenden Handelsbezeichnungen angeboten werden: Roundup Ready® (Glyphosatetoleranz, zum Beispiel Mais, Baumwolle, Sojabohne), Liberty Link® (Phosphinotricintoleranz, zum Beispiel Raps), IMI® (Imidazolinontoleranz) und SCS®
(Sylfonylharnstofftoleranz), zum Beispiel Mais. Zu den herbizidresistenten Pflanzen (traditionell auf Herhizidtoleranz gezüchtete Pflanzen), die zu erwähnen sind, zählen die unter der Bezeichnung Clearfield® angebotenen Sorten (zum Beispiel Mais). A. Chemische Beispiele
Die nachfolgenden Beispiele erläutern die vorliegende Erfindung.
Synthese von 7.v-3-[2-Brom-6-methoxy-4-(prop- 1 -in- 1 -yl)phenyl]-8-(2,2-difluorethoxy)-4- hydroxy-l-azaspiro[4.5]dec-3-en-2-on (Beispiel-Nr. 1-5) und von
/ra/iv-3-[2-Brom-6-methoxy-4-(prop- 1 -in- 1 -yl)phenyl]-8-(2,2-difluorethoxy)-4-hydroxy- 1 - azaspiro[4.5]dec-3-en-2-on (Beispiel-Nr. 1-15)
Figure imgf000079_0001
Schritt 1: Synthese von 8-(2,2-Difluorethoxy)-l,3-diazaspiro[4.5]decan-2,4-dion
Figure imgf000079_0002
116.1 g (1.21 mol) Ammoniumcarbonat und 11.3 g (0.23 mol) Natriumcyanid wurden in 500 ml
Wasser vorgelegt. Bei einer Temperatur von 70 °C wurden 45.8 g (0.26 mol) 4-(2,2- Difluorethoxy)cyclohexanon tropfenweise zugegeben. Das Gemisch wurde danach so lange bei 70 °C gerührt, bis die dünnschichtchromatographische Reaktionskontrolle einen weitgehenden Umsatz anzeigte. Zur Aufarbeitung wurde der Kolbeninhalt eingeengt, und der Rückstand wurde mit Ethanol gerührt. Nach der Filtration wurde das Filtrat vom Lösungsmittel befreit und der Rückstand wurde chromatographisch gereinigt. Es wurden 66.2 g des gewünschten Produkts isoliert.
Schritt 2: Synthese von l-Amino-4-(2,2-difluorethoxy)cyclohexancarbonsäure-Hydrochlorid
Figure imgf000079_0003
Eine Mischung aus 66.2 g (0.27 mol) 8-(2,2-Difluorethoxy)-l,3-diazaspiro[4.5]decan-2,4-dion und 194 g (Reinheit 85 Gew.-%; 2.93 mol) Kaliumhydroxid in 750 ml Wasser wurde so lange unter
Rückfluss gerührt, bis die LC/MS-chromatographische Reaktionskontrolle einen weitgehenden Umsatz anzeigte. Zur Aufarbeitung wurde der Inhalt langsam und vorsichtig mit konzentrierter Salzsäure auf einen pH-Wert von 3 eingestellt. Das Gemisch wurde eingeengt, und der Rückstand wurde mit Methanol gewaschen. Das Filtrat wurde schießlich vom Lösungsmittel befreit, wobei als Rückstand 47.2 g des gewünschten Produkts gewonnen wurden.
Schritt 3: Synthese von Methyl- l-amino-4-(2,2-difluorethoxy)cyclohexancarboxylat-Hydrochlorid
Figure imgf000080_0001
19.9 g (76.6 mmol) l-Amino-4-(2,2-difluorethoxy)cyclohexancarbonsäure-Hydrochlorid wurden in 370 ml Methanol vorgelegt. Danach wurden 27.4 g (230 mmol) Thionylchlorid langsam tropfenweise zugegeben. Das Gemisch wurde so lange unter Rückfluss gerührt, bis keine Gasentwicklung mehr zu beobachten war. Das Gemisch wurde anschließend eingeengt, und der Rückstand wurde in Methanol aufgenommen. Nach der Filtration über Kieselgel wurde das Filtrat vom Lösungsmittel befreit, wobei 18.2 g des gewünschten Produkts erhalten wurden.
Schritt 4: Synthese von Methyl-l-{2-[2-brom-6-methoxy-4-(prop-l-in-l-yl)phenyl]acetamido}-4- (2,2-difluorethoxy)cyclohexancarboxylat (Beispiel-Nr. 11-5)
Figure imgf000080_0002
445 mg (1.57 mmol) [2-Brom-6-methoxy-4-(prop-l-in-l-yl)phenyl]essigsäure wurden in 12.5 ml Dichlormethan mit 399 mg (3.14 mmol) Oxalsäuredichlorid und zwei Tropfen N,N- Dimethylformamid versetzt. Das Gemisch wurde unter Rückfluss gerührt, bis keine Gasentwicklung mehr zu beobachten war. Danach wurde das Gemisch eingeengt und somit das rohe Säurechlorid erhalten. In einem anderen Reaktionsgefäß wurden 500 mg (Reinheit 86 Gew.-%; 1.57 mmol) Methyl- l-amino-4-(2,2-difluorethoxy)cyclohexancarboxylat-Hydrochlorid in 20 ml Essigsäureethylester mit 1.6 ml (IM; 1.6 mmol) Natronlauge versetzt, die Mischung wurde fünf Minuten kräftig gerührt. Anschließend wurden hierzu gleichzeitig, über zwei Tropftrichter getrennt, 1.6 ml (IM; 1.6 mmol) Natronlauge sowie eine Lösung des oben beschriebenen, frisch hergestellten rohen Säurechlorids in 25 ml Essigsäureethlester tropfenweise zugegeben. Das Gemisch wurde 16 h bei Raumtemperatur gerührt. Danach wurde der Inhalt mit einer wässrigen Natriumhydrogencarbonatlösung gewaschen. Die wässrige Phase wurde im Anschluss mit Essigsäureethylester extrahiert. Anschließend wurden die vereinigten organischen Phasen getrocknet und eingeengt. Der Rückstand wurde chromatographisch gereinigt. Zur Abtrennung restlicher Spuren der substituierten Phenylessigsäure wurde die bei der Chromatographie erhaltene Produktfraktion in Dichlormethan gelöst und mit einer wässrigen Natriumhydrogencarbonatlösung gewaschen. Die organische Phase wurde getrocknet und und das Filtrat wurde vom Lösungsmittel befreit. Es wurden 390 mg des gewünschten Produkts isoliert.
Schritt 5: Synthese von cA-3-[2-Brom-6-methoxy-4-(prop- 1 -in- 1 -yl)phenyl]-8-(2,2-difluorethoxy)- 4-hydroxy-l-azaspiro[4.5]dec-3-en-2-on (Beispiel-Nr. 1-5) und von
/ra/iv-3-[2-Brom-6-methoxy-4-(prop- 1 -in- 1 -yl)phenyl]-8-(2,2-difluorethoxy)-4-hydroxy- 1 - azaspiro[4.5]dec-3-en-2-on (Beispiel-Nr. 1-15)
Figure imgf000081_0001
390 mg (0.78 mmol) Methyl-l-{2-[2-brom-6-methoxy-4-(prop-l-in-l-yl)phenyl]acetamido}-4-(2,2- difluorethoxy)cyclohexancarboxylat wurden in 9 ml N,N-Dimethylformamid vorgelegt. Anschießend wurden 196 mg (Reinheit 98 Gew.-%; 1.71 mmol) Kalium-tert-butylat portionsweise zugegeben. Das Gemisch wurde 1 h bei Raumtemperatur und danach so lange bei 60 °C gerührt, bis die Reaktionskontrolle einen weitgehenden Umsatz anzeigte. Zur Aufarbeitung wurde der Inhalt auf Wasser gegeben und das Gemisch wurde danach mit Essigsäureethylester gewaschen. Nach der Phasentrennung wurde die wässrige Phase mit verdünnter Salzsäure auf einen pH-Wert von 2 eingestellt. Nach der Extraktion mit Essigsäureethylester wurde die organische Phase getrocknet und das Filtrat wurde vom Lösungsmittel befreit. Der Rückstand wurde chromatographisch gereinigt, wobei 120 mg des cA-konfigurierten Produkts sowie 25 mg des / rans -konfigurierten Produkts gewonnen wurden.
Synthese von cA-Natrium-3-[2-brom-6-methoxy-4-(prop-l-in-l-yl)phenyl]-8-(2,2-difluorethoxy)-2- oxo-l-azaspiro[4.5]dec-3-en-4-olat (Beispiel-Nr. 2-5)
Figure imgf000082_0001
60 mg (0.13 mmol) ds-3-[2-Brom-6-methoxy-4-(prop-l-in-l-yl)phenyl]-8-(2,2-difluorethoxy)-4- hydroxy-l-azaspiro[4.5]dec-3-en-2-on wurden in 10 ml Methanol mit 0.255 ml (0.5M; 0.13 mmol) einer Lösung von Natriummethylat in Methanol versetzt. Das Gemisch wurde 15 min bei
Raumtemperatur gerührt und anschließend vom Lösungsmittel befreit. Als Rückstand wurden 69.2 mg des gewünschten Produkts mit einer Reinheit von 90 Gew.-% erhalten.
Synthese von ds-3-[2-Brom-6-methoxy-4-(prop- 1 -in- 1 -yl)phenyl]-8-(2,2-difluorethoxy)-2-oxo- 1 - azaspiro[4.5]dec-3-en-4-ylethylcarbonat (Beispiel-Nr. 5-5)
Figure imgf000082_0002
85.0 mg (0.18 mmol) s-3-[2-Brom-6-methoxy-4-(prop-l-in-l-yl)phenyl]-8-(2,2-difluorethoxy)-4- hydroxy-l-azaspiro[4.5]dec-3-en-2-on wurden in 15 ml Dichlormethan mit 36.6 mg (0.36 mmol) Triethylamin versetzt. Anschließend wurden bei einer Temperatur von 0 °C 21.6 mg (0.20 mmol) Chlorameisensäureethylester tropfenweise zugegeben. Das Gemisch wurde danach so lange bei Raumtemperatur gerührt, bis die Reaktionskontrolle einen weitgehenden Umsatz anzeigte. Zur Aufarbeitung wurde das Gemisch mit Wasser gewaschen. Nach der Phasentrennung wurde die organische Phase vom Lösungsmittel befreit und der Rückstand wurde chromatographisch gereinigt. Es wurden 100.0 mg des gewünschten Produkts mit einer Reinheit von 95 Gew.-% isoliert.
NMR-Daten ausgewählter Beispiele
NMR-Peak-Listenverfahren Die 1H-NMR-Daten ausgewählter Beispiele werden in Form von 1H-NMR-Peaklisten notiert. Zu jedem Signalpeak wird erst der d-Wert in ppm und dann die Signalintensität in runden Klammern aufgeführt. Die d-Wert - Signalintensitäts- Zahlenpaare von verschiedenen Signalpeaks werden durch Semikolons voneinander getrennt aufgelistet.
Die Peakliste eines Beispieles hat daher die Form: di (Intensität^; Ö2 (Intensität2); . ; öi (Intensität^; . ; dh (Intensitätn)
Die Intensität scharfer Signale korreliert mit der Höhe der Signale in einem gedruckten Beispiel eines NMR-Spektrums in cm und zeigt die wirklichen Verhältnisse der Signalintensitäten. Bei breiten Signalen können mehrere Peaks oder die Mitte des Signals und ihre relative Intensität im Vergleich zum intensivsten Signal im Spektrum gezeigt werden.
Zur Kalibrierung der chemischen Verschiebung von 1H-NMR-Spektren benutzen wir Tetramethylsilan und/oder die chemische Verschiebung des Lösungsmittels, besondern im Falle von Spektren, die in DMSO gemessen werden. Daher kann in NMR-Peaklisten der Tetramethylsilan-Peak Vorkommen, muss es aber nicht.
Die Listen der 1H-NMR-Peaks sind ähnlich den klassischen 1H-NMR- Ausdrucken und enthalten somit gewöhnlich alle Peaks, die bei einer klassischen NMR-Interpretation aufgeführt werden.
Darüber hinaus können sie wie klassische 1H-NMR-Ausdmcke Lösungsmittelsignale, Signale von Stereoisomeren der Zielverbindungen, die ebenfalls Gegenstand der Erfindung sind, und/oder Peaks von Verunreinigungen zeigen.
Bei der Angabe von Verbindungssignalen im Delta-Bereich von Lösungsmitteln und/oder Wasser sind in unseren Listen von 1H-NMR-Peaks die gewöhnlichen Lösungsmittelpeaks, zum Beispiel Peaks von DMSO in DMSO-Dr, und der Peak von Wasser, gezeigt, die gewöhnlich im Durchschnitt eine hohe Intensität aufweisen.
Die Peaks von Stereoisomeren der Targetverbindungen und/oder Peaks von Verunreinigungen haben gewöhnlich im Durchschnitt eine geringere Intensität als die Peaks der Zielverbindungen (zum Beispiel mit einer Reinheit von >90%).
Solche Stereoisomere und/oder Verunreinigungen können typisch für das jeweilige Herstellungsverfahren sein. Ihre Peaks können somit dabei helfen, die Reproduktion unseres Herstellungsverfahrens anhand von “Nebenprodukt-Fingerabdrücken” zu erkennen. Einem Experten, der die Peaks der Zielverbindungen mit bekannten Verfahren (MestreC, ACD- Simulation, aber auch mit empirisch ausgewerteten Erwartungswerten) berechnet, kann je nach Bedarf die Peaks der Zielverbindungen isolieren, wobei gegebenenfalls zusätzliche Intensitätsfilter eingesetzt werden. Diese Isolierung wäre ähnlich dem betreffenden Peak-Picking bei der klassischen lH-NMR-Interpretation.
Weitere Details zu 1H-NMR-Peaklisten können der Research Disclosure Database Number 564025 entnommen werden.
Die Verbindungen 1-4, 1-5, 1-9, 1-10, 1-14, 1-21 und 1-41 wurden in D2O gemessen. Dafür wurde ein Tropfen NaOD zugegeben, um mit dem so generierten Natriumsalz eine bessere Löslichkeit zu erzielen und somit ein besseres Spektrum zu erhalten. Die hier charakterisierten Verbindungen sind folglich die entsprechenden Natriumsalze.
Figure imgf000084_0001
Figure imgf000085_0001
Figure imgf000086_0001
Figure imgf000087_0001
Figure imgf000088_0001
Figure imgf000089_0001
'H-NMR-Daten (nicht via NMR-Peak-Listen verfahren):
Bei der manuellen Auswertung von NMR-Signalen (nicht via NMR-Peak-Listenverfahren) werden folgende Abkürzungen verwendet: s (Singulett), d (Dublett), t (Triplett), q (Quartett), quint (Quintett), sext (Sextett), sept (Septett), m (Multiplett), mc (Multiplett centered)
Beispielverbindung 4-11:
Ή NMR (400 MHz, CDCI3) d ppm 1.11 (t, 3H) 1.37 - 1.51 (m, 2H) 1.64 (s, 3H) 1.86 - 1.98 (m, 2H) 2.04 (s, 3H) 2.20 (s, 6H) 3.61 (d, 2H) 3.72 (s, 3H) 3.98 (dd, 2H) 5.68 - 6.05 (m, 1H) 6.75 (s, 1H) 6.89 (s, 1H) 8.02 (s, 1H)
Beispielverbindung 5-9:
Ή NMR (400 MHz, CDCI3) d ppm 1.16 (t, 3H) 1.34 (t, 3H) 1.35 - 1.48 (m, 2H) 1.70 - 2.01 (m, 4H) 2.04 (s, 3H) 2.17 - 2.23 (m, 2H) 3.40 - 3.46 (m, 1H), 3.72 (dt, 2H) 3.96 (q, 2H) 3.99 - 4.13 (m, 2H) 5.87 (tt, 1H) 6.25 (s, 1H) 6.66 (s, 1H) 6.78 (d, 1H) Beispielverbindung 5-11:
Ή NMR (400 MHz, CDC13) d ppm 1.11 (t, 3H) 1.37 - 1.51 (m, 2H) 1.64 (s, 3H) 1.86 - 1.98 (m, 2H) 2.04 (s, 3H) 2.20 (s, 6H) 3.61 (d, 2H) 3.72 (s, 3H) 3.98 (dd, 2H) 5.68 - 6.05 (m, 1H) 6.75 (s, 1H) 6.89 (s, 1H) 8.02 (s, 1H)
Beispielverbindung 13-3:
Ή NMR (400.6 MHz, CDC13) d ppm 6.86 (s, 1H); 6.76 (s, 1H); 4.01 (q, 2H); 3.70 (s, 2H); 2.25 (s, 3H); 2.03 (s, 3H); 1.38 (t, 3H)
Beispielverbindung 14-1:
Ή NMR (400 MHz, CDCI3) d ppm 2.08 (s, 2H) 2.27 (s, 3H) 3.70 (s, 3H) 3.71 (s, 3H) 3.82 (s, 3H) 6.80 (s, 1H) 6.91 (s, 1H)
Beispielverbindung 14-4:
^-NMR (599.7 MHz, CDCI3) d ppm 6.85 (s, 1H); 6.75 (s, 1H); 4.00 (q, 2H); 3.65 (s, 5H); 2.40 (s, 3H); 2.00 (s, 3H); 1.35 (t, 3H)
B. Formulierungsbeispiele a) Ein Stäubemittel wird erhalten, indem man 10 Gew. Teile einer Verbindung der Formel (I) und/oder deren Salze und 90 Gew. Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert. b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile einer Verbindung der Formel (I) und/oder deren Salze, 64 Gew. Teile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gew. Teil oleoylmethyltaurinsaures Natrium als Netz und Dispergiermittel mischt und in einer Stiftmühle mahlt. c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gew. Teile einer Verbindung der Formel (I) und/oder deren Salze mit 6 Gew. Teilen Alkylphenolpolyglykolether (©Triton X 207), 3 Gew. Teilen Isotridecanolpolyglykolether (8 EO) und 71 Gew. Teilen paraffinischem Mineralöl (Siedebereich z.B. ca. 255°C bis über 277° C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt. d) Ein emulgierbares Konzentrat wird erhalten aus 15 Gew. Teilen einer Verbindung der Formel (I) und/oder deren Salze, 75 Gew. Teilen Cyclohexanon als Lösungsmittel und 10 Gew. Teilen oxethyliertes Nonylphenol als Emulgator. e) Ein in Wasser dispergierbares Granulat wird erhalten indem man 75 Gew. Teile einer Verbindung der Formel (I) und/oder deren Salze,
10 Gew. Teile ligninsulfonsaures Calcium,
5 Gew. Teile Natriumlaurylsulfat,
3 Gew. Teile Polyvinylalkohol und 7 Gew. Teile Kaolin mischt, auf einer Stiftmühle mahlt und das Pulver in einem Wirbelbett durch Aufsprühen von Wasser als Granulierflüssigkeit granuliert. f) Ein in Wasser dispergierbares Granulat wird auch erhalten, indem man 25 Gew. Teile einer Verbindung der Formel (I) und/oder deren Salze, 5 Gew. Teile 2,2' Dinaphthylmethan 6,6' disulfonsaures Natrium,
2 Gew. Teile oleoylmethyl taurinsaures Natrium,
1 Gew. Teil Polyvinylalkohol,
17 Gew. Teile Calciumcarbonat und 50 Gew. Teile Wasser auf einer Kolloidmühle homogenisiert und vorzerkleinert, anschließend auf einer Perlmühle mahlt und die so erhaltene Suspension in einem Sprühturm mittels einer Einstoffdüse zerstäubt und trocknet.
C. Biologische Daten Die nachfolgend genutzten Abkürzungen bedeuten:
Unerwünschte Pflanzen:
ALOMY: Alopecurus myosuroides SETVI: Setaria viridis
AMARE: Amaranthus retroflexus AVEFA: Avena fatua
LOLRI: Lolium rigidum ECHCG: Echinochloa crus-galli
VERPE: Veronica persica VIOTR: Viola tricolor
POLCO: Polygonum convolvulus ABUTH: Abutylon threophrasti
PHBPU: Pharbitis purpurea MATIN: Matricaria inodora
DIGSA Digitaria sanguinalis 1. Herbizide Wirkung bzw. Kulturpflanzen Verträglichkeit im Nachauflauf
Samen von mono- bzw. dikotylen Unkraut- bzw. Kulturpflanzen werden in Holzfasertöpfen in sandigem Lehmboden ausgelegt, mit Erde abgedeckt und im Gewächshaus unter guten Wachstumsbedingungen angezogen. 2 bis 3 Wochen nach der Aussaat werden die Versuchspflanzen im Einblattstadium behandelt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen werden dann als wässrige Suspension bzw. Emulsion mit einer Wasseraufwandmenge von umgerechnet 600 bis 800 1/ha unter Zusatz von 0,2% Netzmittel auf die grünen Pflanzenteile gesprüht. Nach ca. 3 Wochen Standzeit der Versuchspflanzen im Gewächshaus unter optimalen Wachstumsbedingungen wird die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen bonitiert (herbizide Wirkung in Prozent (%): 100% Wirkung = Pflanzen sind abgestorben, 0 % Wirkung = wie Kontrollpflanzen).
Tabelle la: Nachauflaufwirkung bei 20g/ha gegen ABUTH in %
Figure imgf000092_0001
Tabelle lb: Nachauflaufwirkung bei 80g/ha gegen ABUTH in %
Figure imgf000092_0002
Figure imgf000093_0001
Tabelle 2a: Nachauflaufwirkung bei 20g/ha gegen ALOMY in %
Figure imgf000093_0002
Tabelle 2b: Nachauflaufwirkung bei 80g/ha gegen ALOMY in %
Figure imgf000093_0003
Figure imgf000094_0001
Tabelle 3a: Nachauflaufwirkung bei 20g/ha gegen AMARE in %
Figure imgf000094_0002
Tabelle 3b: Nachauflaufwirkung bei 80g/ha gegen AMARE in %
Figure imgf000094_0003
Tabelle 4a: Nachauflaufwirkung bei 20g/ha gegen ECHCG in %
Figure imgf000095_0001
Tabelle 4b: Nachauflaufwirkung bei 80g/ha gegen ECHCG in %
Figure imgf000095_0002
Figure imgf000096_0001
Tabelle 5a: Nachauflaufwirkung bei 20g/ha gegen LOLRI in %
Figure imgf000096_0002
Tabelle 5b: Nachauflaufwirkung bei 80g/ha gegen LOLRI in %
Figure imgf000097_0001
Tabelle 6: Nachauflaufwirkung bei 80g/ha gegen MATIN in %
Figure imgf000097_0002
Tabelle 7a: Nachauflaufwirkung bei 20g/ha gegen PHBPU in %
Figure imgf000098_0001
Tabelle 7b: Nachauflaufwirkung bei 80g/ha gegen PHBPU in %
Figure imgf000098_0002
Tabelle 8: Nachauflaufwirkung bei 80g/ha gegen POLCO in %
Figure imgf000098_0003
Tabelle 9a: Nachauflaufwirkung bei 20g/ha gegen SETVI in %
Figure imgf000098_0004
Figure imgf000099_0001
Tabelle 9b: Nachauflaufwirkung bei 80g/ha gegen SETVI in %
Figure imgf000099_0002
Tabelle 10a: Nachauflaufwirkung bei 20g/ha gegen VERPE in %
Figure imgf000100_0001
Tabelle 10b: Nachauflaufwirkung bei 80g/ha gegen VERPE in %
Figure imgf000100_0002
Tabelle 11a: Nachauflaufwirkung bei 20g/ha gegen DIGSA in %
Figure imgf000100_0003
Figure imgf000101_0001
Tabelle 11b: Nachauflaufwirkung bei 80g/ha gegen DIGSA in %
Figure imgf000101_0002
Tabelle 12a: Nachauflaufwirkung bei 20g/ha gegen AVEFA in %
Figure imgf000101_0003
Tabelle 12b: Nachauflaufwirkung bei 80g/ha gegen AVEFA in %
Figure imgf000102_0001
Wie die Ergebnisse aus Tabellen la/b, 2a/b, 3a/b, 4a/b, 5a/b, 6, 7a/b, 8, 9a/b, lOa/b, lla/b und 12a/b zeigen, weisen die erfindungsgemäßen Verbindungen eine gute herbizide Nachauflaufwirksamkeit gegen ein breites Spektrum von Ungräsern und Unkräutern auf. Beispielsweise zeigen die aufgeführten Beispiele bei einer Aufwandmenge von 80/20 g/ha eine 80 - 100%-ige Wirkung unter anderem gegen Alopecurus myosuroides, Digitaria sanguinalis, Echinochloa crus-galli, Lolium rigidum und Setaria viridis. Die erfindungsgemäßen Verbindungen eignen sich deshalb im Nachauflaufverfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs.
2. Herbizide Wirkung bzw. Kulturpflanzen Verträglichkeit im Vorauflauf Samen von mono- bzw. dikotylen Unkraut- bzw. Kulturpflanzen werden in Holzfasertöpfen in sandiger Lehmerde ausgelegt und mit Erde abgedeckt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen werden dann als wässrige Suspension bzw. Emulsion mit einer Wasseraufwandmenge von umgerechnet 600 bis 8001/ha unter Zusatz von 0,2% Netzmittel auf die Oberfläche der Abdeckerde appliziert.
Nach der Behandlung werden die Töpfe im Gewächshaus aufgestellt und unter guten Wachstumsbedingungen für die Testpflanzen gehalten. Die visuelle Bonitur der Schäden an den Versuchspflanzen erfolgt nach einer Versuchszeit von 3 Wochen im Vergleich zu unbehandelten Kontrollen (herbizide Wirkung in Prozent (%): 100% Wirkung = Pflanzen sind abgestorben, 0 % Wirkung = wie Kontrollpflanzen). Tabelle la: Vorauflaufwirkung bei 80g/ha gegen ABUTH in %
Figure imgf000103_0001
Tabelle lb: Vorauflaufwirkung bei 320g/ha gegen ABUTH in %
Figure imgf000103_0002
Tabelle 2a: Vorauflaufwirkung bei 80g/ha gegen ALOMY in %
Figure imgf000103_0003
Figure imgf000104_0001
Tabelle 2b: Vorauflaufwirkung bei 320g/ha gegen ALOMY in %
Figure imgf000104_0002
Figure imgf000105_0001
Tabelle 3a: Vorauflaufwirkung bei 80g/ha gegen AMARE in %
Figure imgf000105_0002
Tabelle 3b: Vorauflaufwirkung bei 320g/ha gegen AMARE in %
Figure imgf000105_0003
Tabelle 4a: Vorauflaufwirkung bei 80g/ha gegen AVEFA in %
Figure imgf000105_0004
Figure imgf000106_0001
Tabelle 4b: Vorauflaufwirkung bei 320g/ha gegen AVEFA in %
Figure imgf000106_0002
Tabelle 5a: Vorauflaufwirkung bei 80g/ha gegen ECHCG in %
Figure imgf000107_0001
Tabelle 5b: Vorauflaufwirkung bei 320g/ha gegen ECHCG in %
Figure imgf000107_0002
Figure imgf000108_0001
Tabelle 6a: Vorauflaufwirkung bei 80g/ha gegen LOLRI in %
Figure imgf000108_0002
Tabelle 6b: Vorauflaufwirkung bei 320g/ha gegen LOLRI in %
Figure imgf000109_0001
Tabelle 7: Vorauflaufwirkung bei 320g/ha gegen PHBPU in %
Figure imgf000109_0002
Tabelle 8: Vorauflaufwirkung bei 320g/ha gegen POLCO in %
Figure imgf000109_0003
Figure imgf000110_0001
Tabelle 9a: Vorauflaufwirkung bei 80g/ha gegen SETVI in %
Figure imgf000110_0002
Tabelle 9b: Vorauflaufwirkung bei 320g/ha gegen SETVI in %
Figure imgf000111_0001
Tabelle 10a: Vorauflaufwirkung bei 80g/ha gegen VERPE in %
Figure imgf000111_0002
Tabelle 10b: Vorauflaufwirkung bei 320g/ha gegen VERPE in %
Figure imgf000112_0001
Tabelle 11a: Vorauflaufwirkung bei 80g/ha gegen VIOTR in %
Figure imgf000112_0002
Tabelle 11b: Vorauflaufwirkung bei 320g/ha gegen VIOTR in %
Figure imgf000112_0003
Figure imgf000113_0001
Tabelle 12a: Vorauflaufwirkung bei 80g/ha gegen DIGSA in %
Figure imgf000113_0002
Tabelle 12b: Vorauflaufwirkung bei 320g/ha gegen DIGSA in %
Figure imgf000113_0003
Figure imgf000114_0001
Wie die Ergebnisse aus der Tabellen la/b, 2a/b, 3a/b, 4a/b, 5a/b, 6a/b, 7, 8, 9a/b, lOa/b, lla/b und 12a/b zeigen, weisen die erfindungsgemäßen Verbindungen eine gute herbizide Vorauflaufwirksamkeit gegen ein breites Spektrum von Ungräsern und Unkräutern auf. Beispielsweise zeigen die Verbindungen bei einer Aufwandmenge von 80/320 g/ha jeweils eine 80 - 100%-ige Wirkung unter anderem gegen Alopecurus myosuroides, Avenafatua, Digitaria sanguinalis, Echinochloa crus-galli, Lolium rigidum, Setaria viridis, Amaranthus retroflexus, Viola tricolor und Veronica persica. Die erfindungsgemäßen Verbindungen eignen sich deshalb im Vorauflaufverfahren zur Bekämpfung von unerwünschtem Pflanzen wuchs.

Claims

Patentansprüche
1. Substituierte Pyrrolin-2-one der allgemeinen Formel (I) oder ein agrochemisch akzeptables Salz davon,
Figure imgf000115_0001
worin
X bedeutet Ci -C,- Alkyl, C i -Cr,-Halogenal kyl , C3-C6-Cycloalkyl, Ci-Cö-Alkoxy, CI-CÖ-
Halogenalkoxy, Brom oder Fluor;
Y bedeutet C i -Ce- Alkoxy oder C i -Cö-Halogenalkoxy ; R1 bedeutet C2-C6-Difluoralkoxy;
R2 bedeutet Wasserstoff, Ci-Cr,-Alkyl, Ci-C4-Alkoxy-Ci-C4-alkyl, Ci-Cö-Halogenalkyl, C3-C6-
Cycloalkyl, C3-C6-Cycloalkyl-Ci-C4-alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, Ci -Cr,- Alkoxy oder C 1 -Cö-Halogenalkoxy ;
G bedeutet Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E, L bedeutet einen der folgenden Reste,
Figure imgf000115_0002
R3 bedeutet C 1 -C4- Alkyl oder C 1 -C3 - Alkoxy-C 1 -C4-alkyl ;
R4 bedeutet C1-C4- Alkyl; R5 bedeutet Ci-C4-Alkyl, Phenyl oder ein einfach oder mehrfach durch Halogen, Ci-C4-Alkyl, Ci-C4-Halogenalkyl, Ci-C4-Alkoxy, Ci-C4-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl; R6 und R6‘ bedeuten unabhängig voneinander Methoxy oder Ethoxy;
R7 und R8 bedeuten unabhängig voneinander jeweils Methyl, Ethyl, Phenyl oder
R7 und R8 bilden gemeinsam mit dem Stickstoff atom, an das sie gebunden sind, einen gesättigten 5-, 6- oder 7-gliedrigen Ring, wobei ein Ringkohlenstoffatom gegebenenfalls durch ein Sauerstoff- oder Schwefelatom ersetzt ist;
E bedeutet ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion ist, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen Ci- Cio-Alkyl oder C3-C7-Cycloalkyl, die unabhängig voneinander jeweils ein- oder mehrfach mit Fluor, Chlor, Brom, Cyano, Hydroxy substituiert oder durch ein oder mehrere Sauerstoff oder Schwefelatome unterbrochen sein können, ein cyclisches sekundäres oder tertiäres aliphatisches oder heteroaliphatisches Ammoniumion wiebeispielsweise Morpholinium, Thiomorpholinium, Piperidinium, Pyrrolidinium oder jeweils protoniertes 1,4- Diazabicyclo[1.1.2]octane (DABCO) oder l,5-Diazabicyclo[4.3.0]undec-7-en (DBU); ein heteroaromatisches Ammoniumkation wie beispielsweise jeweils protoniertes Pyridin, 2- Methylpyridin, 3-Methylpyridin, 4-Methylpyridin, 2,4-Dimethylpyridin, 2,5-Di- methylpyridin, 2,6-Dimethylpyridin, 5-Ethyl-2-methylpyridin, Collidin, Pyrrol, Imidazol, Chinolin, Chinoxalin, 1 ,2-Dimethylimidazol, 1,3-Dimethylimidazolium-methylsulfat oder Trimethylsulfoniumion.
2. Verbindungen der Formel (I) gemäß Anspruch 1, worin
X bedeutet Ci-C4-Alkyl, Ci-C4-Halogenalkyl, C3-C6-Cycloalkyl, Ci-C4-Alkoxy, C1-C4- Halogenalkoxy, Brom oder Fluor;
Y bedeutet C 1 -C4- Alkoxy oder C 1 -C4-Halogenalkoxy ;
R1 bedeutet C2-C4-Difluoralkoxy;
R2 bedeutet Wasserstoff, Ci-Ce-Alkyl, Ci-C4-Alkoxy-C2-C4-alkyl, Ci-Cö-Halogenalkyl, C3-C6- Cycloalkyl, C2-C6-Alkenyl oder C2-C6-Alkinyl;
G bedeutet Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E, L bedeutet einen der folgenden Reste,
Figure imgf000117_0001
R3 bedeutet C i -C4- Alkyl oder C 1 -C3 - Alkoxy-C 1 -C4-alkyl ;
R4 bedeutet C1-C4- Alkyl;
R5 bedeutet Ci-C4-Alkyl, Phenyl oder einfach oder mehrfach durch Halogen, Ci-C4-Alkyl, Ci- C4-Halogenalkyl oder Ci-C4-Alkoxy substituiertes Phenyl;
E bedeutet ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion ist, bei dem gegebenenfalls ein, zwei, drei oder alle vier Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen Ci- Cio-Alkyl oder C3-C7-Cycloalkyl, die unabhängig voneinander jeweils ein- oder mehrfach mit Fluor, Chlor, Brom, Cyano, Hydroxy substituiert oder durch ein oder mehrere Sauerstoff oder Schwefelatome unterbrochen sein können, ein cyclisches sekundäres oder tertiäres aliphatisches oder heteroaliphatisches Ammoniumion wie beispielsweise Morpholinium, Thiomorpholinium, Piperidinium, Pyrrolidinium oder jeweils protoniertes 1,4- Diazabicyclo[1.1.2]octane (DABCO) oder l,5-Diazabicyclo[4.3.0]undec-7-en (DBU); ein heteroaromatisches Ammoniumkation wie beispielsweise jeweils protoniertes Pyridin, 2- Methylpyridin, 3-Methylpyridin, 4-Methylpyridin, 2,4-Dimethylpyridin, 2,5-Di- methylpyridin, 2,6-Dimethylpyridin, 5-Ethyl-2-methylpyridin, Collidin, Pyrrol, Imidazol, Chinolin, Chinoxalin, 1 ,2-Dimethylimidazol, 1,3-Dimethylimidazolium-methylsulfat oder Trimethylsulfoniumion.
3. Verbindungen der Formel (I) gemäß Anspruch 1 oder 2 oder ein agrochemisch akzeptables Salz davon, worin
X bedeutet Ci-C4-Alkyl, Ci-C4-Halogenalkyl, Cyclopropyl, Brom oder Fluor;
Y bedeutet C 1 -C4- Alkoxy oder C 1 -C4-Halogenalkoxy ;
R1 bedeutet C2-C4-Difluoralkoxy;
R2 bedeutet Wasserstoff, Ci-C4-Alkyl, Methoxyethyl oder Ethoxyethyl, Ci-C2-Halogenalkyl, Cyclopropyl, C2-C4-Alkenyl oder C2-C4-Alkinyl;
G bedeutet Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E,
L bedeutet einen der folgenden Reste,
O O
R3 bedeutet C i -C4- Alkyl oder C 1 -C2- Alkoxy-C 1 -C2-alkyl ;
R4 bedeutet C1-C4- Alkyl;
E bedeutet ein Alkalimetallion, ein Ionenäquivalent eines Erdalkalimetalls, ein Ionenäquivalent Aluminium, ein Ionenäquivalent eines Übergangsmetalls, ein Magnesium-Halogen-Kation oder ein Ammoniumion, bei dem gegebenenfalls ein, zwei, drei oder alle vier
Wasserstoffatome ersetzt sind durch gleiche oder verschiedene Reste aus den Gruppen Ci- Cio-Alkyl oder C3-C7-Cycloalkyl.
4. Verbindungen der Formel (I) gemäß einem der Ansprüche 1 bis 3, worin
X bedeutet Methyl, Ethyl, Cyclopropyl, Brom oder Fluor;
Y bedeutet Methoxy oder Ethoxy;
R1 bedeutet 2,2-Difluorethoxy, 2,2-Difluorpropoxy oder 3,3-Difluorpropoxy;
R2 bedeutet Wasserstoff oder Methyl; G bedeutet Wasserstoff, eine abspaltbare Gruppe L oder ein Kation E,
L bedeutet einer der folgenden Reste,
Figure imgf000118_0001
R bedeutet Methyl, Ethyl, Isopropyl oder t-Butyl; R4 bedeutet Methyl oder Ethyl;
E bedeutet ein Natriumion oder ein Kaliumion.
5. Verbindungen der Beispiel-Nr. 1-1, 1-2, 1-3, 1-4, 1-5, 1-6, 1-7, 1-8, 1-9, 1-10, 1-21, 1-22, 1- 23, 1-24, 1-25, 1-26, 1-27, 1-28, 1-29, 1-30, 1-41, 1-42, 1-43, 1-44, 1-45, 1-46, 1-47, 1-48, 1-49, 1-
50, 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, 2-7, 2-8, 2-9, 2-10, 2-21, 2-22, 2-23, 2-24, 2-25, 2-26, 2-27, 2-28, 2- 29, 2-30, 2-41, 2-42, 2-43, 2-44, 2-45, 2-46, 2-47, 2-48, 2-49 und 2-50.
6. Verbindungen der allgemeinen Formel (II) oder ein agrochemisch akzeptables Salz davon
Figure imgf000119_0001
wobei die Reste R1, R2, X und Y wie in einem oder mehreren der Ansprüche 1 bis 4 definiert sind, und R9 für Methyl oder Ethyl steht.
7. Verbindungen der allgemeinen Formel (V)
Figure imgf000119_0002
worin X und Y wie nachfolgend definiert sind:
Figure imgf000119_0003
Figure imgf000120_0002
8. Verbindungen der allgemeinen Formel (Va)
Figure imgf000120_0001
worin X, Y und R10 wie nachfolgend definiert sind:
Figure imgf000120_0003
9. Agrochemisches Mittel, enthaltend a) mindestens eine Verbindung der Formel (I) oder ein agrochemisch akzeptables Salz davon, wie in einem oder mehreren der Ansprüche 1 bis 5 definiert, und b) im Pflanzenschutz übliche Hilfs- und Zusatzstoffe.
10. Agrochemisches Mittel, enthaltend a) mindestens eine Verbindung der Formel (I) oder ein agrochemisch akzeptables Salz davon, wie in einem oder mehreren der Ansprüche 1 bis 5 definiert, b) einen oder mehrere von Komponente a) verschiedene agrochemische Wirkstoffe, und optional c) im Pflanzenschutz übliche Hilfs- und Zusatzstoffe.
11. Verfahren zur Bekämpfung von unerwünschten Pflanzen oder zur Wachstumsregulierung von Pflanzen, wobei eine wirksame Menge mindestens einer Verbindung der Formel (I) oder ein agrochemisch akzeptables Salz davon, wie in einem oder mehreren der Ansprüche 1 bis 5 definiert, auf die Pflanzen, das Saatgut oder die Fläche, auf der die Pflanzen wachsen, appliziert wird.
12. Verwendung von Verbindungen der Formel (I) oder ein agrochemisch akzeptables Salz davon, wie in einem oder mehreren der Ansprüche 1 bis 5 definiert, als Herbizide oder Pflanzenwachstumsregulatoren.
13. Verwendung nach Anspruch 12, wobei die Verbindungen der Formel (I) oder ein agrochemisch akzeptables Salz davon zur Bekämpfung von Schadpflanzen oder zur Wachstumsregulierung in Pflanzenkulturen eingesetzt werden.
14. Verwendung nach Anspruch 13, wobei die Kulturpflanzen transgene oder nicht transgene
Kulturpflanzen sind.
PCT/EP2022/064398 2021-06-01 2022-05-27 Speziell substituierte pyrrolin-2-one und deren verwendung als herbizide WO2022253700A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP21177006.0 2021-06-01
EP21177006 2021-06-01

Publications (1)

Publication Number Publication Date
WO2022253700A1 true WO2022253700A1 (de) 2022-12-08

Family

ID=76217707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/064398 WO2022253700A1 (de) 2021-06-01 2022-05-27 Speziell substituierte pyrrolin-2-one und deren verwendung als herbizide

Country Status (2)

Country Link
AR (1) AR126051A1 (de)
WO (1) WO2022253700A1 (de)

Citations (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2906507A1 (de) 1979-02-20 1980-08-28 Bayer Ag Mittel zur regulierung des pflanzenwachstums
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
US4272417A (en) 1979-05-22 1981-06-09 Cargill, Incorporated Stable protective seed coating
EP0030287A1 (de) 1979-11-29 1981-06-17 Bayer Ag 1-Amino-cyclopropancarbonsäure-Derivate, Verfahren zu ihrer Herstellung, ihre Verwendung als Pflanzenwachstumsregulatoren und solche Derivate enthaltende Mittel
EP0086750A2 (de) 1982-02-17 1983-08-24 Ciba-Geigy Ag Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen
EP0094349A2 (de) 1982-05-07 1983-11-16 Ciba-Geigy Ag Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen
EP0131624A1 (de) 1983-01-17 1985-01-23 Monsanto Co Plasmide zur transformation von pflanzenzellen.
DE3335514A1 (de) 1983-09-30 1985-04-18 Bayer Ag, 5090 Leverkusen 1-methylamino-cyclopropan-1-carbonsaeure-derivate
JPS6087254A (ja) 1983-10-19 1985-05-16 Japan Carlit Co Ltd:The 新規尿素化合物及びそれを含有する除草剤
EP0142924A2 (de) 1983-09-26 1985-05-29 Mycogen Plant Science, Inc. Insektresistente Pflanzen
EP0174562A2 (de) 1984-09-11 1986-03-19 Hoechst Aktiengesellschaft Pflanzenschützende Mittel auf Basis von 1,2,4-Triazolderivaten sowie neue Derivate des 1,2,4-Triazols
EP0191736A2 (de) 1985-02-14 1986-08-20 Ciba-Geigy Ag Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen
EP0193259A1 (de) 1985-01-18 1986-09-03 Plant Genetic Systems N.V. Modifikation von Pflanzen auf pentechnologischem Wege zur Bekämpfung oder zur Kontrolle von Insekten
EP0221044A1 (de) 1985-10-25 1987-05-06 Monsanto Company Pflanzenvektoren
EP0242236A1 (de) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Durch Gentechnologie erhaltene und gegen Glutaminsynthetase-Inhibitoren resistente Pflanzenzellen
EP0257993A2 (de) 1986-08-26 1988-03-02 E.I. Du Pont De Nemours And Company Herbizid-resistante Pflanzen-Acetolactatsynthase kodierendes Nucleinsäurefragment
EP0268554A2 (de) 1986-10-22 1988-05-25 Ciba-Geigy Ag 1,5-Diphenylpyrazol-3-carbonsäurederivate zum Schützen von Kulturpflanzen
EP0269806A1 (de) 1986-10-04 1988-06-08 Hoechst Aktiengesellschaft Phenylpyrazolcarbonsäurederivate, ihre Herstellung und Verwendung als Pflanzenwachstumsregulatoren und Safener
US4808430A (en) 1987-02-27 1989-02-28 Yazaki Corporation Method of applying gel coating to plant seeds
EP0305398A1 (de) 1986-05-01 1989-03-08 Honeywell Inc Verbindungsanordnung für mehrere integrierte schaltungen.
EP0309862A1 (de) 1987-09-30 1989-04-05 Bayer Ag Stilbensynthase-Gen
EP0333131A1 (de) 1988-03-17 1989-09-20 Hoechst Aktiengesellschaft Pflanzenschützende Mittel auf Basis von Pyrazolcarbonsäurederivaten
WO1989010396A1 (en) 1988-04-28 1989-11-02 Plant Genetic Systems N.V. Plants with modified stamen cells
EP0346620A1 (de) 1988-05-20 1989-12-20 Hoechst Aktiengesellschaft 1,2,4-Triazolderivate enthaltende pflanzenschützende Mittel sowie neue Derivate des 1,2,4-Triazols
EP0365484A1 (de) 1988-10-20 1990-04-25 Ciba-Geigy Ag Sulfamoylphenylharnstoffe
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
WO1991007874A1 (de) 1989-11-30 1991-06-13 Hoechst Aktiengesellschaft Pyrazoline zum schutz von kulturpflanzen gegenüber herbiziden
WO1991008202A1 (de) 1989-11-25 1991-06-13 Hoechst Aktiengesellschaft Isoxazoline, verfahren zu ihrer herstellung und ihre verwendung als pflanzenschützende mittel
WO1991013972A1 (en) 1990-03-16 1991-09-19 Calgene, Inc. Plant desaturases - compositions and uses
WO1991019806A1 (en) 1990-06-18 1991-12-26 Monsanto Company Increased starch content in plants
EP0464461A2 (de) 1990-06-29 1992-01-08 Bayer Ag Stilbensynthase-Gene aus Weinrebe
WO1992000377A1 (en) 1990-06-25 1992-01-09 Monsanto Company Glyphosate tolerant plants
US5084082A (en) 1988-09-22 1992-01-28 E. I. Du Pont De Nemours And Company Soybean plants with dominant selectable trait for herbicide resistance
US5123951A (en) 1986-03-31 1992-06-23 Rhone-Poulenc Nederland B.V. Synergistic plant growth regulator compositions
EP0492366A2 (de) 1990-12-21 1992-07-01 Hoechst Schering AgrEvo GmbH Neue 5-Chlorchinolin-8-oxyalkancarbonsäurederivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Antidots von Herbiziden
WO1992011376A1 (en) 1990-12-21 1992-07-09 Amylogene Hb Genetically engineered modification of potato to form amylopectin-type starch
WO1992014827A1 (en) 1991-02-13 1992-09-03 Institut Für Genbiologische Forschung Berlin Gmbh Plasmids containing dna-sequences that cause changes in the carbohydrate concentration and the carbohydrate composition in plants, as well as plant cells and plants containing these plasmids
US5198599A (en) 1990-06-05 1993-03-30 Idaho Resarch Foundation, Inc. Sulfonylurea herbicide resistance in plants
EP0582198A2 (de) 1992-08-01 1994-02-09 Hoechst Schering AgrEvo GmbH Substituierte (Hetero-)Arylverbindungen, Verfahren zu deren Herstellung, diese enthaltende Mittel und deren Verwendung als Safener
WO1995007897A1 (de) 1993-09-16 1995-03-23 Hoechst Schering Agrevo Gmbh Substituierte isoxazoline, verfahren zu deren herstellung, diese enthaltende mittel und deren verwendung als safener
WO1996025395A1 (de) 1995-02-13 1996-08-22 Bayer Aktiengesellschaft 2-phenylsubstituierte heterocyclische 1,3-ketoenole als herbizide und pestizide
WO1996038567A2 (fr) 1995-06-02 1996-12-05 Rhone-Poulenc Agrochimie Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un gene de l'hydroxy-phenyl pyruvate dioxygenase, tolerantes a certains herbicides
WO1997041218A1 (en) 1996-04-29 1997-11-06 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herbicide resistant rice
WO1997045016A1 (de) 1996-05-29 1997-12-04 Hoechst Schering Agrevo Gmbh Neue n-acylsulfonamide, neue mischungen aus herbiziden und antidots und deren verwendung
WO1998013361A1 (en) 1996-09-26 1998-04-02 Novartis Ag Herbicidal composition
WO1998027049A1 (de) 1996-12-19 1998-06-25 Hoechst Schering Agrevo Gmbh Neue 2-fluoracrylsäurederivate, neue mischungen aus herbiziden und antidots und deren verwendung
US5773702A (en) 1996-07-17 1998-06-30 Board Of Trustees Operating Michigan State University Imidazolinone herbicide resistant sugar beet plants
WO1998038856A1 (en) 1997-03-04 1998-09-11 Zeneca Limited Compositions for safening rice against acetochlor
WO1999000020A1 (de) 1997-06-27 1999-01-07 Hoechst Schering Agrevo Gmbh 3-(5-tetrazolylcarbonyl)-2-chinolone und diese enthaltende nutzpflanzenschützende mittel
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
WO1999016744A1 (de) 1997-09-29 1999-04-08 Aventis Cropscience Gmbh Acylsulfamoylbenzoesäureamide, diese enthaltende nutzpflanzenschützende mittel und verfahren zu ihrer herstellung
WO1999024586A1 (fr) 1997-11-07 1999-05-20 Aventis Cropscience S.A. Hydroxy-phenyl pyruvate dioxygenase chimere, sequence d'adn et obtention de plantes contenant un tel gene, tolerantes aux herbicides
WO1999034008A1 (fr) 1997-12-24 1999-07-08 Aventis Cropscience S.A. Procede de preparation enzymatique d'homogentisate
WO1999057965A1 (de) 1998-05-14 1999-11-18 Aventis Cropscience Gmbh Sulfonylharnstoff-tolerante zuckerrübenmutanten
WO2001065922A2 (en) 2000-03-09 2001-09-13 E. I. Du Pont De Nemours And Company Sulfonylurea-tolerant sunflower plants
WO2001066704A2 (en) 2000-03-09 2001-09-13 Monsanto Technology Llc Methods for making plants tolerant to glyphosate and compositions thereof
WO2001074770A1 (de) 2000-04-03 2001-10-11 Bayer Cropscience Ag C2-phenylsubstituierte cyclische ketoenole als schädlingsbekämpfungsmittel und herbizide
WO2002028186A2 (en) 2000-10-06 2002-04-11 Monsanto Technology, Llc Seed treatment with combinations of insecticides
WO2002034048A1 (en) 2000-10-23 2002-05-02 Syngenta Participations Ag Agrochemical compositions with quinoline safeners
WO2002036787A2 (fr) 2000-10-30 2002-05-10 Bayer Cropscience S.A. Plantes tolerantes aux herbicides par contournement de voie metabolique
WO2002046387A2 (en) 2000-12-07 2002-06-13 Syngenta Limited Plant derived hydroxy phenyl pyruvate dioxygenases (hppd) resistant against triketone herbicides and transgenic plants containing these dioxygenases
WO2002080675A1 (en) 2001-03-21 2002-10-17 Monsanto Technology, Llc Treated plant seeds with controlled release of active agents
US20030176428A1 (en) 1998-11-16 2003-09-18 Schneidersmann Ferdinand Martin Pesticidal composition for seed treatment
WO2004024928A2 (fr) 2002-09-11 2004-03-25 Bayer Cropscience S.A. Plantes transformees a biosynthese de prenylquinones amelioree
US6768044B1 (en) 2000-05-10 2004-07-27 Bayer Cropscience Sa Chimeric hydroxyl-phenyl pyruvate dioxygenase, DNA sequence and method for obtaining plants containing such a gene, with herbicide tolerance
WO2004084631A1 (de) 2003-03-26 2004-10-07 Bayer Cropscience Gmbh Verwendung von hydroxyaromaten als safener
WO2005016001A1 (de) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Safener auf basis aromatisch-aliphatischer carbonsäurederivate
WO2005015994A1 (de) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Verwendung von hydroxyaromaten als safener
WO2005112630A1 (de) 2004-05-12 2005-12-01 Bayer Cropscience Gmbh Chinoxalin-2-on-derivate, diese enthaltende nutzpflanzenschützende mittel und verfahren zu ihrer herstellung und deren verwendung
WO2007023719A1 (ja) 2005-08-22 2007-03-01 Kumiai Chemical Industry Co., Ltd. 薬害軽減剤及び薬害が軽減された除草剤組成物
WO2007023764A1 (ja) 2005-08-26 2007-03-01 Kumiai Chemical Industry Co., Ltd. 薬害軽減剤及び薬害が軽減された除草剤組成物
WO2007103567A2 (en) 2006-03-09 2007-09-13 E. I. Dupont De Nemours & Company Polynucleotide encoding a maize herbicide resistance gene and methods for use
WO2008131860A2 (de) 2007-04-30 2008-11-06 Bayer Cropscience Ag Pyridoncarboxamide, diese enthaltende nutzpflanzenschützende mittel und verfahren zu ihrer herstellung und deren verwendung
WO2008131861A1 (de) 2007-04-30 2008-11-06 Bayer Cropscience Ag Verwendung von pyridin-2-oxy-3-carbonamiden als safener
WO2008150473A2 (en) 2007-05-30 2008-12-11 Syngenta Participations Ag Cytochrome p450 genes conferring herbicide resistance
WO2009039975A1 (de) 2007-09-25 2009-04-02 Bayer Cropscience Ag Halogenalkoxyspirocyclische tetram- und tetronsäure-derivate
WO2009144079A1 (en) 2008-04-14 2009-12-03 Bayer Bioscience N.V. New mutated hydroxyphenylpyruvate dioxygenase, dna sequence and isolation of plants which are tolerant to hppd inhibitor herbicides
CN101838227A (zh) 2010-04-30 2010-09-22 孙德群 一种苯甲酰胺类除草剂的安全剂
EP2248421A1 (de) 2009-05-07 2010-11-10 GMI - Gregor-Mendel-Institut für Molekulare Pflanzenbiologie GmbH Ansammlung von Biomasse in Pflanzen
WO2015032702A1 (en) 2013-09-06 2015-03-12 Syngenta Limited Herbicidally active 2-halogen-4-alkynyl- phenyl-pyrazolidine-dione or pyrrolidine-dione derivatives
WO2015040114A1 (en) 2013-09-20 2015-03-26 Syngenta Limited Herbicidally active 2-halogen-4-alkynyl-phenyl-pyrazolidine-dione or pyrrolidine-dione derivatives
WO2019219584A1 (de) 2018-05-15 2019-11-21 Bayer Aktiengesellschaft Neue spirocyclohexylpyrrolin-2-one und deren verwendung als herbizide
WO2019219587A1 (de) 2018-05-15 2019-11-21 Bayer Aktiengesellschaft 2-brom-6-alkoxyphenyl-substituierte pyrrolin-2-one und deren verwendung als herbizide
WO2020187627A1 (de) 2019-03-15 2020-09-24 Bayer Aktiengesellschaft Neue 3-(2-brom-4-alkinyl-6-alkoxyphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide

Patent Citations (86)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2906507A1 (de) 1979-02-20 1980-08-28 Bayer Ag Mittel zur regulierung des pflanzenwachstums
US4272417A (en) 1979-05-22 1981-06-09 Cargill, Incorporated Stable protective seed coating
US4245432A (en) 1979-07-25 1981-01-20 Eastman Kodak Company Seed coatings
EP0030287A1 (de) 1979-11-29 1981-06-17 Bayer Ag 1-Amino-cyclopropancarbonsäure-Derivate, Verfahren zu ihrer Herstellung, ihre Verwendung als Pflanzenwachstumsregulatoren und solche Derivate enthaltende Mittel
EP0086750A2 (de) 1982-02-17 1983-08-24 Ciba-Geigy Ag Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen
EP0094349A2 (de) 1982-05-07 1983-11-16 Ciba-Geigy Ag Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen
EP0131624A1 (de) 1983-01-17 1985-01-23 Monsanto Co Plasmide zur transformation von pflanzenzellen.
EP0142924A2 (de) 1983-09-26 1985-05-29 Mycogen Plant Science, Inc. Insektresistente Pflanzen
DE3335514A1 (de) 1983-09-30 1985-04-18 Bayer Ag, 5090 Leverkusen 1-methylamino-cyclopropan-1-carbonsaeure-derivate
JPS6087254A (ja) 1983-10-19 1985-05-16 Japan Carlit Co Ltd:The 新規尿素化合物及びそれを含有する除草剤
EP0174562A2 (de) 1984-09-11 1986-03-19 Hoechst Aktiengesellschaft Pflanzenschützende Mittel auf Basis von 1,2,4-Triazolderivaten sowie neue Derivate des 1,2,4-Triazols
EP0193259A1 (de) 1985-01-18 1986-09-03 Plant Genetic Systems N.V. Modifikation von Pflanzen auf pentechnologischem Wege zur Bekämpfung oder zur Kontrolle von Insekten
EP0191736A2 (de) 1985-02-14 1986-08-20 Ciba-Geigy Ag Verwendung von Chinolinderivaten zum Schützen von Kulturpflanzen
EP0221044A1 (de) 1985-10-25 1987-05-06 Monsanto Company Pflanzenvektoren
EP0242236A1 (de) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Durch Gentechnologie erhaltene und gegen Glutaminsynthetase-Inhibitoren resistente Pflanzenzellen
EP0242246A1 (de) 1986-03-11 1987-10-21 Plant Genetic Systems N.V. Durch Gentechnologie erhaltene und gegen Glutaminsynthetase-Inhibitoren resistente Pflanzenzellen
US5123951A (en) 1986-03-31 1992-06-23 Rhone-Poulenc Nederland B.V. Synergistic plant growth regulator compositions
EP0305398A1 (de) 1986-05-01 1989-03-08 Honeywell Inc Verbindungsanordnung für mehrere integrierte schaltungen.
EP0257993A2 (de) 1986-08-26 1988-03-02 E.I. Du Pont De Nemours And Company Herbizid-resistante Pflanzen-Acetolactatsynthase kodierendes Nucleinsäurefragment
EP0269806A1 (de) 1986-10-04 1988-06-08 Hoechst Aktiengesellschaft Phenylpyrazolcarbonsäurederivate, ihre Herstellung und Verwendung als Pflanzenwachstumsregulatoren und Safener
EP0268554A2 (de) 1986-10-22 1988-05-25 Ciba-Geigy Ag 1,5-Diphenylpyrazol-3-carbonsäurederivate zum Schützen von Kulturpflanzen
US4808430A (en) 1987-02-27 1989-02-28 Yazaki Corporation Method of applying gel coating to plant seeds
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
EP0309862A1 (de) 1987-09-30 1989-04-05 Bayer Ag Stilbensynthase-Gen
EP0333131A1 (de) 1988-03-17 1989-09-20 Hoechst Aktiengesellschaft Pflanzenschützende Mittel auf Basis von Pyrazolcarbonsäurederivaten
WO1989010396A1 (en) 1988-04-28 1989-11-02 Plant Genetic Systems N.V. Plants with modified stamen cells
EP0346620A1 (de) 1988-05-20 1989-12-20 Hoechst Aktiengesellschaft 1,2,4-Triazolderivate enthaltende pflanzenschützende Mittel sowie neue Derivate des 1,2,4-Triazols
US5084082A (en) 1988-09-22 1992-01-28 E. I. Du Pont De Nemours And Company Soybean plants with dominant selectable trait for herbicide resistance
EP0365484A1 (de) 1988-10-20 1990-04-25 Ciba-Geigy Ag Sulfamoylphenylharnstoffe
WO1991008202A1 (de) 1989-11-25 1991-06-13 Hoechst Aktiengesellschaft Isoxazoline, verfahren zu ihrer herstellung und ihre verwendung als pflanzenschützende mittel
WO1991007874A1 (de) 1989-11-30 1991-06-13 Hoechst Aktiengesellschaft Pyrazoline zum schutz von kulturpflanzen gegenüber herbiziden
WO1991013972A1 (en) 1990-03-16 1991-09-19 Calgene, Inc. Plant desaturases - compositions and uses
US5198599A (en) 1990-06-05 1993-03-30 Idaho Resarch Foundation, Inc. Sulfonylurea herbicide resistance in plants
WO1991019806A1 (en) 1990-06-18 1991-12-26 Monsanto Company Increased starch content in plants
WO1992000377A1 (en) 1990-06-25 1992-01-09 Monsanto Company Glyphosate tolerant plants
EP0464461A2 (de) 1990-06-29 1992-01-08 Bayer Ag Stilbensynthase-Gene aus Weinrebe
EP0492366A2 (de) 1990-12-21 1992-07-01 Hoechst Schering AgrEvo GmbH Neue 5-Chlorchinolin-8-oxyalkancarbonsäurederivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Antidots von Herbiziden
WO1992011376A1 (en) 1990-12-21 1992-07-09 Amylogene Hb Genetically engineered modification of potato to form amylopectin-type starch
WO1992014827A1 (en) 1991-02-13 1992-09-03 Institut Für Genbiologische Forschung Berlin Gmbh Plasmids containing dna-sequences that cause changes in the carbohydrate concentration and the carbohydrate composition in plants, as well as plant cells and plants containing these plasmids
EP0582198A2 (de) 1992-08-01 1994-02-09 Hoechst Schering AgrEvo GmbH Substituierte (Hetero-)Arylverbindungen, Verfahren zu deren Herstellung, diese enthaltende Mittel und deren Verwendung als Safener
WO1995007897A1 (de) 1993-09-16 1995-03-23 Hoechst Schering Agrevo Gmbh Substituierte isoxazoline, verfahren zu deren herstellung, diese enthaltende mittel und deren verwendung als safener
WO1996025395A1 (de) 1995-02-13 1996-08-22 Bayer Aktiengesellschaft 2-phenylsubstituierte heterocyclische 1,3-ketoenole als herbizide und pestizide
WO1996038567A2 (fr) 1995-06-02 1996-12-05 Rhone-Poulenc Agrochimie Sequence adn d'un gene de l'hydroxy-phenyl pyruvate dioxygenase et obtention de plantes contenant un gene de l'hydroxy-phenyl pyruvate dioxygenase, tolerantes a certains herbicides
WO1997041218A1 (en) 1996-04-29 1997-11-06 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Herbicide resistant rice
WO1997045016A1 (de) 1996-05-29 1997-12-04 Hoechst Schering Agrevo Gmbh Neue n-acylsulfonamide, neue mischungen aus herbiziden und antidots und deren verwendung
US5876739A (en) 1996-06-13 1999-03-02 Novartis Ag Insecticidal seed coating
US5773702A (en) 1996-07-17 1998-06-30 Board Of Trustees Operating Michigan State University Imidazolinone herbicide resistant sugar beet plants
WO1998013361A1 (en) 1996-09-26 1998-04-02 Novartis Ag Herbicidal composition
WO1998027049A1 (de) 1996-12-19 1998-06-25 Hoechst Schering Agrevo Gmbh Neue 2-fluoracrylsäurederivate, neue mischungen aus herbiziden und antidots und deren verwendung
WO1998038856A1 (en) 1997-03-04 1998-09-11 Zeneca Limited Compositions for safening rice against acetochlor
WO1999000020A1 (de) 1997-06-27 1999-01-07 Hoechst Schering Agrevo Gmbh 3-(5-tetrazolylcarbonyl)-2-chinolone und diese enthaltende nutzpflanzenschützende mittel
WO1999016744A1 (de) 1997-09-29 1999-04-08 Aventis Cropscience Gmbh Acylsulfamoylbenzoesäureamide, diese enthaltende nutzpflanzenschützende mittel und verfahren zu ihrer herstellung
WO1999024585A1 (fr) 1997-11-07 1999-05-20 Aventis Cropscience S.A. Hydroxy-phenyl pyruvate dioxygenase mutee, sequence d'adn et obtention de plantes contenant un tel gene, tolerantes aux herbicides
WO1999024586A1 (fr) 1997-11-07 1999-05-20 Aventis Cropscience S.A. Hydroxy-phenyl pyruvate dioxygenase chimere, sequence d'adn et obtention de plantes contenant un tel gene, tolerantes aux herbicides
WO1999034008A1 (fr) 1997-12-24 1999-07-08 Aventis Cropscience S.A. Procede de preparation enzymatique d'homogentisate
WO1999057965A1 (de) 1998-05-14 1999-11-18 Aventis Cropscience Gmbh Sulfonylharnstoff-tolerante zuckerrübenmutanten
US20030176428A1 (en) 1998-11-16 2003-09-18 Schneidersmann Ferdinand Martin Pesticidal composition for seed treatment
WO2001065922A2 (en) 2000-03-09 2001-09-13 E. I. Du Pont De Nemours And Company Sulfonylurea-tolerant sunflower plants
WO2001066704A2 (en) 2000-03-09 2001-09-13 Monsanto Technology Llc Methods for making plants tolerant to glyphosate and compositions thereof
WO2001074770A1 (de) 2000-04-03 2001-10-11 Bayer Cropscience Ag C2-phenylsubstituierte cyclische ketoenole als schädlingsbekämpfungsmittel und herbizide
US6768044B1 (en) 2000-05-10 2004-07-27 Bayer Cropscience Sa Chimeric hydroxyl-phenyl pyruvate dioxygenase, DNA sequence and method for obtaining plants containing such a gene, with herbicide tolerance
WO2002028186A2 (en) 2000-10-06 2002-04-11 Monsanto Technology, Llc Seed treatment with combinations of insecticides
WO2002034048A1 (en) 2000-10-23 2002-05-02 Syngenta Participations Ag Agrochemical compositions with quinoline safeners
WO2002036787A2 (fr) 2000-10-30 2002-05-10 Bayer Cropscience S.A. Plantes tolerantes aux herbicides par contournement de voie metabolique
WO2002046387A2 (en) 2000-12-07 2002-06-13 Syngenta Limited Plant derived hydroxy phenyl pyruvate dioxygenases (hppd) resistant against triketone herbicides and transgenic plants containing these dioxygenases
WO2002080675A1 (en) 2001-03-21 2002-10-17 Monsanto Technology, Llc Treated plant seeds with controlled release of active agents
WO2004024928A2 (fr) 2002-09-11 2004-03-25 Bayer Cropscience S.A. Plantes transformees a biosynthese de prenylquinones amelioree
WO2004084631A1 (de) 2003-03-26 2004-10-07 Bayer Cropscience Gmbh Verwendung von hydroxyaromaten als safener
WO2005016001A1 (de) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Safener auf basis aromatisch-aliphatischer carbonsäurederivate
WO2005015994A1 (de) 2003-08-05 2005-02-24 Bayer Cropscience Gmbh Verwendung von hydroxyaromaten als safener
WO2005112630A1 (de) 2004-05-12 2005-12-01 Bayer Cropscience Gmbh Chinoxalin-2-on-derivate, diese enthaltende nutzpflanzenschützende mittel und verfahren zu ihrer herstellung und deren verwendung
WO2007023719A1 (ja) 2005-08-22 2007-03-01 Kumiai Chemical Industry Co., Ltd. 薬害軽減剤及び薬害が軽減された除草剤組成物
WO2007023764A1 (ja) 2005-08-26 2007-03-01 Kumiai Chemical Industry Co., Ltd. 薬害軽減剤及び薬害が軽減された除草剤組成物
WO2007103567A2 (en) 2006-03-09 2007-09-13 E. I. Dupont De Nemours & Company Polynucleotide encoding a maize herbicide resistance gene and methods for use
WO2008131860A2 (de) 2007-04-30 2008-11-06 Bayer Cropscience Ag Pyridoncarboxamide, diese enthaltende nutzpflanzenschützende mittel und verfahren zu ihrer herstellung und deren verwendung
WO2008131861A1 (de) 2007-04-30 2008-11-06 Bayer Cropscience Ag Verwendung von pyridin-2-oxy-3-carbonamiden als safener
WO2008150473A2 (en) 2007-05-30 2008-12-11 Syngenta Participations Ag Cytochrome p450 genes conferring herbicide resistance
WO2009039975A1 (de) 2007-09-25 2009-04-02 Bayer Cropscience Ag Halogenalkoxyspirocyclische tetram- und tetronsäure-derivate
WO2009144079A1 (en) 2008-04-14 2009-12-03 Bayer Bioscience N.V. New mutated hydroxyphenylpyruvate dioxygenase, dna sequence and isolation of plants which are tolerant to hppd inhibitor herbicides
EP2248421A1 (de) 2009-05-07 2010-11-10 GMI - Gregor-Mendel-Institut für Molekulare Pflanzenbiologie GmbH Ansammlung von Biomasse in Pflanzen
CN101838227A (zh) 2010-04-30 2010-09-22 孙德群 一种苯甲酰胺类除草剂的安全剂
WO2015032702A1 (en) 2013-09-06 2015-03-12 Syngenta Limited Herbicidally active 2-halogen-4-alkynyl- phenyl-pyrazolidine-dione or pyrrolidine-dione derivatives
WO2015040114A1 (en) 2013-09-20 2015-03-26 Syngenta Limited Herbicidally active 2-halogen-4-alkynyl-phenyl-pyrazolidine-dione or pyrrolidine-dione derivatives
WO2019219584A1 (de) 2018-05-15 2019-11-21 Bayer Aktiengesellschaft Neue spirocyclohexylpyrrolin-2-one und deren verwendung als herbizide
WO2019219587A1 (de) 2018-05-15 2019-11-21 Bayer Aktiengesellschaft 2-brom-6-alkoxyphenyl-substituierte pyrrolin-2-one und deren verwendung als herbizide
WO2020187627A1 (de) 2019-03-15 2020-09-24 Bayer Aktiengesellschaft Neue 3-(2-brom-4-alkinyl-6-alkoxyphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide

Non-Patent Citations (25)

* Cited by examiner, † Cited by third party
Title
"Database", Database accession no. 564025
"Springer Lab Manual", 1995, SPRINGER VERLAG BERLIN, article "Gene Transfer to Plants"
"The Pesticide Manual", 2006, THE BRITISH CROP PROTECTION COUNCIL AND THE ROYAL SOC. OF CHEMISTRY
BARRY ET AL., CURR. TOPICS PLANT PHYSIOL., vol. 7, 1992, pages 139 - 145
BRAUN ET AL., EMBO J., vol. 11, 1992, pages 3219 - 3227
CAS , no. 9012-76-4
CAS, no. 133993-74-5
CHRISTOU, TRENDS IN PLANT SCIENCE, vol. 1, 1996, pages 423 - 431
COMAI ET AL., SCIENCE, vol. 221, 1983, pages 370 - 371
G.C. KLINGMAN: "Weed Control as a Science", 1961, JOHN WILEY AND SONS, INC., pages: 81 - 96
GASSER ET AL., J. BIOL. CHEM., vol. 263, 1988, pages 4280 - 4289
H.V. OLPHEN: "Handbook of Insecticide Dust Diluents and Carriers", 1963, J. WILEY & SONS
J.D. FREYERS.A. EVANS: "Weed Control Handbook", 1968, BLACKWELL SCIENTIFIC PUBLICATIONS, pages: 101 - 103
J.E. BROWNING: "Agglomeration", CHEMICAL AND ENGINEERING, vol. 147, 1967
K. MARTENS: "Spray-Drying Handbook", 1979, G. GOODWIN LTD.
MCCUTCHEON'S: "Encyclopedia of Surface Active Agents", 1964, CHEM. PUBL. CO. INC.
SAMBROOK ET AL.: "Molecular Cloning, A Laboratory Manual", 1989, COLD SPRING HARBOR LABORATORY PRESS
SCHÖNFELDT: "Grenzflächenaktive Äthylenoxid-addukte", 1976, WISS. VERLAGSGESELL.
SHAH ET AL., SCIENCE, vol. 233, 1986, pages 478 - 481
SONNEWALD ET AL., PLANT J., vol. 1, 1991, pages 95 - 106
TRANELWRIGHT, WEED SCIENCE, vol. 50, 2002, pages 700 - 712
WADE VAN VALKENBURG: "Perry's Chemical Engineer's Handbook", 1973, MARCEL DEKKER, pages: 8 - 57
WEED RESEARCH, vol. 26, 1986, pages 441 - 445
WINNACKER: "Gene und Klone", 1996, VCH WEINHEIM 2
WOLTER ET AL., PROC. NATL. ACAD. SCI. USA, vol. 85, 1988, pages 846 - 850

Also Published As

Publication number Publication date
AR126051A1 (es) 2023-09-06

Similar Documents

Publication Publication Date Title
EP3638665A1 (de) Herbizid wirksame 3-phenylisoxazolin-5-carboxamide von tetrahydro- und dihydrofurancarbonsäuren und -estern
EP3793977A1 (de) 2-brom-6-alkoxyphenyl-substituierte pyrrolin-2-one und deren verwendung als herbizide
WO2019219584A1 (de) Neue spirocyclohexylpyrrolin-2-one und deren verwendung als herbizide
EP3853219B1 (de) Herbizid wirksame substituierte phenylpyrimidinhydrazide
EP3975720A1 (de) 1-phenyl-5-azinylpyrazolyl-3-oxyalkylsäuren und deren verwendung zur bekämpfung unerwünschten pflanzenwachstums
WO2021204884A1 (de) 3-(4-alkenyl-phenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
EP3938348A1 (de) Neue 3-(2-brom-4-alkinyl-6-alkoxyphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2019228788A1 (de) 2-brom-6-alkoxyphenyl-substituierte pyrrolin-2-one und deren verwendung als herbizide
WO2019228787A1 (de) Speziell substituierte 2-alkyl-6-alkoxyphenyl-3-pyrrolin-2-one und deren verwendung als herbizide
WO2019166304A1 (de) Herbizid wirksame bizyklische benzamide
WO2019166305A1 (de) Herbizid wirksame bizyklische benzamide
EP3713417A1 (de) Herbizid wirksame bizyklische benzamide
WO2022253700A1 (de) Speziell substituierte pyrrolin-2-one und deren verwendung als herbizide
WO2023274869A1 (de) 3-(4-alkenyl-phenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2023280772A1 (de) N-(1,3,4-oxadiazol-2-yl)phenylcarboxamide als herbizide
WO2022084278A1 (de) 1-(pyridyl)-5-azinylpyrazol derivate und deren verwendung zur bekämpfung unerwünschten pflanzenwachstums
WO2020187623A1 (de) Speziell substituierte 3-(2-halogen-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2020187628A1 (de) Speziell substituierte 3-(2-alkoxy-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2020187629A1 (de) 3-(2-brom-4-alkinyl-6-alkoxyphenyl)-substituierte 5-spirocyclohexyl-3-pyrrolin-2-one und deren verwendung als herbizide
WO2019219585A1 (de) Neue 3-(4-alkinyl-6-alkoxy-2-chlorphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2023099381A1 (de) (1,4,5-trisubstituierte-1h-pyrazol-3-yl)oxy-2-alkylthio-alkylsäuren und -alkylsäure-derivate, deren salze und ihre verwendung als herbizide wirkstoffe
WO2020187626A1 (de) Speziell substituierte 3-phenyl-5-spirocyclopentyl-3-pyrrolin-2-one und deren verwendung als herbizide
WO2019219588A1 (de) Speziell substituierte 2-alkyl-6-alkoxyphenyl-3-pyrroliin-2-one und deren verwendung als herbizide
WO2021209486A1 (de) Speziell substituierte pyrrolin-2-one und deren verwendung als herbizide
WO2020245097A1 (de) Substituierte pyridinyloxypyridine sowie deren salze und ihre verwendung als herbizide wirkstoffe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22730847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE