EP3802516A1 - Herbizid wirksame substituierte phenylpyrimidine - Google Patents

Herbizid wirksame substituierte phenylpyrimidine

Info

Publication number
EP3802516A1
EP3802516A1 EP19728921.8A EP19728921A EP3802516A1 EP 3802516 A1 EP3802516 A1 EP 3802516A1 EP 19728921 A EP19728921 A EP 19728921A EP 3802516 A1 EP3802516 A1 EP 3802516A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
cycloalkyl
heterocyclyl
radicals
heteroaryl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP19728921.8A
Other languages
English (en)
French (fr)
Inventor
Hartmut Ahrens
Birgit Kuhn
Stefan Schnatterer
Dirk Schmutzler
Hansjörg Dietrich
Anu Bheemaiah MACHETTIRA
Elisabeth ASMUS
Elmar Gatzweiler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP3802516A1 publication Critical patent/EP3802516A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/541,3-Diazines; Hydrogenated 1,3-diazines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/06Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/06Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms

Definitions

  • the invention relates to the technical field of herbicides, in particular that of herbicides for the selective control of weeds and weeds in crops.
  • WO 2016/120355 describes substituted phenylpyrimidines which carry a directly bonded carbonyl group at the 4-position of the pyrimidine.
  • WO 2018/019555 describes substituted
  • Phenylpyrimidinecarboxylic acid derivatives with an extended side chain in the 4-position should be improved.
  • An object of the present invention is therefore to provide compounds with herbicidal activity (herbicides), which are highly effective even at relatively low rates of use against economically important harmful plants and preferably with good efficacy against
  • Harmful plants can be used selectively in crops and thereby preferably show a good compatibility with crop plants.
  • these herbicidal compounds should be particularly effective and efficient against a broad spectrum of grass weeds, and preferably additionally have good activity against many weeds.
  • the present invention therefore relates to compounds of the general formula (I)
  • X is C (R 13 ) (R 14 )
  • R 1 represents (C 3 -C 6) -cycloalkyl, (C 3 -C 6) -cycloalkenyl or heterocyclyl, where these three
  • radicals respectively by s radicals selected from the group consisting of halogen, (Ci- C ö j alkyl, halo (Ci-C 6) alkyl, (C2-Ce) alkenyl, halo (C2-C6) - alkenyl, (C 2 -C 6) alkynyl, halo (C 3 -C 6) alkynyl, (C 3 -C 6) cycloalkyl, halo (C 3 -C 6) cycloalkyl, (C 3 -C 6) -cycloalkenyl,, halogen- C 3 -C 6 ) -cycloalkenyl, (C 3 -C 6 ) -cycloalkyl- (C 1 -C 6 ) -alkyl, (C 3 -C 6 ) -cycloalkenyl- (C 1 -C 6 ) -alkyl, halogen- (C 3 -C 6 )
  • R 2 represents hydroxy, (Ci-C j ö alkoxy, (C2-C6) alkenyloxy, (C2-C6) alkynyloxy, (C 1 -Cr,) - haloalkoxy, (C2-C6) haloalkenyloxy, (C2 -C 6) -haloalkynyloxy, where the 6 last-mentioned radicals are in each case represented by s radicals from the group consisting of cyano, (C 3 -C 6) -cycloalkyl, (C 3 -C 6) -cycloalkenyl, halogeno (C 3 -C 6) -cycloalkyl, halogeno (C3-C6) cycloalkenyl,
  • R 9 0 (0) C (R 8 ) N (O) 2 S, (R 8 ) 2 N (O) C (R 8 ) N (O) 2 S, R u 3 Si, (R 12 O) 2 (0) P, phenyl, heteroaryl and heterocyclyl are substituted, wherein the three latter radicals each by m radicals the group consisting of nitro, halogen, cyano, thiocyanato, (Ci-C 6) alkyl, halo (Ci-C 6) - alkyl, (C 3 -C 6) -cycloalkyl, (C 3 -C 6) - Cycloalkenyl, R 10 O (O) C, (R 10 ) 2 N (O) C, R 10 O, (R 10 ) 2 N, R u (O) n S, R 10 O (O) 2 S, ( R 10 ) 2 N (O) 2 S and R 10 O- (C 1 -C 6 ) -alkyl are
  • R 2 represents (C 3 -C 6 ) -cycloalkoxy, (C 3 -C 6 ) -cycloalkenyloxy, phenyloxy, heteroaryloxy or
  • Heterocyclyloxy where the five abovementioned radicals respectively by s radicals selected from the group consisting of halogen, cyano, (Ci-C-j ö alkyl, (C 2 -C 6) alkenyl, (C 2 -C 6) alkynyl, (C 3 - C 6) cycloalkyl, (C 3 -C 6) cycloalkenyl, halo (C 3 -C 6) cycloalkyl, halo (C 3 -C 6) -
  • R 2 is (R 8 ) 2 N, R 8 (O) C (R 8 ) N, R 9 0 (O) C (R 8 ) N, (R 8 ) 2 N (O) C (R 8 ) N , R 9 (0) 2 S (R 8 ) N,
  • R 2 is R 8 (R 8 O) N or
  • R 2 is (R 17 ) (R 18 ) N (R 19 ) N, or
  • R 9 0 (0) C (R 8 ) N- (C 1 -C 6 ) -alkyl, (R 8 ) 2 N (O) C (R 8 ) N- (C 1 -C 6 ) -alkyl,
  • R 8 is hydrogen, (Ci-C ö j-alkyl, (CC-CG-Alkcnyl, (C2-C6) -alkynyl, (C3-C6) -cycloalkyl, (C3-C6) cycloalkenyl, (C 3 - C 6) -cycloalkyl- (Ci-C alkyl 6), (C 3 -C 6) cycloalkenyl (Ci-C 6) alkyl, (Ci- C6) alkyl-0- (Ci-C 6 ) alkyl, (Ci-C6) alkyl-0- (Ci-C6) alkyl-0- (Ci-C 6) alkyl, (C 3 -C 6) -cycloalkyl- (Ci-C 6 ) alkyl-0- (Ci-C 6) alkyl, (C 3 -C 6) cycloalkenyl (Ci-C6) alkyl-0- (Ci-C 6)
  • R 10 O (O) 2 S, (R 10 ) 2 N (O) 2 S and R 10 O- (C 1 -C 6 ) -alkyl are substituted,
  • radicals R 8 form a ring with the heteroatom or with the heteroatoms via which they are bonded, namely a heterocyclyl, heterocyclenyl, heteroaryl,
  • R 9 is (C 1 -C 6 ) -alkyl, (C 2 -C 6 ) -alkenyl, (C 2 -C 6 ) -alkynyl, (C 3 -C 6 ) -cycloalkyl, (C 3 -C 6 ) -
  • Cycloalkenyl (Cs-Cej-cycloalkyl-iCi-Cej-alkyl, (C 3 -C 6 ) -Cycloalkenyl- (Ci-C 6 ) -alkyl, (Ci-C 6 ) - alkyl-O- (Ci-C 6 ) alkyl, (Ci-C6) alkyl-0- (Ci-C6) alkyl-0- (Ci-C 6) alkyl, (C 3 -C 6) -cycloalkyl- (Ci- C6 ) alkyl-0- (Ci-C 6) alkyl, (C 3 -C 6) cycloalkenyl (Ci-C6) alkyl-0- (Ci-C alkyl 6) or (Ci-C 6 ) - alkylthio (C 1 -C 6 ) -alkyl, where the radicals s bear halogen atoms,
  • R 9 is phenyl, phenyl (C 1 -C 6 ) -alkyl, heteroaryl, heteroaryl- (C 1 -C 6 ) -alkyl, heterocyclyl,
  • R 10 O (O) 2 S, (R 10 ) 2 N (O) 2 S and R 10 O- (C 1 -C 6 ) -alkyl are substituted, and where (C 3 -C 6) -cycloalkyl, (C 3 -C 6) -cycloalkenyl and heterocyclyl each independently carry n oxo groups,
  • R 10 is hydrogen, (Ci-C j ö alkyl, halo (Ci-C alkyl 6), (C2-Ce) alkenyl, (C2-C6) -alkynyl, (C3-C6) cycloalkyl, ( C 3 -C 6) -cycloalkyl- (C 1 -C 6) -alkyl or phenyl,
  • R 11 represents (Ci-C 6) alkyl, halo (Ci-C 6) alkyl, (C 2 -C 6) alkenyl, (C 2 -C 6) -alkynyl, (C 3 -C 6) Cycloalkyl, (C 3 -C 6) -cycloalkyl- (C 1 -C 6) -alkyl or phenyl,
  • R 12 is hydrogen or (C 1 -C 4) -alkyl.
  • R 13 and R 14 are each independently hydrogen, (Ci-C-j ö alkyl, hydroxy, (Ci- C ö j-alkoxy, (R 8) 2 N, halo (Ci-C 6) alkoxy, halogen, Halogeno (C 1 -C 6 ) -alkyl, cyano, R 8 0 (0) C or (R 8 ) 2 N (0) C,
  • R 13 and R 14 together with the carbon atom to which they are attached, form a (C 3 -C 6) -cycloalkyl group.
  • R 15 and R 16 independently of one another each represent (C 1 -Cr,) -alkyl, phenyl, (C 3 -C 6) -cycloalkyl,
  • R 17 and R 18 and R 19 independently of one another denote R 8 or R 9 S (O) 2 , (R 8 ) 2 NS (O) 2 , R 8 O (O) 2,
  • n 0, 1 or 2
  • s is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11.
  • the compounds of formula (I) can form salts. Salt formation can be effected by the action of a base on those compounds of the formula (I) which carry an acidic hydrogen atom.
  • suitable bases are organic amines, such as trialkylamines, morpholine, piperidine or pyridine, and ammonium, alkali metal or alkaline earth metal hydroxides, carbonates and bicarbonates, in particular sodium and potassium hydroxide, sodium and potassium carbonate and sodium and
  • Potassium bicarbonate are compounds in which the acidic hydrogen is replaced by a cation suitable for agriculture, for example metal salts, in particular
  • Alkali metal salts or alkaline earth metal salts especially sodium and potassium salts, or ammonium salts, salts with organic amines or quaternary (quaternary) ammonium salts, for example with cations of the formula [NRR'R "R"'] +, wherein R to R'"are each independently one another may be an organic radical, in particular alkyl, aryl, aralkyl or alkylaryl, also suitable are alkylsulfonium and alkylsulfoxonium salts, such as (C 1 -C 4 ) -trialkylsulfonium and (C 1 -C 4 ) -trialkylsulfoxonium salts.
  • the compounds of formula (I) may be prepared by addition of a suitable inorganic or organic acid such as, for example, mineral acids such as HCl, HBr, H 2 SO 4, H 3 PO 4 or HNO 3, or organic acids, e.g. Carboxylic acids, such as formic acid, acetic acid, propionic acid, oxalic acid, lactic acid or salicylic acid, or sulfonic acids, such as p-toluenesulfonic acid, to a basic group, e.g. Amino, alkylamino, dialkylamino, piperidino, morpholino or pyridino, salts. These salts then contain the conjugate base of the acid as an anion.
  • a suitable inorganic or organic acid such as, for example, mineral acids such as HCl, HBr, H 2 SO 4, H 3 PO 4 or HNO 3, or organic acids, e.g. Carboxylic acids, such as formic acid, acetic acid, prop
  • Suitable substituents which are in deprotonated form e.g. Sulfonic acids or carboxylic acids, may form internal salts with their turn protonatable groups, such as amino groups.
  • Alkyl denotes saturated, straight-chain or branched hydrocarbon radicals with the number of carbon atoms indicated in each case, e.g. C 1 -Cr, -alkyl, such as methyl, ethyl, propyl, 1-methylethyl, butyl, 1-methylpropyl, 2-methylpropyl, 1,1-dimethylethyl, pentyl, 1-methylbutyl, 2-methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1,1-dimethylpropyl, 1,2-dimethylphenyl, 1-methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1,1-dimethylbutyl,
  • Alkyl substituted by halogen means straight-chain or branched alkyl groups, in which groups the hydrogen atoms may be partially or completely replaced by halogen atoms, for example C 1 -C 2 haloalkyl, such as chloromethyl, bromomethyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, Chlorodifluoromethyl, 1-chloroethyl, 1-bromoethyl, 1-fluoroethyl, 2-fluoroethyl, 2,2-difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2 fluoroethyl, 2-chloro, 2-difluoroethyl, 2,2-dichloro-2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl and 1,1,
  • Alkenyl means unsaturated, straight-chain or branched hydrocarbon radicals having in each case the number of carbon atoms and a double bond in any position, e.g. C 2 -C 6 -alkenyl, such as ethenyl, 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1 - Methyl-2-propenyl, 2-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1-butenyl, 2-methyl-1-butenyl, 3-methyl 1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl-3-butenyl, 2-methyl-3-butenyl, 3-methyl-3 butenyl, 1, 1-dimethyl
  • Alkynyl means straight-chain or branched hydrocarbon radicals having in each case the number of carbon atoms and a triple bond in any desired position, e.g. C 2 -C 6 -alkynyl, such as ethynyl, 1-propynyl, 2-propynyl (or propargyl), 1-butynyl, 2-butynyl, 3-butynyl, 1-methyl-2-propynyl, 1-pentynyl, 2-pentynyl, 3 Pentynyl, 4-pentynyl, 3-methyl-1-butynyl, 1-methyl-2-butynyl, 1-methyl-3-butynyl, 2-methyl-3-butynyl, 1, 1-dimethyl-2-propynyl, Ethyl 2-propynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl,
  • Cycloalkyl means a carbocyclic, saturated ring system preferably having 3-8 ring C atoms, eg cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl.
  • substituents wherein substituents having a double bond on the cycloalkyl, z.
  • alkylidene group such as methylidene, are included.
  • cycloalkyl there are also included polycyclic aliphatic systems such as, for example, bicyclo [IIO] butan-1-yl, bicyclo [llO] butan-2-yl, bicyclo [2.1.0] pentan-1-yl, bicyclo [2.l.0] pentan-2-yl, bicyclo [2.1.0] pentan-5-yl, bicyclo [2.2.1] hept-2-yl (norbornyl), adamantane-1-yl and adamantane 2-yl.
  • polycyclic aliphatic systems such as, for example, bicyclo [IIO] butan-1-yl, bicyclo [llO] butan-2-yl, bicyclo [2.1.0] pentan-1-yl, bicyclo [2.l.0] pentan-2-yl, bicyclo [2.1.0] pentan-5-yl, bicyclo [2.2.1] hept-2-yl (norbornyl),
  • spirocyclic aliphatic systems are also included, such as spiro [2.2] pent-1-yl, spiro [2.3] hex-1-yl and spiro [2.3] hex-4-yl, 3-spiro [2.3] hex-5-yl.
  • Cycloalkenyl means a carbocyclic, non-aromatic, partially unsaturated ring system preferably having 4-8 C atoms, e.g. 1 -cyclobutenyl, 2-cyclobutenyl, 1-cyclopentenyl, 2-cyclopentenyl, 3-cyclopentenyl, or 1-cyclohexenyl, 2-cyclohexenyl, 3-cyclohexenyl, l, 3-cyclohexadienyl or 1, 4-cyclohexadienyl, wherein also substituents with a Double bond on Cycloalkenylrest, z.
  • an alkylidene group such as methylidene, are included.
  • the explanations for substituted cycloalkyl apply correspondingly.
  • Alkoxy means saturated, straight or branched alkoxy radicals with the respectively specified number of carbon atoms, for example C I -C ⁇ - alkoxy such as methoxy, ethoxy, propoxy, 1 -Methylethoxy, butoxy, propoxy-methyl-1, 2-methylpropoxy, 1, 1 -Dimethylethoxy, pentoxy, 1-methylbutoxy, 2-methylbutoxy, 3-methylbutoxy, 2,2-dimethylpropoxy, 1-ethylpropoxy, hexoxy, 1,1-dimethylpropoxy, 1,2-dimethylpropoxy, 1-methylpentoxy, 2-methylpentoxy , 3-methylpentoxy, 4-methylpentoxy, 1, 1-dimethylbutoxy, 1, 2-dimethylbutoxy, 1,3-dimethylbutoxy, 2,2-dimethylbutoxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2 Ethyl butoxy, 1,1,2-trimethylpropoxy,
  • halogen alkoxy means straight-chain or branched alkoxy having the number of carbon atoms indicated in each case, wherein in these groups partially or completely the
  • Hydrogen atoms may be replaced by halogen atoms as mentioned above, e.g. C1-C2-halogenoalkoxy such as chloromethoxy, bromomethoxy, dichloromethoxy, trichloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 1-chloroethoxy, 1-bromoethoxy, 1-fluoroethoxy, 2-fluoroethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-1, 2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, pentafluoroethoxy and 1, 1,1-trifluoroprop-2-oxy.
  • C1-C2-halogenoalkoxy
  • Aryl is an optionally substituted by 0- 5 radicals from the group of fluorine, chlorine, bromine, iodine, cyano, hydroxy, (Ci- C3) alkyl, (Ci-C3) alkoxy, (C3-C4) -cycloalkyl, (C2 - C3) alkenyl or (C2-C3) alkynyl-substituted phenyl.
  • heterocyclic radical contains at least one heterocyclic ring
  • heterocyclic ring in which at least one carbon atom is replaced by a heteroatom, preferably by a heteroatom from the group N, O, S, P
  • N, O, S, P saturated, unsaturated, partially saturated or heteroaromatic and may be unsubstituted or substituted, wherein the binding site is located on a ring atom.
  • heterocyclyl or heterocyclic ring is optionally substituted, it may be fused with other carbocyclic or heterocyclic rings.
  • polycyclic systems are also included, for example 8-azabicyclo [3.2.1] octanyl, 8-azabicyclo [2.2.2] octanyl or 1-azabicyclo [2.2.1] heptyl.
  • optionally substituted heterocyclyl also become
  • the heterocyclic ring preferably contains 3 to 9 ring atoms, in particular 3 to 6 ring atoms, and one or more, preferably 1 to 4, in particular 1, 2 or 3 heteroatoms in the heterocyclic ring, preferably from the group N, O, and S, but not two
  • Oxygen atoms are to be directly adjacent, such as with a heteroatom from the group N, O and S 1- or 2- or 3-pyrrolidinyl, 3,4-dihydro-2H-pyrrol-2 or 3-yl, 2,3- Dihydro-1H-pyrrole 1- or 2- or 3- or 4- or 5-yl; 2,5-dihydro-1H-pyrrole-1- or 2- or 3-yl, 1- or 2- or 3- or 4-piperidinyl; 2,3,4,5-tetrahydropyridine-2- or 3- or 4- or 5-yl or 6-yl; l, 2,3,6-tetrahydropyridine-l- or 2- or 3- or 4- or 5- or 6-yl; l, 2,3,4-tetrahydropyridine-1 or 2 or 3 or 4 or 5 or 6-yl; 1, 4-dihydropyridine-1 or 2 or 3 or 4-yl; 2,3-dihydropyridine-2- or 3- or 4- or 5- or 6-yl; 2,5-dihydropyridine-2- or 3- or
  • 3-membered ring and 4-membered ring heterocycles are, for example, 1- or 2-aziridinyl, oxiranyl, thiiranyl, 1- or 2- or 3-azetidinyl,
  • heterocyclyl are a partially or fully hydrogenated heterocyclic radical having two heteroatoms from the group N,
  • O and S such as 1- or 2- or 3- or 4-pyrazolidinyl; 4,5-dihydro-3H-pyrazole-3 or 4 or 5-yl; 4,5-dihydro-1H-pyrazole-1- or 3- or 4- or 5-yl; 2,3-dihydro-1H-pyrazole-1 or 2 or
  • 6-yl 1, 4,5,6-tetrahydropyridazine-1- or 3- or 4- or 5- or 6-yl; 3,4,5,6-tetrahydropyridazine-3- or 4- or 5-yl; 4,5-dihydropyridazine-3 or 4-yl; 3,4-dihydropyridazine-3- or 4- or 5- or 6-yl; 3,6-dihydropyridazine-3 or 4-yl; 1, 6-dihydropyriazine-1- or 3- or 4- or 5- or 6-yl;
  • 1,2-dithiolan-3 or 4-yl 1,2-dithiolan-3 or 4-yl; 3H-1,2-dithiol-3- or 4- or 5-yl; l, 3-dithiolan-2 or 4-yl; l, 3-dithiol-2- or 4-yl; 1, 2-dithian-3 or 4-yl; 3,4-dihydro-1,2-dithiin-3 or 4 or 5 or 6-yl; 3,6-dihydro-
  • 1,2-dithiin-3 or 4-yl 1,2-dithiin-3 or 4-yl; l, 2-dithiin-3 or 4-yl; l, 3-dithian-2 or 4 or 5-yl; 4H-l, 3-dithiin-2 or 4 or 5 or 6-yl; Isoxazolidine-2 or 3 or 4 or 5-yl; 2,3-dihydroisoxazole-2- or 3- or
  • heterocyclyl are a partially or fully hydrogenated heterocyclic radical having 3 heteroatoms from the group N, O and S, such as, for example, l, 4,2-dioxazolidin-2 or 3 or 5-yl; l, 4,2-dioxazol-3 or 5-yl; 1,2,2-dioxazinane-2- or -3- or 5- or 6-yl; 5,6-dihydro-l, 4,2-dioxazine-3 or 5 or 6-yl; l, 4,2-dioxazine-3- or 5- or 6-yl; l, 4,2-dioxazepan-2 or 3 or 5 or 6 or 7-yl; 6,7-dihydro-5H-l, 4,2-dioxazepine-3 or 5 or 6 or 7-yl; 2,3-dihydro-7H-l, 4,2-dioxazepin-2 or 3 or 5 or 6 or 7-yl; 2,3-dihydro-5H-1,
  • heterocycles listed above are preferably, for example, hydrogen, halogen, alkyl, haloalkyl, hydroxy, alkoxy, cycloalkoxy, aryloxy, alkoxyalkyl, alkoxyalkoxy, cycloalkyl,
  • Alkylaminocarbonyl bis-alkylaminocarbonyl, cycloalkylaminocarbonyl,
  • Arylheteroyclenyl means an aryl linked to a heterocyclenyl wherein the
  • Binding site is located on a ring atom. Particularly preferred is when aryl is phenyl and the heterocyclenyl ring consists of 5 to 6 ring atoms.
  • the arylheterocyclenyl is bonded via any atom of heterocyclenyl which is capable of doing so.
  • the term aza, oxa or thio as a prefix before the heterocyclenyl moiety of the aryl heterocyclenyl defines at least one nitrogen, oxygen or sulfur atom present as the ring atom.
  • the nitrogen of an arylheterocyclenyl may be a basic nitrogen atom.
  • the nitrogen or sulfur ring atom of the arylheterocyclenyl may optionally be oxidized to the corresponding N-oxide, S-oxide or S, S-dioxide.
  • arylheterocyclenyl include 3H-indolinyl, 1H-2-oxoquinolyl, 2H-1-oxoisoquinolyl or 1,2-dihydroisoquinolyl.
  • Arylheteroyclyl means an aryl linked to a heterocyclyl, wherein the binding site is located on a ring atom. Particularly preferred is when aryl is phenyl and the
  • Heterocyclyl ring consists of 5 to 6 ring atoms.
  • the arylheterocyclyl is over every atom of
  • Heterocyclyl bound which is capable of doing so.
  • the term aza, oxa or thio as a prefix before the heterocyclyl moiety of the aryl heterocyclyl defines at least one which is present
  • the nitrogen of an aryl heterocyclyl can be a basic nitrogen atom.
  • the nitrogen or sulfur ring atom of the aryl heterocyclyl may optionally be oxidized to the corresponding N-oxide, S-oxide or S, S-dioxide.
  • Examples of arylheterocyclyl include indolinyl, 1,2,3,4-tetrahydroquinolinyl or 1,2,3,4-tetrahydroisoquinolinyl.
  • Cyclenyl means a non-aromatic mono- or multicyclic ring system of about 3 to 10 carbon atoms, preferably of 5 to 10 carbon atoms, which contains at least one
  • Cycloalkenylaryl means an aryl linked to a cycloalkenyl, where the binding site is located on a ring atom. Particularly preferred is when aryl is phenyl and the
  • Cycloalkenyl consists of 5 to 6 ring atoms.
  • the cycloalkenylaryl is over every atom of
  • Cycloalkenyl heteroaryl means a heteroaryl linked to a cycloalkenyl with the site of attachment located at a ring atom. It is particularly preferred if heteroaryl consists of 5 to 6 ring atoms and cycloalkenyl consists of 5 to 6 ring atoms.
  • the cycloalkenylaryl is bonded via any atom of cycloalkenyl which is capable of doing so.
  • the nitrogen of a heteroaryl may be a basic nitrogen atom.
  • aza, oxa or thio as prefix in front of the heteroaryl moiety of cycloalkenyl heteroaryl defines at least one nitrogen, oxygen or sulfur atom present as a ring atom.
  • the nitrogen ring atom of the heteroaryl may optionally be oxidized to the corresponding N-oxide.
  • Suitable substituents for a substituted heterocyclic radical are the substituents mentioned below, in addition to oxo and thioxo.
  • the oxo group as a substituent on a ring en atom then means, for example, a carbonyl group in the heterocyclic ring.
  • lactones and lactams are preferably also included.
  • the oxo group can also occur at the hetero ring atoms, which can exist in different oxidation states, for example at N and S, and then form, for example, the divalent groups N (O), S (O) (also SO for short) and S (O) 2 (also short SO2) in the heterocyclic ring. In the case of N (O) and S (0) groups, both enantiomers are included.
  • heteroaryl refers to heteroaromatic compounds, i. H.
  • heteroaryls are, for example, 1H-pyrrol-1-yl; lH-pyrrol-2-yl; lH-pyrrole
  • Carbon atoms part of another aromatic ring they are fused heteroaromatic systems, such as benzo-fused or multiply fused heteroaromatic.
  • quinolines e.g., quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-5-yl, quinolin-6-yl, quinolin-7-yl, quinolin-8-yl
  • Isoquinolines eg isoquinolin-1-yl, isoquinolin-3-yl, isoquinolin-4-yl, isoquinolin-5-yl, isoquinolin-6-yl, isoquinolin-7-yl, isoquinolin-8-yl
  • quinoxaline quinazoline
  • cinnoline l, 5-naphthyridine; l, 6-naphthyridine; l, 7-naphthyridine; l, 8-naphthyridine; 2,6- naphthyridine; 2,7-naphthyridine; phthalazine; Pyridopyra
  • halogen means fluorine, chlorine, bromine or iodine.
  • halogen means a fluorine, chlorine, bromine or iodine atom.
  • Stereoisomers are present. For example, if one or more asymmetrically substituted carbon atoms and / or sulfoxides are present, then enantiomers and diastereomers may occur.
  • Stereoisomers can be prepared from the mixtures obtained in the preparation of conventional
  • stereoisomers can be selectively prepared by using stereoselective reactions using optically active starting materials and / or auxiliaries.
  • the invention also relates to all stereoisomers and mixtures thereof which are of the formula (I), but not specifically defined.
  • compounds of the formula (I) although both the pure compounds and optionally also mixtures with different proportions of isomeric compounds are meant.
  • X is C (R 13 ) (R 14 ),
  • R 1 is (C 3 -C 6 ) -cycloalkyl, (C 3 -C 6 ) -cycloalkenyl or heterocyclyl, where these three radicals are in each case represented by s radicals from the group consisting of halogen, (C 1 -C 6 ) -alkyl and halogen- (C 1 -C 4 ) -cycloalkyl.
  • C 1 -j-alkyl are substituted and wherein cycloalkyl, cycloalkenyl and heterocyclyl each independently carry n oxo groups,
  • R 2 represents hydroxy, (GG) -alkoxy, (C 2 -C 6) -alkenyloxy, (C 2 -C 6) -alkynyloxy, (GG) -
  • R 2 is (C 3 -C 6) -cycloalkoxy, (C 3 -C 6) -cycloalkenyloxy, phenyloxy, heteroaryloxy or
  • Heterocyclyloxy where the five abovementioned radicals respectively by s radicals selected from the group consisting of halogen, cyano, (Ci-C-j ö alkyl, (C2-C6) alkenyl, (C2-C6) alkynyl, (C3 C 6 ) cycloalkyl, (C 3 -C 6 ) cycloalkenyl, halogeno (C 3 -C 6 ) cycloalkyl, halogeno (C 3 -C 6 ) cycloalkenyl, R 8 (0) C, R 8 0 (0) C, (R 8 ) 2 N (O) C, R 8 (R 8 0) N (O) C, (R 8 ) 2 N (R 8 ) N (O) C, R 8 0, R 8 (0) CO , R 9 (O) 2 S 0, (R 8 ) 2 N, R 9 (O) n S, phenyl, heteroaryl and heterocyclyl, where the last
  • R 2 is (R 8 ) 2 N, R 8 (O) C (R 8 ) N, R 9 0 (O) C (R 8 ) N, (R 8 ) 2 N (O) C (R 8 ) N , R 9 (0) 2 S (R 8 ) N,
  • R 8 0 (0) 2 S (R 8 ) N, (R 8 ) 2 N (O) 2 S (R 8 ) N, or
  • R 2 is R 8 (R 8 0) N
  • R 2 is (R 17 ) (R 18 ) N (R 19 ) N
  • R 3 , R 4 , R 5 , R 6 and R 7 are each independently hydrogen, nitro, halogen, cyano,
  • R 8 is hydrogen, (C 1 -C 6 ) -alkyl, (C 3 -C 6 ) -cycloalkyl- (C 1 -C 6 ) -alkyl, (C 1 -C 6 ) -alkyl-0- (C 1 -C 6 ) - alkyl alkyl, (C 3 -C 6) -cycloalkyl- (Ci-C 6) alkyl-0- (Ci-C6), phenyl, (Ci-C 6) alkyl, phenyl, heteroaryl, heteroaryl- ( Ci-C 6) alkyl, heterocyclyl, heterocyclyl (Ci-C 6) alkyl, phenyl-0- (Ci- C ö j-alkyl, heteroaryl-0- (Ci-C 6) alkyl or heterocyclyl-0 (C 1 -C 6 ) -alkyl, where the nine last-mentioned radicals are in each case represented by
  • the two radicals R 8 form a ring with the heteroatom or with the heteroatoms via which they are bonded, namely a heterocyclyl, heterocyclenyl, heteroaryl, arylheterocyclyl, arylheterocylenyl, heteroarylheterocyclyl, heteroarylhetercyclenyl, heterocyclylheteroaryl or heterocyclenylheteroaryl, where each of these rings is in turn characterized by m radicals from the group consisting of halogen, cyano, (Ci-C j ö alkyl, halo (Ci-C 6) alkyl, (C 3 -C 6) -cycloalkyl, (C 3 -C 6) cycloalkenyl, R 10 O (O) C, (R 10 ) 2 N (O) C, R 10 O, (R 10 ) 2 N, R u (O) n S, R 10 O (O) 2 S, (R 10
  • R 9 is (Ci-C 6) -alkyl, (C 3 -C 6) -cycloalkyl- (Ci-C 6) alkyl, alkyl (Ci-C6) alkyl-0- (Ci-C 6) , (C 3 -C 6 ) -cycloalkyl- (C 1 -C 6 ) -alkyl-O- (C 1 -C 6 ) -alkyl, phenyl, phenyl- (C 1 -C 6 ) -alkyl, heteroaryl, heteroaryl- (Ci C 6 ) -alkyl, heterocyclyl, heterocyclyl- (C 1 -C 6 ) -alkyl, phenyl-0- (C 1 -C 6 ) -alkyl, heteroaryl-0- (C 1 -C 6 ) -alkyl or heterocyclyl-0- (C 1 -C 6 ) -alkyl, where the nine last-ment
  • R io is hydrogen or (Ci-C ö j-alkyl
  • R is (C 1 -C 6 -alkyl)
  • R 12 is (C 1 -C 4 ) -alkyl
  • R 13 and R 14 are each independently hydrogen, (C 1 -C 6) -alkyl, hydroxy, (C 1 -C 6) -alkoxy, (R 8 ) 2 N, halo (C 1 -C 6 ) -alkoxy, halogen, halogen (C 1 -C 6 ) -alkyl, cyano, R 8 0 (0) C or (R 8 ) 2 N (0) C,
  • R 13 and R 14 together with the carbon atom to which they are attached form a (C 3 -C 6) -cycloalkyl group
  • R and R independently of one another each represent (C 1 -Cr,) -alkyl, phenyl, (C 3 -C 6) -cycloalkyl,
  • R 17 , R 18 and R 19 independently of one another denote R 8 or R 9 S (O) 2 , (R 8 ) 2 NS (O) 2 , R 8 O (O) 2, R 9 C (O), (R 8 ) 2 NC (0) , (R 8 ) 2 NC (S), R 8 0C (0), R 8 0C (0) C (0), (R 8 ) 2 NC (0) C (0) or
  • radicals (R 17 and R 18 ) or (R 17 and R 19 ) form a ring with the heteroatom or with the heteroatoms via which they are bonded, namely a heterocyclyl,
  • Heterocyclenyl heteroaryl, arylheterocyclyl, arylheterocylenyl,
  • n 0, 1 or 2
  • s is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11.
  • X is C (R 13 ) (R 14 ),
  • R 1 represents (C3-C6) -cycloalkyl, which cycloalkyl group is substituted by s radicals selected from the group consisting of halogen, (Ci-C ö j-alkyl and halo (Ci-C 6) alkyl,
  • R 2 represents hydroxy, (Ci-C ö j-alkoxy, (Ci-C 6) -haloalkoxy, (C2-Ce) alkenyloxy, (C 2 -C 6) -
  • R 2 is (R 8 ) 2 N, R 8 (O) C (R 8 ) N, R 9 0 (O) C (R 8 ) N, (R 8 ) 2 N (O) C (R 8 ) N , R 9 (0) 2 S (R 8 ) N,
  • R 2 is R 8 (R 8 0) N
  • R 2 is (R 17 ) (R 18 ) N (R 19 ) N
  • R 3 , R 4 , R 5 , R 6 and R 7 are each independently hydrogen, nitro, halogen, cyano,
  • R 8 is hydrogen, (C 1 -C 6 ) -alkyl, (C 3 -C 6 ) -cycloalkyl- (C 1 -C 6 ) -alkyl, (C 1 -C 6 ) -alkyl-0- (ci)
  • the two radicals R 8 form a ring with the heteroatom or with the heteroatoms via which they are bonded, namely a heterocyclyl, heterocyclenyl, heteroaryl, arylheterocyclyl, arylheterocylenyl, heteroarylheterocyclyl, heteroarylhetercyclenyl, heterocyclylheteroaryl or heterocyclenylheteroaryl, where each of these rings is in turn characterized by m radicals from the group consisting of nitro, halogen, cyano, (C I -C ⁇ ) - alkyl alkyl, halo (Ci-C 6) (C 3 -C 6) -cycloalkyl, (C 3 -C 6 ) Cycloalkenyl, R 10 O (O) C,
  • R 9 is (Ci-C 6) -alkyl, (C 3 -C 6) -cycloalkyl- (Ci-C 6) alkyl, alkyl (Ci-C6) alkyl-0- (Ci-C 6) , (C 3 -C 6 ) -cycloalkyl- (C 1 -C 6 ) -alkyl-O- (C 1 -C 6 ) -alkyl, phenyl, phenyl- (C 1 -C 6 ) -alkyl, heteroaryl, heteroaryl- (Ci C 6 ) -alkyl, heterocyclyl, heterocyclyl- (C 1 -C 6 ) -alkyl, phenyl-0- (C 1 -C 6 ) -alkyl, heteroaryl-0- (C 1 -C 6 ) -alkyl or heterocyclyl-0- (C 1 -C 6 ) -alkyl, where the nine last-ment
  • R 10 is hydrogen or (C 1 -C 6 ) -alkyl
  • R 11 is (C 1 -C 6 ) -alkyl
  • R 12 is (C 1 -C 4) -alkyl
  • R 13 and R 14 are each independently hydrogen, (GG) alkyl, cyano, R 8 0 (0) C or (R 8 ) 2 N (0) C
  • R 15 and R 16 are each independently (GG,) - alkyl, phenyl, (C 3 -C 6) -cycloalkyl,
  • R 17 , R 18 and R 19 independently of one another denote R 8 or R 9 S (O) 2 , (R 8 ) 2 NS (O) 2 , R 8 0S (O) 2,
  • radicals (R 17 and R 18 ) or (R 17 and R 19 ) form a ring with the heteroatom or with the radicals (R 17 and R 18 ) or (R 17 and R 19 ) form a ring with the heteroatom or with the radicals (R 17 and R 18 ) or (R 17 and R 19 ) form a ring with the heteroatom or with the radicals (R 17 and R 18 ) or (R 17 and R 19 ) form a ring with the heteroatom or with the
  • Heteroatoms via which they are bonded namely a heterocyclyl, heterocyclenyl, heteroaryl, arylheterocyclyl, arylheterocylenyl, heteroarylheterocyclyl,
  • m is 0 or 1, 2, 3, 4, or 5
  • n 0, 1 or 2
  • s 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 or 11
  • Wonn X is CH 2
  • R 1 is cyclopropyl, where the cyclopropyl group is substituted by s radicals from the group consisting of halogen, (C 1 -C 6 ) -alkyl and halogen- (C 1 -C 6 ) -alkyl,
  • R 2 is hydroxy, (C 1 -C 6 ) - alkoxy, (C 1 -C 6 ) -haloalkoxy, (C 2 -C 6 ) -alkenyloxy, (C 2 -C 6 ) -
  • Haloalkenyloxy (C 2 -C 6) -alkynyloxy, or
  • R 2 is (R 8 ) 2 N, R 8 (O) C (R 8 ) N, R 9 0 (O) C (R 8 ) N, (R 8 ) 2 N (O) C (R 8 ) N , R 9 (0) 2 S (R 8 ) N,
  • R 2 is R 8 (R 8 0) N
  • R 2 is (R 17 ) (R 18 ) N (R 19 ) N
  • radicals (R 17 and R 18 ) or (R 17 and R 19 ) form a ring with the heteroatom or the heteroatoms via which they are bonded, namely a heterocyclyl, heterocyclenyl, heteroaryl, arylheterocyclyl, arylheterocylenyl, heteroarylheterocyclyl,
  • R 3 is cyano, fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, difluoromethyl,
  • R 4 , R 5 , R 6 and R 7 are each independently hydrogen, cyano, fluorine, chlorine,
  • R 8 is hydrogen, (C 1 -C 6 ) -alkyl, (C 3 -C 6 ) -cycloalkyl- (C 1 -C 6 ) -alkyl, (C 1 -C 6 ) -alkyl-0- (C 1 -C 6 ) - alkyl alkyl, (C 3 -C 6) -cycloalkyl- (Ci-C 6) alkyl-0- (Ci-C6), phenyl, (Ci-C 6) alkyl, phenyl, heteroaryl, heteroaryl- ( C 1 -C 6 ) -alkyl, heterocyclyl, heterocyclyl- (C 1 -C 6 ) -alkyl, phenyl-0- (ci) ⁇ C j-alkyl, heteroaryl-0- (Ci-C 6) alkyl or heterocyclyl-0- (Ci-C 6) -alkyl, where the nine last-mentioned
  • the two radicals R 8 form a ring with the heteroatom or the heteroatoms via which they are bonded, namely a heterocyclyl, heterocyclenyl, heteroaryl,
  • R 9 is (Ci-C 6) -alkyl, (C 3 -C 6) -cycloalkyl- (Ci-C 6) alkyl, alkyl (Ci-C6) alkyl-0- (Ci-C 6) , (C 3 -C 6 ) -cycloalkyl- (C 1 -C 6 ) -alkyl-O- (C 1 -C 6 ) -alkyl, phenyl, phenyl- (C 1 -C 6 ) -alkyl, heteroaryl, heteroaryl- (Ci C 6 ) -alkyl, heterocyclyl, heterocyclyl- (C 1 -C 6 ) -alkyl, phenyl-0- (C 1 -C 6 ) -alkyl, heteroaryl-0- (C 1 -C 6 ) -alkyl or heterocyclyl-0- (C 1 -C 6 ) -alkyl, where the nine last-ment
  • R 10 is hydrogen or (C 1 -C 6 ) -alkyl
  • R 11 is (C 1 -C 6 ) -alkyl
  • R 12 is (C 1 -C 4) -alkyl
  • R 13 and R 14 are each independently hydrogen, (GG) alkyl, cyano, R 8 0 (0) C or (R 8 ) 2 N (0) C
  • R 15 and R 16 are each independently (GG) -alkyl, phenyl, (C 3 -C 6) -cycloalkyl,
  • R 17 , R 18 and R 19 independently of one another denote R 8 or R 9 S (O) 2 , (R 8 ) 2 NS (O) 2 , R 8 0S (O) 2,
  • radicals (R 17 and R 18 ) or (R 17 and R 19 ) form a ring with the heteroatom or with the heteroatoms via which they are bonded, namely a heterocyclyl,
  • n 0, 1, 2 or 3
  • n 0, 1 or 2
  • s 0, 1, 2, 3, 4 or 5.
  • X is CH 2 ,
  • R 1 is cyclopropyl, where the cyclopropyl group is substituted by s radicals from the group consisting of halogen, (C 1 -Cr) -alkyl and halo (C 1 -C 6 ) -alkyl,
  • R 2 represents hydroxy, (Ci-C ö j-alkoxy, (Ci-C 6) -haloalkoxy, (C 2 -C 6) alkenyloxy, (C 2 -C ⁇ ) -
  • Haloalkenyloxy (C 2 -C 6 ) -alkynyloxy
  • R 3 is cyano, fluorine, chlorine, bromine, methyl, ethyl, trifluoromethyl, difluoromethyl,
  • R 4 , R 5 , R 6 and R 7 are each independently hydrogen, cyano, fluorine, chlorine,
  • m is 0, 1, 2 or 3
  • n 0, 1 or 2
  • s 0, 1, 2, 3, 4 or 5.
  • the 1 H-NMR data of selected examples are noted in terms of 1 H-NMR peak lists. For each signal peak, first the d-value in ppm and then the signal intensity in round brackets are listed. The d-value signal intensity number pairs of different signal peaks are listed separated by semicolons.
  • the peak list of an example therefore has the form: di (intensity ⁇ ; d2 (intensity 2);.; D; (intensity ⁇ ;;; d h (intensity n )
  • the intensity of sharp signals correlates with the height of the signals in a printed example of a NMR spectrum in cm and shows the true ratios of the signal intensities.For broad signals, several peaks or the center of the signal and their relative intensity can be shown compared to the most intense signal in the spectrum.
  • the peaks of stereoisomers of the target compounds and / or peaks of impurities usually have on average a lower intensity than the peaks of the target compounds (for example with a purity of> 90%).
  • stereoisomers and / or impurities may be typical of each
  • An expert calculating the peaks of the target compounds by known methods can isolate the peaks of the target compounds as needed, using additional intensity filters, if necessary. This isolation would be similar to peak-picking in classical 1H-NMR interpretation.
  • the starting compounds of the 4-methyl-5-arylpyrimidine type can be prepared from 5-bromopyrimidines or 5-iodopyrimidines according to a method described for 2,4-dimethyl-5-phenylpyrimidine in Kondo et al, Chem. Pharm. Bull. 37 (1989) 2814.
  • halogen chlorine, bromine, iodine
  • Such methods are described, for example, for the preparation of 4-chloro-5- (4-chlorophenyl) -2-phenylpyrimidines in Shestakov et al, Tetrahedron 73 (2017) 3939.
  • an amidine or a salt of an amidine with an enol ester or a 3-hydroxyacryl derivative optionally together with an inorganic, organic or organometallic base such as potassium carbonate, sodium ethoxide or a
  • the pyrimidine can be prepared by known methods in the 5-position with
  • Halogenating agents such as e.g. N-iodo- or N-bromosuccinimide or bromine are halogenated (J Med. Chem. 51 (2008) 5766):
  • a cross-coupling reaction can be carried out such as e.g. a Suzuki coupling
  • the pyrimidone can then, for example, by using known halogenating agents such as
  • Phosphoroxychlorid or thionyl bromide are converted into a 4-halopyrimidine. This is followed by a Heck coupling (Tetrahedron Lett. 28 (1987) 3039) with metal catalysis to the alkenyloxyacrylate, which is subsequently hydrolyzed to the pyruvate (./. Org. Chem. 80 (2015) 2554).
  • a further alternative is based on the pyrimidine-4-carbaldehyde, which is reacted via a Wittig-Homer reaction to the alkenyloxy acrylate or to the enaminoacrylate and can be hydrolyzed as described above (J. Org. Chem. 80 (2015) 2554).
  • the 2-keto acids or esters or amides via an iron-catalyzed addition of the corresponding 4-alkylpyrimidine (Tetrahedron 70 (2014) 3056) with subsequent oxidation, for example with the Dess-Martin reagent (./. Org. Chem. 81 (2016) 3890) or by using copper acetate (./. Org. Chem. 79 (2014) 11735) or by a Swem oxidation (WO 2013057468).
  • pyrimidine alkyl compounds with strong bases e.g.
  • Oxalic acid ester derivative e.g. with the following orthoester, into the desired target compounds (1) transfer ⁇ J. C. Medina et al., Tetrahedron Lett. 49 (2008) 1768; J. Scherkenbeck et al., J. Org. Chem. 80 (2015) 2554-2561).
  • Carboxylic acid amide derivatives according to the invention carbohydrazides, methylidene hydrazides and, if appropriate,
  • Substituted N-hydroxycarboxamides (1) are synthesized from the corresponding acids by reaction with a coupling reagent, a base and the respective amine or hydrazine derivative.
  • Alkyidene hydrazides can be e.g. by heating the primary hydrazide with a corresponding
  • Collections of compounds of formula (I) and / or their salts, which may be synthesized following the above reactions, may also be prepared in a parallelized manner, which may be done in a manual, partially automated or fully automated manner. It is possible, for example, to automate the reaction procedure, the work-up or the purification of the products or intermediates. Overall, this is understood to mean a procedure as described, for example, by D. Tiebes in Combinatorial Chemistry - Synthesis, Analysis, Screening (publisher Günther Jung), Verlag Wiley 1999, on pages 1 to 34.
  • the present invention therefore also provides a method for controlling
  • Plant cultures in which one or more compounds of the invention (s) on the plants eg harmful plants such as mono- or dicotyledonous weeds or undesirable crops), the seed (eg grains, seeds or vegetative propagules such as tubers or sprouts with buds) or the area on the plants grow (eg the acreage), are applied.
  • the compounds of the invention may be e.g. Some representatives of the monocotyledonous and dicotyledonous weed flora which may be controlled by the compounds according to the invention are mentioned by way of example in the individual cases, without being restricted by the mention to be done in certain ways.
  • the compounds according to the invention are applied to the surface of the earth before germination, either the emergence of the weed seedlings is completely prevented or the weeds grow up to the cotyledon stage stage, but then stop their growth.
  • the compounds according to the invention can have selectivities in useful cultures and can also be used as nonselective herbicides.
  • the active compounds can also be used for controlling harmful plants in crops of known or yet to be developed genetically modified plants.
  • the transgenic plants are usually characterized by particular advantageous properties, for example by resistance to certain active ingredients used in the agricultural industry, especially certain herbicides,
  • Plant diseases or pathogens of plant diseases such as certain insects or microorganisms such as fungi, bacteria or viruses.
  • Other special properties concern e.g. the goods in terms of quantity, quality, shelf life, composition and special ingredients.
  • transgenic plants with increased starch content or altered quality of the starch or those with other fatty acid composition of Emteguts are known.
  • Other particular properties are tolerance or resistance to abiotic stressors, e.g. Heat, cold, drought, salt and ultraviolet radiation.
  • the compounds of the formula (1) can be used as herbicides in crops which are resistant to the phytotoxic effects of the herbicides or have been made genetically resistant.
  • new plants with altered properties can be generated by means of genetic engineering methods (see, for example, EP 0221044, EP 0131624).
  • genetic modifications of crop plants have been described for the purpose of modifying the starch synthesized in the plants (eg WO 92/011376 A, WO 92/014827 A, WO 91/019806 A), transgenic crop plants which are resistant to certain glufosinate-type herbicides (US Pat.
  • EP 0242236 A EP 0242246 A
  • glyphosate WO 92/000377 A
  • sulfonylureas EP 0257993 A, US 5,013,659
  • herbicides by "gene stacking" resistant, such as transgenic crops z.
  • transgenic crops z For example, corn or soybean with the trade name or designation Optimum TM GAT TM (Glyphosate ALS Tolerant).
  • Transgenic crops such as cotton, with the ability to produce Bacillus thuringiensis toxins (Bt toxins), which make the plants resistant to certain pests (EP 0142924 A, EP 0193259 A).
  • Bacillus thuringiensis toxins Bacillus thuringiensis toxins
  • Transgenic crops with modified fatty acid composition WO 91/013972 A.
  • genetically engineered crops with new content or secondary substances e.g. novel phytoalexins which cause increased disease resistance (EP 0309862 A, EP 0464461 A)
  • genetically modified plants with reduced photorespiration which have higher yields and higher stress tolerance (EP 0305398 A)
  • transgenic crops characterized by higher yields or better quality transgenic crops characterized by a combination of e.g. the o. g. characterize new properties ("gene stacking")
  • nucleic acid molecules can be introduced into plasmids that allow mutagenesis or sequence alteration by recombination of DNA sequences.
  • base exchanges can be made, partial sequences removed or natural or synthetic sequences added.
  • adapters or linkers can be attached to the fragments, see eg Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2nd Ed.
  • the production of plant cells having a reduced activity of a gene product can be achieved, for example, by the expression of at least one corresponding antisense RNA, a sense RNA to obtain a cosuppression effect, or the expression of at least one appropriately engineered ribozyme which specifically cleaves transcripts of the above gene product.
  • DNA molecules may be used which comprise the entire coding sequence of a gene product, including any flanking sequences that may be present, as well as DNA molecules which comprise only parts of the coding sequence, which parts must be long enough to be present in the cells to cause an antisense effect. It is also possible to use DNA sequences which have a high degree of homology to the coding sequences of a gene product, but are not completely identical.
  • the synthesized protein may be located in any compartment of the plant cell.
  • the coding region is linked to DNA sequences which ensure localization in a particular compartment.
  • sequences are known to those skilled in the art (see, for example, Braun et al., EMBO J. 11 (1992), 3219-3227; Wolter et al., Proc. Natl. Acad., U.S.A. 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106).
  • the expression of the nucleic acid molecules can also take place in the organelles of the plant cells.
  • the transgenic plant cells can be regenerated to whole plants by known techniques.
  • the transgenic plants can in principle be plants of any one
  • Plant species that is, both monocotyledonous and dicotyledonous plants.
  • the compounds (I) according to the invention can be used in transgenic cultures which are resistant to growth factors, such as e.g. 2,4-D, dicamba or against herbicides containing essential plant enzymes, e.g. Acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or Hydoxyphenylpyruvat Dioxygenases (HPPD) inhibit or resistant to herbicides from the group of sulfonylureas, the glyphosate, glufosinate or Benzoylisoxazole and analogues, or against any combination of these agents resistant.
  • growth factors such as e.g. 2,4-D, dicamba or against herbicides containing essential plant enzymes, e.g. Acetolactate synthases (ALS), EPSP synthases, glutamine synthases (GS) or Hydoxyphenylpyruvat Dioxygenases (HPPD) inhibit or resistant to herbicides from the group of sul
  • the compounds according to the invention can particularly preferably be used in transgenic crop plants which are resistant to a combination of glyphosates and glufosinates, glyphosates and Sulfonylureas or imidazolinones are resistant. Most preferably, the compounds of the invention in transgenic crops such. As corn or soybean with the trade name or the name OptimumTM GATTM (Glyphosate ALS Tolerant) can be used.
  • the invention therefore also relates to the use of the compounds of the formula (1) according to the invention as herbicides for controlling harmful plants in transgenic crop plants.
  • the compounds of the invention can be used in the form of Spritzpulvem, emulsifiable concentrates, sprayable solutions, dusts or granules in the usual preparations.
  • the invention therefore also provides herbicidal and plant growth-regulating mites which contain the compounds according to the invention.
  • the compounds according to the invention can be formulated in various ways, depending on which biological and / or chemical-physical parameters are predetermined. As
  • Formulation options are, for example: wettable powders (WP), water-soluble powders (SP), water-soluble concentrates, emulsifiable concentrates (EC), emulsions (EW), such as oil-in-water and water-in-oil emulsions, sprayable solutions, Suspension concentrates (SC), oil- or water-based dispersions, oil-miscible solutions, capsule suspensions (CS), dusts (DP), mordants, granules for litter and soil application, granules (GR) in the form of micro, spray, elevator and adsorption granules, water-dispersible granules (WG), water-soluble granules (SG), ULV formulations, microcapsules and waxes.
  • WP wettable powders
  • SP water-soluble powders
  • EC emulsifiable concentrates
  • EW emulsions
  • SC Suspension concentrates
  • SC oil- or water-based dispers
  • Producing growth regulators e.g. in the form of a ready-made formulation or as a tank mix.
  • combination partners for the compounds according to the invention in mixture formulations or in the tank mix are known active compounds which are based on an inhibition of, for example, acetolactate synthase, acetyl-CoA carboxylase, cellulose synthase, enolpyruvylshikimate-3-phosphate synthase, glutamine synthetase, p-hydroxyphenylpyruvate dioxygenase, phytoene desaturase,
  • Photosystem I photosystem 11 or protoporphyrinogen oxidase
  • Photosystem I can be used, as e.g. from Weed Research 26 (1986) 441-445 or "The Pesticide Manual", 16 th edition, The British Crop Protection Council and the Royal Soc. of Chemistry, 2006 and cited therein.
  • the following are examples of known herbicides or plant growth regulators, which can be combined with the compounds of the invention, these agents either with their "common name" in the English version according to International Organization for Standardization (1SO) or with the chemical name or with the code number are designated. All forms of use, such as, for example, acids, salts, esters, as well as all isomeric forms, such as stereoisomers and optical isomers, are always included, even if these are not explicitly mentioned.
  • herbicidal mixture partners examples include:
  • flucarbazone flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazine, fluometuron, flurenol, flurenol-butyl, - dimethylammonium and -methyl, fluoroglycofen, fluoroglycofen-ethyl, flupropanate, flupyrsulfuron, flupyrsulfuron-methyl-sodium, fluridone, flurochloridone, fluroxypyr, fluroxypyr-meptyl, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, fomesafen-sodium, foramsulfuron, fosamine, glufosinate, glufosinate-ammonium, glufosinate-p-s
  • methabenzothiazuron metam, metamifop, metamitron, metazachlor, metazosulfuron,
  • met.zthiazuron methiopyrsulfuron, methiozoline, methyl isothiocyanate, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, molinate, monolinuron, monosulfuron, monosulfuron ester, MT-5950, ie N- [3-chloro -4- (1-methylethyl) phenyl] -2-methylpentanamide, NGGC-011, napropamide, NC-310, ie 4- (2,4-dichlorobenzoyl) -l-methyl-5-benzyloxypyrazole, neburon, nicosulfuron, nonanoic acid (pelargonic acid), norflurazon, oleic acid (fatty acids), orbencarb, orthosulfamuron, oryzalin, oxadiar
  • plant growth regulators as possible mixing partners are:
  • Combinations with further active ingredients such as insecticides, acaricides, herbicides, fungicides as listed above can be used, are preferably selected from the group consisting of: S 1) Connections of the formulas (S 1),
  • P A is a natural number from 0 to 5, preferably 0 to 3;
  • R A 1 is halogen, (Ci-C i) alkyl, (Ci-C i) alkoxy, nitro or (Ci-C4) haloalkyl;
  • WA is an unsubstituted or substituted divalent heterocyclic radical selected from the group consisting of the monounsaturated or aromatic five-membered heterocycles having 1 to 3 hetero ring atoms from the group N and O, where at least one N atom and at most one O atom are present in the ring, preferably one Remainder of the group (WA 1 ) to (WA 4 ),
  • n 0 or 1
  • RA 2 is ORA 3 , SRA 3 or NRA 3 RA 4 or a saturated or unsaturated 3- to 7-membered one
  • Heterocycle having at least one N atom and up to 3 heteroatoms, preferably from the group O and S, which is connected via the N atom to the carbonyl group in (S1) and unsubstituted or by radicals from the group (Ci-C i) Alkyl, (Ci-C i) alkoxy or optionally substituted phenyl is substituted, preferably a radical of the formula OR A 3 , NHR A 4 or N (CH 3) 2, in particular of the formula ORA 3 ;
  • R A 3 is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably having a total of 1 to 18 C atoms;
  • RA 4 is hydrogen, (C 1 -C 6 ) alkyl, (C 1 -C 6 ) alkoxy or substituted or unsubstituted phenyl;
  • RA 5 is H, (C 1 -C 8 ) alkyl, (C 1 -C 8 ) haloalkyl, (C 1 -C 4 ) alkoxy (C 1 -C 8 ) alkyl, cyano or COOR A 9 , where RA 9 is hydrogen, C 8) alkyl, (Ci-C 8) haloalkyl, (Ci-C 4) alkoxy (Ci-C 4) alkyl, (Ci-C 6) hydroxyalkyl, (C 3 -C 12) cycloalkyl or tri (C 1 -C 4) -alkyl-silyl;
  • RA 6 , RA 7 , RA 8 are identical or different hydrogen, (Ci-Cg) alkyl, (Ci-Cg) haloalkyl, (C3-Ci2) cycloalkyl or substituted or unsubstituted phenyl; preferably: a) compounds of the type of dichlorophenylpyrazoline-3-carboxylic acid (Sl a ), preferably compounds such as 1- (2,4-dichlorophenyl) -5- (ethoxycarbonyl) -5-methyl-2-pyrazoline-3-carboxylic acid,
  • RB 1 is halogen, (Ci-C i) alkyl, (Ci-C4) alkoxy, nitro or (Ci-C4) haloalkyl; ne is a natural number of 0 to 5, preferably 0 to 3; R B 2 is OR B 3 , SR B 3 or NR B 3 R B 4 or a saturated or unsaturated 3- to 7-membered heterocycle having at least one N atom and up to 3 heteroatoms, preferably from the group O and S, which is connected via the N atom with the carbonyl group in (S2) and unsubstituted or substituted by radicals from the group (Ci-C4) alkyl, (Ci-C4) alkoxy or optionally substituted phenyl, preferably a radical of the formula OR B 3 , NHR B 4 or N (CH 3) 2, in particular of the formula OR B 3 ;
  • R B 3 is hydrogen or an unsubstituted or substituted aliphatic hydrocarbon radical, preferably having a total of 1 to 18 C atoms;
  • RB 4 is hydrogen, (Ci-C 6 ) alkyl, (Ci-Cr,) alkoxy or substituted or unsubstituted phenyl;
  • T B is a (Ci or C2) alkanediyl chain which is unsubstituted or substituted by one or two (C 1 -C 4) alkyl radicals or by [(C 1 -C 3) alkoxy] carbonyl; preferably: a) compounds of the 8-quinolinoxyacetic acid type (S2 a ), preferably
  • Rc 1 is (Ci-C 4) alkyl, (Ci-C 4) haloalkyl, (C 2 -C 4) alkenyl, (C 2 -C 4) haloalkenyl, (C 3 -C 7) cycloalkyl, preferably dichloromethyl;
  • Rc 2 , Rc 3 are identical or different hydrogen, (Ci-C 4 ) alkyl, (C 2 -C 4 ) alkenyl, (C 2 -C 4 ) alkynyl, (Ci- C 4 ) haloalkyl, (C 2 -C 4) haloalkenyl, (Ci-C 4) alkylcarbamoyl (Ci-C alkyl 4), (C 2 -C 4) Alkenylcarbamoyl- (Ci-C 4) alkyl, (Ci-C 4) alkoxy (Ci-C 4 ) alkyl, dioxolanyl-
  • R-29148 (3-dichloroacetyl-2,2,5-trimethyl-1,3-oxazolidine) from Stauffer (S3-2),
  • R-28725" (3-dichloroacetyl-2,2, -dimethyl-1,3-oxazolidine) from Stauffer (S3-3),
  • Benoxacor (4-dichloroacetyl-3,4-dihydro-3-methyl-2H-1,4-benzoxazine) (S3-4),
  • PPG-1292 N-allyl-N - [(1,3-dioxolan-2-yl) -methyl] -dichloroacetamide
  • TI-35 (1-dichloroacetyl-azepane) from TRI-Chemical RT (S3-8),
  • a D is S0 2 -NR D 3 -C0 or C0-NR D 3 -S0 2 XD is CH or N;
  • RD 1 is CO-NR D 5 R D 6 or NHCO-R D 7 ;
  • RD 2 is halogen, (C 1 -C 4) haloalkyl, (C 1 -C 4) haloalkoxy, nitro, (C 1 -C 4) -alkyl, (C 1 -C 4) -alkoxy, (C 1 -C 4) -alkylsulfonyl, (C 1 -C 4) -alkoxycarbonyl or ( Ci-C4) alkylcarbonyl;
  • R D 3 is hydrogen, (C 1 -C 4) alkyl, (C 2 -C 4) alkenyl or (C 2 -C 4) alkynyl;
  • RD 4 is halogen, nitro, (Ci-C4) alkyl, (Ci-C4) haloalkyl, (Ci-C4) haloalkoxy, (C3-C6) cycloalkyl, phenyl, (Ci-C4) alkoxy, cyano, (Ci-C4 ) Alkylthio, (C 1 -C 4) alkylsulfinyl, (C 1 -C 4) alkylsulfonyl, (C 1 -C 4) alkoxycarbonyl or (C 1 -C 4) alkylcarbonyl;
  • RD 5 is hydrogen, (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, (C 2 -C 6 ) alkenyl, (C 2 -C 6 ) alkynyl, (C 5 -C 6 ) cycloalkenyl, phenyl or 3- to 6-membered heterocyclyl containing V D heteroatoms from the group consisting of nitrogen, oxygen and sulfur, wherein the latter seven radicals by V D
  • R D 6 is hydrogen, (Ci-C 6 ) alkyl, (CF-GOAlkcnyl or (C 2 -C 6 ) alkynyl, where the three latter radicals by V D radicals from the group consisting of halogen, hydroxy, (Ci-C4) alkyl, ( Ci-C4) alkoxy and (Ci-C4) alkylthio are substituted, or
  • R D 5 and R D 6 together with the nitrogen atom carrying them form a pyrrolidinyl or piperidinyl radical
  • R D 7 is hydrogen, (Ci-C4) alkylamino, di (Ci-C4) alkylamino, (Ci-C 6 ) alkyl, (C3-C6) cycloalkyl, where the 2 latter radicals by V D substituents from the group halogen , (Ci-C4) alkoxy, (Ci- C 6 ) haloalkoxy and (Ci-C4) alkylthio and in the case of cyclic radicals also (Ci-C4) alkyl and
  • haloalkyl are substituted; n D is 0, 1 or 2; m D is 1 or 2;
  • V D is 0, 1, 2 or 3; Of these, preference is given to compounds of the N-acylsulfonamide type, for example of the following formula (S4 a ), which are, for example, B. are known from WO-A-97/45016
  • R D 7 (Ci-C 6) alkyl, (C3-C6) -cycloalkyl, where the 2 last-mentioned radicals are substituted by V D substituents from the group halogen, (Ci-C4) alkoxy, (Ci-C 6) haloalkoxy and (Ci- C4) alkylthio and in the case of cyclic radicals are also (Ci-C4) alkyl and (Ci-C4) haloalkyl substituted;
  • R D 4 is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, CF 3; m D 1 or 2;
  • V D is 0, 1, 2 or 3; such as Acylsulfamoylbenzoeklareamide, for example, the following formula (S4 b ), for example, are known from WO-A-99/16744,
  • RD 8 and RD 9 independently of one another are hydrogen, (Ci-Cg) alkyl, (C3-Cg) cycloalkyl, (C3-C6) alkenyl, (C 3 -C 6 ) alkynyl,
  • RD 4 is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, CF 3 m D 1 or 2; for example l- [4- (N-2-Methoxybenzoylsulfamoyl) phenyl] -3-methylhamstoff,
  • RD 4 is halogen, (C 1 -C 4 ) alkyl, (C 1 -C 4 ) alkoxy, CF 3; m D 1 or 2; R d 5 is hydrogen, (C 1 -C 6 ) alkyl, (C 3 -C 6 ) cycloalkyl, (C 2 -C 6 ) alkenyl, (C 2 -C 6 ) alkynyl, (C 5 -C 6 ) cycloalkenyl.
  • Carboxylic acid derivatives (S5) e.g.
  • RE 1 , RE 2 are each independently halogen, (Ci-C4) alkyl, (Ci-C i) alkoxy, (Ci-C i) haloalkyl, (Ci-C4) alkylamino, di (Ci-C4) alkylamino, nitro ;
  • a E is COOR E 3 or COSR E 4
  • RE 3 , RE 4 are each, independently of one another, hydrogen, (C 1 -C 4 ) -alkyl, (C 2 -C 6 -alkynyl,
  • Methyl diphenylmethoxyacetate (CAS No. 41858-19-9) (S7-1).
  • R F 1 is halogen, (C 1 -C 4) -alkyl, (C 1 -C 4) -haloalkyl, (C 1 -C 4) -alkoxy, (C 1 -C 4) -haloalkoxy, nitro, (C 1 -C 4) -alkylthio, (C 1 -C 4) -alkylsulfonyl, (C 1 -C 4) alkoxycarbonyl, optionally substituted. Phenyl, if necessary
  • R F 2 is hydrogen or (Ci-C4) alkyl
  • R F 3 is hydrogen, (Ci-Cg) alkyl, (C 2 -C 4) alkenyl, (C 2 -C 4) alkynyl, or aryl, wherein each of the aforementioned C-containing radicals unsubstituted or by one or more, preferably up to three, same or different radicals from the group consisting of halogen and alkoxy substituted; or their salts, preferably compounds wherein
  • n F is an integer from 0 to 2
  • R F 1 is halogen, (C 1 -C 4) -alkyl, (C 1 -C 4) -haloalkyl, (C 1 -C 4) -alkoxy, (C 1 -C 4) -haloalkoxy, R F 2 is hydrogen or (C 1 -C 4) -alkyl,
  • R F 3 is hydrogen, (C 1 -C 6) alkyl, (C 2 -C 4) alkenyl, (C 2 -C 4) alkynyl, or aryl, where each of the aforementioned C-containing radicals is unsubstituted or substituted by one or more, preferably up to three, same or different radicals from the group consisting of halogen and alkoxy substituted, mean
  • RG 1 is halogen, (C 1 -C 4) alkyl, methoxy, nitro, cyano, CF 3, OCF 3
  • Y G , Z G independently of one another O or S, no an integer from 0 to 4,
  • RG 2 (Ci-Ci6) alkyl, (C 2 -C 6 ) alkenyl, (C 3 -C 6 ) cycloalkyl, aryl; Benzyl, halobenzyl,
  • RG 3 is hydrogen or (Ci-C 6 ) alkyl.
  • Sl 1 active substances of the type of oxyimino compounds (Sl 1), which are known as seed dressings, such as. B.
  • Oxabetrinil ((Z) -1,3-dioxolan-2-ylmethoxyimino (phenyl) acetonitrile) (Sl l-1), which is known as a seed safener for millet against damage by metolachlor,
  • Fluorofenim (1- (4-chlorophenyl) -2,2,2-trifluoro-1-ethanone-0- (1,3-dioxolan-2-ylmethyl) -oxime) (S1-2) used as seed dressing -Safener for millet is known against damage from metolachlor, and
  • Cyometrinil or “CGA-43089” ((Z) -cyanomethoxyimino (phenyl) acetonitrile) (Sl l-3), which is known as a seed dressing safener for millet against damage from metolachlor.
  • MG 191 (CAS Reg. No. 96420-72-3) (2-dichloromethyl-2-methyl-1,3-dioxolane) (S13-5) from Nitrokemia, which is known as safener for corn,
  • RH 1 is a (Ci-C 6 ) haloalkyl radical and R H 2 is hydrogen or halogen and
  • R H 3 , R H 4 are each independently hydrogen, (Ci-Ci 6 ) alkyl, (C 2 -C 16) alkenyl or
  • each of the last-mentioned 3 radicals is unsubstituted or substituted by one or more radicals from the group consisting of halogen, hydroxy, cyano, (C 1 -C 4 ) -alkoxy, (C 1 -C 4 ) -haloalkoxy, C 4 ) alkylthio,
  • R is H 3 (C 1 -C 4 ) -alkoxy, (C 2 -C 4 ) -alkenyloxy, (C 2 -C 6) -alkinyloxy or (C 2 -C 4 ) -haloalkoxy and RH 4 is hydrogen or (Ci-C i) -alkyl or
  • RH 3 and RH 4 together with the directly attached N atom form a four- to eight-membered one
  • heterocyclic ring which, in addition to the N atom, may also contain further hetero ring atoms, preferably up to two further hetero ring atoms from the group consisting of N, O and S, and which may be unsubstituted or substituted by one or more radicals from the group consisting of halogen, cyano, nitro, C i) alkyl, (Ci-C i) haloalkyl, (Ci-C i) alkoxy, (Ci-C4) haloalkoxy and (Ci-C4) alkylthio is substituted, means.
  • Particularly preferred safeners are mefenpyr-diethyl, cyprosulfamide, isoxadifen-ethyl, cloquintocetmexyl and dichloromide.
  • Injectable powders are preparations which are uniformly dispersible in water and contain surfactants of the ionic and / or nonionic type (wetting agents, dispersants) in addition to the active ingredient except a diluent or inert substance.
  • surfactants of the ionic and / or nonionic type (wetting agents, dispersants) in addition to the active ingredient except a diluent or inert substance.
  • the herbicidal active compounds are finely ground, for example, in customary apparatus such as hammer mills, blower mills and air-jet mills and mixed simultaneously or subsequently with the formulation auxiliaries.
  • Emulsifiable concentrates are prepared by dissolving the active ingredient in an organic solvent such as butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of organic solvents with the addition of one or more ionic and / or nonionic surfactants (emulsifiers).
  • organic solvent such as butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons or mixtures of organic solvents
  • emulsifiers emulsifiers
  • alkylarylsulfonic acid calcium salts such as
  • Ca-dodecylbenzenesulfonate or nonionic emulsifiers such as fatty acid polyglycol ester
  • Alkylaryl polyglycol ethers fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl polyethers, sorbitan esters such as e.g. Sorbitan fatty acid esters or polyoxethylenesorbitan esters such as e.g. Polyoxyethylenesorbitan fatty acid ester.
  • Dusts are obtained by milling the active ingredient with finely divided solids, e.g.
  • Talc natural clays such as kaolin, bentonite and pyrophyllite, or diatomaceous earth.
  • Suspension concentrates may be water or oil based. They can be prepared, for example, by wet milling using commercially available bead mills and, if appropriate, addition of surfactants, as described, for example, in US Pat. are already listed above for the other formulation types.
  • Emulsions e.g. Oil-in-water emulsions (EW), for example, by means of stirrers,
  • Solvents and optionally surfactants such as e.g. above in the other formulation types are already listed, produce.
  • Granules can either be prepared by spraying the active ingredient onto adsorptive, granulated inert material or by applying active substance concentrates by means of
  • Adhesives e.g. Polyvinyl alcohol, polyacrylic acid sodium or mineral oils, on the
  • Water dispersible granules are generally prepared by the usual methods such as spray drying, fluidized bed granulation, plate granulation, high speed mixing and extrusion without solid inert material.
  • the agrochemical preparations generally contain from 0.1 to 99% by weight, in particular from 0.1 to 95% by weight, of compounds according to the invention.
  • the active compound concentration is e.g. about 10 to 90 wt .-%, the balance to 100 wt .-% consists of conventional formulation ingredients.
  • the active ingredient concentration may be about 1 to 90, preferably 5 to 80 wt .-%.
  • Dust-like formulations contain 1 to 30 wt .-% of active ingredient, preferably usually 5 to 20 wt .-% of active ingredient
  • sprayable solutions contain about 0.05 to 80, preferably 2 to 50 wt .-% of active ingredient.
  • the active compound concentration is e.g. about 10 to 90 wt .-%
  • the balance to 100 wt .-% consists of conventional formulation ingredients.
  • the active ingredient concentration may be about 1 to 90, preferably 5 to 80 wt .-%.
  • Dust-like formulations contain 1 to 30 wt
  • the content of active ingredient depends on whether the active compound is liquid or solid and which granulation aids, fillers, etc. are used.
  • the content of active ingredient is, for example, between 1 and 95% by weight, preferably between 10 and 80% by weight.
  • the active substance formulations mentioned optionally contain the customary adhesion, wetting, dispersing, emulsifying, penetrating, preserving, antifreeze and solvent, fillers, carriers and dyes, antifoams, evaporation inhibitors and the pH and the Viscosity-influencing agent.
  • the formulations present in commercial form are optionally diluted in a customary manner, e.g. for Spritzpulvem, emulsifiable concentrates, dispersions and water-dispersible granules by means of water. Dust-like preparations, soil or
  • Spreading granulates and sprayable solutions are usually no longer diluted with other inert substances before use.
  • the type of herbicide used u.a. varies the required application rate of the compounds of formula (I). It can vary within wide limits, e.g. between 0.001 and 1.0 kg / ha or more of active substance, but is preferably between 0.005 and 750 g / ha.
  • Carrier means a natural or synthetic, organic or inorganic substance with which the active ingredients for better applicability, especially for application to plants or Plant parts or seeds, mixed or connected.
  • the carrier which may be solid or liquid, is generally inert and should be useful in agriculture.
  • Suitable solid or liquid carriers are: e.g. Ammonium salts and natural rock minerals, such as kaolins, clays, talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and ground synthetic minerals, such as fumed silica, alumina and natural or synthetic silicates, resins, waxes, solid fertilizers, water, alcohols, especially butanol , organic solvents, mineral and vegetable oils and derivatives thereof. Mixtures of such
  • Suitable solid carriers for granules are: e.g. Cracked and fractionated natural rocks such as calcite, marble, pumice, sepiolite, dolomite and synthetic granules of inorganic and organic flours and granules of organic material such as sawdust, coconut shells, corn cobs and tobacco stems.
  • Suitable liquefied gaseous diluents or carriers are those liquids which are gaseous at normal temperature and under normal pressure, e.g. Aerosol propellants, such as halogenated hydrocarbons, as well as butane, propane, nitrogen and carbon dioxide.
  • Aerosol propellants such as halogenated hydrocarbons, as well as butane, propane, nitrogen and carbon dioxide.
  • Adhesives such as carboxymethyl cellulose, natural and synthetic powdery, granular or latex polymers, such as gum arabic, can be used in the formulations.
  • Other additives may be mineral and vegetable oils
  • Suitable liquid solvents are essentially: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinated aromatics or chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or dichloromethane, aliphatic hydrocarbons such as cyclohexane or paraffins, e.g. Petroleum fractions, mineral and vegetable oils,
  • Alcohols such as butanol or glycol and their ethers and esters, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone or cyclohexanone, strongly polar solvents such as dimethylformamide and dimethyl sulfoxide, and water.
  • the agents of the invention may additionally contain other ingredients, e.g.
  • Surfactants include emulsifying and / or foaming agents, dispersants or wetting agents with ionic or nonionic
  • Naphthalenesulphonic acid polycondensates of ethylene oxide with fatty alcohols or with fatty acids or with fatty amines, substituted phenols (preferably alkylphenols or arylphenols), salts of sulphosuccinic esters, taurine derivatives (preferably alkyl taurates), phosphoric acid esters of polyethoxylated alcohols or phenols, fatty acid esters of polyols, and derivatives of the compounds containing sulphates, sulphonates and phosphates, for example alkylaryl polyglycol ethers, alkylsulphonates, alkyl sulphates, arylsulphonates, protein hydrolysates, lignin sulphite waste liquors and methylcellulose.
  • the presence of a surfactant is necessary when one of the active ingredients and / or one of the inert carriers is not soluble in water and when applied in water.
  • the proportion of surface-active substances is between 5 and 40 percent by
  • Dyes such as inorganic pigments, e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • inorganic pigments e.g. Iron oxide, titanium oxide, ferrocyan blue and organic dyes such as alizarin, azo and metal phthalocyanine dyes and trace nutrients such as salts of iron, manganese, boron, copper, cobalt, molybdenum and zinc.
  • additional components may also be included, e.g. protective colloids, binders, adhesives, thickeners, thixotropic substances, penetration promoters, stabilizers,
  • the active ingredients can be combined with any solid or liquid additive commonly used for formulation purposes.
  • the agents and formulations according to the invention contain between 0.05 and 99% by weight, 0.01 and 98% by weight, preferably between 0.1 and 95% by weight, particularly preferably between 0.5 and 90%. Active ingredient, most preferably between 10 and 70 weight percent.
  • the active compounds or compositions according to the invention can be used as such or as a function of their respective physical and / or chemical properties in the form of their formulations or the use forms prepared therefrom, such as aerosols, capsule suspensions, cold mist concentrates, hot mist concentrates, encapsulated granules, fine granules, flowable concentrates for the
  • Seed treatment ready-to-use solutions, dustable powders, emulsifiable concentrates, oil-in-water emulsions, water-in-oil emulsions, macrogranules, microgranules, oil-dispersible powders, oil-miscible flowable concentrates, oil-miscible liquids, foams, pastes, Pesticide-coated seeds, suspension concentrates, suspension-emulsion concentrates, soluble concentrates, suspensions, wettable powders, soluble powders, dusts and granules, water-soluble granules or tablets, water-soluble powders for seed treatment, wettable powders, active substance-impregnated natural and synthetic substances and Feinstverkapselitch in polymeric materials and in coating compositions for seeds, as well as ULV cold and warm mist formulations are used.
  • compositions mentioned can be prepared in a manner known per se, for example by mixing the active compounds with at least one customary diluent, solvent or diluent, emulsifier, dispersing and / or binding or fixing agent, wetting agent, water repellent, if appropriate Desiccant and UV stabilizers and optionally dyes and pigments, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and other processing aids.
  • the compositions according to the invention comprise not only formulations which are already ready for use and which can be applied to the plant or the seed with a suitable apparatus, but also commercial concentrates which have to be diluted with water before use.
  • the active compounds according to the invention as such or in their (commercial) formulations and in the formulations prepared from these formulations in admixture with other (known) agents such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides , Fertilizers, safeners or semiochemicals.
  • other agents such as insecticides, attractants, sterilants, bactericides, acaricides, nematicides, fungicides, growth regulators, herbicides , Fertilizers, safeners or semiochemicals.
  • the treatment according to the invention of the plants and plant parts with the active ingredients or agents is carried out directly or by acting on their environment, habitat or storage space according to the usual treatment methods, e.g. by dipping, spraying, spraying, sprinkling, evaporating, atomizing, atomizing, sprinkling, foaming, brushing, spreading, drenching, drip irrigation and propagating material, in particular for seeds by dry pickling, wet pickling, slurry pickling, encrusting, single or multilayer coating, etc. It is also possible to apply the active ingredients by the ultra-low-volume method or to inject the active ingredient preparation or the active ingredient itself into the soil.
  • transgenic seed As also described below, the treatment of transgenic seed with the erfindungsge MAESSEN agents or agents is of particular importance.
  • This relates to the seed of plants containing at least one heterologous gene which allows expression of a polypeptide or protein having insecticidal properties.
  • the heterologous gene in transgenic seed may e.g. come from microorganisms of the species Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus or Gliocladium.
  • this heterologous gene is derived from Bacillus sp., Wherein the gene product has an activity against the European corn borer and / or Western Com Rootworm.
  • the heterologous gene is from Bacillus thuringiensis.
  • the agent according to the invention is applied to the seed alone or in a suitable formulation.
  • the seed is treated in a condition that is so stable that no damage occurs during the treatment.
  • the treatment of the seed can be done at any time between harvesting and sowing.
  • seed is used which has been separated from the plant and freed from flasks, shells, stems, hull, wool or pulp.
  • seed may be used which has been harvested, cleaned and dried to a moisture content below 15% by weight.
  • seed can also be used, which after drying, for example, treated with water and then dried again.
  • care must be taken in the treatment of the seed that the amount of the agent and / or other additives applied to the seed is chosen so that germination of the seed is not impaired or the resulting plant is not damaged. This is especially important for active ingredients, which can show phytotoxic effects in certain application rates.
  • agents according to the invention can be applied directly, ie without further
  • Suitable formulations and methods for seed treatment are known to those skilled in the art and are described e.g. in the following documents: US 4,272,417 A, US 4,245,432 A, US 4,808,430, US 5,876,739, US 2003/0176428 A1, WO 2002/080675 A1, WO 2002/028186 A2.
  • the active compounds according to the invention can be converted into the customary seed dressing formulations, such as solutions, emulsions, suspensions, powders, foams, slurries or other seed coating compositions, as well as ULV formulations.
  • formulations are prepared in a known manner by mixing the active ingredients with conventional additives, such as conventional extenders and solution or
  • Diluents dyes, wetting agents, dispersants, emulsifiers, defoamers, preservatives, secondary thickeners, adhesives, gibberellins and also water.
  • Dyes which may be present in the seed dressing formulations which can be used according to the invention are all dyes customary for such purposes. Both water-insoluble pigments and water-soluble dyes are useful in this case. Examples which may be mentioned under the names rhodamine B, C.I. Pigment Red 112 and C.I. Solvent Red 1 known dyes.
  • Suitable wetting agents which may be present in the seed dressing formulations which can be used according to the invention are all wetting-promoting substances customary for the formulation of agrochemical active compounds. Preference is given to using alkylnaphthalene sulfonates, such as diisopropyl or diisobutyl naphthalene sulfonates.
  • dispersants and / or emulsifiers which may be present in the seed dressing formulations which can be used according to the invention, all are used for the formulation of agrochemicals
  • Nonionic, anionic and cationic dispersants are nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants.
  • suitable nonionic dispersants are in particular ethylene oxide-propylene oxide block polymers, Alkylphenolpolyglykolether and Tristryrylphenolpolyglykolether and their phosphated or sulfated derivatives.
  • Suitable anionic dispersants are in particular lignosulfonates, polyacrylic acid salts and arylsulfonate-formaldehyde condensates.
  • Defoamers which may be present in the seed-dressing formulations which can be used according to the invention are all foam-inhibiting substances customary for the formulation of agrochemical active compounds.
  • Preferably usable are silicone defoamers and magnesium stearate.
  • Preservatives which may be present in the seed dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Examples include dichlorophen and Benzylalkoholhemiformal.
  • Suitable secondary thickeners which may be present in the seed dressing formulations which can be used according to the invention are all substances which can be used for such purposes in agrochemical compositions. Preference is given to cellulose derivatives, acrylic acid derivatives, xanthan, modified clays and finely divided silica.
  • Suitable adhesives which may be present in the seed dressing formulations which can be used according to the invention are all customary binders which can be used in pickling agents.
  • Preferably mentioned are polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and Tylose.
  • the seed dressing formulations which can be used according to the invention can be used either directly or after prior dilution with water for the treatment of seed of various kinds, including seed of transgenic plants. In this case, additional synergistic effects may occur in interaction with the substances formed by expression.
  • the seed dressing is introduced into a mixer which each desired amount of seed dressing formulations either as such or after prior dilution with water and mix until uniform distribution of the formulation on the seed mixes. If necessary, followed by a drying process.
  • the active compounds according to the invention are suitable for good plant tolerance, more favorable
  • Emtegutes Warm-blooded toxicity and good environmental compatibility for the protection of plants and plant organs, to increase the yield, improve the quality of the Emtegutes. They can preferably be used as crop protection agents. They are effective against normally sensitive and resistant species as well as against all or individual stages of development.
  • plants which can be treated according to the invention the following main crops are mentioned: maize, soybean, cotton, Brassica oilseeds such as Brassica napus (eg canola), Brassica rapa, B. juncea (eg (field) mustard) and Brassica carinata, rice, Wheat sugar beet, cane,
  • Brassica oilseeds such as Brassica napus (eg canola), Brassica rapa, B. juncea (eg (field) mustard) and Brassica carinata, rice, Wheat sugar beet, cane,
  • Rosaceae sp. for example, pome fruits such as apple and pear, but also drupes such as apricots, cherries, almonds and peaches and soft fruits such as strawberries
  • Ribesioidae sp. Juglandaceae sp.
  • Betulaceae sp. Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (for example
  • Rubiaceae sp. for example, coffee
  • Theaceae sp. Sterculiceae sp.
  • Rutaceae sp. for example, lemons, organs and grapefruit
  • Solanaceae sp. for example, tomatoes, potatoes, peppers, eggplants
  • Liliaceae sp. Compositae sp.
  • lettuce, artichoke and chicory - including root chicory, endive or common chicory for example, Umbelliferae sp. (for example, carrots, parsley, celery and celeriac),
  • Cucurbitaceae sp. for example cucumber - including gherkin, squash, watermelon, gourd and melons
  • Alliaceae sp. for example, leek and onion
  • Leguminosae sp. e.g., peanuts, peas, and beans - such as barley bean and field bean
  • Chenopodiaceae sp. for example, Swiss chard, fodder beet, spinach, beetroot
  • Malvaceae for example okra
  • asparagaceae for example asparagus
  • plants and their parts can be treated.
  • wild-type or plant species obtained by conventional biological breeding methods such as crossing or protoplast fusion
  • plant cultivars and their parts are treated.
  • transgenic plants and plant cultivars obtained by genetic engineering if appropriate in combination with conventional methods (Genetically Modified Organisms), and parts thereof are treated.
  • the term "parts” or “parts of plants” or “plant parts” has been explained above. It is particularly preferred according to the invention to treat plants of the respective commercially available or in use plant cultivars. Plant varieties are plants with new ones
  • the treatment method of the invention may be used for the treatment of genetically modified organisms (GMOs), e.g. As plants or seeds are used.
  • GMOs genetically modified organisms
  • Genetically modified plants are plants in which a heterologous gene has been stably integrated into the genome.
  • heterologous gene essentially means a gene which is provided or assembled outside the plant and which when introduced into the cell nucleus, the
  • Chloroplasts genome or mitochondrial genome of the transformed plant by conferring new or improved agronomic or other properties by expressing a protein or polypeptide of interest, or by downregulating another gene present in the plant or other genes present in the plant switches off (for example by means of antisense technology, cosuppression technology or RNAi technology [RNA Interference]).
  • a heterologous gene present in the genome is also referred to as a transgene.
  • a transgene defined by its specific presence in the plant genome is referred to as a transformation or transgenic event.
  • the treatment according to the invention can also lead to over-additive ("synergistic") effects.
  • over-additive additive
  • the following effects are possible, which go beyond the expected effects: reduced application rates and / or extended spectrum of action and / or increased efficacy of the active ingredients and compositions that can be used according to the invention, better plant growth, increased tolerance to high or low Temperatures, increased tolerance
  • Plants and plant varieties which are preferably treated according to the invention include all plants which have genetic material conferring on these plants particularly advantageous, useful features (whether obtained by breeding and / or biotechnology).
  • nematode-resistant plants are described, for example, in the following US patent applications: 11 / 765,491, 11 / 765,494, 10 / 926,819, 10 / 782,020, 12 / 032,479, 10 / 783,417, 10 / 782,096, 11 / 657,964, 12 / 192,904, 11 / 396,808, 12 / 166,253, 12 / 166,239, 12 / 166,124, 12 / 166,209, 11 / 762,886, 12 / 364,335, 11 / 763,947, 12 / 252,453, 12 / 209,354, 12 / 491,396 and 12 / 497,221. Plants which can be treated according to the invention are hybrid plants which already have the
  • Heterosis or hybrid effect characteristics which generally results in higher yield, higher vigor, better health and better resistance to biotic and abiotic stresses.
  • Such plants are typically produced by mixing an inbred male sterile parental line (the female crossover partner) with another
  • Inbred pollenfertilen Eltemline (the male crossover partner) crosses.
  • the hybrid seed is typically harvested from the male sterile plants and sold to propagators.
  • Pollen sterile plants can sometimes be produced (e.g., in maize) by delaving (i.e., mechanically removing the male genitalia (s)); however, it is more common for male sterility to be due to genetic determinants in the plant genome. In this case, especially when the desired product, as one wants to harvest from the hybrid plants, is the seeds, it is usually beneficial to ensure that the pollen fertility in hybrid plants containing the genetic determinants responsible for male sterility , completely restored.
  • Genetic determinants of pollen sterility may be localized in the cytoplasm. Examples of cytoplasmic male sterility (CMS) have been described, for example, for Brassica species. However, genetic determinants of male sterility may also be localized in the cell nucleus.
  • Pollen sterile plants can also be obtained using plant biotechnology methods such as genetic engineering. A particularly convenient means of producing male sterile plants is described in WO 89/10396, wherein, for example, a ribonuclease such as a Bamase is selectively expressed in the tapetum cells in the stamens. The fertility can then be restorated by expression of a ribonuclease inhibitor such as barstar in the tapetum cells.
  • Plants or plant varieties obtained by methods of plant biotechnology, such as genetic engineering which can be treated according to the invention are herbicide-tolerant plants, i. H. Plants tolerant to one or more given herbicides. Such plants can be obtained either by genetic transformation or by selection of plants containing a mutation conferring such herbicide tolerance.
  • Herbicide-tolerant plants are, for example, glyphosate-tolerant plants, ie plants that have been tolerated to the herbicide glyphosate or its salts. Plants can be made tolerant to glyphosate by various methods. Thus, for example, glyphosate-tolerant plants can be obtained by transforming the plant with a gene encoding the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Examples of such EPSPS genes are the AroA gene (mutant CT7) of the bacterium Salmonella typhimurium (Comai et al., 1983, Science 221, 370-371), the CP4 gene of the bacterium Agrobacterium sp.
  • EPSPS 5-enolpyruvylshikimate-3-phosphate synthase
  • Glyphosate-tolerant plants can also be obtained by expressing a gene encoding a glyphosate acetyltransferase enzyme. Glyphosate-tolerant plants can also be obtained by selecting plants containing naturally-occurring mutations of the above mentioned genes. Plants expressing EPSPS genes conferring glyphosate tolerance are described. Plants which confer other genes that confer glyphosate tolerance, eg decarboxylase genes, are described.
  • herbicide-resistant plants are, for example, plants which have been tolerated to herbicides which inhibit the enzyme glutamine synthase, such as bialaphos, phosphinotricin or glufosinate.
  • Such plants can be obtained by expressing an enzyme which detoxifies the herbicide or a mutant of the enzyme glutamine synthase, which is resistant to inhibition.
  • an effective detoxifying enzyme is, for example, an enzyme suitable for
  • Phosphinotricin acetyltransferase encoded such as the bar or pat protein from Streptomyces species. Plants expressing an exogenous phosphinotricin acetyltransferase have been described.
  • herbicide-tolerant plants are also plants tolerant to the herbicides which inhibit the enzyme hydroxyphenylpyruvate dioxygenase (HPPD). Both
  • Hydroxyphenylpyruvate dioxygenases are enzymes that catalyze the reaction in which para-hydroxyphenylpyruvate (HPP) is converted to homogentisate.
  • Plants tolerant to HPPD inhibitors can be transformed with a gene encoding a naturally occurring resistant HPPD enzyme or a gene encoding a mutant or chimeric HPPD enzyme, as in WO 96/38567 , WO 99/24585, WO 99/24586, WO 2009/144079, WO 2002/046387 or US 6,768,044.
  • Tolerance to HPPD inhibitors can also be achieved by transforming plants with genes encoding certain enzymes that allow the formation of homogentisate despite inhibition of the native HPPD enzyme by the HPPD inhibitor.
  • plants are described in WO 99/34008 and WO 02/36787.
  • the tolerance of plants to HPPD inhibitors can also be improved by transforming plants in addition to a gene coding for an HPPD tolerant enzyme with a gene coding for a prephenate dehydrogenase enzyme, as in WO 2004/024928 is described.
  • plants can be made even more tolerant to HPPD inhibitors by insert a gene into its genome encoding an enzyme that metabolizes or degrades HPPD inhibitors, such as CYP450 enzymes (see WO 2007/103567 and WO 2008/150473).
  • ALS inhibitors include sulfonylurea, imidazolinone, triazolopyrimidines, pyrimidinyloxy (thio) benzoates and / or sulfonylaminocarbonyltriazolinone herbicides. It is known that various mutations in the enzyme ALS (also known as
  • Acetohydroxy acid synthase known confer tolerance to different herbicides or groups of herbicides, e.g. in Tranel and Wright (Weed Science 2002, 50, 700-712).
  • AHAS AHAS
  • Imidazolinontoleranten plants is described. Other sulfonylurea and imidazolinone tolerant plants are also described.
  • plants which are tolerant to imidazolinones and / or sulfonylureas can be obtained by induced mutagenesis, selection in cell cultures in the presence of the herbicide or by mutation breeding (cf., for example, for soybean US Pat. No. 5,084,082, for rice WO 97/41218, for sugar beet US Pat. No. 5,773,702 and WO 99/057965, for salad US 5,198,599 or for sunflower WO 01/065922).
  • Plants or plant varieties obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are tolerant to abiotic stressors. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such stress resistance. Particularly useful plants with stress tolerance include the following:
  • PARP poly (ADP-ribose) polymerase
  • Plants which contain a stress tolerance enhancing transgene encoding a plant functional enzyme of the nicotinamide adenine dinucleotide salvage biosynthetic pathway including nicotinamidase, nicotinate phosphoribosyltransferase, nicotinic acid mononucleotide adenyltransferase, nicotinamide adenine dinucleotide synthetase or nicotinamide phosphoribosyltransferase.
  • Plants or plant cultivars obtained by plant biotechnology methods such as genetic engineering which can also be treated according to the invention have an altered quantity, quality and / or storability of the enceary product and / or altered properties of certain components of the enceary product; such as: 1) Transgenic plants that synthesize a modified starch with respect to their chemical-physi cal properties, in particular the amylose content or amylose / amylopectin ratio, the degree of branching, the average chain length, the distribution of side chains, the
  • Viscosity behavior, the gel strength, the retinakomulate and / or starch comorphology compared to the synthesized starch in wild-type plant cells or plants is changed, so that this modified starch is better suited for certain applications.
  • Non-starch carbohydrate polymers whose properties are altered compared to wild-type plants without genetic modification. Examples are plants that produce polyfructose, especially of the inulin and levan type, plants that produce alpha-1,4-glucans, plants that produce alpha, 6-branched alpha-1,4-glucans, and plants that produce Alteman produce.
  • Transgenic plants or hybrid plants such as onions with certain properties such as "high soluble solids content", low pungency (LP) and / or long storage (LS) ).
  • Plants or plant varieties obtained by methods of plant biotechnology, such as genetic engineering, which can also be treated according to the invention, are plants such as
  • Cotton plants with altered fiber properties Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such altered fiber properties; these include:
  • plants such as cotton plants containing an altered form of cellulose synthase genes
  • plants such as cotton plants, containing an altered form of rsw2 or rsw3 homologous nucleic acids, such as cotton plants having increased expression of sucrose phosphate synthase;
  • plants such as cotton plants with increased expression of sucrose synthase
  • plants such as cotton plants in which the timing of the passage control of the Plasmodesmen is changed at the base of the fiber cell, z.
  • plants such as cotton plants in which the timing of the passage control of the Plasmodesmen is changed at the base of the fiber cell, z.
  • plants such as cotton plants with modified reactivity fibers, e.g.
  • N-acetylglucosamine transferase gene, including nodC, and chitin synthase genes By expression of the N-acetylglucosamine transferase gene, including nodC, and chitin synthase genes.
  • Plants or plant varieties obtained by plant biotechnology methods such as genetic engineering which can also be treated according to the invention are plants such as oilseed rape or related Brassica plants with altered oil composition properties. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such altered oil properties; these include:
  • oilseed rape plants which produce oil of high oleic acid content
  • plants such as oilseed rape plants, which produce oil with a low linolenic acid content
  • plants such as rape plants that produce oil with a low saturated fatty acid content.
  • Plants or plant varieties which can be obtained by plant biotechnology methods such as genetic engineering), which can also be treated according to the invention, are plants such as potatoes which are virus-resistant, e.g. against the potato virus Y (Event SY230 and SY233 from Tecnoplant, Argentina), or which are resistant to diseases such as potato late blight (eg RB gene), or which show a reduced cold-induced sweetness (which the genes Nt- Inh, II-INV bear) or which show the dwarf phenotype (gene A-20 oxidase).
  • Plants or plant varieties obtained by methods of plant biotechnology, such as genetic engineering), which can also be treated according to the invention, are plants such as oilseed rape or related Brassica plants with altered seed shattering properties. Such plants can be obtained by genetic transformation or by selection of plants containing a mutation conferring such altered properties, and include plants such as oilseed rape with delayed or reduced seed failure.
  • transgenic plants which can be treated according to the present invention are plants having transformational events or combinations of transformation events which are the subject of issued or pending petitions in the United States Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) for the non-regulated status.
  • APIS United States Animal and Plant Health Inspection Service
  • USA United States Department of Agriculture
  • the information is available at any time from APHIS (4700 River Road Riverdale, MD 20737, USA), e.g. via the homepage http://www.aphis.usda.gov/brs/not_reg.html.
  • Transgenic phenotype the trait conferred on the plant by the transformation event.
  • transgenic plants which can be treated according to the invention are plants with one or more genes coding for one or more toxins, the transgenic plants offered under the following commercial names: YIELD GARD® (for example maize, cotton, Soybeans), KnockOut® (for example corn), BiteGard® (for example maize), BT-Xtra® (for example corn), StarLink® (for example maize), Bollgard® (cotton), Nucotn® (cotton), Nucotn 33B® (cotton), NatureGard® (for example corn), Protecta® and NewLeaf® (potato).
  • YIELD GARD® for example maize, cotton, Soybeans
  • KnockOut® for example corn
  • BiteGard® for example maize
  • BT-Xtra® for example corn
  • StarLink® for example maize
  • Bollgard® cotton
  • Nucotn® cotton
  • Nucotn 33B® cotton
  • NatureGard® for example corn
  • Protecta® and NewLeaf® pot
  • Herbicide-tolerant crops to be mentioned are, for example, corn, cotton and soybean varieties sold under the following tradenames: Roundup Ready® (glyphosate tolerance, for example corn, cotton, soybean), Liberty Link® (phosphinotricin tolerance, for example rapeseed) , IMI® (imidazolinone tolerance) and SCS® (Sylfonylurea Tolerance), for example corn.
  • Herbicide-resistant plants plants traditionally grown for herbicide tolerance
  • Clearfield® for example corn.
  • transgenic plants that can be treated according to the invention are plants that contain transformation events, or a combination of transformation events, and that are listed, for example, in the files of various national or regional authorities (see, for example, http: // /gmoinfo.jrc.it/gmp_browse.aspx and
  • a dust is obtained by mixing 10 parts by weight of a compound of formula (I) and 90 parts by weight of talc as an inert material and comminuting in a hammer mill.
  • a wettable powder readily dispersible in water is obtained by reacting 25 parts by weight of a compound of formula (I), 64 parts by weight of kaolin-containing quartz as inert material, 10 parts by weight of lignosulfonic acid potassium and 1 part by weight of oleoylmethyltaurine sodium as wetting agent
  • Dispersant mixed and ground in a pin mill.
  • a water-dispersible dispersion concentrate is obtained by adding 20 parts by weight of a compound of formula (I), 6 parts by weight of alkylphenol polyglycol ether (®Triton X 207), 3 parts by weight of isotridecanol polyglycol ether (8 EO) and 71 parts by weight paraffinic mineral oil (boiling range, for example, about 255 to about 277 ° C) and milled in a ball mill to a fineness of less than 5 microns.
  • a compound of formula (I) 6 parts by weight of alkylphenol polyglycol ether (®Triton X 207), 3 parts by weight of isotridecanol polyglycol ether (8 EO) and 71 parts by weight paraffinic mineral oil (boiling range, for example, about 255 to about 277 ° C) and milled in a ball mill to a fineness of less than 5 microns.
  • An emulsifiable concentrate is obtained from 15 parts by weight of a compound of the formula (I), 75 parts by weight of cyclohexanone as solvent and 10 parts by weight of ethoxylated nonylphenol as emulsifier.
  • a water-dispersible granule is obtained by
  • a water-dispersible granule is also obtained by
  • ABUTH Abutilon theophrast AGSTE: Agrostis tenuis
  • AMARE Amaranthus retroflexus AVEFA: Avena fatua
  • DIGSA Digitaria sanguinalis
  • ECHCG Echinochloa crus-galli
  • HORMU Hordeum murinum
  • LOLPE Lolium perenne
  • MATIN Matricaria inodora POAAN: Poa annua
  • VERPE Veronica persica
  • compounds Nos. 11-099, 1-139, 1-137, 11-098 and other compounds of Table A when post-emergence treatment a good herbicidal activity against harmful plants on.
  • compounds No. II-099 or 1-139 have a very good herbicidal action (80% to 100% herbicidal action) against harmful plants such as Alopecurus myosuroides, Avena fatua, Echinochloa crus-galli, Hordeum murinum, Lolium rigidum. Polygonum convolvulus and Stellaria media, at an application rate of 0.32 kg of active ingredient or less per hectare.
  • Some of the compounds according to the invention show a high selectivity and are therefore suitable postemergence for combating undesired plant growth in agricultural crops.
  • Method B Herbicidal action and pre-emergence culture compatibility
  • Seeds of monocotyledonous or dicotyledonous weeds and crops are laid out in plastic or organic plant pots and covered with soil.
  • the compounds according to the invention formulated in the form of wettable powders (WP) or as emulsion concentrates (EC) are then applied to the surface of the cover soil as an aqueous suspension or emulsion with the addition of 0.5% of additive at a water application rate of 600 l / ha.
  • WP wettable powders
  • EC emulsion concentrates
  • the pots are placed in the greenhouse and kept under good growth conditions for the test plants.
  • Table e B pre-emergence at 320 g / ha
  • Compounds Nos. 11-099, 1-139, 1-137, and 11-09, and other compounds in Table B have a good herbicidal activity against weeds in the pre-emergence treatment.
  • the compounds Nos. 11-099 and 1-139 in the pre-emergence process have a very good action (80% to 100% herbicidal action) against harmful plants such as Abutilon theophrasti, Alopecurus myosuroides, Avena fatua, Echinochloa crus-galli, Hordeum murinum, Lolium rigidum, Polygonum convolvulus and Stellaria media at an application rate of 0.32 kg of active substance or less per hectare.
  • some of the compounds of the invention leave graminaceous crops such as barley, wheat, rye, millet, corn rice or sugarcane in the pre-emergence process even at high temperatures
  • some substances also protect dicotyledonous crops such as soya, cotton, oilseed rape or sugar beets.
  • Some of the compounds according to the invention show a high selectivity and are therefore suitable in the pre-emergence process for controlling undesired plant growth in agricultural crops.
  • Seeds of monocotyledonous or dicotyledonous weed plants are placed in sandy loam soil in plastic pots (double seeds with one species of monocotyledonous or dicotyledonous weeds per pot), covered with soil and grown in the greenhouse under controlled growth conditions. 2 to 3 weeks after sowing, the test plants are treated in the single leaf stage.
  • Postemergence treatment has good herbicidal activity against harmful plants.
  • the compound no. 1-137 postemergence has a very good herbicidal action (80% to 100% herbicidal activity) against harmful plants such as Echinochloa crus-galli, Lolium rigidum, Matricaria inodora, Poa annua, and the compound 11 -098 postemergence a very good herbicidal action (80% to 100% herbicidal activity) against harmful plants such as
  • Method D Pre-emergence herbicidal action Seeds of monocotyledonous and dicotyledonous weed plants are placed in plastic pots, in sandy loam soil (double-seeded with one species of monocotyledonous or dicotyledonous weeds per pot) and covered with soil.
  • the compounds according to the invention formulated in the form of wettable powders (WP) or as emulsion concentrates (EC) are then used as aqueous suspension or
  • Table D Pre-emergence at 1280 g / ha
  • Pre-emergence treatment has good herbicidal activity against harmful plants.
  • compounds No. 1-137 and IV-137 in the pre-emergence process have a very good action (80% to 100% herbicidal action) against harmful plants such as Abutilon theophrast, Echinochloa crus galli, Lolium rigidum, Poa annua and Stellaria media in one Application rate of 1.28 kg
  • Seeds of monocotyledonous or dicotyledonous weed plants are laid out in 96-well microtiter plates in quartz sand and grown in the climatic chamber under controlled growth conditions. The test plants are treated at the cotyledon stage 5 to 7 days after sowing.
  • the post-emergence compounds Nos. 1-147, 1-547 or IV-137 have a very good herbicidal action (80% to 100% herbicidal activity) against harmful plants such as Agrostis tenuis, Lolium perenne, Matricaria chamonilla, Poa annua, and Stellaria media and the compounds 11-099 and 1-688 postemergence a very good herbicidal activity (80% to 100% herbicides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Die Erfindung betrifft substituierte Phenylpyrimidine der allgemeinen Formel (I) und deren agrochemisch-verträglichen Salze (I) sowie deren Verwendung im Bereich des Pflanzenschutzes.

Description

Herbizid wirksame substituierte Phenylpyrimidine
Beschreibung
Die Erfindung betrifft das technische Gebiet der Herbizide, insbesondere das der Herbizide zur selektiven Bekämpfung von Unkräutern und Ungräsem in Nutzpflanzenkulturen.
Speziell betrifft sie substituierte Phenylpyrimidine, Verfahren zu ihrer Herstellung und ihre
Verwendung als Herbizide.
WO 2016/120355 beschreibt substituierte Phenylpyrimidine, welche an der 4-Position des Pyrimidins eine direkt gebundene Carbonylgruppe tragen. WO 2018/019555 beschreibt substituierte
Phenylpyrimidincarbonsäure-Derivate mit einer verlängerten Seitenkette in der 4-Position. Die herbizide Wirkung dieser bekannten Verbindungen, insbesondere bei niedrigen Aufwandmengen, bzw. deren Verträglichkeit gegenüber Kulturpflanzen bleiben verbesserungswürdig.
Aus den genannten Gründen besteht weiterhin ein Bedarf nach wirkungsstarken Herbiziden und/oder Pflanzenwachstumsregulatoren für die selektive Anwendung in Pflanzenkulturen oder die Anwendung auf Nichtkulturland, wobei diese Wirkstoffe vorzugsweise weitere vorteilhafte Eigenschaften in der Anwendung haben sollten, wie zum Beispiel eine verbesserte Verträglichkeit gegenüber Kulturpflanzen.
Ein Gegenstand der vorliegenden Erfindung ist daher die Bereitstellung von Verbindungen mit herbizider Wirkung (Herbizide), die bereits bei relativ niedrigen Aufwandmengen gegen wirtschaftlich wichtige Schadpflanzen hochwirksam sind und vorzugsweise bei guter Wirksamkeit gegen
Schadpflanzen selektiv in Kulturpflanzen eingesetzt werden können und dabei vorzugsweise eine gute Verträglichkeit gegenüber Kulturpflanzen zeigen. Bevorzugt sollten diese herbiziden Verbindungen insbesondere effektiv und effizient gegen ein breites Spektrum an Ungräsem sein, und vorzugsweise zusätzlich eine gute Wirksamkeit gegen viele Unkräuter aufweisen.
Es wurde nun gefunden, dass die nachfolgenden Verbindungen der Formel (I) und deren Salze eine ausgezeichnete herbizide Wirksamkeit gegen ein breites Spektrum wirtschaftlich wichtiger mono- und dikotyler annueller Schadpflanzen aufweisen.
Gegenstand der vorliegenden Erfindung sind daher Verbindungen der allgemeinen Formel (I)
und deren agrochemisch verträglichen Salze, worin die Symbole und Indizes folgende Bedeutungen haben:
X bedeutet C(R13)(R14)
R1 bedeutet (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl oder Heterocyclyl, wobei diese drei
vorstehend genannten Reste jeweils durch s Reste aus der Gruppe bestehend aus Halogen, (Ci- Cöj-Alkyl, Halogen-(Ci-C6)-alkyl, (C2-Ce)-Alkenyl, Halogen-(C2-C6)-alkenyl, (C2-C6)-Alkinyl, Halogen-(C3-C6)-alkinyl, (C3-C6)-Cycloalkyl, Halogen-(C3-C6)-cycloalkyl, (C3-C6)- Cycloalkenyl, , Halogen-(C3-C6)-cycloalkenyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl, (C3-C6)- Cycloalkenyl-(Ci-C6)-alkyl, Halogen-(C3-C6)-cycloalkyl-(Ci-C6)-alkyl, Halogen-(C3-Ce)- cycloalkenyl-(Ci-C6)-alkyl, R8(0)C, R80(0)C, (R8)2N(0)C, R80, (R8)2N, R9(0)nS, Phenyl, Heteroaryl, Heterocyclyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl-(Ci-C6)-alkyl und Heterocyclyl-(Ci- Cöj-alkyl substituiert sind, wobei die sechs letztgenannten Reste durch m Reste aus der Gruppe bestehend aus (Ci-Cöj-Alkyl, Halogen-(Ci-C6)-alkyl, (Ci-Cöj-Alkoxy, Halogen-(Ci-C6)-alkoxy und Halogen substituiert sind, und wobei Cycloalkyl, Cycloalkenyl und Heterocyclyl unabhängig voneinander jeweils n Oxogruppen tragen ,
R2 bedeutet Hydroxy, (Ci-Cöj-Alkoxy, (C2-C6)-Alkenyloxy, (C2-C6)-Alkinyloxy, (C 1 -Cr,)- Halogenalkoxy, (C2-C6)-Halogenalkenyloxy, (C2-C6)-Halogenalkinyloxy, wobei die 6 letztgenannten Reste jeweils durch s Reste aus der Gruppe bestehend aus Cyano, (C3-C6)- Cycloalkyl, (C3-C6)-Cycloalkenyl, Halogen-(C3-C6)-cycloalkyl, Halogen-(C3-C6)-cycloalkenyl,
R90(0)C(R8)N(0)2S, (R8)2N(0)C(R8)N(0)2S, Ru 3Si, (R120)2(0)P, Phenyl, Heteroaryl und Heterocyclyl substituiert sind, wobei die drei letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, Rhodano, (Ci-C6)-Alkyl, Halogen-(Ci-C6)- alkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(CI-C6)- Alkyl substituiert sind,
oder
R2 bedeutet (C3-C6)-Cycloalkoxy, (C3-C6)-Cycloalkenyloxy, Phenyloxy, Heteroaryloxy oder
Heterocyclyloxy, wobei diese fünf vorstehend genannten Reste jeweils durch s Reste aus der Gruppe bestehend aus Halogen, Cyano, (Ci-Cöj-Alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C3- C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, Halogen-(C3-C6)-cycloalkyl, Halogen-(C3-C6)-
R8(0)C(R8)N(0)2S, R90(0)C(R8)N(0)2S, (R8)2N(0)C(R8)N(0)2S, R3 uSi, (R120)2(0)P, Phenyl, Heteroaryl und Heterocyclyl substituiert sind, wobei die drei letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, Rhodano, (Ci-C6)-Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(CI-C6)- Alkyl substituiert sind, und wobei (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, Heterocyclyl, (C3-C6)-Cycloalkoxy, (C3-Ce)- Cycloalkenyloxy und Heterocyclyloxy unabhängig voneinander jeweils n Oxogruppen tragen, oder
R2 bedeutet R8(0)C0, R9(0)2S0 oder R15R16C=N-0 oder (R8)2N-0,
oder
R2 bedeutet (R8)2N, R8(0)C(R8)N, R90(0)C(R8)N, (R8)2N(0)C(R8)N, R9(0)2S(R8)N,
R80(0)2S(R8)N, (R8)2N(0)2S(R8)N,
oder
R2 bedeutet R8(R80)N oder
R2 bedeutet (R17) (R18) N(R19)N, oder
R2 bedeutet R17R18C=N-(R19)N- R3, R4, R5, R6 und R7 bedeuten unabhängig voneinander jeweils Wasserstoff, Nitro, Halogen, Cyano, Rhodano, (Ci -Cr,)- Alkyl, Halogen-(Ci-C6)-alkyl, (C2-C6)-Alkenyl, Halogen-(C2- Cöj-alkenyl, (C2-C6)-Alkinyl, Halogen-(C3-C6)-alkinyl, (C3-C6)-Cycloalkyl, Halogen-(C3-C6)-cycloalkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl, Halogen-(C3-
- (Ci-C6)-Alkyl, R80-(Ci-C6)-Alkyl, R8(0)C0-(Ci-C6)-Alkyl, R9(0)2S0-(Ci-C6)- Alkyl, R90(0)C0-(Ci-C6)- Alkyl, (R8)2N(0)C0-(Ci-C6)-Alkyl, (R8)2N-(CI-C6)- Alkyl, R8(0)C(R8)N-(Ci-C6)-Alkyl, R9(0)2S(R8)N-(Ci-C6)-Alkyl,
R90(0)C(R8)N-(Ci-C6)-Alkyl, (R8)2N(0)C(R8)N-(Ci-C6)-Alkyl,
R80(0)2S(R8)N-(C I -C6)- Alkyl, (R8)2N(0)2S(R8)N-(Ci-C6)-Alkyl, R9(0)nS-(Ci- C6)-Alkyl, R80(0)2S-(Ci-C6)-Alkyl, (R8)2N(0)2S-(Ci-C6)-Alkyl,
R8(0)C(R8)N(0)2S-(Ci-C6)-Alkyl, R90(0)C(R8)N(0)2S-(Ci-C6)-Alkyl, (R8)2N(0)C(R8)N(0)2S-(Ci-C6)-Alkyl, (R120)2(0)P-(Ci-C6)-Alkyl, Phenyl, Heteroaryl, Heterocyclyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl-(Ci-C6)-alkyl oder Heterocyclyl-(Ci-C6)-alkyl, wobei die sechs letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, Rhodano, (Ci- Cej-Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, R80(0)C, (R8)2N(0)C, R80, (R8)2N, R9(0)nS, R80(0)2S, (R8)2N(0)2S und R80-(Ci-C6)-Alkyl substituiert sind, und wobei Cycloalkyl und Heterocyclyl unabhängig voneinander jeweils n Oxogruppen tragen.
R8 bedeutet Wasserstoff, (Ci-Cöj-Alkyl, (CC-CG-Alkcnyl, (C2-C6)-Alkinyl, (C3-C6)-Cycloalkyl, (C3- C6)-Cycloalkenyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl, (C3-C6)-Cycloalkenyl-(Ci-C6)-alkyl, (Ci- C6)-Alkyl-0-(Ci-C6)-alkyl, (Ci-C6)-Alkyl-0-(Ci-C6)-alkyl-0-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl- (Ci-C6)-alkyl-0-(Ci-C6)-alkyl, (C3-C6)-Cycloalkenyl-(Ci-C6)-alkyl-0-(Ci-C6)-alkyl oder (Ci- C6)-Alkylthio-(Ci-C6)-alkyl, wobei die zwölf letztgenannten Reste s Halogenatome tragen, R8 bedeutet Phenyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl, Heteroaryl-(Ci-C6)-alkyl, Heterocyclyl,
Heterocyclyl-(Ci-C6)-alkyl, Phenyl-0-(Ci-C6)-alkyl, Heteroaryl-0-(Ci-C6)-alkyl, Heterocyclyl- 0-(Ci-C6)-alkyl, Phenyl-N(R10)-(Ci-C6)-alkyl, Heteroaryl-N(R10)-(Ci-C6)-alkyl, Heterocyclyl- N(R10)-(Ci-C6)-alkyl, Phenyl-S(0)„-(Ci-C6)-alkyl, Heteroaryl-S(0)n-(Ci-C6)-alkyl oder Heterocyclyl-S(0)n-(Ci-C6)-alkyl, wobei die Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, Rhodano, (Ci -Cr,)- Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)- Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS,
R10O(O)2S, (R10)2N(O)2S und R10O-(Ci-C6)-Alkyl substituiert sind,
und wobei (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl und Heterocyclyl unabhängig voneinander jeweils n Oxogruppen tragen,
oder
die Reste R8 bilden einen Ring mit dem Heteroatom oder mit den Heteroatomen, über welche sie gebunden sind, und zwar einen Heterocyclyl, Heterocyclenyl, Heteroaryl,
Arylheterocyclyl, Arylheterocylenyl, Heteroarylheterocyclyl, Heteroarylhetercyclenyl, Heterocyclylheteroaryl oder Heterocyclenylheteroaryl, wobei jeder dieser Ringe wiederum durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, Rhodano, (Ci-Cej-Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(Ci-C6)-Alkyl und Oxo substituiert ist.
R9 bedeutet (Ci-C6)-Alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C3-C6)-Cycloalkyl, (C3-C6)-
Cycloalkenyl, (Cs-Cej-Cycloalkyl-iCi-Cej-alkyl, (C3-C6)-Cycloalkenyl-(Ci-C6)-alkyl, (Ci-C6)- Alkyl-0-(Ci-C6)-alkyl, (Ci-C6)-Alkyl-0-(Ci-C6)-alkyl-0-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl-(Ci- C6)-alkyl-0-(Ci-C6)-alkyl, (C3-C6)-Cycloalkenyl-(Ci-C6)-alkyl-0-(Ci-C6)-alkyl oder (Ci-C6)- Alkylthio-(Ci-C6)-alkyl, wobei die Reste s Halogenatome tragen,
oder
R9 bedeutet Phenyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl, Heteroaryl-(Ci-C6)-alkyl, Heterocyclyl,
Heterocyclyl-(Ci-C6)-alkyl, Phenyl-0-(Ci-C6)-alkyl, Heteroaryl-0-(Ci-C6)-alkyl, Heterocyclyl- 0-(Ci-C6)-alkyl, Phenyl-N(R10)-(Ci-C6)-alkyl, Heteroaryl-N(R10)-(Ci-C6)-alkyl, Heterocyclyl- N(R10)-(Ci-C6)-alkyl, Phenyl-S(0)„-(Ci-C6)-alkyl, Heteroaryl-S(0)n-(Ci-C6)-alkyl oder Heterocyclyl-S(0)n-(Ci-C6)-alkyl, wobei die Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, Rhodano, (Ci-Cöj-Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)- Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS,
R10O(O)2S, (R10)2N(O)2S und R10O-(Ci-C6)-Alkyl substituiert sind, und wobei (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl und Heterocyclyl unabhängig voneinander jeweils n Oxogruppen tragen,
R10 bedeutet Wasserstoff, (Ci-Cöj-Alkyl, Halogen-(Ci-C6)-alkyl, (C2-Ce)-Alkenyl, (C2-C6)-Alkinyl, (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl oder Phenyl,
R11 bedeutet (Ci-C6)-Alkyl, Halogen-(Ci-C6)-alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C3-C6)- Cycloalkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl oder Phenyl,
R12 bedeutet Wasserstoff oder (Ci-C4)-Alkyl.
R13 undR14 bedeuten unabhängig voneinander jeweils Wasserstoff, (Ci-Cöj-Alkyl, Hydroxy, (Ci- Cöj-Alkoxy, (R8)2N, Halogen-(Ci-C6)-alkoxy, Halogen, Halogen-(Ci-C6)-alkyl, Cyano, R80(0)C oder (R8)2N(0)C,
oder
R13 und R14 bilden zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, eine (C3-Cg)-Cycloalkylgruppe.
R15 undR16 bedeuten unabhängig voneinander jeweils (Ci -Cr,)- Alkyl , Phenyl, (C3-C6)-Cycloalkyl,
Heteroaryl oder Heterocyclyl.
R17 und R18 und R19 bedeuten unabhängig voneinander R8 oder R9S(0)2, (R8)2NS(0)2, R80S(0)2,
R9C(0), (R8)2NC(0), (R8)2NC(S), R80C(0), R80C(0)C(0), (R8)2NC(0)C(0). oder die Reste (R17 und R18) oder (R17 und R19) bilden einen Ring mit dem Heteroatom oder mit den Heteroatomen, über welche sie gebunden sind, und zwar einen Heterocyclyl, Heterocyclenyl, Heteroaryl, Arylheterocyclyl, Arylheterocylenyl, Heteroarylheterocyclyl,
Heteroarylhetercyclenyl, Heterocyclylheteroaryl oder Heterocyclenylheteroaryl, wobei jeder dieser Ringe wiederum durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, Rhodano, (C i -Cr,)- Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, (C3-C6)- Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(CI-C6)- Alkyl und Oxo substituiert ist m bedeutet 0, 1, 2, 3, 4 oder 5,
n bedeutet 0, 1 oder 2,
s bedeutet 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 oder 11. Die Verbindungen der Formel (I) können Salze bilden. Salzbildung kann durch Einwirkung einer Base auf solche Verbindungen der Formel (I) erfolgen, die ein acides Wasserstoffatom tragen. Geeignete Basen sind beispielsweise organische Amine, wie Trialkylamine, Morpholin, Piperidin oder Pyridin sowie Ammonium-, Alkali- oder Erdalkalimetallhydroxide, -carbonate und -hydrogencarbonate, insbesondere Natrium- und Kaliumhydroxid, Natrium- und Kaliumcarbonat und Natrium- und
Kaliumhydrogencarbonat. Diese Salze sind Verbindungen, in denen der acide Wasserstoff durch ein für die Landwirtschaft geeignetes Kation ersetzt wird, beispielsweise Metallsalze, insbesondere
Alkalimetallsalze oder Erdalkalimetallsalze, insbesondere Natrium- und Kaliumsalze, oder auch Ammoniumsalze, Salze mit organischen Aminen oder quartäre (quaternäre) Ammoniumsalze, zum Beispiel mit Kationen der Formel [NRR'R"R"']+, worin R bis R'" jeweils unabhängig voneinander einen organischen Rest, insbesondere Alkyl, Aryl, Aralkyl oder Alkylaryl darstellen. Infrage kommen auch Alkylsulfonium- und Alkylsulfoxoniumsalze, wie (Ci-C4)-Trialkylsulfonium- und (C1-C4)- Trialkylsulfoxoniumsalze.
Die Verbindungen der Formel (I) können durch Anlagerung einer geeigneten anorganischen oder organischen Säure, wie beispielsweise Mineralsäuren, wie beispielsweise HCl, HBr, H2SO4, H3PO4 oder HNO3, oder organische Säuren, z. B. Carbonsäuren, wie Ameisensäure, Essigsäure, Propionsäure, Oxalsäure, Milchsäure oder Salicylsäure oder Sulfonsäuren, wie zum Beispiel p-Toluolsulfonsäure, an eine basische Gruppe, wie z.B. Amino, Alkylamino, Dialkylamino, Piperidino, Morpholino oder Pyridino, Salze bilden. Diese Salze enthalten dann die konjugierte Base der Säure als Anion.
Geeignete Substituenten, die in deprotonierter Form, wie z.B. Sulfonsäuren oder Carbonsäuren, vorliegen, können innere Salze mit ihrerseits protonierbaren Gruppen, wie Aminogruppen bilden.
Alkyl bedeutet gesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen, z.B. C 1 -Cr,- Alkyl wie Methyl, Ethyl, Propyl, 1- Methylethyl, Butyl, 1 -Methyl-propyl, 2-Methylpropyl, l,l-Dimethylethyl, Pentyl, 1 -Methylbutyl, 2- Methylbutyl, 3 -Methylbutyl, 2,2-Di-methylpropyl, 1 -Ethylpropyl, Hexyl, l,l-Dimethylpropyl, l,2-Di- mcthylpmpyl, 1 -Mcthylpcntyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, l,l-Dimethylbutyl,
1 ,2-Dimethylbutyl, l,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1- Ethylbutyl, 2-Ethylbutyl, l,l,2-Trimethylpropyl, 1 ,2,2-Trimethylpropyl, 1 -Ethyl- 1 -methylpropyl und 1- Ethyl-2-methylpropyl.
Durch Halogen substitiertes Alkyl bedeutet geradkettige oder verzweigte Alkylgruppen, wobei in diesen Gruppen teilweise oder vollständig die Wasserstoffatome durch Halogenatome ersetzt sein können, z.B. Ci-C2-Halogenalkyl wie Chlormethyl, Brommethyl, Dichlormethyl, Trichlormethyl, Fluormethyl, Difluormethyl, Trifluormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 1 - Chlorethyl, 1 -Bromethyl, 1 -Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluorethyl, 2-Chlor-2- fluorethyl, 2-Chlor,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, Pentafluorethyl und 1,1,1 -Trifluorprop-2-yl.
Alkenyl bedeutet ungesättigte, geradkettige oder verzweigte Kohlenwasserstoffreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z.B. C2-C6- Alkenyl wie Ethenyl, l-Propenyl, 2-Propenyl, 1 -Methylethenyl, l-Butenyl, 2-Butenyl, 3-Butenyl, 1 -Methyl- l-propenyl, 2-Methyl- l-propenyl, 1 -Methyl-2-propenyl, 2-Methyl-2-propenyl, l-Pentenyl, 2- Pentenyl, 3-Pentenyl, 4-Pentenyl, 1 -Methyl- l-butenyl, 2-Methyl- l-butenyl, 3 -Methyl- l-butenyl, 1- Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, l-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl, 1 , 1 -Dimethyl-2-propenyl, 1 ,2-Dimethyl- l-propenyl, 1 ,2-Dimethyl-2-propenyl, 1- Ethyl- l-propenyl, 1 -Ethyl-2-propenyl, l-Hexenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1- Methyl- l-pentenyl, 2-Methyl- l-pentenyl, 3 -Methyl- l-pentenyl, 4-Methyl- l-pentenyl, l-Methyl-2- pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, l-Methyl-3-pentenyl, 2- Methyl-3-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl, 1 -Methyl-4-pentenyl, 2-Methyl-4- pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1 , 1 -Dimethyl-2-butenyl, l,l-Dimethyl-3-butenyl,
1.2-Dimethyl- l-butenyl, l,2-Dimethyl-2-butenyl, l,2-Dimethyl-3-butenyl, 1, 3 -Dimethyl- l-butenyl, 1,3- Dimethyl-2-butenyl, l,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-l-butenyl, 2,3- Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 3, 3 -Dimethyl- l-butenyl, 3,3-Dimethyl-2-butenyl, l-Ethyl- l-butenyl, 1 -Ethyl-2-butenyl, l-Ethyl-3-butenyl, 2-Ethyl- l-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3- butenyl, l,l,2-Trimethyl-2-propenyl, l-Ethyl-l-methyl-2-propenyl, 1 -Ethyl-2-methyl- l-propenyl und 1- Ethyl-2-methyl-2-propenyl.
Alkinyl bedeutet geradkettige oder verzweigte Kohlenwasserstoffreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, z.B. C2-C6- Alkinyl wie Ethinyl, l-Propinyl, 2-Propinyl (oder Propargyl), l-Butinyl, 2-Butinyl, 3-Butinyl, 1- Methyl-2-propinyl, l-Pentinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 3 -Methyl- l-butinyl, l-Methyl-2- butinyl, l-Methyl-3-butinyl, 2-Methyl-3-butinyl, 1 , 1 -Dimethyl-2-propinyl, l-Ethyl-2-propinyl, 1- Hexinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 3 -Methyl- l-pentinyl, 4-Methyl- l-pentinyl, 1- Methyl-2-pentinyl, 4-Methyl-2-pentinyl, l-Methyl-3-pentinyl, 2-Methyl-3-pentinyl, l-Methyl-4- pentinyl, 2-Methyl-4-pentinyl, 3-Methyl-4-pentinyl, 1 , 1 -Dimethyl-2-butinyl, l,l-Dimethyl-3-butinyl,
1.2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl, 3, 3 -Dimethyl- l-butinyl, 1 -Ethyl-2-butinyl, l-Ethyl-3- butinyl, 2-Ethyl-3-butinyl und l-Ethyl-l-methyl-2-propinyl.
Cycloalkyl bedeutet ein carbocyclisches, gesättigtes Ringsystem mit vorzugsweise 3-8 Ring-C-Atomen, z.B. Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl. Im Falle von gegebenenfalls substituiertem Cycloalkyl werden cyclische Systeme mit Substituenten umfasst, wobei auch Substituenten mit einer Doppelbindung am Cycloalkylrest, z. B. eine Alkylidengruppe wie Methyliden, umfasst sind. Im Falle von gegebenenfalls substituiertem Cycloalkyl werden auch mehrcyclische aliphatische Systeme umfaßt, wie beispielsweise Bicyclo[l.l.O]butan-l-yl, Bicyclo[l.l.0]butan-2-yl, Bicyclo[2.l.0]pentan-l- yl, Bicyclo[2.l.0]pentan-2-yl, Bicyclo[2.l.0]pentan-5-yl, Bicyclo[2.2.l]hept-2-yl (Norbomyl), Adamantan-l -yl und Adamantan-2-yl.
Im Falle von substituiertem Cycloalkyl werden auch spirocyclische aliphatische Systeme umfaßt, wie beispielsweise Spiro[2.2]pent-l-yl, Spiro[2.3]hex-l-yl und Spiro[2.3]hex-4-yl, 3-Spiro[2.3]hex-5-yl.
Cycloalkenyl bedeutet ein carbocyclisches, nicht aromatisches, partiell ungesättigtes Ringsystem mit vorzugsweise 4-8 C-Atomen, z.B. 1 -Cyclobutenyl, 2-Cyclobutenyl, 1 -Cyclopentenyl, 2-Cyclopentenyl, 3-Cyclopentenyl, oder 1 -Cyclohexenyl, 2-Cyclohexenyl, 3-Cyclohexenyl, l,3-Cyclohexadienyl oder 1 ,4-Cyclohexadienyl, wobei auch Substituenten mit einer Doppelbindung am Cycloalkenylrest, z. B. eine Alkylidengruppe wie Methyliden, umfasst sind. Im Falle von gegebenenfalls substituiertem Cycloalkenyl gelten die Erläuterungen für substituiertes Cycloalkyl entsprechend.
Alkoxy bedeutet gesättigte, geradkettige oder verzweigte Alkoxyreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen, z.B. CI-CÖ- Alkoxy wie Methoxy, Ethoxy, Propoxy, 1 -Methylethoxy, Butoxy, 1 -Methyl-propoxy, 2-Methylpropoxy, 1 , 1 -Dimethylethoxy, Pentoxy, 1 -Methylbutoxy, 2- Methylbutoxy, 3 -Methylbutoxy, 2,2-Di-methylpropoxy, 1 -Ethylpropoxy, Hexoxy, 1,1- Dimethylpropoxy, l,2-Dimethylpropoxy,l-Methylpentoxy, 2-Methylpentoxy, 3-Methylpentoxy, 4- Methylpentoxy, l,l-Dimethylbutoxy, 1 ,2-Dimethylbutoxy, l,3-Dimethylbutoxy, 2,2-Dimethylbutoxy, 2,3-Dimethylbutoxy, 3,3-Dimethylbutoxy, 1 -Ethylbutoxy, 2-Ethylbutoxy, l,l,2-Trimethylpropoxy,
1 ,2,2-Trimethylpropoxy, l-Ethyl-l-methylpropoxy und 1 -Ethyl-2-methylpropoxy. Durch Halogen substitiertes Alkoxy bedeutet geradkettige oder verzweigte Alkoxyreste mit der jeweils angegebenen Anzahl von Kohlenstoffatomen, wobei in diesen Gruppen teilweise oder vollständig die
Wasserstoffatome durch Halogenatome wie vorstehend genannt ersetzt sein können, z.B. C1-C2- Halogenalkoxy wie Chlormethoxy, Brommethoxy, Dichlormethoxy, Trichlormethoxy, Fluormethoxy, Difluormethoxy, Trifluormethoxy, Chlorfluormethoxy, Dichlor- fluormethoxy, Chlordifluormethoxy, 1 - Chlorethoxy, 1 -Bromethoxy, 1 -Fluorethoxy, 2-Fluorethoxy, 2,2-Difluorethoxy, 2,2,2-Trifluorethoxy, 2- Chlor-2-fluorethoxy, 2-Chlor-l,2-difluorethoxy, 2,2-Dichlor-2-fluorethoxy, 2,2,2-Trichlorethoxy, Pentafluor-ethoxy und 1,1,1 -Trifluorprop-2-oxy.
Aryl bedeutet ein gegebenenfalls durch 0 - 5 Reste aus der Gruppe Fluor, Chlor, Brom, Iod, Cyano, Hydroxy, (Ci- C3)-Alkyl, (Ci-C3)-Alkoxy, (C3- C4)-Cycloalkyl, (C2- C3)-Alkenyl oder (C2- C3)-Alkinyl substituiertes Phenyl.
Ein heterocyclischer Rest (Heterocyclyl) enthält mindestens einen heterocyclischen Ring
(=carbocyclischer Ring, in dem mindestens ein C-Atom durch ein Heteroatom ersetzt ist, vorzugsweise durch ein Heteroatom aus der Gruppe N, O, S, P) der gesättigt, ungesättigt, teilgesättigt oder heteroaromatisch ist und dabei unsubstituiert oder substituiert sein kann, wobei die Bindungsstelle an einem Ringatom lokalisiert ist. Ist der Heterocyclylrest oder der heterocyclische Ring gegebenenfalls substituiert, kann er mit anderen carbocyclischen oder heterocyclischen Ringen annelliert sein. Im Falle von gegebenenfalls substituiertem Heterocyclyl werden auch mehrcyclische Systeme umfasst, wie beispielsweise 8-Aza-bicyclo[3.2.l]octanyl, 8-Aza-bicyclo[2.2.2]octanyl oder l-Aza- bicyclo[2.2.l]heptyl. Im Falle von gegebenenfalls substituiertem Heterocyclyl werden auch
spirocyclische Systeme umfasst, wie beispielsweise l-Oxa-5-aza-spiro[2.3]hexyl. Wenn nicht anders definiert, enthält der heterocyclische Ring vorzugsweise 3 bis 9 Ringatome, insbesondere 3 bis 6 Ringatome, und ein oder mehrere, vorzugsweise 1 bis 4, insbesondere 1 , 2 oder 3 Heteroatome im heterocyclischen Ring, vorzugsweise aus der Gruppe N, O, und S, wobei jedoch nicht zwei
Sauerstoffatome direkt benachbart sein sollen, wie beispielsweise mit einem Heteroatom aus der Gruppe N, O und S 1- oder 2- oder 3-Pyrrolidinyl, 3,4-Dihydro-2H-pyrrol-2- oder 3-yl, 2,3-Dihydro-lH-pyrrol- 1- oder 2- oder 3- oder 4- oder 5-yl; 2,5-Dihydro-lH-pyrrol-l- oder 2- oder 3-yl, 1- oder 2- oder 3- oder 4-Piperidinyl; 2,3,4,5-Tetrahydropyridin-2- oder 3- oder 4- oder 5-yl oder 6-yl; l,2,3,6-Tetra- hydropyridin-l- oder 2- oder 3- oder 4- oder 5- oder 6-yl; l,2,3,4-Tetrahydropyridin-l- oder 2- oder 3- oder 4- oder 5- oder 6-yl; l,4-Dihydropyridin-l- oder 2- oder 3- oder 4-yl; 2,3-Dihydropyridin-2- oder 3- oder 4- oder 5- oder 6-yl; 2,5-Dihydropyridin-2- oder 3- oder 4- oder 5- oder 6-yl, 1- oder 2- oder 3- oder 4-Azepanyl; 2,3,4,5-Tetrahydro-lH-azepin-l- oder 2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,4,7-Tetrahydro-lH-azepin-l- oder 2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,6,7-Tetrahydro- lH-azepin-l- oder 2- oder 3- oder 4-yl; 3,4,5,6-Tetrahydro-2H-azepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 4,5-Dihydro-lH-azepin-l- oder 2- oder 3- oder 4-yl; 2,5-Dihydro-lH-azepin-l- oder -2- oder
3- oder 4- oder 5- oder 6- oder 7-yl; 2,7-Dihydro-lH-azepin-l- oder -2- oder 3- oder 4-yl; 2,3-Dihydro- lH-azepin-l- oder -2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 3,4-Dihydro-2H-azepin-2- oder 3- oder
4- oder 5- oder 6- oder 7-yl; 3,6-Dihydro-2H-azepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 5,6- Dihydro-2H-azepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 4,5-Dihydro-3H-azepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; lH-Azepin-l- oder -2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2H- Azepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 3H-Azepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 4H-Azepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl, 2- oder 3-Oxolanyl (= 2- oder 3- Tetrahydrofuranyl); 2,3-Dihydrofuran-2- oder 3- oder 4- oder 5-yl; 2,5-Dihydrofuran-2- oder 3-yl, 2- oder 3- oder 4-Oxanyl (= 2- oder 3- oder 4-Tetrahydropyranyl); 3,4-Dihydro-2H-pyran-2- oder 3- oder 4- oder 5- oder 6-yl; 3,6-Dihydro-2H-pyran-2- oder 3-oder 4- oder 5- oder 6-yl; 2H-Pyran-2- oder 3- oder 4- oder 5- oder 6-yl; 4H-Pyran-2- oder 3- oder 4-yl, 2- oder 3- oder 4-Oxepanyl; 2, 3,4,5- Tetrahydrooxepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,4,7-Tetrahydrooxepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,6,7-Tetrahydrooxepin-2- oder 3- oder 4-yl; 2,3-Dihydrooxepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 4,5-Dihydrooxepin-2- oder 3- oder 4-yl; 2,5-Dihydrooxepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; Oxepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2- oder 3- Tetrahydrothiophenyl; 2,3-Dihydrothiophen-2- oder 3- oder 4- oder 5-yl; 2,5-Dihydrothiophen-2- oder 3-yl; Tetrahydro-2H-thiopyran-2- oder 3- oder 4-yl; 3,4-Dihydro-2H-thiopyran-2- oder 3- oder 4- oder
5- oder 6-yl; 3,6-Dihydro-2H-thiopyran-2- oder 3- oder 4- oder 5- oder 6-yl; 2H-Thiopyran-2- oder 3- oder 4- oder 5- oder 6-yl; 4H-Thiopyran-2- oder 3- oder 4-yl. Bevorzugte 3-Ring und 4-Ring- Heterocyclen sind beispielsweise 1- oder 2-Aziridinyl, Oxiranyl, Thiiranyl, 1- oder 2- oder 3-Azetidinyl,
2- oder 3-Oxetanyl, 2- oder 3-Thietanyl, l,3-Dioxetan-2-yl. Weitere Beispiele für“Heterocyclyl“ sind ein partiell oder vollständig hydrierter heterocyclischer Rest mit zwei Heteroatomen aus der Gruppe N,
O und S, wie beispielsweise 1- oder 2- oder 3- oder 4-Pyrazolidinyl; 4,5-Dihydro-3H-pyrazol- 3- oder 4- oder 5-yl; 4,5-Dihydro-lH-pyrazol-l- oder 3- oder 4- oder 5-yl; 2,3-Dihydro-lH-pyrazol-l- oder 2- oder
3- oder 4- oder 5-yl; 1- oder 2- oder 3- oder 4- Imidazolidinyl; 2,3-Dihydro-lH-imidazol-l- oder 2- oder
3- oder 4-yl; 2,5-Dihydro-lH-imidazol-l- oder 2- oder 4- oder 5-yl; 4,5-Dihydro-lH-imidazol-l- oder 2- oder 4- oder 5-yl; Hexahydropyridazin-l- oder 2- oder 3- oder 4-yl; l,2,3,4-Tetrahydropyridazin-l- oder 2- oder 3- oder 4- oder 5- oder 6-yl; l,2,3,6-Tetrahydropyridazin-l- oder 2- oder 3- oder 4- oder 5- oder
6-yl; l,4,5,6-Tetrahydropyridazin-l- oder 3- oder 4- oder 5- oder 6-yl; 3,4,5,6-Tetrahydropyridazin-3- oder 4- oder 5-yl; 4,5-Dihydropyridazin-3- oder 4-yl; 3,4-Dihydropyridazin-3- oder 4- oder 5- oder 6-yl; 3,6-Dihydropyridazin-3- oder 4-yl; l,6-Dihydropyriazin-l- oder 3- oder 4- oder 5- oder 6-yl;
Hexahydropyrimidin- 1 - oder 2- oder 3- oder 4-yl; l,4,5,6-Tetrahydropyrimidin-l- oder 2- oder 4- oder 5- oder 6-yl; l,2,5,6-Tetrahydropyrimidin-l- oder 2- oder 4- oder 5- oder 6-yl; 1,2, 3, 4- Tetrahydropyrimidin-l- oder 2- oder 3- oder 4- oder 5- oder 6-yl; l,6-Dihydropyrimidin-l- oder 2- oder
4- oder 5- oder 6-yl; l,2-Dihydropyrimidin-l- oder 2- oder 4- oder 5- oder 6-yl; 2,5-Dihydropyrimidin-
2- oder 4- oder 5-yl; 4,5-Dihydropyrimidin- 4- oder 5- oder 6-yl; l,4-Dihydropyrimidin-l- oder 2- oder 4- oder 5- oder 6-yl; 1- oder 2- oder 3-Piperazinyl; l,2,3,6-Tetrahydropyrazin-l- oder 2- oder 3- oder 5- oder 6-yl; l,2,3,4-Tetrahydropyrazin-l- oder 2- oder 3- oder 4- oder 5- oder 6-yl; l,2-Dihydropyrazin-l- oder 2- oder 3- oder 5- oder 6-yl; l,4-Dihydropyrazin-l- oder 2- oder 3-yl; 2,3-Dihydropyrazin-2- oder
3- oder 5- oder 6-yl; 2,5-Dihydropyrazin-2- oder 3-yl; l,3-Dioxolan-2- oder 4- oder 5-yl; l,3-Dioxol-2- oder 4-yl; l,3-Dioxan-2- oder 4- oder 5-yl; 4H-l,3-Dioxin-2- oder 4- oder 5- oder 6-yl; l,4-Dioxan-2- oder 3- oder 5- oder 6-yl; 2,3-Dihydro-l,4-dioxin-2- oder 3- oder 5- oder 6-yl; l,4-Dioxin-2- oder 3-yl;
1.2-Dithiolan-3- oder 4-yl; 3H-l,2-Dithiol-3- oder 4- oder 5-yl; l,3-Dithiolan-2- oder 4-yl; l,3-Dithiol- 2- oder 4-yl; l,2-Dithian-3- oder 4-yl; 3,4-Dihydro-l,2-dithiin-3- oder 4- oder 5- oder 6-yl; 3,6-Dihydro-
1.2-dithiin-3- oder 4-yl; l,2-Dithiin-3- oder 4-yl; l,3-Dithian-2- oder 4- oder 5-yl; 4H-l,3-Dithiin-2- oder 4- oder 5- oder 6-yl; Isoxazolidin-2- oder 3- oder 4- oder 5-yl; 2,3-Dihydroisoxazol-2- oder 3- oder
4- oder 5-yl; 2,5-Dihydroisoxazol-2- oder 3- oder 4- oder 5-yl; 4,5-Dihydroisoxazol-3- oder 4- oder 5-yl;
1.3-Oxazolidin-2- oder 3- oder 4- oder 5-yl; 2,3-Dihydro-l,3-oxazol-2- oder 3- oder 4- oder 5-yl; 2,5- Dihydro-l,3-oxazol-2- oder 4- oder 5-yl; 4,5-Dihydro-l,3-oxazol-2- oder 4- oder 5-yl; l,2-Oxazinan-2- oder 3- oder 4- oder 5- oder 6-yl; 3,4-Dihydro-2H-l,2-oxazin-2- oder 3- oder 4- oder 5- oder 6-yl; 3,6- Dihydro-2H-l,2-oxazin-2- oder 3- oder 4- oder 5- oder 6-yl; 5,6-Dihydro-2H-l,2-oxazin-2- oder 3- oder 4- oder 5- oder 6-yl; 5,6-Dihydro-4H-l,2-oxazin-3- oder 4- oder 5- oder 6-yl; 2H-l,2-Oxazin-2- oder 3- oder 4- oder 5- oder 6-yl; 6H-l,2-Oxazin-3- oder 4- oder 5- oder 6-yl; 4H-l,2-Oxazin-3- oder 4- oder 5- oder 6-yl; l,3-Oxazinan-2- oder 3- oder 4- oder 5- oder 6-yl; 3,4-Dihydro-2H-l,3-oxazin-2- oder 3- oder 4- oder 5- oder 6-yl; 3,6-Dihydro-2H-l,3-oxazin-2- oder 3- oder 4- oder 5- oder 6-yl; 5,6-Dihydro-2H-
1.3-oxazin-2- oder 4- oder 5- oder 6-yl; 5,6-Dihydro-4H-l,3-oxazin-2- oder 4- oder 5- oder 6-yl; 2H-
1.3-Oxazin-2- oder 4- oder 5- oder 6-yl; 6H-l,3-Oxazin-2- oder 4- oder 5- oder 6-yl; 4H-l,3-Oxazin-2- oder 4- oder 5- oder 6-yl; Morpholin-2- oder 3- oder 4-yl; 3,4-Dihydro-2H-l,4-oxazin-2- oder 3- oder 4- oder 5- oder 6-yl; 3,6-Dihydro-2H-l,4-oxazin-2- oder 3- oder 5- oder 6-yl; 2H-l,4-oxazin-2- oder 3- oder 5- oder 6-yl; 4H-l,4-oxazin-2- oder 3-yl; l,2-Oxazepan-2- oder 3- oder 4- oder 5- oder 6- oder 7- yl; 2,3,4,5-Tetrahydro-l,2-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,4,7-Tetrahydro-l,2- oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,6,7-Tetrahydro-l,2-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,5,6,7-Tetrahydro-l,2-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 4,5,6,7-Tetrahydro-l,2-oxazepin-3- oder 4- oder 5- oder 6- oder 7-yl; 2,3-Dihydro-l,2-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,5-Dihydro-l,2-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7- yl; 2,7-Dihydro-l,2-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 4,5-Dihydro-l,2-oxazepin-3- oder 4- oder 5- oder 6- oder 7-yl; 4,7-Dihydro-l,2-oxazepin-3- oder 4- oder 5- oder 6- oder 7-yl; 6,7- Dihydro-l,2-oxazepin-3- oder 4- oder 5- oder 6- oder 7-yl; l,2-Oxazepin-3- oder 4- oder 5- oder 6- oder 7-yl; l,3-Oxazepan-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,4,5-Tetrahydro-l,3-oxazepin-2- oder
3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,4,7-Tetrahydro-l,3-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,6,7-Tetrahydro-l,3-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2, 5,6,7- Tetrahydro-l,3-oxazepin-2- oder 4- oder 5- oder 6- oder 7-yl; 4,5,6,7-Tetrahydro-l,3-oxazepin-2- oder
4- oder 5- oder 6- oder 7-yl; 2,3-Dihydro-l,3-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,5- Dihydro-l,3-oxazepin-2- oder 4- oder 5- oder 6- oder 7-yl; 2,7-Dihydro-l,3-oxazepin-2- oder 4- oder 5- oder 6- oder 7-yl; 4,5-Dihydro-l,3-oxazepin-2- oder 4- oder 5- oder 6- oder 7-yl; 4,7-Dihydro-l,3- oxazepin-2- oder 4- oder 5- oder 6- oder 7-yl; 6,7-Dihydro-l,3-oxazepin-2- oder 4- oder 5- oder 6- oder 7-yl; l,3-Oxazepin-2- oder 4- oder 5- oder 6- oder 7-yl; l,4-Oxazepan-2- oder 3- oder 5- oder 6- oder 7- yl; 2,3,4,5-Tetrahydro-l,4-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,4,7-Tetrahydro-l,4- oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3,6,7-Tetrahydro-l,4-oxazepin-2- oder 3- oder 5- oder 6- oder 7-yl; 2,5,6,7-Tetrahydro-l,4-oxazepin-2- oder 3- oder 5- oder 6- oder 7-yl; 4, 5, 6, 7- Tetrahydro-l,4-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 2,3-Dihydro-l,4-oxazepin-2- oder 3- oder 5- oder 6- oder 7-yl; 2,5-Dihydro-l,4-oxazepin-2- oder 3- oder 5- oder 6- oder 7-yl; 2,7- Dihydro-l,4-oxazepin-2- oder 3- oder 5- oder 6- oder 7-yl; 4,5-Dihydro-l,4-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 4,7-Dihydro-l,4-oxazepin-2- oder 3- oder 4- oder 5- oder 6- oder 7-yl; 6,7- Dihydro-l,4-oxazepin-2- oder 3- oder 5- oder 6- oder 7-yl; l,4-Oxazepin-2- oder 3- oder 5- oder 6- oder 7-yl; Isothiazolidin-2- oder 3- oder 4- oder 5-yl; 2,3-Dihydroisothiazol-2- oder 3- oder 4- oder 5-yl; 2,5- Dihydroisothiazol-2- oder 3- oder 4- oder 5-yl; 4,5-Dihydroisothiazol-3- oder 4- oder 5-yl; 1,3- Thiazolidin-2- oder 3- oder 4- oder 5-yl; 2,3-Dihydro-l,3-thiazol-2- oder 3- oder 4- oder 5-yl; 2,5- Dihydro-l,3-thiazol-2- oder 4- oder 5-yl; 4,5-Dihydro-l,3-thiazol-2- oder 4- oder 5-yl; l,3-Thiazinan-2- oder 3- oder 4- oder 5- oder 6-yl; 3,4-Dihydro-2H-l,3-thiazin-2- oder 3- oder 4- oder 5- oder 6-yl; 3,6- Dihydro-2H-l,3-thiazin-2- oder 3- oder 4- oder 5- oder 6-yl; 5,6-Dihydro-2H-l,3-thiazin-2- oder 4- oder 5- oder 6-yl; 5,6-Dihydro-4H-l,3-thiazin-2- oder 4- oder 5- oder 6-yl; 2H-l,3-Thiazin-2- oder 4- oder 5- oder 6-yl; 6H-l,3-Thiazin-2- oder 4- oder 5- oder 6-yl; 4H-l,3-Thiazin-2- oder 4- oder 5- oder 6-yl. Weitere Beispiele für“Heterocyclyl“ sind ein partiell oder vollständig hydrierter heterocyclischer Rest mit 3 Heteroatomen aus der Gruppe N, O und S, wie beispielsweise l,4,2-Dioxazolidin-2- oder 3- oder 5-yl; l,4,2-Dioxazol-3- oder 5-yl; 1 ,4,2-Dioxazinan-2- oder -3- oder 5- oder 6-yl; 5,6-Dihydro-l,4,2- dioxazin-3- oder 5- oder 6-yl; l,4,2-Dioxazin-3- oder 5- oder 6-yl; l,4,2-Dioxazepan-2- oder 3- oder 5- oder 6- oder 7-yl; 6,7-Dihydro-5H-l,4,2-Dioxazepin-3- oder 5- oder 6- oder 7-yl; 2,3-Dihydro-7H-l,4,2- Dioxazepin-2- oder 3- oder 5- oder 6- oder 7-yl; 2,3-Dihydro-5H-l,4,2-Dioxazepin-2- oder 3- oder 5- oder 6- oder 7-yl; 5H-l,4,2-Dioxazepin-3- oder 5- oder 6- oder 7-yl; 7H-l,4,2-Dioxazepin-3- oder 5- oder 6- oder 7-yl. Strukturbeispiele für gegebenenfalls weiter substituierte Heterocyclen sind auch im Folgenden aufgeführt:

Die oben aufgeführten Heterocyclen sind bevorzugt beispielsweise durch Wasserstoff, Halogen, Alkyl, Haloalkyl, Hydroxy, Alkoxy, Cycloalkoxy, Aryloxy, Alkoxyalkyl, Alkoxyalkoxy, Cycloalkyl,
Halocycloalkyl, Aryl, Arylalkyl, Heteroaryl, Heterocyclyl, Alkenyl, Alkylcarbonyl, Cycloalkylcarbonyl, Arylcarbonyl, Heteroarylcarbonyl, Alkoxycarbonyl, Hydroxycarbonyl, Cycloalkoxycarbonyl,
Cycloalkylalkoxycarbonyl, Alkoxycarbonylalkyl, Arylalkoxycarbonyl, Arylalkoxycarbonylalkyl, Alkinyl, Alkinylalkyl, Alkylalkinyl, Tris-alkylsilylalkinyl, Nitro, Amino, Cyano, Haloalkoxy,
Haloalkylthio, Alkylthio, Hydrothio, Hydroxyalkyl, Oxo, Heteroarylalkoxy, Arylalkoxy,
Heterocyclylalkoxy, Heterocyclylalkylthio, Heterocyclyloxy, Heterocyclylthio, Heteroaryloxy, Bis- alkylamino, Alkylamino, Cycloalkylamino, Hydroxycarbonylalkylamino, Alkoxycarbonylalkylamino, Arylalkoxycarbonylalkylamino, Alkoxycarbonylalkyl(alkyl)amino, Aminocarbonyl,
Alkylaminocarbonyl, Bis-alkylaminocarbonyl, Cycloalkylaminocarbonyl,
Hydroxycarbonylalkylaminocarbonyl, Alkoxycarbonylalkylaminocarbonyl,
Arylalkoxycarbonylalkylaminocarbonyl substituiert.
„Arylheteroyclenyl“ bedeutet einen mit einem Heterocyclenyl verknüpftes Aryl, wobei die
Bindungsstelle an einem Ringatom lokalisiert ist. Besonders bevorzugt ist, wenn Aryl Phenyl bedeutet und der Heterocyclenylring aus 5 bis 6 Ringatomen besteht. Der Arylheterocyclenyl ist über jedes Atom von Heterocyclenyl gebunden, welches dazu in der Lage ist. Die Bezeichnung aza, oxa oder thio als Präfix vor der Heterocyclenyl-Einheit des Arylheterocyclenyls definiert mindestens ein vorhandenes Stickstoff-, Sauerstoff- oder Schwefelatom als Ringatom. Der Stickstoff eines Arylheterocyclenyl kann ein basisches Stickstoff- Atom sein. Das Stickstoff- oder das Schwefel-Ringatom des Arylheterocyclenyl kann optional zu dem korrespondierenden N-oxid, S-oxid oder S,S-dioxid oxidiert sein. Beispiele für Arylheterocyclenyl beinhalten 3H-indolinyl, lH-2-oxoquinolyl, 2H-l-oxoisoquinolyl oder 1,2- dihydroisoquinolyl.
„Arylheteroyclyl“ bedeutet einen mit einem Heterocyclyl verknüpftes Aryl, wobei die Bindungsstelle an einem Ringatom lokalisiert ist. Besonders bevorzugt ist, wenn Aryl Phenyl bedeutet und der
Heterocyclylring aus 5 bis 6 Ringatomen besteht. Der Arylheterocyclyl ist über jedes Atom von
Heterocyclyl gebunden, welches dazu in der Lage ist. Die Bezeichnung aza, oxa oder thio als Präfix vor der Heterocyclyl-Einheit des Arylheterocyclyls definiert mindestens ein vorhandenes
Stickstoff-, Sauerstoff- oder Schwefelatom als Ringatom. Der Stickstoff eines Arylheterocyclyls kann ein basisches Stickstoff- Atom sein. Das Stickstoff- oder das Schwefel-Ringatom des Arylheterocyclyls kann optional zu des korrespondierenden N-oxid, S-oxid oder S,S-dioxid oxidiert sein. Beispiele für Arylheterocyclyl beinhalten indolinyl, l,2,3,4-tetrahydroquinolinyl oder l,2,3,4-tetrahydroisoquinolinyl. Cyclenyl bedeutet ein nicht-aromatisches mono- oder multicyclisches Ringsystem aus etwa 3 bis 10 Kohlenstoff-Atomen, bevorzugt aus 5 bis 10 Kohlenstoff-Atomen, welches mindestens eine
Kohlenstoff-Kohlenstoff-Doppelbindung enthält. Bevorzugt sind 5- und 6-Ringe in dem Ringsystem. Beispiele für monocyclisches Cycloalkenyl beinhaltet Cyclopentenyl, Cyclohexenyl und Cycloheptenyl. „Cycloalkenylaryl“ bedeutet einen mit einem Cycloalkenyl verknüpftes Aryl, wobei die Bindungsstelle an einem Ringatom lokalisiert ist. Besonders bevorzugt ist, wenn Aryl Phenyl bedeutet und der
Cycloalkenyl aus 5 bis 6 Ringatomen besteht. Der Cycloalkenylaryl ist über jedes Atom von
Cycloalkenyl gebunden, welches dazu in der Lage ist.
„Cycloalkenylheteroaryl“ bedeutet einen mit einem Cycloalkenyl verknüpftes Heteroaryl, wobei die Bindungsstelle an einem Ringatom lokalisiert ist. Besonders bevorzugt ist, wenn Heteroaryl aus 5 bis 6 Ringatomen besteht und Cycloalkenyl aus 5 bis 6 Ringatomen besteht. Der Cycloalkenylaryl ist über jedes Atom von Cycloalkenyl gebunden, welches dazu in der Lage ist. Der Stickstoff eines Heteroaryls kann ein basisches Stickstoff-Atom sein.
Die Bezeichnung aza, oxa oder thio as Präfix vor der Heteroaryl-Einheit des Cycloalkenylheteroaryls definiert mindestens ein vorhandenes Stickstoff-, Sauerstoff- oder Schwefelatom als Ringatom. Das Stickstoff-Ringatom des Heteroaryls kann optional zu dem korrespondierenden N-oxid oxidiert sein.
Wenn ein Grundkörper "durch einen oder mehrere Reste" aus einer Aufzählung von Resten (= Gruppe) oder einer generisch definierten Gruppe von Resten substituiert ist, so schließt dies jeweils die gleichzeitige Substitution durch mehrere gleiche und/oder strukturell unterschiedliche Reste ein.
Handelt es sich es sich um einen teilweise oder vollständig gesättigten Stickstoff-Heterocyclus, so kann dieser sowohl über Kohlenstoff als auch über den Stickstoff mit dem Rest des Moleküls verknüpft sein.
Als Substituenten für einen substituierten heterocyclischen Rest kommen die weiter unten genannten Substituenten in Frage, zusätzlich auch Oxo und Thioxo. Die Oxogruppe als Substituent an einem Ring en -Atom bedeutet dann beispielsweise eine Carbonylgruppe im heterocyclischen Ring. Dadurch sind vorzugsweise auch Lactone und Lactame umfasst. Die Oxogruppe kann auch an den Heteroringatomen, die in verschiedenen Oxidationsstufen existieren können, z.B. bei N und S, auftreten und bilden dann beispielsweise die divalenten Gruppen N(O) , S(O) (auch kurz SO) und S(0)2 (auch kurz SO2) im heterocyclischen Ring. Im Fall von N(O)- und S(0)-Gruppen sind jeweils beide Enantiomere umfasst.
Erfindungsgemäß steht der Ausdruck„Heteroaryl“ für heteroaromatische Verbindungen, d. h.
vollständig ungesättigte aromatische heterocyclische Verbindungen, vorzugsweise für 5- bis 7-gliedrige Ringe mit 1 bis 4, vorzugsweise 1 oder 2 gleichen oder verschiedenen Heteroatomen, vorzugsweise O, S oder N. Erfindungsgemäße Heteroaryle sind beispielsweise lH-Pyrrol-l-yl; lH-Pyrrol-2-yl; lH-Pyrrol-
3-yl; Furan-2-yl; Furan-3-yl; Thien-2-yl; Thien-3-yl, lH-Imidazol-l-yl; lH-Imidazol-2-yl; lH-Imidazol-
4-yl; lH-Imidazol-5-yl; lH-Pyrazol-l-yl; lH-Pyrazol-3-yl; lH-Pyrazol-4-yl; lH-Pyrazol-5-yl, lH-l,2,3- Triazol-l-yl, lH-l,2,3-Triazol-4-yl, lH-l,2,3-Triazol-5-yl, 2H-l,2,3-Triazol-2-yl, 2H-l,2,3-Triazol-4-yl, lH-l,2,4-Triazol-l-yl, lH-l,2,4-Triazol-3-yl, 4H-l,2,4-Triazol-4-yl, l,2,4-Oxadiazol-3-yl, 1,2,4- Oxadiazol-5-yl, l,3,4-Oxadiazol-2-yl, l,2,3-Oxadiazol-4-yl, l,2,3-Oxadiazol-5-yl, l,2,5-Oxadiazol-3-yl, Azepinyl, Pyridin-2-yl, Pyridin-3-yl, Pyridin-4-yl, Pyrazin-2-yl, Pyrazin-3-yl, Pyrimidin-2-yl,
Pyrimidin-4-yl, Pyrimidin-5-yl, Pyridazin- 3 -yl, Pyridazin-4-yl, l,3,5-Triazin-2-yl, l,2,4-Triazin-3-yl, l,2,4-Triazin-5-yl, 1 ,2,4-Triazin-6-yl, l,2,3-Triazin-4-yl, l,2,3-Triazin-5-yl, 1,2,4-, 1,3,2-, 1,3,6- und l,2,6-Oxazinyl, Isoxazol-3-yl, Isoxazol-4-yl, Isoxazol-5-yl, l,3-Oxazol-2-yl, l,3-Oxazol-4-yl, 1,3- Oxazol-5-yl, Isothiazol-3-yl, Isothiazol-4-yl, Isothiazol-5-yl, l,3-Thiazol-2-yl, l,3-Thiazol-4-yl, 1,3- Thiazol-5-yl, Oxepinyl, Thiepinyl, 1 ,2,4-Triazolonyl und 1 ,2,4-Diazepinyl, 2H-l,2,3,4-Tetrazol-5-yl, lH-l,2,3,4-Tetrazol-5-yl, l,2,3,4-Oxatriazol-5-yl, l,2,3,4-Thiatriazol-5-yl, l,2,3,5-Oxatriazol-4-yl, l,2,3,5-Thiatriazol-4-yl. Die erfindungsgemäßen Heteroarylgruppen können ferner mit einem oder mehreren, gleichen oder verschiedenen Resten substituiert sein. Sind zwei benachbarte
Kohlenstoffatome Bestandteil eines weiteren aromatischen Rings, so handelt es sich um annellierte heteroaromatische Systeme, wie benzokondensierte oder mehrfach annellierte Heteroaromaten.
Bevorzugt sind beispielsweise Chinoline (z. B. Chinolin-2-yl, Chinolin-3-yl, Chinolin-4-yl, Chinolin-5- yl, Chinolin-6-yl, Chinolin-7-yl, Chinolin-8-yl); Isochinoline (z. B. Isochinolin- l-yl, Isochinolin-3-yl, Isochinolin-4-yl, Isochinolin-5-yl, Isochinolin-6-yl, Isochinolin-7-yl, Isochinolin-8-yl); Chinoxalin; Chinazolin; Cinnolin; l,5-Naphthyridin; l,6-Naphthyridin; l,7-Naphthyridin; l,8-Naphthyridin; 2,6- Naphthyridin; 2,7-Naphthyridin; Phthalazin; Pyridopyrazine; Pyridopyrimidine; Pyridopyridazine; Pteridine; Pyrimidopyrimidine. Beispiele für Heteroaryl sind auch 5- oder 6-gliedrige
benzokondensierte Ringe aus der Gruppe 1H- Indol- l-yl, lH-Indol-2-yl, lH-Indol-3-yl, lH-Indol-4-yl, lH-Indol-5-yl, lH-Indol-6-yl, lH-Indol-7-yl, l-Benzofüran-2-yl, l-Benzofüran-3-yl, l-Benzofüran-4-yl, l-Benzofüran-5-yl, l-Benzofüran-6-yl, l-Benzofüran-7-yl, l-Benzothiophen-2-yl, l-Benzothiophen-3- yl, l-Benzothiophen-4-yl, l-Benzothiophen-5-yl, l-Benzothiophen-6-yl, l-Benzothiophen-7-yl, 1H- Indazol- 1 -yl, lH-Indazol-3-yl, lH-Indazol-4-yl, lH-Indazol-5-yl, lH-Indazol-6-yl, lH-Indazol-7-yl, 2H- Indazol-2-yl, 2H-Indazol-3-yl, 2H-Indazol-4-yl, 2H-Indazol-5-yl, 2H-Indazol-6-yl, 2H-Indazol-7-yl, 2H- Isoindol-2-yl, 2H-Isoindol-l-yl, 2H-Isoindol-3-yl, 2H-Isoindol-4-yl, 2H-Isoindol-5-yl, 2H-Isoindol-6-yl; 2H-Isoindol-7-yl, lH-Benzimidazol-l-yl, lH-Benzimidazol-2-yl, lH-Benzimidazol-4-yl, 1H- Benzimidazol-5-yl, lH-Benzimidazol-6-yl, lH-Benzimidazol-7-yl, l,3-Benzoxazol-2-yl, 1,3- Benzoxazol-4-yl, l,3-Benzoxazol-5-yl, l,3-Benzoxazol-6-yl, l,3-Benzoxazol-7-yl, l,3-Benzthiazol-2-yl, l,3-Benzthiazol-4-yl, l,3-Benzthiazol-5-yl, l,3-Benzthiazol-6-yl, l,3-Benzthiazol-7-yl, 1,2- Benzisoxazol-3-yl, l,2-Benzisoxazol-4-yl, l,2-Benzisoxazol-5-yl, l,2-Benzisoxazol-6-yl, 1,2- Benzisoxazol-7-yl, l,2-Benzisothiazol-3-yl, l,2-Benzisothiazol-4-yl, l,2-Benzisothiazol-5-yl, 1,2- Benzisothiazol-6-yl, 1 ,2-Benzisothiazol-7-yl.
Die Bezeichnung "Halogen" bedeutet Fluor, Chlor, Brom oder Iod. Wird die Bezeichnung für einen Rest verwendet, dann bedeutet "Halogen" ein Fluor-, Chlor-, Brom- oder Iodatom.
Die Verbindungen der Formel (I) können je nach Art und Verknüpfüng der Substituenten als
Stereoisomere vorliegen. Sind beispielsweise ein oder mehrere asymmetrisch substituierte Kohlenstoff atome und/oder Sulfoxide vorhanden, so können Enantiomere und Diastereomere auftreten.
Stereoisomere lassen sich aus den bei der Herstellung anfallenden Gemischen nach üblichen
Trennmethoden, beispielsweise durch chromatographische Trennverfahren, erhalten. Ebenso können Stereoisomere durch Einsatz stereoselektiver Reaktionen unter Verwendung optisch aktiver Ausgangs und/oder Hilfsstoffe selektiv hergestellt werden.
Die Erfindung betrifft auch alle Stereoisomeren und deren Gemische, die von der Formel (I) umfaßt, jedoch nicht spezifisch definiert sind. Im Folgenden wird der Einfachheit halber jedoch stets von Verbindungen der Formel (I) gesprochen, obwohl sowohl die reinen Verbindungen als gegebenenfalls auch Gemische mit unterschiedlichen Anteilen an isomeren Verbindungen gemeint sind.
Damit sind auch tautomere Strukturen der Verbindungen (I) gemeint, die sich dadurch ergeben, dass mindestens ein Rest R13 oder R14 Wasserstoff bedeutet.
In allen nachfolgend genannten Formeln haben die Substituenten und Symbole, sofern nicht anders definiert, dieselbe Bedeutung wie unter Formel (I) beschrieben. Pfeile in einer chemischen Formel bedeuten die Verknüpfüngsorte zum restlichen Molekül. Bevorzugt sind Verbindungen der Formel (I)
worin
X bedeutet C(R13)(R14),
R1 bedeutet (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl oder Heterocyclyl, wobei diese drei Reste jeweils durch s Reste aus der Gruppe bestehend aus Halogen, (Ci-C6)-Alkyl und Halogen-(Ci- Cöj-alkyl substituiert sind und wobei Cycloalkyl, Cycloalkenyl und Heterocyclyl unabhängig voneinander jeweils n Oxogruppen tragen,
R2 bedeutet Hydroxy, (G-G)-Alkoxy, (C2-C6)-Alkenyloxy, (C2-C6)-Alkinyloxy, (G-G)-
Halogenalkoxy, (C2-C6)-Halogenalkenyloxy, (C2-C6)-Halogenalkinyloxy, wobei die 6 letztgenannten Reste jeweils durch s Reste aus der Gruppe bestehend aus Cyano, R8(0)C, R80(0)C, (R8)2N(0)C, R8(R80)N(0)C, (R8)2N(R8)N(0)C, R80, R8(0)C0, R9(0)2S0, (R8)2N, R9(0)nS, Phenyl, Heteroaryl und Heterocyclyl substituiert sind, wobei die drei letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, (CI-CÖ)- Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(CI-C6)- Alkyl substituiert sind, und wobei (C3- C6)-Cycloalkyl und Heterocyclyl unabhängig voneinander jeweils n Oxogruppen tragen, oder
R2 bedeutet (C3-C6)-Cycloalkoxy, (C3-C6)-Cycloalkenyloxy, Phenyloxy, Heteroaryloxy oder
Heterocyclyloxy, wobei diese fünf vorstehend genannten Reste jeweils durch s Reste aus der Gruppe bestehend aus Halogen, Cyano, (Ci-Cöj-Alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C3- C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, Halogen-(C3-C6)-cycloalkyl, Halogen-(C3-C6)- cycloalkenyl, R8(0)C, R80(0)C, (R8)2N(0)C, R8(R80)N(0)C, (R8)2N(R8)N(0)C, R80, R8(0)C0, R9(0)2S0, (R8)2N, R9(0)nS, Phenyl, Heteroaryl und Heterocyclyl substituiert sind, wobei die drei letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, (Ci-C6)-Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(Ci-C6)-Alkyl substituiert sind, und wobei (C3-C6)-Cycloalkoxy, (C3-C6)-Cycloalkyl und Heterocyclyl unabhängig voneinander jeweils n Oxogruppen tragen. oder
R2 bedeutet (R8)2N, R8(0)C(R8)N, R90(0)C(R8)N, (R8)2N(0)C(R8)N, R9(0)2S(R8)N,
R80(0)2S(R8)N, (R8)2N(0)2S(R8)N, oder
R2 bedeutet R8(R80)N
oder
R2 bedeutet (R17) (R18) N(R19)N,
oder
R2 bedeutet R17R18C=N-(R19)N-
R3, R4, R5, R6 und R7 bedeuten unabhängig voneinander jeweils Wasserstoff, Nitro, Halogen, Cyano,
(Ci-C6)-Alkyl, Halogen-(Ci-C6)-alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C3- C6)-Cycloalkyl, Halogen-(C3-C6)-cycloalkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl,
C6)-Alkyl, R80(0)C-(Ci-C6)-Alkyl, (R8)2N(0)C-(Ci-C6)- Alkyl, NC-(Ci-Ce)- Alkyl, R80-(Ci-C6)-Alkyl, (R8)2N-(CI-C6)- Alkyl, R8(0)C(R8)N-(Ci-C6)- Alkyl, R9(0)2S(R8)N-(C I -C6)- Alkyl, R90(0)C(R8)N-(C 1 -C6)- Alkyl, (R8)2N(0)C(R8)N- (Ci-C6)-Alkyl, R9(0)nS-(Ci-C6)-Alkyl, R80(0)2S-(Ci-C6)-Alkyl, (R8)2N(0)2S- (Ci-C6)-Alkyl, ( R 120 )2(0 ) P-(C i -Cr,)- A 1 ky 1, Phenyl, Heteroaryl, Heterocyclyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl-(Ci-C6)-alkyl, Heterocyclyl-(Ci-C6)-alkyl, wobei die sechs letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, (Ci-C6)-Alkyl, Halogen-(Ci-C6)-alkyl, R80, (R8)2N, R9(0)nS, R80(0)2S, (R8)2N(0)2S und R80-(Ci-C6)-Alkyl substituiert sind, und wobei Heterocyclyl n Oxogruppen trägt,
R8 bedeutet Wasserstoff, (Ci-C6)-Alkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl, (Ci-C6)-Alkyl-0-(Ci- C6)-alkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl-0-(Ci-C6)-alkyl, Phenyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl, Heteroaryl-(Ci-C6)-alkyl, Heterocyclyl, Heterocyclyl-(Ci-C6)-alkyl, Phenyl-0-(Ci- Cöj-alkyl, Heteroaryl-0-(Ci-C6)-alkyl oder Heterocyclyl-0-(Ci-C6)-alkyl, wobei die neun letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, (Ci- C6)-Alkyl, Halogen-(Ci-C6)-alkyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS und R10O- (Ci-C6)-Alkyl substituiert sind, und wobei Heterocyclyl n Oxogruppen trägt,
oder
die beiden Reste R8 bilden einen Ring mit dem Heteroatom oder mit den Heteroatomen, über welche sie gebunden sind, und zwar einen Heterocyclyl, Heterocyclenyl, Heteroaryl, Arylheterocyclyl, Arylheterocylenyl, Heteroarylheterocyclyl, Heteroarylhetercyclenyl, Heterocyclylheteroaryl oder Heterocyclenylheteroaryl, wobei jeder dieser Ringe wiederum durch m Reste aus der Gruppe bestehend aus Halogen, Cyano, (Ci-Cöj-Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(CI-C6)- Alkyl und Oxo substituiert ist.
R9 bedeutet (Ci-C6)-Alkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl, (Ci-C6)-Alkyl-0-(Ci-C6)-alkyl, (C3- C6)-Cycloalkyl-(Ci-C6)-alkyl-0-(Ci-C6)-alkyl, Phenyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl, Heteroaryl-(Ci-C6)-alkyl, Heterocyclyl, Heterocyclyl-(Ci-C6)-alkyl, Phenyl-0-(Ci-C6)-alkyl, Heteroaryl-0-(Ci-C6)-alkyl oder Heterocyclyl-0-(Ci-C6)-alkyl, wobei die neun letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, (C i -Cr,)- Alkyl, Halogen-(Ci-C6)-alkyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS und R10O-(CI-C6)- Alkyl substituiert sind, und wobei Heterocyclyl n Oxogruppen trägt,
R io bedeutet Wasserstoff oder (Ci-Cöj-Alkyl,
R bedeutet (Ci-Cöj-Alkyl,
R 12 bedeutet (Ci-C4)-Alkyl,
R13 undR 14 bedeuten unabhängig voneinander jeweils Wasserstoff, (C i -Co)- Alkyl, Hydroxy, (Ci- Ce)-Alkoxy, (R8)2N, Halogen-(Ci-C6)-alkoxy, Halogen, Halogen-(Ci-C6)-alkyl, Cyano, R80(0)C oder (R8)2N(0)C,
oder
R13 und R14 bilden zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, eine (C3-Cg)-Cycloalkylgruppe,
R undR bedeuten unabhängig voneinander jeweils (C i -Cr,)- Alkyl , Phenyl, (C3-C6)-Cycloalkyl,
Heteroaryl oder Heterocyclyl, R17, R18 und R19 bedeuten unabhängig voneinander R8 oder R9S(0)2, (R8)2NS(0)2, R80S(0)2, R9C(0), (R8)2NC(0), (R8)2NC(S), R80C(0), R80C(0)C(0), (R8)2NC(0)C(0) oder
die Reste (R17 und R18) oder (R17 und R19) bilden einen Ring mit dem Heteroatom oder mit den Heteroatomen, über welche sie gebunden sind, und zwar einen Heterocyclyl,
Heterocyclenyl, Heteroaryl, Arylheterocyclyl, Arylheterocylenyl,
Heteroarylheterocyclyl, Heteroarylhetercyclenyl, Heterocyclylheteroaryl oder Heterocyclenylheteroaryl, wobei jeder dieser Ringe wiederum durch m Reste aus der Gruppe bestehend aus Halogen, Cyano, (Ci-Cöj-Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)- Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(Ci-C6)-Alkyl und Oxo substituiert ist, m bedeutet 0, 1, 2, 3, 4 oder 5,
n bedeutet 0, 1 oder 2,
s bedeutet 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 oder 11.
Besonders bevorzugt sind Verbindungen der Formel (I)
worin
X bedeutet C(R13)(R14),
R1 bedeutet (C3-C6)-Cycloalkyl, wobei diese Cycloalkylgruppe durch s Reste aus der Gruppe bestehend aus Halogen, (Ci-Cöj-Alkyl und Halogen-(Ci-C6)-alkyl substituiert ist,
R2 bedeutet Hydroxy, (Ci-Cöj-Alkoxy, (Ci-C6)-Halogenalkoxy, (C2-Ce)-Alkenyloxy, (C2-C6)-
Halogenalkenyloxy, (C2-C6)-Alkinyloxy, wobei die fünf zuletzt genannten Reste jeweils durch einen Rest aus der Gruppe R8(0)C, R80(0)C, (R8)2N(0)C, R8(R80)N(0)C, (R8)2N(R8)N(0)C, R80 und Phenyl substituiert sind, wobei der letztgenannte Rest jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, (Ci-Cöj-Alkyl, Halogen-(Ci-C6)-alkyl und (C3- C6)-Cycloalkyl substituiert ist. oder
R2 bedeutet (R8)2N, R8(0)C(R8)N, R90(0)C(R8)N, (R8)2N(0)C(R8)N, R9(0)2S(R8)N,
R80(0)2S(R8)N, , (R8)2N(0)2S(R8)N,
oder
R2 bedeutet R8(R80)N
oder
R2 bedeutet (R17) (R18) N(R19)N,
oder
R2 bedeutet R17R18C=N-(R19)N-
R3, R4, R5, R6 und R7 bedeuten unabhängig voneinander jeweils Wasserstoff, Nitro, Halogen, Cyano,
(Ci-C6)-Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, R80(0)C, R80 oder R9(0)nS.
R8 bedeutet Wasserstoff, (Ci-C6)-Alkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl, (Ci-C6)-Alkyl-0-(Ci-
C6)-alkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl-0-(Ci-C6)-alkyl, Phenyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl, Heteroaryl-(Ci-C6)-alkyl, Heterocyclyl, Heterocyclyl-(Ci-C6)-alkyl, Phenyl-0-(Ci- Cöj-alkyl, Heteroaryl-0-(Ci-C6)-alkyl oder Heterocyclyl-0-(Ci-C6)-alkyl, wobei die neun letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, (Ci- Cej-Alkyl, Halogen-(Ci-C6)-alkyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS und R10O- (Ci-Cej-Alkyl substituiert sind, und wobei Heterocyclyl n Oxogruppen trägt
oder
die beiden Reste R8 bilden einen Ring mit dem Heteroatom oder mit den Heteroatomen, über welche sie gebunden sind, und zwar einen Heterocyclyl, Heterocyclenyl, Heteroaryl, Arylheterocyclyl, Arylheterocylenyl, Heteroarylheterocyclyl, Heteroarylhetercyclenyl, Heterocyclylheteroaryl oder Heterocyclenylheteroaryl, wobei jeder dieser Ringe wiederum durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, , (CI-CÖ)- Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C,
(R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(Ci-C6)-Alkyl und Oxo substituiert ist
R9 bedeutet (Ci-C6)-Alkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl, (Ci-C6)-Alkyl-0-(Ci-C6)-alkyl, (C3- C6)-Cycloalkyl-(Ci-C6)-alkyl-0-(Ci-C6)-alkyl, Phenyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl, Heteroaryl-(Ci-C6)-alkyl, Heterocyclyl, Heterocyclyl-(Ci-C6)-alkyl, Phenyl-0-(Ci-C6)-alkyl, Heteroaryl-0-(Ci-C6)-alkyl oder Heterocyclyl-0-(Ci-C6)-alkyl, wobei die neun letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, (Ci-C6)-Alkyl, Halogen-(Ci-C6)-alkyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS und R10O-(CI-C6)- Alkyl substituiert sind, und wobei Heterocyclyl n Oxogruppen trägt,
RIO bedeutet Wasserstoff oder (Ci-C6)-Alkyl,
R11 bedeutet (Ci-C6)-Alkyl,
R12 bedeutet (Ci-C4)-Alkyl,
R13 und R14 bedeuten unabhängig voneinander jeweils Wasserstoff, (G-G)- Alkyl, Cyano, R80(0)C oder (R8)2N(0)C
R15 undR16 bedeuten unabhängig voneinander jeweils (G-G,)- Alkyl , Phenyl, (C3-C6)-Cycloalkyl,
Heteroaryl oder Heterocyclyl,
R17, R18 und R19 bedeuten unabhängig voneinander R8 oder R9S(0)2, (R8)2NS(0)2, R80S(0)2,
R9C(0), (R8)2NC(0), (R8)2NC(S), R80C(0), R80C(0)C(0), (R8)2NC(0)C(0), oder
die Reste (R17 und R18) oder (R17 und R19) bilden einen Ring mit dem Heteroatom oder mit den
Heteroatomen, über welche sie gebunden sind, und zwar einen Heterocyclyl, Heterocyclenyl, Heteroaryl, Arylheterocyclyl, Arylheterocylenyl, Heteroarylheterocyclyl,
Heteroarylhetercyclenyl, Heterocyclylheteroaryl oder Heterocyclenylheteroaryl, wobei jeder dieser Ringe wiederum durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, (G-G)-Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(CI-C6)- Alkyl und Oxo substituiert ist. m bedeutet 0 oder 1, 2, 3, 4, oder 5
n bedeutet 0, 1 oder 2
s bedeutet 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 oder 11
Ganz besonders bevorzugt sind Verbindungen der Formel (I)
wonn X bedeutet CH2,
R1 bedeutet Cyclopropyl, wobei die Cyclopropylgrappe durch s Reste aus der Gruppe bestehend aus Halogen, (Ci-C6)-Alkyl und Halogen-(Ci-C6)-alkyl substituiert ist,
R2 bedeutet Hydroxy, (Ci-Cr,)-Alkoxy, (Ci-C6)-Halogenalkoxy, (C2-C6)-Alkenyloxy, (C2-C6)-
Halogenalkenyloxy, (C2-C6)-Alkinyloxy, oder
R2 bedeutet (R8)2N, R8(0)C(R8)N, R90(0)C(R8)N, (R8)2N(0)C(R8)N, R9(0)2S(R8)N,
R80(0)2S(R8)N, , (R8)2N(0)2S(R8)N,
oder
R2 bedeutet R8(R80)N
oder
R2 bedeutet (R17) (R18) N(R19)N,
oder
R2 bedeutet R17R18C=N-(R19)N- oder
die Reste (R17 und R18) oder (R17 und R19 ) bilden einen Ring mit dem Heteroatom oder die Heteroatome, über welches sie gebunden sind, und zwar einen Heterocyclyl, Heterocyclenyl, Heteroaryl, Arylheterocyclyl, Arylheterocylenyl, Heteroarylheterocyclyl,
Heteroarylhetercyclenyl, Heterocyclylheteroaryl oder Heterocyclenylheteroaryl, wobei jeder dieser Ringe wiederum durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, (C 1 -Cr,)- Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(CI-C6)- Alkyl und Oxo substituiert ist.
R3 bedeutet Cyano, Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl,
Cyclopropyl, Hydroxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Methoxy, Ethoxy, Methylsulfanyl, Methylsulfinyl oder Methylsulfonyl,
R4, R5, R6 und R7 bedeuten unabhängig voneinander jeweils Wasserstoff, Cyano, Fluor, Chlor,
Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Cyclopropyl,
Hydroxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Methoxy, Ethoxy, Methylsulfanyl, Methylsulfinyl oder Methylsulfonyl.
R8 bedeutet Wasserstoff, (Ci-C6)-Alkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl, (Ci-C6)-Alkyl-0-(Ci- C6)-alkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl-0-(Ci-C6)-alkyl, Phenyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl, Heteroaryl-(Ci-C6)-alkyl, Heterocyclyl, Heterocyclyl-(Ci-C6)-alkyl, Phenyl-0-(Ci- Cöj-alkyl, Heteroaryl-0-(Ci-C6)-alkyl oder Heterocyclyl-0-(Ci-C6)-alkyl, wobei die neun letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, (Ci- Cej-Alkyl, Halogen-(Ci-C6)-alkyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS und R10O- (Ci-Cöj-Alkyl substituiert sind, und wobei Heterocyclyl n Oxogruppen trägt. oder
die beiden Reste R8 bilden einen Ring mit dem Heteroatom oder die Heteroatome, über welches sie gebunden sind, und zwar einen Heterocyclyl, Heterocyclenyl, Heteroaryl,
Arylheterocyclyl, Arylheterocylenyl, Heteroarylheterocyclyl, Heteroarylhetercyclenyl, Heterocyclylheteroaryl oder Heterocyclenylheteroaryl, wobei jeder dieser Ringe wiederum durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, (CI-CÖ)- Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C,
(R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(Ci-C6)-Alkyl und Oxo substituiert ist.
R9 bedeutet (Ci-C6)-Alkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl, (Ci-C6)-Alkyl-0-(Ci-C6)-alkyl, (C3- C6)-Cycloalkyl-(Ci-C6)-alkyl-0-(Ci-C6)-alkyl, Phenyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl, Heteroaryl-(Ci-C6)-alkyl, Heterocyclyl, Heterocyclyl-(Ci-C6)-alkyl, Phenyl-0-(Ci-C6)-alkyl, Heteroaryl-0-(Ci-C6)-alkyl oder Heterocyclyl-0-(Ci-C6)-alkyl, wobei die neun letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, (C'i-G,)- Alkyl, Halogen-(Ci-C6)-alkyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS und R10O-(CI-C6)- Alkyl substituiert sind, und wobei Heterocyclyl n Oxogruppen trägt,
R10 bedeutet Wasserstoff oder (Ci-C6)-Alkyl,
R11 bedeutet (Ci-C6)-Alkyl,
R12 bedeutet (Ci-C4)-Alkyl,
R13 und R14 bedeuten unabhängig voneinander jeweils Wasserstoff, (G-G)- Alkyl, Cyano, R80(0)C oder (R8)2N(0)C
R15 undR16 bedeuten unabhängig voneinander jeweils (G-G)- Alkyl , Phenyl, (C3-C6)-Cycloalkyl,
Heteroaryl oder Heterocyclyl,
R17, R18 und R19 bedeuten unabhängig voneinander R8 oder R9S(0)2, (R8)2NS(0)2, R80S(0)2,
R9C(0), (R8)2NC(0), (R8)2NC(S), R80C(0), R80C(0)C(0), (R8)2NC(0)C(0), oder
die Reste (R17 und R18) oder (R17 und R19) bilden einen Ring mit dem Heteroatom oder mit den Heteroatomen, über welche sie gebunden sind, und zwar einen Heterocyclyl,
Heterocyclenyl, Heteroaryl, Arylheterocyclyl, Arylheterocylenyl, Heteroarylheterocyclyl, Heteroarylhetercyclenyl, Heterocyclylheteroaryl oder Heterocyclenylheteroaryl, wobei jeder dieser Ringe wiederum durch m Reste aus der Gruppe bestehend aus Halogen, Cyano, (Ci-C6)-Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)- Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(Ci-C6)-Alkyl und Oxo substituiert ist.
m bedeutet 0, 1, 2 oder 3,
n bedeutet 0, 1 oder 2,
s bedeutet 0, 1, 2, 3, 4 oder 5.
Überaus bevorzugt sind Verbindungen der Formel (I)
worin
X bedeutet CH2,
R1 bedeutet Cyclopropyl, wobei die Cyclopropylgruppe durch s Reste aus der Gruppe bestehend aus Halogen, (C 1 -Cr,)- Alkyl und Halogen-(Ci-C6)-alkyl substituiert ist,
R2 bedeutet Hydroxy, (Ci-Cöj-Alkoxy, (Ci-C6)-Halogenalkoxy, (C2-C6)-Alkenyloxy, (C2-CÖ)-
Halogenalkenyloxy, (C2-C6)-Alkinyloxy,
R3 bedeutet Cyano, Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl,
Cyclopropyl, Hydroxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Methoxy, Ethoxy, Methylsulfanyl, Methylsulfinyl oder Methylsulfonyl,
R4, R5, R6 und R7 bedeuten unabhängig voneinander jeweils Wasserstoff, Cyano, Fluor, Chlor,
Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Cyclopropyl, Hydroxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Methoxy, Ethoxy, Methylsulfanyl, Methylsulfinyl oder Methylsulfonyl. m bedeutet 0, 1, 2 oder 3,
n bedeutet 0, 1 oder 2,
s bedeutet 0, 1, 2, 3, 4 oder 5.
Im Rahmen der vorliegenden Erfindung ist es möglich, die einzelnen bevorzugten, besonders bevorzugten und ganz besonders bevorzugten Bedeutungen für die Substituenten X, Z, R1, R2, R3, R4,
R5, R6, R7, R8, R9, R10, R11, R12, R13, R14, R15, R16 und die der Indices n, m und s beliebig miteinander zu kombinieren. Das heißt, dass Verbindungen der allgemeinen Formel (I) von der vorliegenden Erfindung umfasst sind, in welchen beispielsweise der Substituent R1 eine bevorzugte Bedeutung aufweist und die Substituenten R2 bis R7 die allgemeine Bedeutung aufweisen oder aber der Substituent R1 eine bevorzugte Bedeutung aufweist, der Substituent R10 eine besonders bevorzugte, bzw. eine ganz besonders bevorzugte, Bedeutung aufweist und die übrigen Substituenten eine allgemeine Bedeutung aufweisen.
Die in nachfolgenden Tabellen 1 bis 4 aufgeführten erfindungsgemäßen Verbindungen der Formel (1) sind ebenfalls ganz besonders bevorzugt. Die darin verwendeten Abkürzungen für chemische Reste folgen der dem Fachmann bekannten Nomenklatur und bedeuten beispielsweise:
Bu = Butyl Et = Ethyl Me = Methyl
Ph = Phenyl Pr = Propyl c = cyclo
i = iso
Bn = Benzyl Ac = Acetyl
Tabelle 1 : Erfindungsgemäße Verbindungen der Formel (I), worin X für C(R13)(R14) steht
Tabelle 2: Erfindungsgemäße Verbindungen der Formel (I), worin X für C(R13) (R14) steht
Tabelle 3: Erfindungsgemäße Verbindungen der Formel (I), worin X für C(R13) (R14) steht
Tabelle 4: Erfindungsgemäße Verbindungen der Formel (I), worin X für C(R13) (R14) steht
NMR-Daten ausgewählter Beispiele
NMR-Peak-Listenverfahren
Die lH-NMR-Daten ausgewählter Beispiele werden in Form von lH-NMR-Peaklisten notiert. Zu jedem Signalpeak wird erst der d-Wert in ppm und dann die Signalintensität in runden Klammem aufgeführt. Die d-Wert - Signalintensitäts- Zahlenpaare von verschiedenen Signalpeaks werden durch Semikolons voneinander getrennt aufgelistet.
Die Peakliste eines Beispieles hat daher die Form: di (Intensität^; d2 (Intensität2); . ; d; (Intensität^; . ; dh (Intensitätn) Die Intensität scharfer Signale korreliert mit der Höhe der Signale in einem gedruckten Beispiel eines NMR-Spektrums in cm und zeigt die wirklichen Verhältnisse der Signalintensitäten. Bei breiten Signalen können mehrere Peaks oder die Mitte des Signals und ihre relative Intensität im Vergleich zum intensivsten Signal im Spektrum gezeigt werden.
Zur Kalibrierung der chemischen Verschiebung von lH-NMR-Spektren benutzen wir Tetramethylsilan und/oder die chemische Verschiebung des Lösungsmittels, besondem im Falle von Spektren, die in DMSO gemessen werden. Daher kann in NMR-Peaklisten der Tetramethylsilan-Peak Vorkommen, muss es aber nicht.
Die Listen der lH-NMR-Peaks sind ähnlich den klassischen 1H-NMR- Ausdrucken und enthalten somit gewöhnlich alle Peaks, die bei einer klassischen NMR-Interpretation aufgeführt werden.
Darüber hinaus können sie wie klassische 1H-NMR- Ausdrucke Lösungsmittelsignale, Signale von Stereoisomeren der Zielverbindungen, die ebenfalls Gegenstand der Erfindung sind, und/oder Peaks von Verunreinigungen zeigen.
Bei der Angabe von Verbindungssignalen im Delta-Bereich von Lösungsmitteln und/oder Wasser sind in unseren Listen von lH-NMR-Peaks die gewöhnlichen Lösungsmittelpeaks, zum Beispiel Peaks von DMSO in DMSO-DÖ und der Peak von Wasser, gezeigt, die gewöhnlich im Durchschnitt eine hohe Intensität aufweisen.
Die Peaks von Stereoisomeren der Targetverbindungen und/oder Peaks von Verunreinigungen haben gewöhnlich im Durchschnitt eine geringere Intensität als die Peaks der Zielverbindungen (zum Beispiel mit einer Reinheit von >90%).
Solche Stereoisomere und/oder Verunreinigungen können typisch für das jeweilige
Herstellungsverfahren sein. Ihre Peaks können somit dabei helfen, die Reproduktion unseres
Herstellungsverfahrens anhand von“Nebenprodukt-Fingerabdrücken” zu erkennen.
Einem Experten, der die Peaks der Zielverbindungen mit bekannten Verfahren (MestreC, ACD- Simulation, aber auch mit empirisch ausgewerteten Erwartungswerten) berechnet, kann je nach Bedarf die Peaks der Zielverbindungen isolieren, wobei gegebenenfalls zusätzliche Intensitätsfilter eingesetzt werden. Diese Isolierung wäre ähnlich dem betreffenden Peak-Picking bei der klassischen 1H-NMR- fnterpretation.
Weitere Details zu lH-NMR-Peaklisten können der Research Disclosure Database Number 564025 ent nommen werden.
_ _ _
Erfindungsgemäße Verbindungen können gemäß den in nachfolgenden Schemata genannten Methoden hergestellt werden.
Die Ausgangsverbindungen vom Typ 4-Methyl-5-aryl-pyrimidin können hergestellt werden aus 5- Brompyrimidinen oder 5-Iodpyrimidinen nach einer Methode beschrieben für 2,4-Dimethyl-5- phenylpyrimidin in Kondo et al, Chem. Pharm.Bull. 37 (1989) 2814.
Die Ausgangsverbindungen vom Typ 4-Halogen-5-aryl-pyrimidin (Halogen = Chlor, Brom, Iod) können hergestellt werden aus den geeigneten 4-Hydroxy-5-arylpyrimidinen z.B. durch Chlorierung mit Phosphoroxychlorid. Solche Methoden sind beispielsweise beschrieben für die Herstellung von 4- Chloro-5-(4-chlorophenyl)-2-phenylpyrimidine in Shestakov et al, Tetrahedron 73 (2017) 3939. Zunächst wird nach bekannten Vorschriften z.B. ein Amidin oder ein Salz eines Amidins mit einem Enolester oder einem 3-Hydroxyacrylderivat gegebenenfalls zusammen mit einer anorganischen, organischen oder metallorganischen Base wie z.B. Kaliumcarbonat, Natriumethanolat oder einem
Hexamethyldisilazid in einem geeigneten Lösungsmittel bei Reaktionstemperaturen zwischen -30 und 180 Grad Celsius kondensiert (WO2008156726, WO2012171863):
Na
Anschließend kann das Pyrimidin nach bekannten Methoden in der 5-Position mit
Halogenierungsmitteln wie z.B. N-Iod- oder N-Bromsuccinimid oder Brom halogeniert werden (J Med. Chem. 51 (2008) 5766):
Danach lässt sich eine Kreuzkupplungsreaktion durchführen wie z.B. eine Suzuki-Kupplung
(W02014081617, WO2007146824), eine Stille- (./. Org. Chem. 74 (2009) 5599), eine Kumada- (./. Org. Chem. 73 (2008) 162) oder eine Negishi-Kupplung ( Synthesis 48 (2016) 504).
Das Pyrimidon kann anschließend z.B. mithilfe bekannter Halogenierungsmittel wie z.B. mit
Phosphoroxychlorid oder Thionylbromid in ein 4-Halogenpyrimidin übergeführt werden. Es folgt eine Heck-Kupplung ( Tetrahedron Lett. 28 (1987) 3039 ) unter Metallkatalyse zu dem Alkenyloxyacrylat, welches anschließend zum Pyruvat hydrolysiert wird (./. Org. Chem. 80 (2015) 2554).
Statt des 4-Halogenpyridins läßt sich auch das korrespondierende Triflat oder Diazoniumsalz verwenden.
Eine mögliche alternative Reaktionsführung ist in beiden nachfolgenden Schemata dargestellt:
Verwendet man statt des 2-Methoxyacrylats das entsprechende 2-Enaminoacrylat (Acta. Chem. Scand. 50 (1996) 316; Synthesis 1989, 414 ) in einem geeigneten Lösungsmittel in Temperaturbereichen zwischen -78 Grad Celsius und 180 Grad Celsius, so erhält man intermediär den Enaminoester, welcher wiederum zum Pyruvat hydrolisierbar (J. Org. Chem. 80 (2015) 2554 ) ist.
Eine weitere Alternative geht vom Pyrimidin-4-carbaldehyd aus, der über eine Wittig-Homer Reaktion zum Alkenyloxyacrylat oder zum Enaminoacrylat umgesetzt wird und wie oben beschrieben hydrolysiert werden kann (.!. Org. Chem. 80 (2015) 2554).
Weiterhin ist es möglich, die 2-Ketosäuren bzw -ester oder -amide über eine eisenkatalysierte Addition aus dem entsprechenden 4 -Alkylpyrimidin ( Tetrahedron 70 (2014) 3056) mit nachfolgender Oxidation beispielsweise mit dem Dess-Martin-Reagenz (./. Org. Chem. 81 (2016) 3890) oder mithilfe von Kupferacetat (./. Org. Chem. 79 (2014) 11735) oder durch eine Swem-Oxidation (WO 2013057468) herzustellen.
Desweiteren lassen sich Pyrimidinalkylverbindungen mit starken Basen wie z.B.
Lithiumdiisopropylamid deprotonieren und mit Oxalsäureester-Derivaten umsetzen ( Journal of Organic Chemistry 80 (2015) 2554, Bioorg. Med. Chem. 14 (2006) 8420).
Weiterhin lassen sich die erfindungsgemäßen Verbindungen durch Umsetzen mit einem
Oxalsäureesterderivat wie z.B. mit folgendem Orthoester, in die gewünschten Zielverbindungen (1 ) überführen {J. C. Medina et al., Tetrahedron Lett. 49 (2008) 1768; J. Scherkenbeck et al., J. Org. Chem. 80 (2015) 2554-2561).
Erfindungsgemäße Carbonsäureamid-Derivate, Carbohydrazide, Methylidenhydrazide und ggf.
substituierte N-Hydroxycarboxamide (1) werden aus den korrespondierenden Säuren durch Umsetzung mit einem Kupplungsreagenz, einer Base und dem jeweiligen Amin- bzw. Hydrazinderivat synthetisiert.
Dazu stehen in der Literatur verschiedenste Methoden zur Verfügung ( Tetrahedron 61 (2005) 10827; W02006/105051, Seite 8).
Alkyidenhydrazide lassen sich z.B. durch Erhitzen des primären Hydrazids mit einer entsprechenden
Carbonylverbindung hersteilen. ( Arch . Pharm. Chem. Life Sei. 350 (2017) el 600256).
Kollektionen aus Verbindungen der Formel (I) und/oder deren Salzen, die nach den oben genannten Reaktionen synthetisiert werden können, können auch in parallelisierter Weise hergestellt werden, wobei dies in manueller, teilweise automatisierter oder vollständig automatisierter Weise geschehen kann. Dabei ist es beispielsweise möglich, die Reaktionsdurchführung, die Aufarbeitung oder die Reinigung der Produkte bzw. Zwischenstufen zu automatisieren. Insgesamt wird hierunter eine Vorgehensweise verstanden, wie sie beispielsweise durch D. Tiebes in Combinatorial Chemistry - Synthesis, Analysis, Screening (Herausgeber Günther Jung), Verlag Wiley 1999, auf den Seiten 1 bis 34 beschrieben ist.
Die erfindungsgemäßen Verbindungen der Formel (I) (und/oder deren Salze), im folgenden zusammen als„erfindungsgemäße Verbindungen“ bezeichnet, weisen eine ausgezeichnete herbizide Wirksamkeit gegen ein breites Spektrum wirtschaftlich wichtiger mono- und dikotyler annueller Schadpflanzen auf.
Gegenstand der vorliegenden Erfindung ist daher auch ein Verfahren zur Bekämpfung von
unerwünschten Pflanzen oder zur Wachstumsregulierung von Pflanzen, vorzugsweise in
Pflanzenkulturen, worin eine oder mehrere erfindungsgemäße Verbindung(en) auf die Pflanzen (z.B. Schadpflanzen wie mono- oder dikotyle Unkräuter oder unerwünschte Kulturpflanzen), das Saatgut (z.B. Körner, Samen oder vegetative Vermehrungsorgane wie Knollen oder Sprossteile mit Knospen) oder die Fläche, auf der die Pflanzen wachsen (z.B. die Anbaufläche), ausgebracht werden. Dabei können die erfindungsgemäßen Verbindungen z.B. im Vorsaat- (ggf. auch durch Einarbeitung in den Boden), Vorauflauf- oder Nachauflaufverfahren ausgebracht werden lm einzelnen seien beispielhaft einige Vertreter der mono- und dikotylen Unkrautflora genannt, die durch die erfindungsgemäßen Verbindungen kontrolliert werden können, ohne dass durch die Nennung eine Beschränkung auf bestimmte Arten erfolgen soll.
Monokotyle Schadpflanzen der Gattungen: Aegilops, Agropyron, Agrostis, Alopecurus, Apera, Avena, Brachiaria, Bromus, Cenchrus, Commelina, Cynodon, Cyperus, Dactyloctenium, Digitaria, Echino- chloa, Eleocharis, Eleusine, Eragrostis, Eriochloa, Festuca, Fimbristylis, Heteranthera, fmperata, fschaemum, Leptochloa, Lolium, Monochoria, Panicum, Paspalum, Phalaris, Phleum, Poa, Rottboellia, Sagittaria, Scirpus, Setaria, Sorghum.
Dikotyle Unkräuter der Gattungen: Abutilon, Amaranthus, Ambrosia, Anoda, Anthemis, Aphanes, Artemisia, Atriplex, Bellis, Bidens, Capsella, Carduus, Cassia, Centaurea, Chenopodium, Cirsium, Convolvulus, Datura, Desmodium, Emex, Erysimum, Euphorbia, Galeopsis, Galinsoga, Galium, Hibiscus, fpomoea, Kochia, Lamium, Lepidium, Lindemia, Matricaria, Mentha, Mercurialis, Mullugo, Myosotis, Papaver, Pharbitis, Plantago, Polygonum, Portulaca, Ranunculus, Raphanus, Rorippa, Rotala, Rumex, Salsola, Senecio, Sesbania, Sida, Sinapis, Solanum, Sonchus, Sphenoclea, Stellaria, Taraxacum, Thlaspi, Trifolium, Urtica, Veronica, Viola, Xanthium.
Werden die erfindungsgemäßen Verbindungen vor dem Keimen auf die Erdoberfläche appliziert, so wird entweder das Auflaufen der Unkrautkeimlinge vollständig verhindert oder die Unkräuter wachsen bis zum Keimblattstadium heran, stellen jedoch dann ihr Wachstum ein.
Bei Applikation der Wirkstoffe auf die grünen Pflanzenteile im Nachauflaufverfahren tritt nach der Behandlung Wachstumsstop ein und die Schadpflanzen bleiben in dem zum Applikationszeitpunkt vorhandenen Wachstumsstadium stehen oder sterben nach einer gewissen Zeit ganz ab, so dass auf diese Weise eine für die Kulturpflanzen schädliche Unkrautkonkurrenz sehr früh und nachhaltig beseitigt wird.
Die erfindungsgemäßen Verbindungen können in Nutzkulturen Selektivitäten aufweisen und können auch als nichtselektive Herbizide eingesetzt werden.
Aufgrund ihrer herbiziden und pflanzenwachstumsregulatorischen Eigenschaften können die Wirkstoffe auch zur Bekämpfung von Schadpflanzen in Kulturen von bekannten oder noch zu entwickelnden gentechnisch veränderten Pflanzen eingesetzt werden. Die transgenen Pflanzen zeichnen sich in der Regel durch besondere vorteilhafte Eigenschaften aus, beispielsweise durch Resistenzen gegenüber bestimmten in der Agrarindustrie verwendeten Wirkstoff , vor allem bestimmten Herbiziden,
Resistenzen gegenüber Pflanzenkrankheiten oder Erregern von Pflanzenkrankheiten wie bestimmten lnsekten oder Mikroorganismen wie Pilzen, Bakterien oder Viren. Andere besondere Eigenschaften betreffen z.B. das Emtegut hinsichtlich Menge, Qualität, Lagerfähigkeit, Zusammensetzung und spezieller lnhaltsstoffe. So sind transgene Pflanzen mit erhöhtem Stärkegehalt oder veränderter Qualität der Stärke oder solche mit anderer Fettsäurezusammensetzung des Emteguts bekannt. Weitere besondere Eigenschaften liegen in einer Toleranz oder Resistenz gegen abiotische Stressoren z.B. Hitze, Kälte, Trockenheit, Salz und ultraviolette Strahlung.
Bevorzugt ist die Anwendung der erfindungsgemäßen Verbindungen der Formel (1) oder deren Salze in wirtschaftlich bedeutenden transgenen Kulturen von Nutz-und Zierpflanzen,
Die Verbindungen der Formel (1) können als Herbizide in Nutzpflanzenkulturen eingesetzt werden, welche gegenüber den phytotoxischen Wirkungen der Herbizide resistent sind bzw. gentechnisch resistent gemacht wurden.
Herkömmliche Wege zur Herstellung neuer Pflanzen, die im Vergleich zu bisher vorkommenden Pflanzen modifizierte Eigenschaften aufweisen, bestehen beispielsweise in klassischen Züchtungsverfahren und der Erzeugung von Mutanten. Alternativ können neue Pflanzen mit veränderten Eigenschaften mit Hilfe gentechnischer Verfahren erzeugt werden (siehe z.B. EP 0221044, EP 0131624). Beschrieben wurden beispielsweise in mehreren Fällen gentechnische Veränderungen von Kulturpflanzen zwecks Modifikation der in den Pflanzen synthetisierten Stärke (z.B. WO 92/011376 A, WO 92/014827 A, WO 91/019806 A), transgene Kulturpflanzen, welche gegen bestimmte Herbizide vom Typ Glufosinate (vgl. z.B. EP 0242236 A, EP 0242246 A) oder Glyphosate (WO 92/000377 A) oder der Sulfonylharnstoffe (EP 0257993 A, US 5,013,659) oder gegen Kombinationen oder
Mischungen dieser Herbizide durch„gene stacking“ resistent sind, wie transgenen Kulturpflanzen z. B. Mais oder Soja mit dem Handelsnamen oder der Bezeichnung Optimum™ GAT™ (Glyphosate ALS Tolerant).
transgene Kulturpflanzen, beispielsweise Baumwolle, mit der Fähigkeit Bacillus thuringiensis- Toxine (Bt-Toxine) zu produzieren, welche die Pflanzen gegen bestimmte Schädlinge resistent machen (EP 0142924 A, EP 0193259 A).
transgene Kulturpflanzen mit modifizierter Fettsäurezusammensetzung (WO 91/013972 A). gentechnisch veränderte Kulturpflanzen mit neuen Inhalts- oder Sekundärstoffen z.B. neuen Phytoalexinen, die eine erhöhte Krankheitsresistenz verursachen (EP 0309862 A, EP 0464461 A) gentechnisch veränderte Pflanzen mit reduzierter Photorespiration, die höhere Erträge und höhere Stresstoleranz aufweisen (EP 0305398 A)
transgene Kulturpflanzen, die pharmazeutisch oder diagnostisch wichtige Proteine produzieren („molecular pharming“)
transgene Kulturpflanzen, die sich durch höhere Erträge oder bessere Qualität auszeichnen transgene Kulturpflanzen die sich durch eine Kombinationen z.B. der o. g. neuen Eigenschaften auszeichnen („gene stacking“)
Zahlreiche molekularbiologische Techniken, mit denen neue transgene Pflanzen mit veränderten Eigenschaften hergestellt werden können, sind im Prinzip bekannt; siehe z.B. I. Potrykus und G.
Spangenberg (eds.) Gene Transfer to Plants, Springer Lab Manual (1995), Springer Verlag Berlin, Heidelberg oder Christou, "Trends in Plant Science" 1 (1996) 423-431).
Für derartige gentechnische Manipulationen können Nucleinsäuremoleküle in Plasmide eingebracht werden, die eine Mutagenese oder eine Sequenzveränderung durch Rekombination von DNA- Sequenzen erlauben. Mit Hilfe von Standardverfahren können z.B. Basenaustausche vorgenommen, Teilsequenzen entfernt oder natürliche oder synthetische Sequenzen hinzugefügt werden. Für die Verbindung der DNA-Fragmente untereinander können an die Fragmente Adaptoren oder Linker angesetzt werden, siehe z.B. Sambrook et al., 1989, Molecular Cloning, A Laboratory Manual, 2. Aufl. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY; oder Winnacker "Gene und Klone", VCH Weinheim 2. Auflage 1996 Die Herstellung von Pflanzenzellen mit einer verringerten Aktivität eines Genprodukts kann beispielsweise erzielt werden durch die Expression mindestens einer entsprechenden antisense-RNA, einer sense-RNA zur Erzielung eines Cosuppressionseffektes oder die Expression mindestens eines entsprechend konstruierten Ribozyms, das spezifisch Transkripte des obengenannten Genprodukts spaltet. Hierzu können zum einen DNA-Moleküle verwendet werden, die die gesamte codierende Sequenz eines Genprodukts einschließlich eventuell vorhandener flankierender Sequenzen umfassen, als auch DNA-Moleküle, die nur Teile der codierenden Sequenz umfassen, wobei diese Teile lang genug sein müssen, um in den Zellen einen antisense-Effekt zu bewirken. Möglich ist auch die Verwendung von DNA- Sequenzen, die einen hohen Grad an Homologie zu den codiereden Sequenzen eines Genprodukts aufweisen, aber nicht vollkommen identisch sind.
Bei der Expression von Nucleinsäuremolekülen in Pflanzen kann das synthetisierte Protein in jedem beliebigen Kompartiment der pflanzlichen Zelle lokalisiert sein. Um aber die Lokalisation in einem bestimmten Kompartiment zu erreichen, kann z.B. die codierende Region mit DNA-Sequenzen verknüpft werden, die die Lokalisierung in einem bestimmten Kompartiment gewährleisten. Derartige Sequenzen sind dem Fachmann bekannt (siehe beispielsweise Braun et al., EMBO J. 11 (1992), 3219- 3227; Wolter et al., Proc. Natl. Acad. Sei. USA 85 (1988), 846-850; Sonnewald et al., Plant J. 1 (1991), 95-106). Die Expression der Nukleinsäuremoleküle kann auch in den Organellen der Pflanzenzellen stattfinden.
Die transgenen Pflanzenzellen können nach bekannten Techniken zu ganzen Pflanzen regeneriert werden. Bei den transgenen Pflanzen kann es sich prinzipiell um Pflanzen jeder beliebigen
Pflanzenspezies handeln, d.h., sowohl monokotyle als auch dikotyle Pflanzen. So sind transgene Pflanzen erhältlich, die veränderte Eigenschaften durch Überexpression, Suppression oder Inhibierung homologer (= natürlicher) Gene oder Gensequenzen oder Expression heterologer (= fremder) Gene oder Gensequenzen aufweisen.
Vorzugsweise können die erfindungsgemäßen Verbindungen (I) in transgenen Kulturen eingesetzt werden, welche gegen Wuchsstoffe, wie z.B. 2,4-D, Dicamba oder gegen Herbizide, die essentielle Pflanzenenzyme, z.B. Acetolactatsynthasen (ALS), EPSP Synthasen, Glutaminsynthasen (GS) oder Hydoxyphenylpyruvat Dioxygenasen (HPPD) hemmen, respektive gegen Herbizide aus der Gruppe der Sulfonylharnstoffe, der Glyphosate, Glufosinate oder Benzoylisoxazole und analogen Wirkstoffe, oder gegen beliebige Kombinationen dieser Wirkstoffe, resistent sind.
Besonders bevorzugt können die erfindungsgemäßen Verbindungen in transgenen Kulturpflanzen eingesetzt werden, die gegen eine Kombination von Glyphosaten und Glufosinaten, Glyphosaten und Sulfonylharnstoffen oder Imidazolinonen resistent sind. Ganz besonders bevorzugt können die erfindungsgemäßen Verbindungen in transgenen Kulturpflanzen wie z. B. Mais oder Soja mit dem Handelsnamen oder der Bezeichnung OptimumTM GATTM (Glyphosate ALS Tolerant) eingesetzt werden.
Bei der Anwendung der erfindungsgemäßen Wirkstoffe in transgenen Kulturen treten neben den in anderen Kulturen zu beobachtenden Wirkungen gegenüber Schadpflanzen oftmals Wirkungen auf, die für die Applikation in der jeweiligen transgenen Kultur spezifisch sind, beispielsweise ein verändertes oder speziell erweitertes Unkrautspektrum, das bekämpft werden kann, veränderte Aufwandmengen, die für die Applikation eingesetzt werden können, vorzugsweise gute Kombinierbarkeit mit den Herbiziden, gegenüber denen die transgene Kultur resistent ist, sowie Beeinflussung von Wuchs und Ertrag der transgenen Kulturpflanzen.
Gegenstand der Erfindung ist deshalb auch die Verwendung der erfindungsgemäßen Verbindungen der Formel (1) als Herbizide zur Bekämpfung von Schadpflanzen in transgenen Kulturpflanzen.
Die erfindungsgemäßen Verbindungen können in Form von Spritzpulvem, emulgierbaren Konzentraten, versprühbaren Lösungen, Stäubemitteln oder Granulaten in den üblichen Zubereitungen angewendet werden. Gegenstand der Erfindung sind deshalb auch herbizide und pflanzenwachstumsregulierende Mitel, welche die erfindungsgemäßen Verbindungen enthalten.
Die erfindungsgemäßen Verbindungen können auf verschiedene Art formuliert werden, je nachdem welche biologischen und/oder chemisch-physikalischen Parameter vorgegeben sind. Als
Formulierungsmöglichkeiten kommen beispielsweise in Frage: Spritzpulver (WP), wasserlösliche Pulver (SP), wasserlösliche Konzentrate, emulgierbare Konzentrate (EC), Emulsionen (EW), wie Öl-in-Wasser- und Wasser-in-Öl-Emulsionen, versprühbare Lösungen, Suspensionskonzentrate (SC), Dispersionen auf Öl- oder Wasserbasis, ölmischbare Lösungen, Kapselsuspensionen (CS), Stäubemitel (DP), Beizmittel, Granulate für die Streu- und Bodenapplikation, Granulate (GR) in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), wasserlösliche Granulate (SG), ULV-Formulierungen, Mikrokapseln und Wachse. Diese einzelnen
Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in:
Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl. 1986, Wade van Valkenburg, "Pesticide Formulations", Marcel Dekker, N.Y., 1973, K. Martens, "Spray Drying" Handbook, 3rd Ed. 1979, G. Goodwin Ltd. London.
Die notwendigen Formulierungshilfsmitel wie lnertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J., H.v. Olphen,
"Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y., C. Marsden, "Solvents Guide", 2nd Ed., Interscience, N.Y. 1963, McCutcheon's "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J., Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964, Schönfeldt, "Grenzflächenaktive Äthylenoxid-addukte", Wiss. Verlagsgesell., Stuttgart 1976, Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hanser Verlag München, 4. Aufl. 1986.
Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen Wirkstoffen, wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden, sowie mit Safenern, Düngemitteln und/oder
Wachstumsregulatoren hersteilen, z.B. in Form einer Fertigformulierung oder als Tankmix.
Als Kombinationspartner für die erfindungsgemäßen Verbindungen in Mischungsformulierungen oder im Tank-Mix sind beispielsweise bekannte Wirkstoffe, die auf einer lnhibition von beispielsweise Acetolactat-Synthase, Acetyl-CoA-Carboxylase, Cellulose-Synthase, Enolpyruvylshikimat-3-phosphat- Synthase, Glutamin-Synthetase, p-Hydroxyphenylpyruvat-Dioxygenase, Phytoendesaturase,
Photosystem I, Photosystem 11 oder Protoporphyrinogen-Oxidase beruhen, einsetzbar, wie sie z.B. aus Weed Research 26 (1986) 441-445 oder "The Pesticide Manual", l6th edition, The British Crop Protection Council und the Royal Soc. of Chemistry, 2006 und dort zitierter Literatur beschrieben sind. Nachfolgend werden beispielhaft bekannte Herbizide oder Pflanzenwachstumsregulatoren genannt, die mit den erfindungsgemäßen Verbindungen kombiniert werden können, wobei diese Wirkstoffe entweder mit ihrem "common name" in der englischsprachigen Variante gemäß lntemational Organization for Standardization (1SO) oder mit dem chemischen Namen bzw. mit der Codenummer bezeichnet sind. Dabei sind stets sämtliche Anwendungsformen wie beispielsweise Säuren, Salze, Ester sowie auch alle isomeren Formen wie Stereoisomere und optische lsomere umfaßt, auch wenn diese nicht explizit erwähnt sind.
Beispiele für solche herbiziden Mischungspartner sind:
Acetochlor, acifluorfen, acifluorfen-sodium, aclonifen, alachlor, allidochlor, alloxydim, alloxydim- sodium, ametryn, amicarbazone, amidochlor, amidosulfuron, 4-amino-3-chloro-6-(4-chloro-2-fluoro-3- methylphenyl)-5-fluoropyridine-2-carboxylic acid, aminocyclopyrachlor, aminocyclopyrachlor- potassium, aminocyclopyrachlor-methyl, aminopyralid, amitrole, ammoniumsulfamate, anilofos, asulam, atrazine, azafenidin, azimsulfuron, beflubutamid, benazolin, benazolin-ethyl, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone, benzobicyclon, benzofenap, bicyclopyron, bifenox, bilanafos, bilanafos-sodium, bispyribac, bispyribac-sodium, bromacil, bromobutide, bromofenoxim, bromoxynil, bromoxynil-butyrate, -potassium, -heptanoate und -octanoate, busoxinone, butachlor, butafenacil, butamifos, butenachlor, butralin, butroxydim, butylate, cafenstrole, carbetamide, carfentrazone, carfentrazone-ethyl, chloramben, chlorbromuron, chlorfenac, chlorfenac- sodium, chlorfenprop, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, chlorophthalim, chlorotoluron, chlorthal-dimethyl, chlorsulfuron, cinidon, cinidon-ethyl, cinmethylin, cinosulfuron, clacyfos, clethodim, clodinafop, clodinafop-propargyl, clomazone, clomeprop, clopyralid, cloransulam, cloransulam-methyl, cumyluron, cyanamide, cyanazine, cycloate, cyclopyranil, cyclopyrimorate, cyclosulfamuron, cycloxydim, cyhalofop, cyhalofop-butyl, cyprazine, 2,4-D, 2,4-D- butotyl, -butyl, -dimethylammonium, -diolamin, -ethyl, 2-ethylhexyl, -isobutyl, -isooctyl, - isopropylammonium, -potassium, -triisopropanolammonium und -trolamine, 2,4-DB, 2,4-DB-butyl, - dimethylammonium, isooctyl, -potassium und -sodium, daimuron (dymron), dalapon, dazomet, n- decanol, desmedipham, detosyl-pyrazolate (DTP), dicamba, dichlobenil, 2-(2,4-dichlorobenzyl)-4,4- dimethyl- 1 ,2-oxazolidin-3 -one, 2-(2,5-dichlorobenzyl)-4,4-dimethyl- 1 ,2-oxazolidin-3-one, dichlorprop, dichlorprop-P, diclofop, diclofop-methyl, diclofop-P-methyl, diclosulam, difenzoquat, diflufenican, diflufenzopyr, diflufenzopyr-sodium, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimetrasulfuron, dinitramine, dinoterb, diphenamid, diquat, diquat- dibromid, dithiopyr, diuron, DNOC, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron, ethamet- sulfuron-methyl, ethiozin, ethofumesate, ethoxyfen, ethoxyfen- ethyl, ethoxysulfuron, etobenzanid, F- 9600, F-5231, i.e. N-[2-Chlor-4-fluor-5-[4-(3-fluorpropyl)-4,5-dihydro-5-oxo-lH-tetrazol-l-yl]-phenyl]- ethansulfonamid, F-7967, i.e. 3-[7-Chlor-5-fluor-2-(trifluormethyl)-lH-benzimidazol-4-yl]-l -methyl-6- (trifluormethyl)pyrimidin-2,4(lH,3H)-dion, fenoxaprop, fenoxaprop-P, fenoxaprop-ethyl, fenoxaprop-P- ethyl, fenoxasulfone, fenquinotrione, fentrazamide, flamprop, flamprop-M-isopropyl, flamprop-M- methyl, flazasulfuron, florasulam, fluazifop, fluazifop-P, fluazifop-butyl, fluazifop-P-butyl,
flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazin, fluometuron, flurenol, flurenol-butyl, - dimethylammonium und -methyl, fluoroglycofen, fluoroglycofen-ethyl, flupropanate, flupyrsulfuron, flupyrsulfuron-methyl-sodium, fluridone, flurochloridone, fluroxypyr, fluroxypyr-meptyl, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, fomesafen-sodium, foramsulfuron, fosamine, glufosinate, glufosinate-ammonium, glufosinate-P-sodium, glufosinate-P-ammonium, glufosinate-P-sodium, glyphosate, glyphosate-ammonium, -isopropylammonium, -diammonium, -dimethylammonium, - potassium, -sodium und -trimesium, H-9201, i.e. 0-(2,4-Dimethyl-6-nitrophenyl)-0-ethyl- isopropylphosphoramidothioat, halauxifen, halauxifen-methyl, halosafen, halosulfuron, halosulfuron- methyl, haloxyfop, haloxyfop-P, haloxyfop-ethoxyethyl, haloxyfop-P-ethoxyethyl, haloxyfop-methyl, haloxyfop-P-methyl, hexazinone, HW-02, i.e. l-(Dimethoxyphosphoryl)-ethyl-(2,4- dichlorphenoxy)acetat, imazamethabenz, Imazamethabenz-methyl, imazamox, imazamox-ammonium, imazapic, imazapic-ammonium, imazapyr, imazapyr-isopropylammonium, imazaquin, imazaquin- ammonium, imazethapyr, imazethapyr-immonium, imazosulfuron, indanofan, indaziflam, iodosulfuron, iodosulfuron-methyl-sodium, ioxynil, ioxynil-octanoate, -potassium und sodium, ipfencarbazone, isoproturon, isouron, isoxaben, isoxaflutole, karbutilate, KUH-043, i.e. 3-({[5-(Difluormethyl)-l- methyl-3-(trifluormethyl)- 1 H-pyrazol-4-yl]methyl} sulfonyl)-5,5-dimethyl-4,5-dihydro- 1 ,2-oxazol, ketospiradox, lactofen, lenacil, linuron, MCPA, MCPA-butotyl, -dimethylammonium, -2-ethylhexyl, - isopropylammonium, -potassium und -sodium, MCPB, MCPB-methyl, -ethyl und -sodium, mecoprop, mecoprop-sodium, und -butotyl, mecoprop-P, mecoprop-P-butotyl, -dimethylammonium, -2-ethylhexyl und -potassium, mefenacet, mefluidide, mesosulfuron, mesosulfuron-methyl, mesotrione,
methabenzthiazuron, metam, metamifop, metamitron, metazachlor, metazosulfuron,
methabenzthiazuron, methiopyrsulfuron, methiozolin, methyl isothiocyanate, metobromuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, molinat, monolinuron, monosulfuron, monosulfuron-ester, MT-5950, i.e. N-[3-chlor-4-(l-methylethyl)- phenyl]-2-methylpentanamid, NGGC-011, napropamide, NC-310, i.e. 4-(2,4-Dichlorbenzoyl)-l-methyl- 5-benzyloxypyrazol, neburon, nicosulfuron, nonanoic acid (Pelargonsäure), norflurazon, oleic acid (fatty acids), orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefon, oxyfluorfen, paraquat, paraquat dichloride, pebulate, pendimethalin, penoxsulam, pentachlorphenol, pentoxazone, pethoxamid, petroleum oils, phenmedipham, picloram, picolinafen, pinoxaden, piperophos, pretilachlor, primisulfuron, primisulfuron-methyl, prodiamine, profoxydim, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propoxycarbazone-sodium, propyrisulfuron, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen, pyraflufen- ethyl, pyrasulfotole, pyrazolynate (pyrazolate), pyrazosulfuron, pyrazosulfuron- ethyl, pyrazoxyfen, pyribambenz, pyribambenz-isopropyl, pyribambenz-propyl, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobac, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, pyroxasulfone, pyroxsulam, quinclorac, quinmerac, quinoclamine, quizalofop, quizalofop-ethyl, quizalofop-P, quizalofop-P-ethyl, quizalofop-P-tefuryl, rimsulfuron, saflufenacil, sethoxydim, siduron, simazine, simetryn, SL-261, sulcotrion, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosulfuron, , SYN-523, SYP-249, i.e. l-Ethoxy-3-methyl-l-oxobut-3-en-2-yl- 5-[2-chlor-4-(trifluormethyl)phenoxy]-2-nitrobenzoat, SYP-300, i.e. l-[7-Fluor-3-oxo-4-(prop-2-in-l- yl)-3,4-dihydro-2H-l,4-benzoxazin-6-yl]-3-propyl-2-thioxoimidazolidin-4,5-dion, 2,3,6-TBA, TCA (Trifluoressigsäure), TCA-sodium, tebuthiuron, tefuryltrione, tembotrione, tepraloxydim, terbacil, terbucarb, terbumeton, terbuthylazin, terbutryn, thenylchlor, thiazopyr, thiencarbazone, thiencarbazone- methyl, thifensulfuron, thifensulfuron-methyl, thiobencarb, tiafenacil, tolpyralate, topramezone, tralkoxydim, triafamone, tri-allate, triasulfuron, triaziflam, tribenuron, tribenuron-methyl, triclopyr, trietazine, trifloxysulfuron, trifloxysulfuron-sodium, trifludimoxazin, trifluralin, triflusulfuron, triflusulfuron-methyl, tritosulfuron, urea sulfate, vemolate, XDE-848, ZJ-0862, i.e. 3,4-Dichlor-N-{2- [(4,6-dimethoxypyrimidin-2-yl)oxy]benzyl}anilin, sowie die folgenden Verbindungen:
Beispiele für Pflanzenwachstumsregulatoren als mögliche Mischungspartner sind:
Acibenzolar, acibenzolar-S-methyl, 5-Aminolävulinsäure, ancymidol, 6-benzylaminopurine,
Brassinolid, Catechin, chlormequat chloride, cloprop, cyclanilide, 3-(Cycloprop-l-enyl)propionsäure, daminozide, dazomet, n-decanol, dikegulac, dikegulac-sodium, endothal, endothal- dipotassium, -disodium, und mono(N,N-dimethylalkylammonium), ethephon, flumetralin, flurenol, flurenol-butyl, flurprimidol, forchlorfenuron, gibberellic acid, inabenfide, indol-3-acetic acid (IAA), 4- indol-3-ylbutyric acid, isoprothiolane, probenazole, Jasmonsäure, Jasmonsäuremethylester, maleic hydrazide, mepiquat chloride, 1 -methylcyclopropene, 2-(l-naphthyl)acetamide, 1 -naphthylacetic acid, 2- naphthyloxyacetic acid, nitrophenolate-mixture, 4-Oxo-4[(2-phenylethyl)amino]buttersäure, paclobutrazol, N-phenylphthalamic acid, prohexadione, prohexadione-calcium, prohydrojasmone, Salicylsäure, Strigolacton, tecnazene, thidiazuron, triacontanol, trinexapac, trinexapac-ethyl, tsitodef, uniconazole, uniconazole-P. Safener, die in Kombination mit den erfindungsgemäßen Verbindungen der Formel (I) und ggf. in
Kombinationen mit weiteren Wirkstoffen wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden wie oben aufgelistet, eingesetzt werden können, sind vorzugsweise ausgewählt aus der Gruppe bestehend aus: S 1 ) V erbindungen der F ormel (S 1 ),
wobei die Symbole und Indizes folgende Bedeutungen haben:
PA ist eine natürliche Zahl von 0 bis 5, vorzugsweise 0 bis 3;
RA 1 ist Halogen, (Ci-C i)Alkyl, (Ci-C i)Alkoxy, Nitro oder (Ci-C4)Haloalkyl;
WA ist ein unsubstituierter oder substituierter divalenter heterocyclischer Rest aus der Gruppe der teilungesättigten oder aromatischen Fünfring-Heterocyclen mit 1 bis 3 Heteroringatomen aus der Gruppe N und O, wobei mindestens ein N-Atom und höchstens ein O-Atom im Ring enthalten ist, vorzugsweise ein Rest aus der Gruppe (WA1) bis (WA4),
n ist 0 oder 1 ;
RA2 ist ORA3, SRA3 oder NRA3RA4 oder ein gesättigter oder ungesättigter 3- bis 7-gliedriger
Heterocyclus mit mindestens einem N-Atom und bis zu 3 Heteroatomen, vorzugsweise aus der Gruppe O und S, der über das N-Atom mit der Carbonylgruppe in (Sl) verbunden ist und unsubstituiert oder durch Reste aus der Gruppe (Ci-C i)Alkyl, (Ci-C i)Alkoxy oder gegebenenfalls substituiertes Phenyl substituiert ist, vorzugsweise ein Rest der Formel ORA 3, NHRA 4 oder N(CH3)2, insbesondere der Formel ORA3;
RA 3 ist Wasserstoff oder ein unsubstituierter oder substituierter aliphatischer Kohlenwasserstoffrest, vorzugsweise mit insgesamt 1 bis 18 C-Atomen; RA4 ist Wasserstoff, (Ci-C6)Alkyl, (Ci-C6)Alkoxy oder substituiertes oder unsubstituiertes Phenyl;
RA5 ist H, (Ci-C8)Alkyl, (Ci-C8)Haloalkyl, (Ci-C4)Alkoxy(Ci-C8)Alkyl, Cyano oder COORA 9, worin RA9 Wasserstoff, (Ci-C8)Alkyl, (Ci-C8)Haloalkyl, (Ci-C4)Alkoxy-(Ci-C4)alkyl, (Ci-C6)Hydroxyalkyl, (C3-Ci2)Cycloal yl oder Tri-(Ci-C4)-alkyl-silyl ist;
RA6, RA7, RA8 sind gleich oder verschieden Wasserstoff, (Ci-Cg)Alkyl, (Ci-Cg)Haloalkyl, (C3- Ci2)Cycloalkyl oder substituiertes oder unsubstituiertes Phenyl; vorzugsweise: a) Verbindungen vom Typ der Dichlorphenylpyrazolin-3-carbonsäure (Sla), vorzugsweise Verbindungen wie 1 -(2,4-Dichlorphenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazolin-3-carbonsäure,
1 -(2,4-Dichlorphenyl)-5-(ethoxycarbonyl)-5-methyl-2-pyrazolin-3-carbonsäureethylester (S 1 - 1 ) ("Mefenpyr-diethyl"), und verwandte Verbindungen, wie sie in der WO-A-91/07874 beschrieben sind; b) Derivate der Dichlorphenylpyrazolcarbonsäure (S lb), vorzugsweise Verbindungen wie 1 -(2,4-Dichlorphenyl)-5-methyl-pyrazol-3-carbonsäureethylester (S 1 -2),
1 -(2,4-Dichlorphenyl)-5-isopropyl-pyrazol-3 -carbonsäureethylester (S 1 -3),
1 -(2,4-Dichlorphenyl)-5-(l , 1 -dimethyl-ethyl)pyrazol-3-carbonsäureethyl-ester (S 1 -4) und verwandte Verbindungen, wie sie in EP-A-333 131 und EP-A-269 806 beschrieben sind; c) Derivate der l,5-Diphenylpyrazol-3-carbonsäure (Slc), vorzugsweise Verbindungen wie 1 -(2,4-Dichlorphenyl)-5-phenylpyrazol-3-carbonsäureethylester (S 1 -5),
l-(2-Chlorphenyl)-5-phenylpyrazol-3-carbonsäuremethylester (Sl-6) und verwandte Verbindungen wie sie beispielsweise in der EP-A-268554 beschrieben sind; d) Verbindungen vom Typ der Triazolcarbonsäuren (Sld), vorzugsweise Verbindungen wie Fenchlorazol(-ethylester), d.h. 1 -(2, 4-Dichlorphenyl)-5-trichlormethyl-(lH)- 1,2, 4-triazol-3 -carbonsäure ethylester (Sl-7), und verwandte Verbindungen wie sie in EP-A-174 562 und EP-A-346 620 beschrieben sind; e) Verbindungen vom Typ der 5-Benzyl- oder 5-Phenyl-2-isoxazolin-3- carbonsäure oder der 5,5- Diphenyl-2-isoxazolin-3-carbonsäure (Sle), vorzugsweise Verbindungen wie
5-(2,4-Dichlorbenzyl)-2-isoxazolin-3-carbonsäureethylester (Sl-8) oder 5-Phenyl-2-isoxazolin-3- carbonsäureethylester (Sl-9) und verwandte Verbindungen, wie sie in WO-A-91/08202 beschrieben sind, bzw. 5,5-Diphenyl-2-isoxazolin-3-carbonsäure (S1-10) oder 5,5-Diphenyl-2-isoxazolin-3- carbonsäureethylester (Sl-l 1) ("Isoxadifen-ethyl") oder -n-propylester (S1-12) oder der
5-(4-Fluorphenyl)-5-phenyl-2-isoxazolin-3-carbonsäureethylester (S1-13), wie sie in der
Patentanmeldung WO-A-95/07897 beschrieben sind. S2) Chinolinderivate der Formel (S2),
wobei die Symbole und Indizes folgende Bedeutungen haben:
RB1 ist Halogen, (Ci-C i)Alkyl, (Ci-C4)Alkoxy, Nitro oder (Ci-C4)Haloalkyl; ne ist eine natürliche Zahl von 0 bis 5, vorzugsweise 0 bis 3; RB 2 ist ORB 3, SRB 3 oder NRB 3RB 4 oder ein gesättigter oder ungesättigter 3- bis 7-gliedriger Heterocyclus mit mindestens einem N-Atom und bis zu 3 Heteroatomen, vorzugsweise aus der Gruppe O und S, der über das N-Atom mit der Carbonylgruppe in (S2) verbunden ist und unsubstituiert oder durch Reste aus der Gruppe (Ci-C4)Alkyl, (Ci-C4)Alkoxy oder gegebenenfalls substituiertes Phenyl substituiert ist, vorzugsweise ein Rest der Formel ORB 3, NHRB 4 oder N(CH3)2, insbesondere der Formel ORB 3;
RB 3 ist Wasserstoff oder ein unsubstituierter oder substituierter aliphatischer Kohlenwasserstoffrest, vorzugsweise mit insgesamt 1 bis 18 C-Atomen;
RB4 ist Wasserstoff, (Ci-C6)Alkyl, (Ci-Cr,)Alkoxy oder substituiertes oder unsubstituiertes Phenyl;
TB ist eine (Ci oder C2)-Alkandiylkette, die unsubstituiert oder mit einem oder zwei (Ci- C4)Alkylresten oder mit [(Ci-C3)-Alkoxy]-carbonyl substituiert ist; vorzugsweise: a) Verbindungen vom Typ der 8-Chinolinoxyessigsäure (S2a), vorzugsweise
(5-Chlor-8-chinolinoxy)essigsäure-(l-methylhexyl)ester ("Cloquintocet-mexyl") (S2-1),
(5-Chlor-8-chinolinoxy)essigsäure-(l,3-dimethyl-but-l-yl)ester (S2-2),
(5-Chlor-8-chinolinoxy)essigsäure-4-allyloxy-butylester (S2-3),
(5-Chlor-8-chinolinoxy)essigsäure-l-allyloxy-prop-2-ylester (S2-4),
(5-Chlor-8-chinolinoxy)essigsäureethylester (S2-5),
(5-Chlor-8-chinolinoxy)essigsäuremethylester (S2-6),
(5-Chlor-8-chinolinoxy)essigsäureallylester (S2-7),
(5-Chlor-8-chinolinoxy)essigsäure-2-(2-propyliden-iminoxy)-l-ethylester (S2-8), (5-Chlor-8- chinolinoxy)essigsäure-2-oxo-prop-l-ylester (S2-9) und verwandte Verbindungen, wie sie in
EP-A-86 750, EP-A-94 349 und EP-A-191 736 oder EP-A-0 492 366 beschrieben sind, sowie (5-Chlor- 8-chinolinoxy)essigsäure (S2-10), deren Hydrate und Salze, beispielsweise deren Lithium-, Natrium- Kalium-, Kalzium-, Magnesium-, Aluminium-, Eisen-, Ammonium-, quartäre Ammonium-, Sulfonium-, oder Phosphoniumsalze wie sie in der WO-A-2002/34048 beschrieben sind; b) Verbindungen vom Typ der (5-Chlor-8-chinolinoxy)malonsäure (S2b), vorzugsweise
Verbindungen wie (5-Chlor-8-chinolinoxy)malonsäurediethylester,
(5-Chlor-8-chinolinoxy)malonsäurediallylester, (5-Chlor-8-chinolinoxy)malonsäure-methyl-ethylester und verwandte Verbindungen, wie sie in EP-A-0 582 198 beschrieben sind. S3) Verbindungen der Formel (S3)
wobei die Symbole und Indizes folgende Bedeutungen haben:
Rc1 ist (Ci-C4)Alkyl, (Ci-C4)Haloalkyl, (C2-C4)Alkenyl, (C2-C4)Haloalkenyl, (C3-C7)Cycloalkyl, vorzugsweise Dichlormethyl; Rc2, Rc3 sind gleich oder verschieden Wasserstoff, (Ci-C4)Alkyl, (C2-C4)Alkenyl, (C2-C4)Alkinyl, (Ci- C4)Haloalkyl, (C2-C4)Haloalkenyl, (Ci-C4)Alkylcarbamoyl-(Ci-C4)alkyl, (C2-C4)Alkenylcarbamoyl- (Ci-C4)alkyl, (Ci-C4)Alkoxy-(Ci-C4)alkyl, Dioxolanyl-(Ci-C4)alkyl, Thiazolyl, Furyl, Furylalkyl, Thienyl, Piperidyl, substituiertes oder unsubstituiertes Phenyl, oder Rc2 und Rc3 bilden zusammen einen substituierten oder unsubstituierten heterocyclischen Ring, vorzugsweise einen Oxazolidin-,
Thiazolidin-, Piperidin-, Morpholin-, Hexahydropyrimidin- oder Benzoxazinring; vorzugsweise:
Wirkstoffe vom Typ der Dichloracetamide, die häufig als Vorauflaufsafener (bodenwirksame Safener) angewendet werden, wie z. B.
"Dichlormid" (N,N-Diallyl-2,2-dichloracetamid) (S3-1),
"R-29148" (3-Dichloracetyl-2,2,5-trimethyl-l,3-oxazolidin) der Firma Stauffer (S3-2),
"R-28725" (3-Dichloracetyl-2,2,-dimethyl-l,3-oxazolidin) der Firma Stauffer (S3-3),
"Benoxacor" (4-Dichloracetyl-3,4-dihydro-3-methyl-2H-l,4-benzoxazin) (S3-4),
"PPG-1292" (N-Allyl-N-[(l,3-dioxolan-2-yl)-methyl]-dichloracetamid) der Firma PPG Industries (S3-5),
"DKA-24" (N-Allyl-N-[(allylaminocarbonyl)methyl]-dichloracetamid) der Firma Sagro-Chem (S3-6), "AD-67" oder "MON 4660" (3-Dichloracetyl-l-oxa-3-aza-spiro[4,5]decan) der Firma Nitrokemia bzw. Monsanto (S3-7),
"TI-35" (l-Dichloracetyl-azepan) der Firma TRI-Chemical RT (S3-8),
"Diclonon" (Dicyclonon) oder "BAS145138" oder "LAB145138" (S3-9)
((RS)-l-Dichloracetyl-3,3,8a-trimethylperhydropyrrolo[l,2-a]pyrimidin-6-on) der Firma BASF, "Furilazol" oder "MON 13900" ((RS)-3-Dichloracetyl-5-(2-furyl)-2,2-dimethyloxazolidin) (S3-10); sowie dessen (R)-Isomer (S3-11). S4) N-Acylsulfonamide der Formel (S4) und ihre Salze,
worin die Symbole und Indizes folgende Bedeutungen haben:
AD ist S02-NRD 3-C0 oder C0-NRD 3-S02 XD ist CH oder N;
RD1 ist CO-NRD 5RD 6 oderNHCO-RD 7;
RD2 ist Halogen, (Ci-C4)Haloalkyl, (Ci-C4)Haloalkoxy, Nitro, (Ci-C4)Alkyl, (Ci-C4)Alkoxy, (Ci- C4)Alkylsulfonyl, (Ci-C4)Alkoxycarbonyl oder (Ci-C4)Alkylcarbonyl;
RD 3 ist Wasserstoff, (Ci-C4)Alkyl, (C2-C4)Alkenyl oder (C2-C4)Alkinyl; RD4 ist Halogen, Nitro, (Ci-C4)Alkyl, (Ci-C4)Haloalkyl, (Ci-C4)Haloalkoxy, (C3-C6)Cycloalkyl, Phenyl, (Ci-C4)Alkoxy, Cyano, (Ci-C4)Alkylthio, (Ci-C4)Alkylsulfinyl, (Ci-C4)Alkylsulfonyl, (Ci- C4)Alkoxycarbonyl oder (Ci-C4)Alkylcarbonyl;
RD5 ist Wasserstoff, (Ci-C6)Alkyl, (C3-C6)Cycloalkyl, (C2-C6)Alkenyl, (C2-C6)Alkinyl, (C5- C6)Cycloalkenyl, Phenyl oder 3- bis 6-gliedriges Heterocyclyl enthaltend VD Heteroatome aus der Gruppe Stickstoff, Sauerstoff und Schwefel, wobei die sieben letztgenannten Reste durch VD
Substituenten aus der Gruppe Halogen, (Ci-C6)Alkoxy, (Ci-C6)Haloalkoxy, (Ci-C2)Alkylsulfmyl, (Ci- C2)Alkylsulfonyl, (C3-C6)Cycloalkyl, (Ci-C4)Alkoxycarbonyl, (Ci-C4)Alkylcarbonyl und Phenyl und im Falle cyclischer Reste auch (C1-C4) Alkyl und (Ci-C4)Haloalkyl substituiert sind;
RD 6 ist Wasserstoff, (Ci-C6)Alkyl, (CF-GOAlkcnyl oder (C2-C6)Alkinyl, wobei die drei letztgenannten Reste durch VD Reste aus der Gruppe Halogen, Hydroxy, (Ci-C4)Alkyl, (Ci-C4)Alkoxy und (Ci-C4)Alkylthio substituiert sind, oder
RD 5 und RD 6 gemeinsam mit dem dem sie tragenden Stickstoffatom einen Pyrrolidinyl- oder Piperidinyl-Rest bilden;
RD 7 ist Wasserstoff, (Ci-C4)Alkylamino, Di-(Ci-C4)alkylamino, (Ci-C6)Alkyl, (C3-C6)Cycloalkyl, wobei die 2 letztgenannten Reste durch VD Substituenten aus der Gruppe Halogen, (Ci-C4)Alkoxy, (Ci- C6)Haloalkoxy und (Ci-C4)Alkylthio und im Falle cyclischer Reste auch (Ci-C4)Alkyl und
(Ci-C4)Haloalkyl substituiert sind; nD ist 0, 1 oder 2; mD ist 1 oder 2;
VD ist 0, 1, 2 oder 3; davon bevorzugt sind Verbindungen vom Typ der N-Acylsulfonamide, z.B. der nachfolgenden Formel (S4a), die z. B. bekannt sind aus WO-A-97/45016
wonn
RD 7 (Ci-C6)Alkyl, (C3-C6)Cycloalkyl, wobei die 2 letztgenannten Reste durch VD Substituenten aus der Gruppe Halogen, (Ci-C4)Alkoxy, (Ci-C6)Haloalkoxy und (Ci-C4)Alkylthio und im Falle cyclischer Reste auch (Ci-C4)Alkyl und (Ci-C4)Haloalkyl substituiert sind;
RD 4 Halogen, (Ci-C4)Alkyl, (Ci-C4)Alkoxy, CF3; mD 1 oder 2;
VD ist 0, 1 , 2 oder 3 bedeutet; sowie Acylsulfamoylbenzoesäureamide, z.B. der nachfolgenden Formel (S4b), die z.B. bekannt sind aus WO- A-99/16744,
z.B. solche worin RD5 = Cyclopropyl und (RD4) = 2-OMe ist("Cyprosulfamide", S4-1),
RD5 = Cyclopropyl und (RD4) = 5-Cl-2-OMe ist (S4-2),
RD5 = Ethyl und (RD4) = 2-OMe ist(S4-3),
RD5 = Isopropyl und (RD4) = 5-Cl-2-OMe ist (S4-4) und RD5 = Isopropyl und (RD4) = 2-OMe ist(S4-5). sowie
Verbindungen vom Typ der N-Acylsulfamoylphenylhamstoffe der Formel (S4C), die z.B. bekannt sind aus der EP-A-365484,
wonn RD8 und RD9 unabhängig voneinander Wasserstoff, (Ci-Cg)Alkyl, (C3-Cg)Cycloalkyl, (C3-C6)Alkenyl, (C3-C6)Alkinyl,
RD4 Halogen, (Ci-C4)Alkyl, (Ci-C4)Alkoxy, CF3 mD 1 oder 2 bedeutet; beispielsweise l-[4-(N-2-Methoxybenzoylsulfamoyl)phenyl]-3-methylhamstoff,
l-[4-(N-2-Methoxybenzoylsulfamoyl)phenyl]-3,3-dimethylhamstoff,
l-[4-(N-4,5-Dimethylbenzoylsulfamoyl)phenyl]-3-methylhamstoff, sowie N-Phenylsulfonylterephthalamide der Formel (S4d), die z.B. bekannt sind aus CN 101838227,
z.B. solche worin
RD4 Halogen, (Ci-C4)Alkyl, (Ci-C4)Alkoxy, CF3; mD 1 oder 2; Rd 5 Wasserstoff, (Ci-C6)Alkyl, (C3-C6)Cycloalkyl, (C2-C6)Alkenyl, (C2-C6)Alkinyl, (C5- C6)Cycloalkenyl bedeutet.
55) Wirkstoffe aus der Klasse der Hydroxyaromaten und der aromatisch-aliphatischen
Carbonsäurederivate (S5), z.B.
3,4,5-Triacetoxybenzoesäureethylester, 3,5-Dimethoxy-4-hydroxybenzoesäure, 3,5- Dihydroxybenzoesäure, 4-Hydroxysalicylsäure, 4-Fluorsalicyclsäure, 2-Hydroxyzimtsäure, 2,4- Dichlorzimtsäure, wie sie in der WO-A-2004/084631, WO-A-2005/015994, WO-A-2005/016001 beschrieben sind.
56) Wirkstoffe aus der Klasse der l,2-Dihydrochinoxalin-2-one (S6), z.B.
1 -Methyl-3 -(2-thienyl)- 1 ,2-dihydrochinoxalin-2-on, 1 -Methyl-3 -(2-thienyl)- 1 ,2-dihydrochinoxalin-2- thion, l-(2-Aminoethyl)-3-(2-thienyl)-l,2-dihydro-chinoxalin-2-on-hydrochlorid, l-(2- Methylsulfonylaminoethyl)-3-(2-thienyl)-l,2-dihydro-chinoxalin-2-on, wie sie in der WO-A- 2005/112630 beschrieben sind. S7) Verbindungen der Formel (S7),wie sie in der WO-A-1998/38856 beschrieben sind
worin die Symbole und Indizes folgende Bedeutungen haben:
RE1, RE2 sind unabhängig voneinander Halogen, (Ci-C4)Alkyl, (Ci-C i)Alkoxy, (Ci-C i)Haloalkyl, (Ci-C4)Alkylamino, Di-(Ci-C4)Alkylamino, Nitro;
AE ist COORE 3 oder COSRE 4
RE3, RE4 sind unabhängig voneinander Wasserstoff, (Ci-C4)Alkyl, (CF-GOAlkcnyl,
(C2-C4)Alkinyl, Cyanoalkyl, (Ci-C4)Haloalkyl, Phenyl, Nitrophenyl, Benzyl, Halobenzyl, Pyridinylalkyl und Alkylammonium, he1 ist 0 oder 1 he2, he3 sind unabhängig voneinander 0, 1 oder 2, vorzugsweise:
Diphenylmethoxyessigsäure,
Diphenylmethoxyessigsäureethylester,
Diphenylmethoxyessigsäuremethylester (CAS-Reg.Nr. 41858-19-9) (S7-1).
S8) Verbindungen der Formel (S8),wie sie in der WO-A-98/27049 beschrieben sind
wonn
XF CH oder N, nF für den Fall, dass XF=N ist, eine ganze Zahl von 0 bis 4 und für den Fall, dass XF=CH ist, eine ganze Zahl von 0 bis 5 ,
RF 1 Halogen, (Ci-C4)Alkyl, (Ci-C4)Haloalkyl, (Ci-C4)Alkoxy, (Ci-C4)Haloalkoxy, Nitro, (Ci- C4)Alkylthio, (Ci-C4)-Alkylsulfonyl, (Ci-C4)Alkoxycarbonyl, ggf. substituiertes. Phenyl, ggf.
substituiertes Phenoxy,
RF 2 Wasserstoff oder (Ci-C4)Alkyl
RF 3 Wasserstoff, (Ci-Cg)Alkyl, (C2-C4)Alkenyl, (C2-C4)Alkinyl, oder Aryl, wobei jeder der vorgenannten C-haltigen Reste unsubstituiert oder durch einen oder mehrere, vorzugsweise bis zu drei gleiche oder verschiedene Reste aus der Gruppe, bestehend aus Halogen und Alkoxy substituiert ist; bedeuten, oder deren Salze, vorzugsweise Verbindungen worin
XF CH, nF eine ganze Zahl von 0 bis 2 ,
RF 1 Halogen, (Ci-C4)Alkyl, (Ci-C4)Haloalkyl, (Ci-C4)Alkoxy, (Ci-C4)Haloalkoxy, RF 2 Wasserstoff oder (Ci-C4)Alkyl,
RF 3 Wasserstoff, (Ci-Cx)Alkyl, (C2-C4)Alkenyl, (C2-C4)Alkinyl, oder Aryl, wobei jeder der vorgenannten C-haltigen Reste unsubstituiert oder durch einen oder mehrere, vorzugsweise bis zu drei gleiche oder verschiedene Reste aus der Gruppe, bestehend aus Halogen und Alkoxy substituiert ist, bedeuten,
oder deren Salze.
S9) Wirkstoffe aus der Klasse der 3-(5-Tetrazolylcarbonyl)-2-chinolone (S9), z.B.
l,2-Dihydro-4-hydroxy-l-ethyl-3-(5-tetrazolylcarbonyl)-2-chinolon (CAS-Reg.Nr. 219479-18-2), 1,2- Dihydro-4-hydroxy-l-methyl-3-(5-tetrazolyl-carbonyl)-2-chinolon (CAS-Reg.Nr. 95855-00-8), wie sie in der WO-A- 1999/000020 beschrieben sind. S10) Verbindungen der Formeln (Sl0a) oder (Sl0b) wie sie in der WO-A-2007/023719 und WO-A-2007/023764 beschrieben sind worin
RG1 Halogen, (Ci-C4)Alkyl, Methoxy, Nitro, Cyano, CF3, OCF3
YG, ZG unabhängig voneinander O oder S, no eine ganze Zahl von 0 bis 4,
RG2 (Ci-Ci6)Alkyl, (C2-C6)Alkenyl, (C3-C6)Cycloalkyl, Aryl; Benzyl, Halogenbenzyl,
RG3 Wasserstoff oder (Ci-C6)Alkyl bedeutet.
Sl 1) Wirkstoffe vom Typ der Oxyimino- Verbindungen (Sl 1), die als Saatbeizmittel bekannt sind, wie z. B.
"Oxabetrinil" ((Z)-l,3-Dioxolan-2-ylmethoxyimino(phenyl)acetonitril) (Sl l-l), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist,
"Fluxofenim" (l-(4-Chlorphenyl)-2,2,2-trifluor-l-ethanon-0-(l,3-dioxolan-2-ylmethyl)-oxim) (Sl 1-2), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist, und
"Cyometrinil" oder "CGA-43089" ((Z)-Cyanomethoxyimino(phenyl)acetonitril) (Sl l-3), das als Saatbeiz-Safener für Hirse gegen Schäden von Metolachlor bekannt ist.
512) Wirkstoffe aus der Klasse der lsothiochromanone (S12), wie z.B. Methyl- [(3- oxo- 1H-2- benzothiopyran-4(3H)-yliden)methoxy]acetat (CAS-Reg.Nr. 205121-04-6) (S12-1) und verwandte Verbindungen aus WO-A-1998/13361.
513) Eine oder mehrere Verbindungen aus Gruppe (S13): "Naphthalic anhydrid" (l,8-Naphthalindicarbonsäureanhydrid) (S13-1), das als Saatbeiz-Safener für Mais gegen Schäden von Thiocarbamatherbiziden bekannt ist,
"Fenclorim" (4,6-Dichlor-2-phenylpyrimidin) (S13-2), das als Safener für Pretilachlor in gesätem Reis bekannt ist, "Flurazole" (Benzyl-2-chlor-4-trifluormethyl-l,3-thiazol-5-carboxylat) (S13-3), das als Saatbeiz-Safener für Hirse gegen Schäden von Alachlor und Metolachlor bekannt ist,
"CL 304415" (CAS-Reg.Nr. 31541-57-8)
(4-Carboxy-3,4-dihydro-2H-l-benzopyran-4-essigsäure) (S13-4) der Firma American Cyanamid, das als Safener für Mais gegen Schäden von Imidazolinonen bekannt ist,
"MG 191" (CAS-Reg.Nr. 96420-72-3) (2-Dichlormethyl-2-methyl-l,3-dioxolan) (S13-5) der Firma Nitrokemia, das als Safener für Mais bekannt ist,
"MG 838" (CAS-Reg.Nr. 133993-74-5)
(2-propenyl l-oxa-4-azaspiro[4.5]decan-4-carbodithioat) (S13-6) der Firma Nitrokemia, "Disulfoton" (O,O-Diethyl S-2-ethylthioethyl phosphordithioat) (S13-7),
"Dietholate" (O,O-Diethyl-O-phenylphosphorothioat) (St 3-8),
"Mephenate" (4-Chlorphenyl-methylcarbamat) (St 3-9).
St 4) Wirkstoffe, die neben einer herbiziden Wirkung gegen Schadpflanzen auch Safenerwirkung an
Kulturpflanzen wie Reis aufweisen, wie z. B.
"Dimepiperate" oder "MY 93" (Y- 1 -Methyl- 1 -phcnylcthyl-pipcridin- 1 -carbothioat), das als Safener für Reis gegen Schäden des Herbizids Molinate bekannt ist,
"Daimuron" oder "SK 23" (l-(l-Methyl-l-phenylethyl)-3-p-tolyl-hamstoff), das als Safener für Reis gegen Schäden des Herbizids Imazosulfuron bekannt ist,
"Cumyluron" = "JC 940" (3-(2-Chlorphenylmethyl)-l-(l-methyl-l-phenyl-ethyl)hamstoff, siehe JP-A- 60087254), das als Safener für Reis gegen Schäden einiger Herbizide bekannt ist,
"Methoxyphenon" oder "NK 049" (3,3'-Dimethyl-4-methoxy-benzophenon), das als Safener für Reis gegen Schäden einiger Herbizide bekannt ist,
"CSB" (l-Brom-4-(chlormethylsulfonyl)benzol) von Kumiai, (CAS-Reg.Nr. 54091-06-4), das als Safener gegen Schäden einiger Herbizide in Reis bekannt ist. S15) Verbindungen der Formel (S15) oder deren Tautomere
wie sie in der WO-A-2008/131861 und WO-A-2008/131860 beschrieben sind, worin
RH1 einen (Ci-C6)Haloalkylrest bedeutet und RH 2 Wasserstoff oder Halogen bedeutet und
RH 3, RH 4 unabhängig voneinander Wasserstoff, (Ci-Ci6)Alkyl, (C2-Ci6)Alkenyl oder
(C2-Ci6)Alkinyl, wobei jeder der letztgenannten 3 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Hydroxy, Cyano, (Ci-C4)Alkoxy, (Ci-C4)Haloalkoxy, (Ci-C4)Alkylthio,
(Ci-C4)Alkylamino, Di[(Ci-C4)alkyl]-amino, [(Ci-C4)Alkoxy]-carbonyl, [(Ci-C4)Haloalkoxy]-carbonyl, (C3-C6)Cycloalkyl, das unsubstituiert oder substituiert ist, Phenyl, das unsubstituiert oder substituiert ist, und Heterocyclyl, das unsubstituiert oder substituiert ist, substituiert ist, oder (C3-C6)Cycloalkyl, (C4-C6)Cycloalkenyl, (C3-C6)Cycloalkyl, das an einer Seite des Rings mit einem 4 bis 6-gliedrigen gesättigten oder ungesättigten carbocyclischen Ring kondensiert ist, oder (C4-C6)Cycloalkenyl, das an einer Seite des Rings mit einem 4 bis 6-gliedrigen gesättigten oder ungesättigten carbocyclischen Ring kondensiert ist, wobei jeder der letztgenannten 4 Reste unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Hydroxy, Cyano, (Ci-C4)Alkyl, (Ci-C4)Haloalkyl, (Ci-C4)Alkoxy, (Ci-C4)Haloalkoxy, (Ci-C4)Alkylthio, (Ci-C4)Alkylamino, Di[(Ci-C4)alkyl]-amino, [(Ci-c4)Alkoxy]-carbonyl,
[(Ci-C4)Haloalkoxy]-carbonyl, (C3-C6)Cycloalkyl, das unsubstituiert oder substituiert ist, Phenyl, das unsubstituiert oder substituiert ist, und Heterocyclyl, das unsubstituiert oder substituiert ist, substituiert ist, bedeutet oder
RH 3 (Ci-C4)-Alkoxy, (C2-C4)Alkenyloxy, (C2-C6)Alkinyloxy oder (C2-C4)Haloalkoxy bedeutet und RH4 Wasserstoff oder (Ci-C i)-Alkyl bedeutet oder
RH3 und RH4 zusammen mit dem direkt gebundenen N-Atom einen vier- bis achtgliedrigen
heterocyclischen Ring, der neben dem N-Atom auch weitere Heteroringatome, vorzugsweise bis zu zwei weitere Heteroringatome aus der Gruppe N, O und S enthalten kann und der unsubstituiert oder durch einen oder mehrere Reste aus der Gruppe Halogen, Cyano, Nitro, (Ci-C i)Alkyl, (Ci-C i)Haloalkyl, (Ci- C i)Alkoxy, (Ci-C4)Haloalkoxy und (Ci-C4)Alkylthio substituiert ist, bedeutet.
S16) Wirkstoffe, die vorrangig als Herbizide eingesetzt werden, jedoch auch Safenerwirkung auf Kulturpflanzen aufweisen, z.B.
(2,4-Dichlorphenoxy)essigsäure (2,4-D),
(4-Chlorphenoxy)essigsäure,
(R,S)-2-(4-Chlor-o-tolyloxy)propionsäure (Mecoprop),
4-(2,4-Dichlorphenoxy)buttersäure (2,4-DB),
(4-Chlor-o-tolyloxy)essigsäure (MCPA),
4-(4-Chlor-o-tolyloxy)buttersäure,
4-(4-Chlorphenoxy)buttersäure,
3,6-Dichlor-2-methoxybenzoesäure (Dicamba),
l-(Ethoxycarbonyl)ethyl-3,6-dichlor-2-methoxybenzoat (Lactidichlor-ethyl).
Besonders bevorzugte Safener sind Mefenpyr-diethyl, Cyprosulfamid, Isoxadifen-ethyl, Cloquintocet- mexyl und Dichlormid.
Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Tenside ionischer und/oder nichtionischer Art (Netzmittel, Dispergiermittel), z.B. polyoxyethylierte Alkylphenole, polyoxethylierte Fettalkohole, polyoxethylierte Fettamine, Fettalkoholpolyglykolether-sulfate, Alkansulfonate, Alkylbenzolsulfonate,
ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium,
dibutylnaphthalin-sulfonsaures Natrium oder auch oleoylmethyltaurinsaures Natrium enthalten. Zur Herstellung der Spritzpulver werden die herbiziden Wirkstoffe beispielsweise in üblichen Apparaturen wie Hammermühlen, Gebläsemühlen und Luftstrahlmühlen feingemahlen und gleichzeitig oder anschließend mit den Formulierungshilfsmitteln vermischt.
Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel z.B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen oder Mischungen der organischen Lösungsmittel unter Zusatz von einem oder mehreren Tensiden ionischer und/oder nichtionischer Art (Emulgatoren) hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calzium-Salze wie
Ca-Dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepoly-glykolester,
Alkylarylpolyglykolether, F ettalkoholpolyglykolether, Propylenoxid-Ethylen- oxid-Kondensationsprodukte, Alkylpolyether, Sorbitanester wie z.B. Sorbitanfett-säureester oder Polyoxethylensorbitanester wie z.B. Polyoxyethylensorbitan-fettsäureester.
Stäubemittel erhält man durch Vermahlen des Wirkstoffes mit fein verteilten festen Stoffen, z.B.
Talkum, natürlichen Tonen, wie Kaolin, Bentonit und Pyrophyllit, oder Diatomeenerde.
Suspensionskonzentrate können auf Wasser- oder Ölbasis sein. Sie können beispielsweise durch Naß- Vermahlung mittels handelsüblicher Perlmühlen und gegebenenfalls Zusatz von Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, hergestellt werden.
Emulsionen, z.B. Öl-in-Wasser-Emulsionen (EW), lassen sich beispielsweise mittels Rührern,
Kolloidmühlen und/oder statischen Mischern unter Verwendung von wäßrigen organischen
Lösungsmitteln und gegebenenfalls Tensiden, wie sie z.B. oben bei den anderen Formulierungstypen bereits aufgeführt sind, hersteilen.
Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels
Klebemitteln, z.B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die
Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.
Wasserdispergierbare Granulate werden in der Regel nach den üblichen Verfahren wie Sprühtrocknung, Wirbelbett-Granulierung, Teller-Granulierung, Mischung mit Hochgeschwindigkeitsmischem und Extrusion ohne festes Inertmaterial hergestellt.
Zur Herstellung von Teller-, Fließbett-, Extruder- und Sprühgranulate siehe z.B. Verfahren in
"Spray-Drying Handbook" 3rd ed. 1979, G. Goodwin Ltd., London, J.E. Browning, "Agglomeration", Chemical and Engineering 1967, Seiten 147 ff, "Perry's Chemical Engineer's Handbook", 5th Ed., McGraw-Hill, New York 1973, S. 8-57.
Für weitere Einzelheiten zur Formulierung von Pflanzenschutzmitteln siehe z.B. G.C. Klingman, "Weed Control as a Science", John Wiley and Sons, Inc., New York, 1961, Seiten 81-96 und J.D. Freyer, S.A. Evans, "Weed Control Handbook", 5th Ed., Blackwell Scientific Publications, Oxford, 1968, Seiten 101-103.
Die agrochemischen Zubereitungen enthalten in der Regel 0.1 bis 99 Gew.-%, insbesondere 0.1 bis 95 Gew.-%, erfindungsgemäße Verbindungen ln Spritzpulvem beträgt die Wirkstoff-konzentration z.B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 1 bis 90, vorzugsweise 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten 1 bis 30 Gew.-% Wirkstoff, vorzugsweise meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen enthalten etwa 0.05 bis 80, vorzugsweise 2 bis 50 Gew.-% Wirkstoff. Bei wasser-dispergierbaren Granulaten hängt der
Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden. Bei den in Wasser dispergierbaren Granulaten liegt der Gehalt an Wirkstoff beispielsweise zwischen 1 und 95 Gew.-%, vorzugsweise zwischen 10 und 80 Gew.-%.
Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Konservierungs-, Frostschutz- und Lösungsmittel, Füll-, Träger- und Farbstoffe, Entschäumer, Verdunstungshemmer und den pH-Wert und die Viskosität beeinflussende Mittel.
Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, wie z.B. Insektiziden, Akariziden, Herbiziden, Fungiziden, sowie mit Safenern, Düngemitteln und/oder Wachstumsregulatoren hersteilen, z.B. in Form einer Fertigformulierung oder als Tankmix.
Zur Anwendung werden die in handelsüblicher Form vorliegenden Formulierungen gegebenenfalls in üblicher Weise verdünnt z.B. bei Spritzpulvem, emulgierbaren Konzentraten, Dispersionen und wasserdispergierbaren Granulaten mittels Wasser. Staubförmige Zubereitungen, Boden- bzw.
Streugranulate sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.
Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit, der Art des verwendeten Herbizids, u.a. variiert die erforderliche Aufwandmenge der Verbindungen der Formel (I). Sie kann innerhalb weiter Grenzen schwanken, z.B. zwischen 0,001 und 1,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,005 und 750 g/ha.
Trägerstoff bedeutet eine natürliche oder synthetische, organische oder anorganische Substanz, mit welchen die Wirkstoffe zur besseren Anwendbarkeit, v.a. zum Aufbringen auf Pflanzen oder Pflanzenteile oder Saatgut, gemischt oder verbunden sind. Der Trägerstoff, welcher fest oder flüssig sein kann, ist im Allgemeinen inert und sollte in der Landwirtschaft verwendbar sein.
Als feste oder flüssige Trägerstoffe kommen infrage: z.B. Ammoniumsalze und natürliche Gesteins mehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und natürliche oder synthetische Silikate, Harze, Wachse, feste Düngemittel, Wasser, Alkohole, besonders Butanol, organische Solventien, Mineral- und Pflanzenöle sowie Derivate hiervon. Mischungen solcher
Trägerstoffe können ebenfalls verwendet werden. Als feste Trägerstoffe für Granulate kommen infrage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnussschalen, Maiskolben und Tabakstängel.
Als verflüssigte gasförmige Streckmittel oder Trägerstoffe kommen solche Flüssigkeiten infrage, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z.B. Aerosol-Treibgase, wie Halogenkohlenwasserstoffe, sowie Butan, Propan, Stickstoff und Kohlendioxid.
Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabikum,
Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein
lm Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im Wesentlichen infrage: Aromaten, wie Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Dichlormethan, aliphatische Kohlenwasser stoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle,
Alkohole, wie Butanol oder Glykol sowie deren Ether und Ester, Ketone, wie Aceton, Methyl- ethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel wie Dimethyl formamid und Dimethylsulfoxid, sowie Wasser.
Die erfindungsgemäßen Mittel können zusätzlich weitere Bestandteile enthalten, wie z.B.
oberflächenaktive Stoffe. Als oberflächenaktive Stoffe kommen Emulgier- und/oder Schaum erzeugende Mittel, Dispergiermittel oder Benetzungsmittel mit ionischen oder nicht-ionischen
Eigenschaften oder Mischungen dieser oberflächenaktiven Stoffe infrage. Beispiele hierfür sind Salze von Polyacrylsäure, Salze von Lignosulphonsäure, Salze von Phenolsulphonsäure oder
Naphthalinsulphonsäure, Polykondensate von Ethylenoxid mit Fettalkoholen oder mit Fettsäuren oder mit Fettaminen, substituierten Phenolen (vorzugsweise Alkylphenole oder Arylphenole), Salze von Sulphobemsteinsäureestem, Taurinderivate (vorzugsweise Alkyltaurate), Phosphorsäureester von polyethoxylierten Alkoholen oder Phenole, Fettsäureester von Polyolen, und Derivate der Verbindungen enthaltend Sulphate, Sulphonate und Phosphate, z.B. Alkylarylpolyglycolether, Alkylsulfonate, Alkyl sulfate, Arylsulfonate, Eiweißhydrolysate, Lignin- Sulfitablaugen und Methylcellulose. Die Anwesenheit einer oberflächenaktiven Substanz ist notwendig, wenn einer der Wirkstoff und/oder einer der inerten Trägerstoffe nicht in Wasser löslich ist und wenn die Anwendung in Wasser erfolgt. Der Anteil an oberflächenaktiven Stoffen liegt zwischen 5 und 40 Gewichtsprozent des erfindungsgemäßen Mittels.
Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.
Gegebenenfalls können auch andere zusätzliche Komponenten enthalten sein, z.B. schützende Kolloide, Bindemittel, Klebstoffe, Verdicker, thixotrope Stoffe, Penetrationsförderer, Stabilisatoren,
Sequestiermittel, Komplexbildner. Im Allgemeinen können die Wirkstoffe mit jedem festen oder flüssigen Additiv, welches für Formulierungszwecke gewöhnlich verwendet wird, kombiniert werden. Im Allgemeinen enthalten die erfindungsgemäßen Mittel und Formulierungen zwischen 0,05 und 99 Gew.-%, 0,01 und 98 Gew.-%, vorzugsweise zwischen 0,1 und 95 Gew.-%, besonders bevorzugt zwischen 0,5 und 90 % Wirkstoff, ganz besonders bevorzugt zwischen 10 und 70 Gewichtsprozent. Die erfindungsgemäßen Wirkstoffe bzw. Mittel können als solche oder in Abhängigkeit von ihren je weiligen physikalischen und/oder chemischen Eigenschaften in Form ihrer Formulierungen oder den daraus bereiteten Anwendungsformen, wie Aerosole, Kapselsuspensionen, Kaltnebelkonzentrate, Heißnebelkonzentrate, verkapselte Granulate, Feingranulate, fließfähige Konzentrate für die
Behandlung von Saatgut, gebrauchsfertige Lösungen, verstäubbare Pulver, emulgierbare Konzentrate, Öl-in-Wasser-Emulsionen, Wasser-in-Öl-Emulsionen, Makrogranulate, Mikrogranulate, Öl dispergierbare Pulver, Öl mischbare fließfähige Konzentrate, Öl mischbare Flüssigkeiten, Schäume, Pasten, Pestizid ummanteltes Saatgut, Suspensionskonzentrate, Suspensions-Emulsions-Konzentrate, lösliche Konzentrate, Suspensionen, Spritzpulver, lösliche Pulver, Stäubemittel und Granulate, wasser lösliche Granulate oder Tabletten, wasserlösliche Pulver für Saatgut-behandlung, benetzbare Pulver, Wirkstoff-imprägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt- und Warmnebel-Formulierungen eingesetzt werden.
Die genannten Formulierungen können in an sich bekannter Weise hergestellt werden, z.B. durch Ver mischen der Wirkstoffe mit mindestens einem üblichen Streckmittel, Lösungs- bzw. Verdünnungs mittel, Emulgator, Dispergier- und/oder Binde- oder Fixiermittels, Netzmittel, Wasser-Repellent, gegebenenfalls Sikkative und UV-Stabilisatoren und gegebenenfalls Farbstoffen und Pigmenten, Entschäumer, Konservierungsmittel, sekundäre Verdickungsmittel, Kleber, Gibberelline sowie weiteren V erarbeitungshilfsmittein. Die erfindungsgemäßen Mittel umfassen nicht nur Formulierungen, welche bereits anwendungsfertig sind und mit einer geeigneten Apparatur auf die Pflanze oder das Saatgut ausgebracht werden können, sondern auch kommerzielle Konzentrate, welche vor Gebrauch mit Wasser verdünnt werden müssen. Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren (handelsüblichen) Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen (bekannten) Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Bakteriziden, Akariziden, Nema- tiziden, Fungiziden, Wachstumsregulatoren, Herbiziden, Düngemitteln, Safener bzw. Semiochemicals vorliegen.
Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen bzw. Mitteln erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, (Ver-) Spritzen, (Ver-) Sprühen, Berieseln, Verdampfen, Zerstäuben, Vernebeln, (Ver-) Streuen, Verschäumen, Bestreichen, Verstreichen, Gießen (drenchen), Tröpfchenbewässerung und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch Trockenbeizen, Nassbeizen, Schlämmbeizen, Inkrustieren, ein- oder mehrschichtiges Umhüllen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low- Volume- Verfahren auszubringen oder die Wirkstoffzubereitung oder den Wirkstoff selbst in den Boden zu injizieren.
Wie auch weiter unten beschrieben, ist die Behandlung von transgenem Saatgut mit den erfindungsge mäßen Wirkstoffen bzw. Mitteln von besonderer Bedeutung. Dies betrifft das Saatgut von Pflanzen, die wenigstens ein heterologes Gen enthalten, das die Expression eines Polypeptids oder Proteins mit insektiziden Eigenschaften ermöglicht. Das heterologe Gen in transgenem Saatgut kann z.B. aus Mikroorganismen der Arten Bacillus, Rhizobium, Pseudomonas, Serratia, Trichoderma, Clavibacter, Glomus oder Gliocladium stammen. Bevorzugt stammt dieses heterologe Gen aus Bacillus sp., wobei das Genprodukt eine Wirkung gegen den Maiszünsler (European com borer) und/oder Western Com Rootworm besitzt. Besonders bevorzugt stammt das heterologe Gen aus Bacillus thuringiensis.
Im Rahmen der vorliegenden Erfindung wird das erfindungsgemäße Mittel alleine oder in einer geeig neten Formulierung auf das Saatgut aufgebracht. Vorzugsweise wird das Saatgut in einem Zustand behandelt, in dem so stabil ist, dass keine Schäden bei der Behandlung auftreten. Im Allgemeinen kann die Behandlung des Saatguts zu jedem Zeitpunkt zwischen der Ernte und der Aussaat erfolgen.
Üblicherweise wird Saatgut verwendet, das von der Pflanze getrennt und von Kolben, Schalen, Stängeln, Hülle, Wolle oder Fruchtfleisch befreit wurde. So kann zum Beispiel Saatgut verwendet werden, das geerntet, gereinigt und bis zu einem Feuchtigkeitsgehalt von unter 15 Gew.-% getrocknet wurde. Alternativ kann auch Saatgut verwendet werden, das nach dem Trocknen z.B. mit Wasser behandelt und dann erneut getrocknet wurde. Im Allgemeinen muss bei der Behandlung des Saatguts darauf geachtet werden, dass die Menge des auf das Saatgut aufgebrachten erfindungsgemäßen Mittels und/oder weiterer Zusatzstoffe so gewählt wird, dass die Keimung des Saatguts nicht beeinträchtigt bzw. die daraus hervorgehende Pflanze nicht geschädigt wird. Dies ist vor allem bei Wirkstoffen zu beachten, die in bestimmten Aufwandmengen phytotoxische Effekte zeigen können.
Die erfindungsgemäßen Mittel können unmittelbar aufgebracht werden, also ohne weitere
Komponenten zu enthalten und ohne verdünnt worden zu sein. In der Regel ist es vorzuziehen, die Mittel in Form einer geeigneten Formulierung auf das Saatgut aufzubringen. Geeignete Formulierungen und Verfahren für die Saatgutbehandlung sind dem Fachmann bekannt und werden z.B. in den folgenden Dokumenten beschrieben: US 4,272,417 A, US 4,245,432 A, US 4,808,430, US 5,876,739, US 2003/0176428 Al, WO 2002/080675 Al, WO 2002/028186 A2.
Die erfindungsgemäßen Wirkstoffe können in die üblichen Beizmittel-Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Slurries oder andere Hüllmassen für Saatgut, sowie ULV-Formulierungen.
Diese Formulierungen werden in bekannter Weise hergestellt, indem man die Wirkstoffe mit üblichen Zusatzstoffen vermischt, wie zum Beispiel übliche Streckmittel sowie Lösungs- oder
Verdünnungsmittel, Farbstoffe, Netzmittel, Dispergiermittel, Emulgatoren, Entschäumer, Konser vierungsmittel, sekundäre Verdickungsmittel, Kleber, Gibberelline und auch Wasser.
Als Farbstoffe, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle für derartige Zwecke üblichen Farbstoffe in Betracht. Dabei sind sowohl in Wasser wenig lösliche Pigmente als auch in Wasser lösliche Farbstoffe verwendbar. Als Beispiele genannt seien die unter den Bezeichnungen Rhodamin B, C.I. Pigment Red 112 und C.I. Solvent Red 1 bekannten Farbstoffe.
Als Netzmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen Wirkstoffen üblichen, die Benetzung fördernden Stoffe in Frage. Vorzugsweise verwendbar sind Alkylnaphthalin- Sulfonate, wie Diiso- propyl- oder Diisobutyl-naphthalin-Sulfonate.
Als Dispergiermittel und/oder Emulgatoren, die in den erfindungsgemäß verwendbaren Beizmittel- Formulierungen enthalten sein können, kommen alle zur Formulierung von agrochemischen
Wirkstoffen üblichen nichtionischen, anionischen und kationischen Dispergiermittel in Betracht. Vor zugsweise verwendbar sind nichtionische oder anionische Dispergiermittel oder Gemische von nichtionischen oder anionischen Dispergiermitteln. Als geeignete nichtionische Dispergiermittel sind insbesondere Ethylenoxid-Propylenoxid Blockpolymere, Alkylphenolpolyglykolether sowie Tristryryl- phenolpolyglykolether und deren phosphatierte oder sulfatierte Derivate zu nennen. Geeignete anionische Dispergiermittel sind insbesondere Ligninsulfonate, Polyacrylsäuresalze und Arylsulfonat- Formaldehydkondensate.
Als Entschäumer können in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen alle zur Formulierung von agrochemischen Wirkstoffen üblichen schaumhemmenden Stoffe enthalten sein. Vorzugsweise verwendbar sind Silikonentschäumer und Magnesiumstearat.
Als Konservierungsmittel können in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe vorhanden sein. Beispielhaft genannt seien Dichlorophen und Benzylalkoholhemiformal.
Als sekundäre Verdickungsmittel, die in den erfindungsgemäß verwendbaren Beizmittel-Formu- lierungen enthalten sein können, kommen alle für derartige Zwecke in agrochemischen Mitteln einsetzbaren Stoffe in Frage. Vorzugsweise in Betracht kommen Cellulosederivate, Acrylsäurederivate, Xanthan, modifizierte Tone und hochdisperse Kieselsäure.
Als Kleber, die in den erfindungsgemäß verwendbaren Beizmittel-Formulierungen enthalten sein können, kommen alle üblichen in Beizmitteln einsetzbaren Bindemittel in Frage. Vorzugsweise genannt seien Polyvinylpyrrolidon, Polyvinylacetat, Polyvinylalkohol und Tylose.
Die erfindungsgemäß verwendbaren Beizmittel-Formulierungen können entweder direkt oder nach vor herigem Verdünnen mit Wasser zur Behandlung von Saatgut der verschiedensten Art, auch von Saatgut transgener Pflanzen, eingesetzt werden. Dabei können im Zusammenwirken mit den durch Expression gebildeten Substanzen auch zusätzliche synergistische Effekte auftreten.
Zur Behandlung von Saatgut mit den erfindungsgemäß verwendbaren Beizmittel-Formulierungen oder den daraus durch Zugabe von Wasser hergestellten Zubereitungen kommen alle üblicherweise für die Beizung einsetzbaren Mischgeräte in Betracht lm einzelnen geht man bei der Beizung so vor, dass man das Saatgut in einen Mischer gibt, die jeweils gewünschte Menge an Beizmittel-Formulierungen entweder als solche oder nach vorherigem Verdünnen mit Wasser hinzufügt und bis zur gleichmäßigen Verteilung der Formulierung auf dem Saatgut mischt. Gegebenenfalls schließt sich ein Trocknungs vorgang an.
Die erfindungsgemäßen Wirkstoffe eignen sich bei guter Pflanzenverträglichkeit, günstiger
Warmblütertoxizität und guter Umweltverträglichkeit zum Schutz von Pflanzen und Pflanzenorganen, zur Steigerung der Emteerträge, Verbesserung der Qualität des Emtegutes. Sie können vorzugsweise als Pflanzenschutzmittel eingesetzt werden. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam.
Als Pflanzen, welche erfindungsgemäß behandelt werden können, seien folgende Hauptanbaupflanzen erwähnt: Mais, Sojabohne, Baumwolle, Brassica Ölsaaten wie Brassica napus (z.B. Canola), Brassica rapa, B. juncea (z.B. (Acker-)Senf) und Brassica carinata, Reis, Weizen Zuckerrübe, Zurckerrohr,
Hafer, Roggen, Gerste, Hirse, Triticale, Flachs, Wein und verschiedene Früchte und Gemüse von verschiedenen botanischen Taxa wie z.B. Rosaceae sp. (beispielsweise Kernfrüchte wie Apfel und Birne, aber auch Steinfrüchte wie Aprikosen, Kirschen, Mandeln und Pfirsiche und Beerenfrüchte wie Erdbeeren), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., Anacardiaceae sp., Fagaceae sp., Moraceae sp., Oleaceae sp., Actinidaceae sp., Lauraceae sp., Musaceae sp. (beispielsweise
Bananenbäume und -plantagen), Rubiaceae sp. (beispielsweise Kaffee), Theaceae sp., Sterculiceae sp., Rutaceae sp. (beispielsweise Zitronen, Organen und Grapefruit); Solanaceae sp. (beispielsweise Tomaten, Kartoffeln, Pfeffer, Auberginen), Liliaceae sp., Compositae sp. (beispielsweise Salat, Artischocke and Chicoree - einschließlich Wurzelchicoree, Endivie oder gemeinen Chicoree), Umbelliferae sp. (beispielsweise Karrotte, Petersilie, Stangensellerie und Knollensellerie),
Cucurbitaceae sp. (beispielsweise Gurke - einschließlich Gewürzgurke, Kürbis, Wassermelone, Flaschenkürbis und Melonen), Alliaceae sp. (beispielsweise Lauch und Zwiebel), Cruciferae sp.
(beispielsweise Weißkohl, Rotkohl, Brokkoli, Blumenkohl, Rosenkohl, Pak Choi, Kohlrabi,
Radieschen, Meerrettich, Kresse und Chinakohl), Leguminosae sp. (beispielsweise Erdnüsse, Erbsen, und Bohnen - wie z.B. Stangenbohne und Ackerbohne), Chenopodiaceae sp. (beispielsweise Mangold, Futterrübe, Spinat, Rote Rübe), Malvaceae (beispielsweise Okra), Asparagaceae (beispielsweise Spargel); Nutzpflanzen und Zierpflanzen in Garten und Wald; sowie jeweils genetisch modifizierte Arten dieser Pflanzen.
Wie oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetically Modified Organisms) und deren Teile behandelt. Der Begriff„Teile“ bzw.„Teile von Pflanzen“ oder„Pflanzenteile“ wurde oben erläutert. Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen
Eigenschaften („Traits“), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombinante DNA-Techniken gezüchtet worden sind. Dies können Sorten, Rassen, Bio- und
Genotypen sein.
Das erfindungsgemäße Behandlungsverfahren kann für die Behandlung von genetisch modifizierten Organismen (GMOs), z. B. Pflanzen oder Samen, verwendet werden. Genetisch modifizierte Pflanzen (oder transgene Pflanzen) sind Pflanzen, bei denen ein heterologes Gen stabil in das Genom integriert worden ist. Der Begriff "heterologes Gen" bedeutet im wesentlichen ein Gen, das außerhalb der Pflanze bereitgestellt oder assembliert wird und das bei Einführung in das Zellkemgenom, das
Chloropiastengenom oder das Mitochondriengenom der transformierten Pflanze dadurch neue oder verbesserte agronomische oder sonstige Eigenschaften verleiht, dass es ein interessierendes Protein oder Polypeptid exprimiert oder dass es ein anderes Gen, das in der Pflanze vorliegt bzw. andere Gene, die in der Pflanze vorliegen, herunterreguliert oder abschaltet (zum Beispiel mittels Antisense-Technologie, Cosuppressionstechnologie oder RNAi-Technologie [RNA Interference]). Ein heterologes Gen, das im Genom vorliegt, wird ebenfalls als Transgen bezeichnet. Ein Transgen, das durch sein spezifisches Vorliegen im Pflanzengenom definiert ist, wird als Transformations- bzw. transgenes Event bezeichnet.
In Abhängigkeit von den Pflanzenarten oder Pflanzensorten, ihrem Standort und ihren
Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) kann die erfindungsgemäße Behandlung auch zu überadditiven ("synergistischen") Effekten führen. So sind zum Beispiel die folgenden Effekte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen: verringerte Aufwandmengen und/oder erweitertes Wirkungsspektrum und/oder erhöhte Wirksamkeit der Wirkstoffe und Zusammensetzungen, die erfindungsgemäß eingesetzt werden können, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegenüber
Trockenheit oder Wasser- oder Bodensalzgehalt, erhöhte Blühleistung, Emteerleichterung,
Reifebeschleunigung, höhere Erträge, größere Früchte, größere Pflanzenhöhe, intensiver grüne Farbe des Blatts, frühere Blüte, höhere Qualität und/oder höherer Nährwert der Emteprodukte, höhere Zuckerkonzentration in den Früchten, bessere Lagerfähigkeit und/oder Verarbeitbarkeit der
Emteprodukte.
Zu Pflanzen und Pflanzensorten, die vorzugsweise erfindungsgemäß behandelt werden, zählen alle Pflanzen, die über Erbgut verfügen, das diesen Pflanzen besonders vorteilhafte, nützliche Merkmale verleiht (egal, ob dies durch Züchtung und/oder Biotechnologie erzielt wurde).
Beispiele für Nematoden-resistente Pflanzen sind z.B. folgenden US Patentanmeldungen beschrieben: 11/765,491, 11/765,494, 10/926,819, 10/782,020, 12/032,479, 10/783,417, 10/782,096, 11/657,964, 12/192,904, 11/396,808, 12/166,253, 12/166,239, 12/166,124, 12/166,209, 11/762,886, 12/364,335, 11/763,947, 12/252,453, 12/209,354, 12/491,396 und 12/497,221. Pflanzen, die erfindungsgemäß behandelt werden können, sind Hybridpflanzen, die bereits die
Eigenschaften der Heterosis bzw. des Hybrideffekts exprimieren, was im Allgemeinen zu höherem Ertrag, höherer Wüchsigkeit, besserer Gesundheit und besserer Resistenz gegen biotische und abiotische Stressfaktoren führt. Solche Pflanzen werden typischerweise dadurch erzeugt, dass man eine ingezüchtete pollensterile Eltemlinie (den weiblichen Kreuzungspartner) mit einer anderen
ingezüchteten pollenfertilen Eltemlinie (dem männlichen Kreuzungspartner) kreuzt. Das Hybridsaatgut wird typischerweise von den pollensterilen Pflanzen geerntet und an Vermehrer verkauft. Pollensterile Pflanzen können manchmal (z. B. beim Mais) durch Entfahnen (d.h. mechanischem Entfernen der männlichen Geschlechtsorgane bzw. der männlichen Blüten), produziert werden; es ist jedoch üblicher, dass die Pollensterilität auf genetischen Determinanten im Pflanzengenom beruht. In diesem Fall, insbesondere dann, wenn es sich bei dem gewünschten Produkt, da man von den Hybridpflanzen ernten will, um die Samen handelt, ist es üblicherweise günstig, sicherzustellen, dass die Pollenfertilität in Hybridpflanzen, die die für die Pollensterilität verantwortlichen genetischen Determinanten enthalten, völlig restoriert wird. Dies kann erreicht werden, indem sichergestellt wird, dass die männlichen Kreuzungspartner entsprechende Fertilitätsrestorergene besitzen, die in der Lage sind, die Pollenfertilität in Hybridpflanzen, die die genetischen Determinanten, die für die Pollensterilität verantwortlich sind, enthalten, zu restorieren. Genetische Determinanten für Pollensterilität können im Cytoplasma lokalisiert sein. Beispiele für cytoplasmatische Pollensterilität (CMS) wurden zum Beispiel für Brassica- Arten beschrieben. Genetische Determinanten für Pollensterilität können jedoch auch im Zellkemgenom lokalisiert sein. Pollensterile Pflanzen können auch mit Methoden der pflanzlichen Biotechnologie, wie Gentechnik, erhalten werden. Ein besonders günstiges Mittel zur Erzeugung von pollensterilen Pflanzen ist in WO 89/10396 beschrieben, wobei zum Beispiel eine Ribonuklease wie eine Bamase selektiv in den Tapetumzellen in den Staubblättern exprimiert wird. Die Fertilität kann dann durch Expression eines Ribonukleasehemmers wie Barstar in den Tapetumzellen restoriert werden.
Pflanzen oder Pflanzensorten (die mit Methoden der Pflanzenbiotechnologie, wie der Gentechnik, erhalten werden), die erfindungsgemäß behandelt werden können, sind herbizidtolerante Pflanzen, d. h. Pflanzen, die gegenüber einem oder mehreren vorgegebenen Herbiziden tolerant gemacht worden sind. Solche Pflanzen können entweder durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solch eine Herbizidtoleranz verleiht, erhalten werden.
Herbizidtolerante Pflanzen sind zum Beispiel glyphosatetolerante Pflanzen, d. h. Pflanzen, die gegenüber dem Herbizid Glyphosate oder dessen Salzen tolerant gemacht worden sind. Pflanzen können mit verschiedenen Methoden tolerant gegenüber Glyphosate gemacht werden. So können zum Beispiel glyphosatetolerante Pflanzen durch Transformation der Pflanze mit einem Gen, das für das Enzym 5- Enolpyruvylshikimat-3-phosphatsynthase (EPSPS) kodiert, erhalten werden. Beispiele für solche EPSPS-Gene sind das AroA-Gen (Mutante CT7) des Bakterium Salmonella typhimurium (Comai et al., 1983, Science 221, 370-371), das CP4-Gen des Bakteriums Agrobacterium sp. (Barry et al., 1992, Curr. Topics Plant Physiol. 7, 139-145), die Gene, die für eine EPSPS aus der Petunie (Shah et al., 1986, Science 233, 478-481), für eine EPSPS aus der Tomate (Gasser et al., 1988, J. Biol. Chem. 263, 4280- 4289) oder für eine EPSPS aus Eleusine (WO 01/66704) kodieren. Es kann sich auch um eine mutierte EPSPS handeln. Glyphosate-tolerante Pflanzen können auch dadurch erhalten werden, dass man ein Gen exprimiert, das für ein Glyphosate-Oxidoreduktase-Enzym kodiert. Glyphosate-tolerante Pflanzen können auch dadurch erhalten werden, dass man ein Gen exprimiert, das für ein Glyphosate- acetyltransferase-Enzym kodiert. Glyphosatetolerante Pflanzen können auch dadurch erhalten werden, dass man Pflanzen, die natürlich vorkommende Mutationen der oben erwähnten Gene enthalten, selektiert. Pflanzen, die EPSPS Gene, welche Glyphosate-Toleranz verleihen, exprimieren, sind beschrieben. Pflanzen, welche andere Gene, die Glyphosate-Toleranz verleihen, z.B. Decarboxylase- Gene, sind beschrieben.
Sonstige herbizidresistente Pflanzen sind zum Beispiel Pflanzen, die gegenüber Herbiziden, die das Enzym Glutaminsynthase hemmen, wie Bialaphos, Phosphinotricin oder Glufosinate, tolerant gemacht worden sind. Solche Pflanzen können dadurch erhalten werden, dass man ein Enzym exprimiert, das das Herbizid oder eine Mutante des Enzyms Glutaminsynthase, das gegenüber Hemmung resistent ist, entgiftet. Solch ein wirksames entgiftendes Enzym ist zum Beispiel ein Enzym, das für ein
Phosphinotricin-acetyltransferase kodiert (wie zum Beispiel das bar- oder pat-Protein aus Streptomyces- Arten). Pflanzen, die eine exogene Phosphinotricin-acetyltransferase exprimieren, sind beschrieben.
Weitere herbizidtolerante Pflanzen sind auch Pflanzen, die gegenüber den Herbiziden, die das Enzym Hydroxyphenylpyruvatdioxygenase (HPPD) hemmen, tolerant gemacht worden sind. Bei den
Hydroxyphenylpyruvatdioxygenasen handelt es sich um Enzyme, die die Reaktion, in der para- Hydroxyphenylpyruvat (HPP) zu Homogentisat umgesetzt wird, katalysieren. Pflanzen, die gegenüber HPPD-Hemmern tolerant sind, können mit einem Gen, das für ein natürlich vorkommendes resistentes HPPD-Enzym kodiert, oder einem Gen, das für ein mutiertes oder chimäres HPPD-Enzym kodiert, transformiert werden, wie in WO 96/38567, WO 99/24585, WO 99/24586, WO 2009/144079, WO 2002/046387 oder US 6,768,044 beschrieben. Eine Toleranz gegenüber HPPD-Hemmern kann auch dadurch erzielt werden, dass man Pflanzen mit Genen transformiert, die für gewisse Enzyme kodieren, die die Bildung von Homogentisat trotz Hemmung des nativen HPPD-Enzyms durch den HPPD- Hemmer ermöglichen. Solche Pflanzen sind in WO 99/34008 und WO 02/36787 beschrieben. Die Toleranz von Pflanzen gegenüber HPPD-Hemmern kann auch dadurch verbessert werden, dass man Pflanzen zusätzlich zu einem Gen, das für ein HPPD-tolerantes Enzym kodiert, mit einem Gen transformiert, das für ein Prephenatdehydrogenase-Enzym kodiert, wie in WO 2004/024928 beschrieben ist. Außerdem können Pflanzen noch toleranter gegen HPPD-Hemmern gemacht werden, indem man ein Gen in ihr Genom einfügt, welches für ein Enzym kodiert, das HPPD-Hemmer metabolisiert oder abbaut, wie z.B. CYP450 Enzyme (siehe WO 2007/103567 und WO 2008/150473).
Weitere herbizidresistente Pflanzen sind Pflanzen, die gegenüber Acetolactatsynthase (ALS)-Hemmem tolerant gemacht worden sind. Zu bekannten ALS-Hemmern zählen zum Beispiel Sulfonylharnstoff, Imidazolinon, Triazolopyrimidine, Pyrimidinyloxy(thio)benzoate und/oder Sulfonylaminocarbonyl- triazolinon-Herbizide. Es ist bekannt, dass verschiedene Mutationen im Enzym ALS (auch als
Acetohydroxysäure-Synthase, AHAS, bekannt) eine Toleranz gegenüber unterschiedlichen Herbiziden bzw. Gruppen von Herbiziden verleihen wie z.B. in Tranel und Wright (Weed Science 2002, 50, 700- 712) beschrieben ist. Die Herstellung von sulfonylhamstofftoleranten Pflanzen und
imidazolinontoleranten Pflanzen ist beschrieben. Weitere Sulfonylharnstoff- und imidazolinontolerante Pflanzen sind auch beschrieben.
Weitere Pflanzen, die gegenüber Imidazolinonen und/oder Sulfonylharnstoffen tolerant sind, können durch induzierte Mutagenese, Selektion in Zellkulturen in Gegenwart des Herbizids oder durch Mutationszüchtung erhalten werden (vgl. z.B. für Sojabohne US 5,084,082, für Reis WO 97/41218, für Zuckerrübe US 5,773,702 und WO 99/057965, für Salat US 5,198,599 oder für Sonnenblume WO 01/065922).
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind gegenüber abiotischen Stressfaktoren tolerant. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solch eine Stressresistenz verleiht, erhalten werden. Zu besonders nützlichen Pflanzen mit Stresstoleranz zählen folgende:
a. Pflanzen, die ein Transgen enthalten, das die Expression und/oder Aktivität des Gens für die Poly(ADP-ribose)polymerase (PARP) in den Pflanzenzellen oder Pflanzen zu reduzieren vermag.
b. Pflanzen, die ein stresstoleranzfÖrdemdes Transgen enthalten, das die Expression und/oder Aktivität der für PARG kodierenden Gene der Pflanzen oder Pflanzenzellen zu reduzieren vermag;
c. Pflanzen, die ein stresstoleranzfÖrdemdes Transgen enthalten, das für ein in Pflanzen funktionelles Enzym des Nicotinamidadenindinukleotid-Salvage-Biosynthesewegs kodiert, darunter Nicotinamidase, Nicotinatphosphoribosyltransferase, Nicotinsäuremononukleotidadenyltransferase, Nicotinamidadenindinu- kleotidsynthetase oder Nicotinamidphosphoribosyltransferase.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, weisen eine veränderte Menge, Qualität und/oder Lagerfähigkeit des Emteprodukts und/oder veränderte Eigenschaften von bestimmten Bestandteilen des Emteprodukts auf, wie zum Beispiel: 1) Transgene Pflanzen, die eine modifizierte Stärke synthetisieren, die bezüglich ihrer chemisch-physi kalischen Eigenschaften, insbesondere des Amylosegehalts oder des Amylose/Amylopektin-Verhältnisses, des Verzweigungsgrads, der durchschnittlichen Kettenlänge, der Verteilung der Seitenketten, des
Viskositätsverhaltens, der Gelfestigkeit, der Stärkekomgröße und/oder Stärkekommorphologie im Vergleich mit der synthetisierten Stärke in Wildtyppflanzenzellen oder -pflanzen verändert ist, so dass sich diese modifizierte Stärke besser für bestimmte Anwendungen eignet.
2) Transgene Pflanzen, die Nichtstärkekohlenhydratpolymere synthetisieren, oder
Nichtstärkekohlenhydratpolymere, deren Eigenschaften im Vergleich zu Wildtyppflanzen ohne genetische Modifikation verändert sind. Beispiele sind Pflanzen, die Polyfructose, insbesondere des Inulin- und Levantyps, produzieren, Pflanzen, die alpha-l,4-Glucane produzieren, Pflanzen, die alpha- l,6-verzweigte alpha-l,4-Glucane produzieren und Pflanzen, die Alteman produzieren.
3) Transgene Pflanzen, die Hyaluronan produzieren.
4) Transgene Pflanzen oder Hybridpflanzen wie Zwiebeln mit bestimmten Eigenschaften wie „hohem Anteil an löslichen Feststoffen“ (,high soluble solids content’), geringe Schärfe (,low pungency’, LP) und/oder lange Lagerfähigkeit (,long storage’, LS).
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie
Baumwollpflanzen mit veränderten Fasereigenschaften. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Fasereigenschaften verleiht, erhalten werden; dazu zählen:
a) Pflanzen wie Baumwollpflanzen, die eine veränderte Form von Cellulosesynthasegenen enthalten,
b) Pflanzen wie Baumwollpflanzen, die eine veränderte Form von rsw2- oder rsw3 -homologen Nukleinsäuren enthalten, wie Baumwollpflanzen mit einer erhöhten Expression der Saccharosephosphatsyn- thase;
c) Pflanzen wie Baumwollpflanzen mit einer erhöhten Expression der Saccharosesynthase;
d) Pflanzen wie Baumwollpflanzen bei denen der Zeitpunkt der Durchlaßsteuerung der Plasmodesmen an der Basis der Faserzelle verändert ist, z. B. durch Herunterregulieren der faserselektiven ß-l,3-Glucanase; e) Pflanzen wie Baumwollpflanzen mit Fasern mit veränderter Reaktivität, z. B. durch Expression des N-Acetylglucosamintransferasegens, darunter auch nodC, und von Chitinsynthasegenen.
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Raps oder verwandte Brassica-Pflanzen mit veränderten Eigenschaften der Ölzusammensetzung. Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Öleigenschaften verleiht, erhalten werden; dazu zählen:
a) Pflanzen wie Rapspflanzen, die Öl mit einem hohen Ölsäuregehalt produziere; b) Pflanzen wie Rapspflanzen, die Öl mit einem niedrigen Linolensäuregehalt produzieren.
c) Pflanzen wie Rapspflanzen, die Öl mit einem niedrigen gesättigten Fettsäuregehalt produzieren. Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten werden können), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Kartoffeln, welche Virus-resistent sind z.B. gegen den Kartoffelvirus Y (Event SY230 und SY233 von Tecnoplant, Argentinien), oder welche resistent gegen Krankheiten wie die Kraut- und Knollenfäule (potato late blight) (z.B. RB Gen), oder welche eine verminderte kälteinduzierte Süße zeigen (welche die Gene Nt-Inh, II-INV tragen) oder welche den Zwerg-Phänotyp zeigen (Gen A-20 Oxidase).
Pflanzen oder Pflanzensorten (die nach Methoden der pflanzlichen Biotechnologie, wie der Gentechnik, erhalten wurden), die ebenfalls erfindungsgemäß behandelt werden können, sind Pflanzen wie Raps oder verwandte Brassica-Pflanzen mit veränderten Eigenschaften im Samenausfall (seed shattering). Solche Pflanzen können durch genetische Transformation oder durch Selektion von Pflanzen, die eine Mutation enthalten, die solche veränderten Eigenschaften verleihen, und umfassen Pflanzen wie Raps mit verzögertem oder vermindertem Samenausfall.
Besonders nützliche transgene Pflanzen, die erfindungsgemäß behandelt werden können, sind Pflanzen mit Transformationsevents oder Kombinationen von Transformationsevent, welche in den USA beim Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) Gegenstand von erteilten oder anhängigen Petitionen für den nicht-regulierten Status sind. Die Information hierzu ist jederzeit beim APHIS (4700 River Road Riverdale, MD 20737, USA) erhältlich, z.B. über die Intemetseite http://www.aphis.usda.gov/brs/not_reg.html. Am Anmeldetag dieser
Anmeldung waren beim APHIS die Petitionen mit folgenden Informationen entweder erteilt oder anhängig:
- Petition: Identifikationsnummer der Petition. Die Technische Beschreibung des Transformations events kann im einzelnen Petitionsdokument erhältlich von APHIS auf der Website über die Petitionsnummer gefunden werden. Diese Beschreibungen sind hiermit per Referenz offenbart.
- Erweiterung einer Petition: Referenz zu einer frühere Petition, für die eine Erweiterung oder Verlängerung beantragt wird.
- Institution: Name der die Petition einreichenden Person.
- Regulierter Artikel: die betroffen Pflanzenspecies.
- Transgener Phänotyp: die Eigenschaft („Trait“), die der Pflanze durch das Transformationsevent verliehen wird.
- Transformationevent oder -linie: der Name des oder der Events (manchmal auch als Linie(n) bezeichnet), für die der nicht-regulierte Status beantragt ist.
- APHIS Documente: verschiedene Dokumente, die von APHIS bzgl. der Petition veröffentlicht werden oder von APHIS auf Anfrage erhalten werden können. Besonders nützliche transgene Pflanzen, die erfindungsgemäß behandelt werden können, sind Pflanzen mit einem oder mehreren Genen, die für ein oder mehrere Toxine kodieren, sind die transgenen Pflanzen, die unter den folgenden Handelsbezeichnungen angeboten werden: YIELD GARD® (zum Beispiel Mais, Baumwolle, Sojabohnen), KnockOut® (zum Beispiel Mais), BiteGard® (zum Beispiel Mais), BT-Xtra® (zum Beispiel Mais), StarLink® (zum Beispiel Mais), Bollgard® (Baumwolle), Nucotn® (Baumwolle), Nucotn 33B® (Baumwolle), NatureGard® (zum Beispiel Mais), Protecta® und NewLeaf® (Kartoffel). Herbizidtolerante Pflanzen, die zu erwähnen sind, sind zum Beispiel Maissorten, Baumwollsorten und Sojabohnensorten, die unter den folgenden Handelsbezeichnungen angeboten werden: Roundup Ready® (Glyphosatetoleranz, zum Beispiel Mais, Baumwolle, Sojabohne), Liberty Link® (Phosphinotricintoleranz, zum Beispiel Raps), IMI® (Imidazolinontoleranz) und SCS® (Sylfonylhamstofftoleranz), zum Beispiel Mais. Zu den herbizidresistenten Pflanzen (traditionell auf Herbizidtoleranz gezüchtete Pflanzen), die zu erwähnen sind, zählen die unter der Bezeichnung Clearfield® angebotenen Sorten (zum Beispiel Mais).
Besonders nützliche transgene Pflanzen, die erfindungsgemäß behandelt werden können, sind Pflanzen, die Transformations-Events, oder eine Kombination von Transformations-Events, enthalten und die zum Beispiel in den Dateien von verschiedenen nationalen oder regionalen Behörden angeführt sind (siehe zum Beispiel http://gmoinfo.jrc.it/gmp_browse.aspx und
http://cera-gmc.org/index.php?evidcode=&hstlDXCode=&gType=&AbbrCode=&atCode=&stCode=&colD
Code=&action=gm_crop_database&mode=Submit).
Die nachfolgenden Beispiele erläutern die Erfindung näher.
A. Chemische Beispiele
Herstellung von Ethyl 3-[5-(2-chlorophenyl)-2-cyclopropylpyrimidin-4-yl]-2-oxopropanoat (Beispiel II- 099)
Unter Stickstoff werden 300 mg (1,22 mmol) 5-(2-Chlorophenyl)-2-cyclopropyl-4-methylpyrimidin und 230 mg (1,59 mmol) Diethyloxalat in THF (8 mL) gelöst. Anschließend wird bei einer Temperatur von 0-l0°C 1,59 ml l-molare LiHDMS Lösung (1,59 mmol) zugegeben. Nach 2 h bei 20°C wird die Reaktionsmischung mittels Extraktion mit Ethylacetat und Wasser aufgearbeitet. Nach der Trennung auf Kieselgel werden 63 mg des gewünschten Produkts als gelblicher Feststoff erhalten.
‘H-NMR (CDCls, 400MHz): 8.33 (s, 1H), 7.55 - 7.20 (m, 4H), 6.11 (s, 1H, ), 4.3 (q, 2H), 2.23 (m, 1H), 1.35 (t, 3H), 1.30 - 1.2 (m, 4H).
Herstellung von 3-[5-(2-Chlorphenyl)-2-cyclopropylpyrimidin-4-yl]-N,N-dimethyl-2-oxopropanamid (Beispiel 1-139) Es werden unter Stickstoff 300 mg (1.23 mmol) 5-(2-Chlorophenyl)-2-cyclopropyl-4-methylpyrimidin und 214 mg (1.41 mmol) Ethyl-(dimethylamino)(oxo)acetat in 4 ml DMF vorgelegt und mit 108 mg (2.70 mmol) 60% igem Natriumhydrid versetzt. Nach 12 h Rühren bei Raumtemperatur wird die Reaktion mit 221 mg (3.68 mmol) Essigsäure hydrolysiert, mit Wasser verdünnt und mit
Essigsäureethylester extrahiert. Nach Trocknen der organischen Phase über Natriumsulfat und
Reinigung über Kieselgel erhält man 67 mg von 3-[5-(2-Chlorphenyl)-2-cyclopropylpyrimidin-4-yl]- N,N-dimethyl-2-oxopropanamid.
Herstellung von tert-Butyl-2-{3-[5-(2-chlorphenyl)-2-cyclopropylpyrimidin-4-yl]-2-oxopropanoyl}-l- methylhydrazincarboxylat (Beispiel IV-137)
Unter Stickstoff werden 362 mg (1.4 mmol) tert-Butyl-2-[ethoxy(oxo)acetyl]-l-methylhydrazin- carboxylat und 300 mg (1.2. mmol) 5-(2-Chlorphenyl)-2-cyclopropyl-4-methylpyrimidin in 8 ml trockenem THF vorgelegt, auf 0 ° C abgekühlt und mit 4.045 ml (4 mmol) einer 1 molaren
Lithiumhexamethyldisilazid-Lösung versetzt. Nach beendeter Reaktion wird mit 0.281 ml (4.9 mmol) Eisessig versetzt, mit Essigsäureethylester verdünnt und mit Wasser gewaschen. Nach
säulenchromatographischer Aufreinigung erhält man 329 mg der gewünschten Zielverbindung als Feststoff.
Herstellung von 3-[5-(2-Chlor-6-fluorphenyl)-2-cyclopropylpyrimidin-4-yl]-l-(piperidin-l-yl)propan- l,2-dion (Beispiel 1-146)
Analog zum Beispiel IV-137 erhält man aus 80 mg (0.30mmol) 5-(2-Chlor-6-fluorphenyl)-2- cyclopropyl-4-methylpyrimidin und 75 mg (98%ig; 0.39mmol) Ethyloxo(piperidin-l-yl)acetat nach säulenchromatographischer Aufreinigung an Kieselgel 45 mg der gewünschten Zielverbindung als gelbliches Öl.
‘H-NMR (CDCb, 400MHZ): 8.03 (s, 1H), 7.39 - 7.08 (m, 3H), 5.3 (s, 1H,), 3,55 - 3,50 (m, 4H), 2.15 - 2,08 (m, 1H), 1,67 - 1.55 (m, 6H), 1.30 - 1.22 (m, 4H).
Herstellung von Methyl-3-[2-cyclopropyl-5-(2,6-dichlorphenyl)pyrimidin-4-yl]-2-oxopropanoat (Beispiel 11-542)
Unter Stickstoff werden 230 mg (0.82 mmol) 2-Cyclopropyl-5-(2,6-dichlorphenyl)-4-methylpyrimidin mit 1.0 ml (0.98 mmol) Lithiumhexamethylsisilazid bei -78 ° C versetzt, auf -30 ° C aufgewärmt und mit 149 mg (0.90 mmol) Methyltrimethoxyacetat zur Reaktion gebracht. Nach beendeter Reaktion wird bei dieser Temperatur mit 0.19 ml (3.29 mmol) Eisessig hydrolysiert, mit Essigsäureethylester verdünnt , mit Kochsalzlösung gewaschen und getrocknet. Nach säulenchromatographischer Reinigung erhält man 150 mg des gewünschten Produktes in einer Reinheit von 90 %.
Herstellung von 3-[5-(2-Chlorphenyl)-2-cyclopropylpyrimidin-4-yl]-2-oxopropansäure
(Beispiel 11-097)
Unter Stickstoff werden 390 mg (1.17 mmol) Methyl-3-[5-(2-chlorphenyl)-2-cyclopropylpyrimidin-4- yl]-2-oxopropanoat (hergestellt analog zur Vorschrift 11-542) in 5 ml THF bei 0 °C mit 1.18 ml 2n Natronlauge versetzt und bei Raumtemperatur gerührt. Nach Ansäuern mit 2 n Salzsäure und Extraktion mit Dichlormethan erhält man ein Rohprodukt, welches durch Kristallisation zu 100 mg der gewünschten Zielverbindung aufgereinigt werden kann.
Herstellung von 5-(2-Chlorphenyl)-2-cyclopropyl-4-methylpyrimidin (Intermediat)
Unter Stickstoff werden 9400 mg (38.7 mmol) 3-(2-Chlorphenyl)-4-(dimethylamino)but-3-en-2-on in 40 ml n-Butanol vorgelegt, dann mit 6060 mg (50,3 mmol) Cyclopropancarboximidamidhydrochlorid (1 :1) versetzt und mit 9,307 ml 5.4 molarer Natriummethanolatlösung in Methanol zur Kondensation gebracht. Man erhitzt 7 h und destilliert dabei Leichtflüchtiges ab. Nach beendeter Reaktion werden die Lösungmittel im Vakuum entfernt, der Rückstand in Essigsäureethylester aufgenommen und mit Wasser gewaschen. Nach Trocknen der organischen Phase über Natriumsulfat werden 10.17 mg orangefarbene Flüssigkeite erhalten, die zur weiteren Aufreinigung über Kieselgel chromatographiert wird. Man erhält 6863 mg 86 %iges gelbliches Öl .
‘H-NMR (CDCL, 400MHz): 8,3 (s, 1H), 7.51-7.18 (m, 4H), 2.30 (s, 3H), 2.30 - 2.20 (m, 1H), 1.2 - 1.0 (m, 4H).
Herstellung von 3-(2-Chlorphenyl)-4-(dimethylamino)but-3-en-2-on (Intermediat)
Unter Stickstoff werden 5000 mg (29.65mmol) 1 -(2-Chlorphenyl)aceton vorgelegt, mit 5300 mg (44.48 mmol) l,l-Dimethoxy-N,N-dimethylmethanamin versetzt und 3 h am Rückfluß erhitzt, währenddessen Methanol abdestilliert wird. Nach beendeter Reaktion wird auf Raumtemperatur abgekühlt, mit einem Heptan:Essigsäureethylester-Gemisch=2:l verdünnt und mit Wasser gewascehn. Nach Trocknen über Natriumsulfat erhält man 7020 mg (95%ig) eines rotbraunen Öles. H-NMR (CDCL, 400MHz): 7.65 (s, 1H), 7.5-7.15 (m, 4H), 2.73 (bs, 6H), 1.9 (s, 3H). B. Formulierungsbeispiele
1. Stäubemittel
Ein Stäubemittel wird erhalten, indem man 10 Gew. -Teile einer Verbindung der Formel (I) und 90 Gew. -Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert.
2. Dispergierbares Pulver
Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gewichtsteile einer Verbindung der Formel (I), 64 Gewichtsteile kaolinhaltigen Quarz als Inertstoff, 10 Gewichtsteile ligninsulfonsaures Kalium und 1 Gew. -Teil oleoylmethyltaurinsaures Natrium als Netz- und
Dispergiermittel mischt und in einer Stiftmühle mahlt.
3. Dispersionskonzentrat
Ein in Wasser leicht dispergierbares Dispersionskonzentrat wird erhalten, indem man 20 Gewichtsteile einer Verbindung der Formel (I), 6 Gew. -Teile Alkylphenolpolyglykolether (®Triton X 207), 3 Gew.- Teile Isotridecanolpolyglykolether (8 EO) und 71 Gew. -Teile paraffinischem Mineralöl (Siedebereich z.B. ca. 255 bis über 277°C) mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.
4. Emulgierbares Konzentrat
Ein emulgierbares Konzentrat wird erhalten aus 15 Gew. -Teilen einer Verbindung der Formel (I), 75 Gew.Teilen Cyclohexanon als Lösemittel und 10 Gew.-Teilen oxethyliertes Nonylphenol als Emulgator.
5. Wasserdispergierbares Granulat
Ein in Wasser dispergierbares Granulat wird erhalten, indem man
75 Gew. -Teile einer Verbindung der Formel (I),
10 " ligninsulfonsaures Calcium,
5 " Natriumlaurylsulfat,
3 " Polyvinylalkohol und
7 " Kaolin
mischt, auf einer Stiftmühle mahlt und das Pulver in einem Wirbelbett durch Aufsprühen von Wasser als Granulierflüssigkeit granuliert.
Ein in Wasser dispergierbares Granulat wird auch erhalten, indem man
25 Gew. -Teile einer Verbindung der Formel (I),
5 " 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium,
2 " oleoylmethyltaurinsaures Natrium, 1 Polyvinylalkohol,
17 Calciumcarbonat und
50 Wasser
auf einer Kolloidmühle homogenesiert und vorzerkleinert, anschließend auf einer Perlmühle mahlt und die so erhaltene Suspension in einem Sprühturm mittels einer Einstoffdüse zerstäubt und trocknet.
C. Biologische Beispiele
In den nachfolgenden Tabellen werden folgende Abkürzungen verwendet:
ABUTH: Abutilon theophrast AGSTE: Agrostis tenuis
ALOMY: Alopecurus myosuroides
AMARE: Amaranthus retroflexus AVEFA: Avena fatua
DIGSA: Digitaria sanguinalis ECHCG: Echinochloa crus-galli
HORMU: Hordeum murinum LOLPE: Lolium perenne
LOLRI: Lolium rigidum MATCH: Matricaria chamonilla
MATIN: Matricaria inodora POAAN: Poa annua
POLCO: Polygonum convolvulus
SETVL· Setaria viridis STEME: Stellaria media
VERPE: Veronica persica
V ersuchsbeschreibungen
Methode A: Herbizide Wirkung und Kulturverträglichkeit im Nachauflauf
Samen von mono- bzw. dikotylen Unkraut- bzw. Kulturpflanzen werden in Kunststoff- oder organischen Pflanztöpfen in sandigem Lehmboden ausgelegt, mit Erde abgedeckt und im Gewächshaus unter kontrollierten Wachstumsbedingungen angezogen. 2 bis 3 Wochen nach der Aussaat werden die Versuchspflanzen im Einblattstadium behandelt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen werden dann als wässrige Suspension bzw. Emulsion unter Zusatz von 0,5% Additiv mit einer Wasseraufwandmenge von umgerechnet 600 1/ha auf die grünen Pflanzenteile gesprüht. Nach ca. 3 Wochen Standzeit der Versuchspflanzen im Gewächshaus, unter optimalen Wachstumsbedingungen, wird die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen bonitiert. Beispielsweise bedeutet 100% Wirkung = Pflanzen sind abgestorben, 0% Wirkung = wie Kontrollpflanzen. Tabelle A: Nachaufwirkung bei 320 g/ha
Wie die Ergebnisse zeigen, weisen erfindungsgemäße Verbindungen, wie beispielsweise die
Verbindungen Nr. 11-099, 1-139, 1-137, 11-098 und andere Verbindungen aus der Tabelle A, bei Behandlung im Nachauflauf eine gute herbizide Wirksamkeit gegen Schadpflanzen auf. Beispielsweise haben dabei die Verbindungen Nr.II-099 oder 1-139 im Nachauflaufverfahren eine sehr gute herbizide Wirkung (80% bis 100% herbizide Wirkung) gegen Schadpflanzen wie Alopecurus myosuroides, Avena fatua, Echinochloa crus-galli, Hordeum murinum, Lolium rigidum, Polygonum convolvulus und Stellaria media, bei einer Aufwandmenge von 0.32 kg Aktivsubstanz oder weniger pro Hektar.
Gleichzeitig lassen einige erfindungsgemäße Verbindungen Gramineenkulturen wie Gerste, Weizen, Roggen, Hirse, Mais, Reis oder Zuckerrohr im Nachauflaufverfahren selbst bei hohen
Wirkstoffdosierungen praktisch ungeschädigt. Einige Substanzen schonen darüber hinaus auch zweikeimblättrige Kulturen wie Soja, Baumwolle, Raps, oder Zuckerrüben.
Die erfindungsgemäßen Verbindungen zeigen teilweise eine hohe Selektivität und eignen sich deshalb im Nachauflaufverfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs in landwirtschaftlichen Kulturen.
Methode B: Herbizide Wirkung und Kulturverträglichkeit im Vorauflauf
Samen von mono- bzw. dikotylen Unkraut und Kulturpflanzen werden in Kunststoff- oder organischen Pflanztöpfen ausgelegt und mit Erde abgedeckt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen werden dann als wässrige Suspension bzw. Emulsion unter Zusatz von 0,5% Additiv mit einer Wasseraufwandmenge von umgerechnet 600 1/ha auf die Oberfläche der Abdeckerde appliziert. Nach der Behandlung werden die Töpfe im Gewächshaus aufgestellt und unter guten Wachstumsbedingungen für die Testpflanzen gehalten. Nach ca. 3 Wochen wird die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen in Prozentwerten bonitiert. Beispielsweise bedeutet 100% Wirkung = Pflanzen sind abgestorben, 0% Wirkung = wie Kontrollpflanzen. Tabel e B: Vorauflaufwirkung bei 320 g/ha
Wie die Ergebnisse zeigen, weisen erfindungsgemäße Verbindungen, wie beispielsweise die
Verbindungen Nr. 11-099, 1-139, 1-137 und 11-09 und andere Verbindungen aus der Tabelle B, bei Behandlung im Vorauflauf eine gute herbizide Wirksamkeit gegen Schadpflanzen auf. Beispielsweise haben dabei die Verbindungen Nr. 11-099 und 1-139 im Vorauflaufverfahren eine sehr gute Wirkung (80% bis 100% herbizide Wirkung) gegen Schadpflanzen wie Abutilon theophrasti, Alopecurus myosuroides, Avena fatua, Echinochloa crus-galli, Hordeum murinum, Lolium rigidum, Polygonum convolvulus und Stellaria media bei einer Aufwandmenge von 0.32 kg Aktivsubstanz oder weniger pro Hektar. Gleichzeitig lassen einige erfindungsgemäße Verbindungen Gramineenkulturen wie Gerste, Weizen, Roggen, Hirse, Mais Reis oder Zuckerrohr im Vorauflaufverfahren selbst bei hohen
Wirkstoffdosierungen praktisch ungeschädigt. Einige Substanzen schonen darüber hinaus auch zweikeimblättrige Kulturen wie Soja, Baumwolle, Raps oder Zuckerrüben.
Die erfindungsgemäßen Verbindungen zeigen teilweise eine hohe Selektivität und eignen sich deshalb im Vorauflaufverfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs in landwirtschaftlichen Kulturen.
Methode C: Herbizide Wirkung im Nachauflauf
Samen von mono- bzw. dikotylen Unkrautpflanzen werden in Kunststofftöpfen in sandigem Lehmboden ausgelegt (Doppelaussaaten mit jeweils einer Spezies mono- bzw. dikotyler Unkrautpflanzen pro Topf), mit Erde abgedeckt und im Gewächshaus unter kontrollierten Wachstumsbedingungen angezogen. 2 bis 3 Wochen nach der Aussaat werden die Versuchspflanzen im Einblattstadium behandelt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen werden als wässrige Suspension bzw. Emulsion, unter Zusatz von 0,5% Additiv, mit einer Wasseraufwandmenge von umgerechnet 600 Liter pro Hektar, auf die grünen Pflanzenteile appliziert. Nach ca. 3 Wochen Standzeit der Versuchspflanzen im Gewächshaus, unter optimalen Wachstumsbedingungen, wird die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen bonitiert. Beispielsweise bedeutet 100% Wirkung = Pflanzen sind abgestorben, 0% Wirkung = wie Kontrollpflanzen.
Tabelle C: Nachauflaufwirkung bei 1280 g/ha
Wie die Ergebnisse zeigen, weisen erfindungsgemäße Verbindungen wie beispielsweise die
Verbindungen Nr. 1-137, IV-137 und 11-098 und andere Verbindungen aus der Tabelle C bei
Behandlung im Nachauflauf eine gute herbizide Wirksamkeit gegen Schadpflanzen auf. Beispielsweise hat dabei die Verbindung Nr. 1-137 im Nachauflaufverfahren eine sehr gute herbizide Wirkung (80% bis 100% herbizide Wirkung) gegen Schadpflanzen wie Echinochloa crus-galli, Lolium rigidum, Matricaria inodora, Poa annua, und Stellaria media und die Verbindung 11-098 im Nachauflaufverfahren eine sehr gute herbizide Wirkung (80% bis 100% herbizide Wirkung) gegen Schadpflanzen wie wie
Echinochloa crus-galli, Lolium rigidum, Poa annua, und Stellaria media bei einer Aufwandmenge von 1.28 kg Aktivsubstanz oder weniger pro Hektar.
Methode D: Herbizide Wirkung im Vorauflauf Samen von mono- und dikotylen Unkrautpflanzen werden in Kunststofftöpfen, in sandigem Lehmboden, ausgelegt (Doppelaussaaten mit jeweils eine Spezies mono- bzw. dikotyler Unkrautpflanzen pro Topf) und mit Erde abgedeckt. Die in Form von benetzbaren Pulvern (WP) oder als Emulsionskonzentrate (EC) formulierten erfindungsgemäßen Verbindungen werden dann als wässrige Suspension bzw.
Emulsion, unter Zusatz von 0,5% Additiv, mit einer Wasseraufwandmenge von umgerechnet 600 Liter pro Hektar auf die Oberfläche der Abdeckerde appliziert. Nach der Behandlung werden die Töpfe im Gewächshaus aufgestellt und unter guten Wachstumsbedingungen für die Testpflanzen gehalten. Nach ca. 3 Wochen wird die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen in Prozentwerten bonitiert. Beispielsweise bedeutet 100% Wirkung = Pflanzen sind abgestorben, 0% Wirkung = wie Kontrollpflanzen. Tabelle D: Vorauflaufwirkung bei 1280 g/ha
Wie die Ergebnisse zeigen, weisen erfindungsgemäße Verbindungen wie beispielsweise die
Verbindungen Nr. IV-137, 1-137 und 11-098 und andere Verbindungen aus der Tabelle D, bei
Behandlung im Vorauflauf eine gute herbizide Wirksamkeit gegen Schadpflanzen auf. Beispielsweise haben dabei die Verbindungen Nr. 1-137 und IV-137 im Vorauflaufverfahren eine sehr gute Wirkung (80% bis 100% herbizide Wirkung) gegen Schadpflanzen wie Abutilon theophrast, Echinochloa crus- galli, Lolium rigidum, Poa annua und Stellaria media bei einer Aufwandmenge von 1.28 kg
Aktivsubstanz oder weniger pro Hektar.
Methode E: Herbizide Wirkung im frühen Nachauflauf
Samen von mono- bzw. dikotylen Unkrautpflanzen werden in 96-well Mikrotiterplatten in Quarzsand ausgelegt und in der Klimakammer unter kontrollierten Wachstumsbedingungen angezogen. 5 bis 7 Tage nach der Aussaat werden die Versuchspflanzen im Keimblattstadium behandelt. Die in Form von
Emulsionskonzentraten (EC) formulierten erfindungsgemäßen Verbindungen werden mit einer Wasseraufwandmenge von umgerechnet 2200 Liter pro Hektar appliziert. Nach 9 bis 12 Tagen Standzeit der Versuchspflanzen in der Klimakammer unter optimalen Wachstumsbedingungen, wird die Wirkung der Präparate visuell im Vergleich zu unbehandelten Kontrollen bonitiert. Beispielsweise bedeutet 100% Wirkung = Pflanzen sind abgestorben, 0% Wirkung = wie Kontrollpflanzen.
Tabelle E: Frühe Nachauflaufwirkung bei 1900 g/ha
Wie die Ergebnisse zeigen, weisen erfindungsgemäße Verbindungen, wie beispielsweise die
Verbindungen Nr. 1-147, 1-547, 11-099 oder IV- 137 und andere Verbindungen aus der Tabelle E, bei Behandlung im frühen Nachauflauf eine gute herbizide Wirksamkeit gegen Schadpflanzen auf
Beispielsweise haben dabei die Verbindungen Nr. 1-147, 1-547 oder IV-137 im Nachauflaufverfahren eine sehr gute herbizide Wirkung (80% bis 100% herbizide Wirkung) gegen Schadpflanzen wie Agrostis tenuis, Lolium perenne, Matricaria chamonilla, Poa annua, und Stellaria media und die Verbindungen 11-099 und 1-688 im Nachauflaufverfahren eine sehr gute herbizide Wirkung (80% bis 100% herbizide
Wirkung) gegen Schadpflanzen wie Agrostis tenuis, Matricaria chamonilla und Poa annua bei einer Aufwandmenge von 1900 g Aktivsubstanz oder weniger pro Hektar.

Claims

Patentansprüche :
1. Verbindungen der allgemeinen Formel (I)
und deren agrochemisch verträglichen Salze, worin die Symbole und Indizes folgende Bedeutungen haben:
X bedeutet C(R13)(R14)
R1 bedeutet (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl oder Heterocyclyl, wobei diese drei
vorstehend genannten Reste jeweils durch s Reste aus der Gruppe bestehend aus Halogen, (Ci- Cöj-Alkyl, Halogen-(Ci-C6)-alkyl, (CF-GO-Alkcnyl, Halogen-(C2-C6)-alkenyl, (C2-C6)-Alkinyl, Halogen-(C3-C6)-alkinyl, (C3-C6)-Cycloalkyl, Halogen-(C3-C6)-cycloalkyl, (C3-C6)- Cycloalkenyl, , Halogen-(C3-C6)-cycloalkenyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl, (C3-C6)- Cycloalkenyl-(Ci-C6)-alkyl, Halogen-(C3-C6)-cycloalkyl-(Ci-C6)-alkyl, Halogen-(C3-Ce)- cycloalkenyl-(Ci-C6)-alkyl, R8(0)C, R80(0)C, (R8)2N(0)C, R80, (R8)2N, R9(0)nS, Phenyl, Heteroaryl, Heterocyclyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl-(Ci-C6)-alkyl und Heterocyclyl-(Ci- Cöj-alkyl substituiert sind, wobei die sechs letztgenannten Reste durch m Reste aus der Gruppe bestehend aus (Ci-Cöj-Alkyl, Halogen-(Ci-C6)-alkyl, (Ci-Cöj-Alkoxy, Halogen-(Ci-C6)-alkoxy und Halogen substituiert sind, und wobei Cycloalkyl, Cycloalkenyl und Heterocyclyl unabhängig voneinander jeweils n Oxogruppen tragen ,
R2 bedeutet Hydroxy, (Ci-Cöj-Alkoxy, (C2-C6)-Alkenyloxy, (C2-C6)-Alkinyloxy, (C 1 -Cr,)- Halogenalkoxy, (C2-C6)-Halogenalkenyloxy, (C2-C6)-Halogenalkinyloxy, wobei die 6 letztgenannten Reste jeweils durch s Reste aus der Gruppe bestehend aus Cyano, (C3-C6)- Cycloalkyl, (C3-C6)-Cycloalkenyl, Halogen-(C3-C6)-cycloalkyl, Halogen-(C3-C6)-cycloalkenyl,
R80(0)2S(R8)N, (R8)2N(0)2S(R8)N, R9(0)nS, R80(0)2S, (R8)2N(0)2S, R8(0)C(R8)N(0)2S, R90(0)C(R8)N(0)2S, (R8)2N(0)C(R8)N(0)2S, Ru 3Si, (R120)2(0)P, Phenyl, Heteroaryl und Heterocyclyl substituiert sind, wobei die drei letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, Rhodano, (Ci-C6)-Alkyl, Halogen-(Ci-C6)- alkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(CI-C6)- Alkyl substituiert sind,
oder
R2 bedeutet (C3-C6)-Cycloalkoxy, (C3-C6)-Cycloalkenyloxy, Phenyloxy, Heteroaryloxy oder
Heterocyclyloxy, wobei diese fünf vorstehend genannten Reste jeweils durch s Reste aus der Gruppe bestehend aus Halogen, Cyano, (Ci-Cöj-Alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C3- C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, Halogen-(C3-C6)-cycloalkyl, Halogen-(C3-C6)-
R8(0)C(R8)N(0)2S, R90(0)C(R8)N(0)2S, (R8)2N(0)C(R8)N(0)2S, R3 uSi, (R120)2(0)P, Phenyl, Heteroaryl und Heterocyclyl substituiert sind, wobei die drei letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, Rhodano, (Ci-C6)-Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(CI-C6)- Alkyl substituiert sind, und wobei (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, Heterocyclyl, (C3-C6)-Cycloalkoxy, (C3-Ce)- Cycloalkenyloxy und Heterocyclyloxy unabhängig voneinander jeweils n Oxogruppen tragen, oder
R2 bedeutet R8(0)C0, R9(0)2S0 oder R15R16C=N-0 oder (R8)2N-0,
oder
R2 bedeutet (R8)2N, R8(0)C(R8)N, R90(0)C(R8)N, (R8)2N(0)C(R8)N, R9(0)2S(R8)N,
R80(0)2S(R8)N, (R8)2N(0)2S(R8)N,
oder
R2 bedeutet R8(R80)N oder
R2 bedeutet (R17) (R18) N(R19)N, oder R2 bedeutet R17R18C=N-(R19)N-
R3, R4, R5, R6 und R7 bedeuten unabhängig voneinander jeweils Wasserstoff, Nitro, Halogen, Cyano,
Rhodano, (Ci -Cr,)- Alkyl, Halogen-(Ci-C6)-alkyl, (C2-C6)-Alkenyl, Halogen-(C2- Cöj-alkenyl, (C2-C6)-Alkinyl, Halogen-(C3-C6)-alkinyl, (C3-C6)-Cycloalkyl, Halogen-(C3-C6)-cycloalkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl, Halogen-(C3-
- (Ci-C6)-Alkyl, R80-(Ci-C6)-Alkyl, R8(0)C0-(Ci-C6)-Alkyl, R9(0)2S0-(Ci-C6)- Alkyl, R90(0)C0-(Ci-C6)- Alkyl, (R8)2N(0)C0-(Ci-C6)-Alkyl, (R8)2N-(CI-C6)- Alkyl, R8(0)C(R8)N-(Ci-C6)-Alkyl, R9(0)2S(R8)N-(Ci-C6)-Alkyl,
R90(0)C(R8)N-(Ci-C6)-Alkyl, (R8)2N(0)C(R8)N-(Ci-C6)-Alkyl,
R80(0)2S(R8)N-(C I -C6)- Alkyl, (R8)2N(0)2S(R8)N-(Ci-C6)-Alkyl, R9(0)nS-(Ci- C6)-Alkyl, R80(0)2S-(Ci-C6)-Alkyl, (R8)2N(0)2S-(Ci-C6)-Alkyl,
R8(0)C(R8)N(0)2S-(Ci-C6)-Alkyl, R90(0)C(R8)N(0)2S-(Ci-C6)-Alkyl, (R8)2N(0)C(R8)N(0)2S-(Ci-C6)-Alkyl, (R120)2(0)P-(Ci-C6)-Alkyl, Phenyl, Heteroaryl, Heterocyclyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl-(Ci-C6)-alkyl oder Heterocyclyl-(Ci-C6)-alkyl, wobei die sechs letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, Rhodano, (Ci- Cej-Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, R80(0)C, (R8)2N(0)C, R80, (R8)2N, R9(0)nS, R80(0)2S, (R8)2N(0)2S und R80-(Ci-C6)-Alkyl substituiert sind, und wobei Cycloalkyl und Heterocyclyl unabhängig voneinander jeweils n Oxogruppen tragen.
R8 bedeutet Wasserstoff, (Ci-Cöj-Alkyl, (CC-CG-Alkcnyl, (C2-C6)-Alkinyl, (C3-C6)-Cycloalkyl, (C3- C6)-Cycloalkenyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl, (C3-C6)-Cycloalkenyl-(Ci-C6)-alkyl, (Ci- C6)-Alkyl-0-(Ci-C6)-alkyl, (Ci-C6)-Alkyl-0-(Ci-C6)-alkyl-0-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl- (Ci-C6)-alkyl-0-(Ci-C6)-al yl, (C3-C6)-Cycloalkenyl-(Ci-C6)-alkyl-0-(Ci-C6)-alkyl oder (Ci- C6)-Alkylthio-(Ci-C6)-alkyl, wobei die zwölf letztgenannten Reste s Halogenatome tragen, oder
R8 bedeutet Phenyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl, Heteroaryl-(Ci-C6)-alkyl, Heterocyclyl,
Heterocyclyl-(Ci-C6)-alkyl, Phenyl-0-(Ci-C6)-alkyl, Heteroaryl-0-(Ci-C6)-alkyl, Heterocyclyl- 0-(Ci-C6)-alkyl, Phenyl-N(R10)-(Ci-C6)-alkyl, Heteroaryl-N(R10)-(Ci-C6)-alkyl, Heterocyclyl- N(R10)-(Ci-C6)-alkyl, Phenyl-S(0)n-(Ci-C6)-alkyl, Heteroaryl-S(0)n-(Ci-C6)-alkyl oder Heterocyclyl-S(0)n-(Ci-C6)-alkyl, wobei die Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, Rhodano, (C i -Cr,)- Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)- Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS,
R10O(O)2S, (R10)2N(O)2S und R10O-(Ci-C6)-Alkyl substituiert sind,
und wobei (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl und Heterocyclyl unabhängig voneinander jeweils n Oxogruppen tragen,
oder
die Reste R8 bilden einen Ring mit dem Heteroatom oder mit den Heteroatomen, über welche sie gebunden sind, und zwar einen Heterocyclyl, Heterocyclenyl, Heteroaryl,
Arylheterocyclyl, Arylheterocylenyl, Heteroarylheterocyclyl, Heteroarylhetercyclenyl, Heterocyclylheteroaryl oder Heterocyclenylheteroaryl, wobei jeder dieser Ringe wiederum durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, Rhodano, (Ci-Cej-Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(Ci-C6)-Alkyl und Oxo substituiert ist.
R9 bedeutet (Ci-C6)-Alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C3-C6)-Cycloalkyl, (C3-C6)-
Cycloalkenyl, (Cs-Cej-Cycloalkyl-iCi-Cej-alkyl, (Cs-Cej-CycloalkenyHCi-Cej-alkyl, (Ci-C6)- Alkyl-0-(Ci-C6)-alkyl, (Ci-C6)-Alkyl-0-(Ci-C6)-alkyl-0-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl-(Ci- C6)-alkyl-0-(Ci-C6)-alkyl, (C3-C6)-Cycloalkenyl-(Ci-C6)-alkyl-0-(Ci-C6)-alkyl oder (Ci-C6)- Alkylthio-(Ci-C6)-alkyl, wobei die Reste s Halogenatome tragen,
oder
R9 bedeutet Phenyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl, Heteroaryl-(Ci-C6)-alkyl, Heterocyclyl,
Heterocyclyl-(Ci-C6)-alkyl, Phenyl-0-(Ci-C6)-alkyl, Heteroaryl-0-(Ci-C6)-alkyl, Heterocyclyl- 0-(Ci-C6)-alkyl, Phenyl-N(R10)-(Ci-C6)-alkyl, Heteroaryl-N(R10)-(Ci-C6)-alkyl, Heterocyclyl- N(R10)-(Ci-C6)-alkyl, Phenyl-S(0)„-(Ci-C6)-alkyl, Heteroaryl-S(0)n-(Ci-C6)-alkyl oder Heterocyclyl-S(0)n-(Ci-C6)-alkyl, wobei die Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, Rhodano, (Ci-Cöj-Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)- Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS,
R10O(O)2S, (R10)2N(O)2S und R10O-(Ci-C6)-Alkyl substituiert sind,
und wobei (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl und Heterocyclyl unabhängig voneinander jeweils n Oxogruppen tragen,
R10 bedeutet Wasserstoff, (Ci-C6)-Alkyl, Halogen-(Ci-C6)-alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl oder Phenyl,
R11 bedeutet (Ci-C6)-Alkyl, Halogen-(Ci-C6)-alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C3-C6)- Cycloalkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl oder Phenyl,
R12 bedeutet Wasserstoff oder (Ci-C i)-Alkyl.
R13 undR14 bedeuten unabhängig voneinander jeweils Wasserstoff, (Ci-Cöj-Alkyl, Hydroxy, (Ci- Ce)-Alkoxy, (R8)2N, Halogen-(Ci-C6)-alkoxy, Halogen, Halogen-(Ci-C6)-alkyl, Cyano, R80(0)C oder (R8)2N(0)C,
oder
R13 und R14 bilden zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, eine (C3-Cg)-Cycloalkylgruppe.
R15 undR16 bedeuten unabhängig voneinander jeweils (C i -Cr,)- Alkyl , Phenyl, (C3-C6)-Cycloalkyl,
Heteroaryl oder Heterocyclyl.
R17 und R18 und R19 bedeuten unabhängig voneinander R8 oder R9S(0)2, (R8)2NS(0)2, R80S(0)2,
R9C(0), (R8)2NC(0), (R8)2NC(S), R8OC(0), R80C(0)C(0), (R8)2NC(0)C(0). oder die Reste (R17 und R18) oder (R17 und R19) bilden einen Ring mit dem Heteroatom oder mit den Heteroatomen, über welche sie gebunden sind, und zwar einen Heterocyclyl, Heterocyclenyl, Heteroaryl, Arylheterocyclyl, Arylheterocylenyl, Heteroarylheterocyclyl,
Heteroarylhetercyclenyl, Heterocyclylheteroaryl oder Heterocyclenylheteroaryl, wobei jeder dieser Ringe wiederum durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, Rhodano, (C i -Cr,)- Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, (C3-C6)- Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(CI-C6)- Alkyl und Oxo substituiert ist m bedeutet 0, 1, 2, 3, 4 oder 5,
n bedeutet 0, 1 oder 2,
s bedeutet 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 oder 11.
2. Verbindungen der Formel (I) nach Anspruch 1, worin
X bedeutet C(R13)(R14),
R1 bedeutet (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl oder Heterocyclyl, wobei diese drei Reste jeweils durch s Reste aus der Gruppe bestehend aus Halogen, (Ci-C6)-Alkyl und Halogen-(Ci- Cöj-alkyl substituiert sind und wobei Cycloalkyl, Cycloalkenyl und Heterocyclyl unabhängig voneinander jeweils n Oxogruppen tragen,
R2 bedeutet Hydroxy, (G-G)-Alkoxy, (C2-C6)-Alkenyloxy, (C2-C6)-Alkinyloxy, (G-G)-
Halogenalkoxy, (C2-C6)-Halogenalkenyloxy, (C2-C6)-Halogenalkinyloxy, wobei die 6 letztgenannten Reste jeweils durch s Reste aus der Gruppe bestehend aus Cyano, R8(0)C, R80(0)C, (R8)2N(0)C, R8(R80)N(0)C, (R8)2N(R8)N(0)C, R80, R8(0)C0, R9(0)2S0, (R8)2N, R9(0)nS, Phenyl, Heteroaryl und Heterocyclyl substituiert sind, wobei die drei letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, (CI-CÖ)- Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(CI-C6)- Alkyl substituiert sind, und wobei (C3- C6)-Cycloalkyl und Heterocyclyl unabhängig voneinander jeweils n Oxogruppen tragen, oder
R2 bedeutet (C3-C6)-Cycloalkoxy, (C3-C6)-Cycloalkenyloxy, Phenyloxy, Heteroaryloxy oder
Heterocyclyloxy, wobei diese fünf vorstehend genannten Reste jeweils durch s Reste aus der Gruppe bestehend aus Halogen, Cyano, (Ci-Cöj-Alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C3- C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, Halogen-(C3-C6)-cycloalkyl, Halogen-(C3-C6)- cycloalkenyl, R8(0)C, R80(0)C, (R8)2N(0)C, R8(R80)N(0)C, (R8)2N(R8)N(0)C, R80, R8(0)C0, R9(0)2S0, (R8)2N, R9(0)nS, Phenyl, Heteroaryl und Heterocyclyl substituiert sind, wobei die drei letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, (Ci-C6)-Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(Ci-C6)-Alkyl substituiert sind, und wobei (C3-C6)-Cycloalkoxy, (C3-C6)-Cycloalkyl und Heterocyclyl unabhängig voneinander jeweils n Oxogruppen tragen. oder
R2 bedeutet (R8)2N, R8(0)C(R8)N, R90(0)C(R8)N, (R8)2N(0)C(R8)N, R9(0)2S(R8)N,
R80(0)2S(R8)N, (R8)2N(0)2S(R8)N, R2 bedeutet R8(R80)N
oder
R2 bedeutet (R17) (R18) N(R19)N,
oder
R2 bedeutet R17R18C=N-(R19)N-
R3, R4, R5, R6 und R7 bedeuten unabhängig voneinander jeweils Wasserstoff, Nitro, Halogen, Cyano,
(Ci-C6)-Alkyl, Halogen-(Ci-C6)-alkyl, (C2-C6)-Alkenyl, (C2-C6)-Alkinyl, (C3- C6)-Cycloalkyl, Halogen-(C3-C6)-cycloalkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl,
C6)-Alkyl, R80(0)C-(Ci-C6)-Alkyl, (R8)2N(0)C-(Ci-C6)- Alkyl, NC-(Ci-Ce)- Alkyl, R80-(Ci-C6)-Alkyl, (R8)2N-(CI-C6)- Alkyl, R8(0)C(R8)N-(Ci-C6)- Alkyl, R9(0)2S(R8)N-(C I -C6)- Alkyl, R90(0)C(R8)N-(C i -C6)- Alkyl, (R8)2N(0)C(R8)N- (Ci-C6)-Alkyl, R9(0)nS-(Ci-C6)-Alkyl, R80(0)2S-(Ci-C6)-Alkyl, (R8)2N(0)2S- (Ci-C6)-Alkyl, ( R 120 )2(0 ) P-(C i -G,)- A 1 ky 1, Phenyl, Heteroaryl, Heterocyclyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl-(Ci-C6)-alkyl, Heterocyclyl-(Ci-C6)-alkyl, wobei die sechs letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, (Ci-C6)-Alkyl, Halogen-(Ci-C6)-alkyl, R80, (R8)2N, R9(0)nS, R80(0)2S, (R8)2N(0)2S und R80-(Ci-C6)-Alkyl substituiert sind, und wobei Heterocyclyl n Oxogruppen trägt,
R8 bedeutet Wasserstoff, (Ci-C6)-Alkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl, (Ci-C6)-Alkyl-0-(Ci- C6)-alkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl-0-(Ci-C6)-alkyl, Phenyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl, Heteroaryl-(Ci-C6)-alkyl, Heterocyclyl, Heterocyclyl-(Ci-C6)-alkyl, Phenyl-0-(Ci- Cöj-alkyl, Heteroaryl-0-(Ci-C6)-alkyl oder Heterocyclyl-0-(Ci-C6)-alkyl, wobei die neun letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, (Ci- Cej-Alkyl, Halogen-(Ci-C6)-alkyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS und R10O- (Ci-Cej-Alkyl substituiert sind, und wobei Heterocyclyl n Oxogruppen trägt,
oder
die beiden Reste R8 bilden einen Ring mit dem Heteroatom oder mit den Heteroatomen, über welche sie gebunden sind, und zwar einen Heterocyclyl, Heterocyclenyl, Heteroaryl, Arylheterocyclyl, Arylheterocylenyl, Heteroarylheterocyclyl, Heteroarylhetercyclenyl, Heterocyclylheteroaryl oder Heterocyclenylheteroaryl, wobei jeder dieser Ringe wiederum durch m Reste aus der Gruppe bestehend aus Halogen, Cyano, (Ci-C6)-Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(CI-C6)- Alkyl und Oxo substituiert ist.
R9 bedeutet (Ci-C6)-Alkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl, (Ci-C6)-Alkyl-0-(Ci-C6)-alkyl, (C3- C6)-Cycloalkyl-(Ci-C6)-alkyl-0-(Ci-C6)-alkyl, Phenyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl, Heteroaryl-(Ci-C6)-alkyl, Heterocyclyl, Heterocyclyl-(Ci-C6)-alkyl, Phenyl-0-(Ci-C6)-alkyl, Heteroaryl-0-(Ci-C6)-alkyl oder Heterocyclyl-0-(Ci-C6)-alkyl, wobei die neun letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, (Ci-C6)-Alkyl, Halogen-(Ci-C6)-alkyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS und R10O-(CI-C6)- Alkyl substituiert sind, und wobei Heterocyclyl n Oxogruppen trägt,
R io bedeutet Wasserstoff oder (Ci-C6)-Alkyl,
R bedeutet (Ci-C6)-Alkyl,
R 12 bedeutet (Ci-C4)-Alkyl,
R13 undR 14 bedeuten unabhängig voneinander jeweils Wasserstoff, (C i -Cr,)- Alkyl, Hydroxy, (Ci- Ce)-Alkoxy, (R8)2N, Halogen-(Ci-C6)-alkoxy, Halogen, Halogen-(Ci-C6)-alkyl, Cyano, R80(0)C oder (R8)2N(0)C,
oder
R13 und R14 bilden zusammen mit dem Kohlenstoffatom, an das sie gebunden sind, eine (C3-Cg)-Cycloalkylgruppe,
R undR bedeuten unabhängig voneinander jeweils (C i -Cr,)- Alkyl , Phenyl, (C3-C6)-Cycloalkyl,
Heteroaryl oder Heterocyclyl,
R17, R18 und R19 bedeuten unabhängig voneinander R8 oder R9S(0)2, (R8)2NS(0)2, R80S(0)2,
R9C(0), (R8)2NC(0), (R8)2NC(S), R8OC(0), R80C(0)C(0), (R8)2NC(0)C(0) oder
die Reste (R17 und R18) oder (R17 und R19) bilden einen Ring mit dem Heteroatom oder mit den Heteroatomen, über welche sie gebunden sind, und zwar einen Heterocyclyl,
Heterocyclenyl, Heteroaryl, Arylheterocyclyl, Arylheterocylenyl,
Heteroarylheterocyclyl, Heteroarylhetercyclenyl, Heterocyclylheteroaryl oder
Heterocyclenylheteroaryl, wobei jeder dieser Ringe wiederum durch m Reste aus der Gruppe bestehend aus Halogen, Cyano, (C i -Co)- Alkyl, Halogen-(Ci-C6)-alkyl, (C3-CÖ)- Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS,
R10O(O)2S, (R10)2N(O)2S und R10O-(Ci-C6)-Alkyl und Oxo substituiert ist. m bedeutet 0, 1, 2, 3, 4 oder 5,
n bedeutet 0, 1 oder 2,
s bedeutet 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 oder 11.
3. Verbindungen der Formel (I) nach Anspruch 1 oder 2, worin
X bedeutet C(R13)(R14),
R1 bedeutet (C3-C6)-Cycloalkyl, wobei diese Cycloalkylgruppe durch s Reste aus der Gruppe bestehend aus Halogen, (Ci-C6)-Alkyl und Halogen-(Ci-C6)-alkyl substituiert ist,
R2 bedeutet Hydroxy, (C i-Cr,)-Alkoxy, (Ci-C6)-Halogenalkoxy, (C2-Ce)-Alkenyloxy, (C2-CÖ)-
Halogenalkenyloxy, (C2-C6)-Alkinyloxy, wobei die fünf zuletzt genannten Reste jeweils durch einen Rest aus der Gruppe R8(0)C, R80(0)C, (R8)2N(0)C, R8(R80)N(0)C, (R8)2N(R8)N(0)C, R80 und Phenyl substituiert sind, wobei der letztgenannte Rest jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, (Ci-Cöj-Alkyl, Halogen-(Ci-C6)-alkyl und (C3- C6)-Cycloalkyl substituiert ist. oder
R2 bedeutet (R8)2N, R8(0)C(R8)N, R90(0)C(R8)N, (R8)2N(0)C(R8)N, R9(0)2S(R8)N,
R80(0)2S(R8)N, , (R8)2N(0)2S(R8)N,
oder
R2 bedeutet R8(R80)N
oder
R2 bedeutet (R17) (R18) N(R19)N,
oder
R2 bedeutet R17R18C=N-(R19 )N-
R3, R4, R5, R6 und R7 bedeuten unabhängig voneinander jeweils Wasserstoff, Nitro, Halogen, Cyano,
(Ci-Cej-Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, R80(0)C, R80 oder R9(0)nS.
R8 bedeutet Wasserstoff, (Ci-C6)-Alkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl, (Ci-C6)-Alkyl-0-(Ci- C6)-alkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl-0-(Ci-C6)-alkyl, Phenyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl, Heteroaryl-(Ci-C6)-alkyl, Heterocyclyl, Heterocyclyl-(Ci-C6)-alkyl, Phenyl-0-(Ci- Ce)-alkyl, Heteroaryl-0-(Ci-C6)-alkyl oder Heterocyclyl-0-(Ci-C6)-alkyl, wobei die neun letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, (Ci- C6)-Alkyl, Halogen-(Ci-C6)-alkyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS und R10O- (Ci-C6)-Alkyl substituiert sind, und wobei Heterocyclyl n Oxogruppen trägt
oder
die beiden Reste R8 bilden einen Ring mit dem Heteroatom oder mit den Heteroatomen, über welche sie gebunden sind, und zwar einen Heterocyclyl, Heterocyclenyl, Heteroaryl, Arylheterocyclyl, Arylheterocylenyl, Heteroarylheterocyclyl, Heteroarylhetercyclenyl, Heterocyclylheteroaryl oder Heterocyclenylheteroaryl, wobei jeder dieser Ringe wiederum durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, , (CI-CÖ)- Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C,
(R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(Ci-C6)-Alkyl und Oxo substituiert ist
R9 bedeutet (Ci-C6)-Alkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl, (Ci-C6)-Alkyl-0-(Ci-C6)-alkyl, (C3- C6)-Cycloalkyl-(Ci-C6)-alkyl-0-(Ci-C6)-alkyl, Phenyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl, Heteroaryl-(Ci-C6)-alkyl, Heterocyclyl, Heterocyclyl-(Ci-C6)-alkyl, Phenyl-0-(Ci-C6)-alkyl, Heteroaryl-0-(Ci-C6)-alkyl oder Heterocyclyl-0-(Ci-C6)-alkyl, wobei die neun letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, (Ci-C6)-Alkyl, Halogen-(Ci-C6)-alkyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS und R10O-(CI-C6)- Alkyl substituiert sind, und wobei Heterocyclyl n Oxogruppen trägt,
RIO bedeutet Wasserstoff oder (Ci-C6)-Alkyl,
R11 bedeutet (Ci-C6)-Alkyl,
R12 bedeutet (Ci-C ij-Alkyl,
R13 und R14 bedeuten unabhängig voneinander jeweils Wasserstoff, (Ci-C6)-Alkyl, Cyano, R80(0)C oder (R8)2N(0)C
R15 undR 16 bedeuten unabhängig voneinander jeweils (C i -Cr,)- Alkyl , Phenyl, (C3-C6)-Cycloalkyl,
Heteroaryl oder Heterocyclyl,
R17, R18 und R19 bedeuten unabhängig voneinander R8 oder R9S(0)2, (R8)2NS(0)2, R80S(0)2,
R9C(0), (R8)2NC(0), (R8)2NC(S), R80C(0), R80C(0)C(0), (R8)2NC(0)C(0), oder
die Reste (R17 und R18) oder (R17 und R19) bilden einen Ring mit dem Heteroatom oder mit den
Heteroatomen, über welche sie gebunden sind, und zwar einen Heterocyclyl, Heterocyclenyl, Heteroaryl, Arylheterocyclyl, Arylheterocylenyl, Heteroarylheterocyclyl, Heteroarylhetercyclenyl, Heterocyclylheteroaryl oder Heterocyclenylheteroaryl, wobei jeder dieser Ringe wiederum durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, (G-G)-Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(CI-C6)- Alkyl und Oxo substituiert ist, m bedeutet 0 oder 1, 2, 3, 4, oder 5
n bedeutet 0, 1 oder 2
s bedeutet 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 oder 11.
4. Verbindungen der Formel (I) nach einem der Ansprüche 1 bis 3, worin
X bedeutet CH2,
R1 bedeutet Cyclopropyl, wobei die Cyclopropylgruppe durch s Reste aus der Gruppe bestehend aus Halogen, (G-G,)- Alkyl und Halogen-(Ci-C6)-alkyl substituiert ist,
R2 bedeutet Hydroxy, (G-G)-Alkoxy, (G-G)-Halogcnalkoxy, (C2-Ce)-Alkenyloxy, (G-G)-
Halogenalkenyloxy, (C2-C6)-Alkinyloxy, oder
R2 bedeutet (R8)2N, R8(0)C(R8)N, R90(0)C(R8)N, (R8)2N(0)C(R8)N, R9(0)2S(R8)N,
R80(0)2S(R8)N, , (R8)2N(0)2S(R8)N,
oder
R2 bedeutet R8(R80)N
oder
R2 bedeutet (R17) (R18) N(R19)N,
oder
R2 bedeutet R17R18C=N-(R19)N- oder
die Reste (R17 und R18) oder (R17 und R19 ) bilden einen Ring mit dem Heteroatom oder die Heteroatome, über welches sie gebunden sind, und zwar einen Heterocyclyl, Heterocyclenyl, Heteroaryl, Arylheterocyclyl, Arylheterocylenyl, Heteroarylheterocyclyl,
Heteroarylhetercyclenyl, Heterocyclylheteroaryl oder Heterocyclenylheteroaryl, wobei jeder dieser Ringe wiederum durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, (G-G)- Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(CI-C6)- Alkyl und Oxo substituiert ist. R3 bedeutet Cyano, Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl,
Cyclopropyl, Hydroxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Methoxy, Ethoxy, Methylsulfanyl, Methylsulfmyl oder Methylsulfonyl,
R4, R5, R6 und R7 bedeuten unabhängig voneinander jeweils Wasserstoff, Cyano, Fluor, Chlor,
Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Cyclopropyl,
Hydroxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Methoxy, Ethoxy, Methylsulfanyl, Methylsulfmyl oder Methylsulfonyl.
R8 bedeutet Wasserstoff, (Ci-C6)-Alkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl, (Ci-C6)-Alkyl-0-(Ci- C6)-alkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl-0-(Ci-C6)-alkyl, Phenyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl, Heteroaryl-(Ci-C6)-alkyl, Heterocyclyl, Heterocyclyl-(Ci-C6)-alkyl, Phenyl-0-(Ci- Cöj-alkyl, Heteroaryl-0-(Ci-C6)-alkyl oder Heterocyclyl-0-(Ci-C6)-alkyl, wobei die neun letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, (Ci- Cej-Alkyl, Halogen-(Ci-C6)-alkyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS und R10O- (Ci-Cej-Alkyl substituiert sind, und wobei Heterocyclyl n Oxogruppen trägt. oder
die beiden Reste R8 bilden einen Ring mit dem Heteroatom oder die Heteroatome, über welches sie gebunden sind, und zwar einen Heterocyclyl, Heterocyclenyl, Heteroaryl,
Arylheterocyclyl, Arylheterocylenyl, Heteroarylheterocyclyl, Heteroarylhetercyclenyl, Heterocyclylheteroaryl oder Heterocyclenylheteroaryl, wobei jeder dieser Ringe wiederum durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, Cyano, (CI-CÖ)- Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)-Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C,
(R10)2N(O)C, R10O, (R10)2N, Ru(0)nS, R10O(O)2S, (R10)2N(O)2S und R10O-(Ci-C6)-Alkyl und Oxo substituiert ist.
R9 bedeutet (Ci-C6)-Alkyl, (C3-C6)-Cycloalkyl-(Ci-C6)-alkyl, (Ci-C6)-Alkyl-0-(Ci-C6)-alkyl, (C3- C6)-Cycloalkyl-(Ci-C6)-alkyl-0-(Ci-C6)-alkyl, Phenyl, Phenyl-(Ci-C6)-alkyl, Heteroaryl, Heteroaryl-(Ci-C6)-alkyl, Heterocyclyl, Heterocyclyl-(Ci-C6)-alkyl, Phenyl-0-(Ci-C6)-alkyl, Heteroaryl-0-(Ci-C6)-alkyl oder Heterocyclyl-0-(Ci-C6)-alkyl, wobei die neun letztgenannten Reste jeweils durch m Reste aus der Gruppe bestehend aus Nitro, Halogen, (Ci-C6)-Alkyl, Halogen-(Ci-C6)-alkyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS und R10O-(CI-C6)- Alkyl substituiert sind, und wobei Heterocyclyl n Oxogruppen trägt,
R10 bedeutet Wasserstoff oder (Ci-C6)-Alkyl,
R11 bedeutet (Ci-C6)-Alkyl, R12 bedeutet (Ci-C i)-Alkyl,
R13 und R14 bedeuten unabhängig voneinander jeweils Wasserstoff, (Ci-C6)-Alkyl, Cyano, R80(0)C oder (R8)2N(0)C
R15 undR16 bedeuten unabhängig voneinander jeweils (G-G)- Alkyl , Phenyl, (C3-C6)-Cycloalkyl,
Heteroaryl oder Heterocyclyl,
R17, R18 und R19 bedeuten unabhängig voneinander R8 oder R9S(0)2, (R8)2NS(0)2, R80S(0)2,
R9C(0), (R8)2NC(0), (R8)2NC(S), R80C(0), R80C(0)C(0), (R8)2NC(0)C(0), oder
die Reste (R17 und R18) oder (R17 und R19) bilden einen Ring mit dem Heteroatom oder mit den Heteroatomen, über welche sie gebunden sind, und zwar einen Heterocyclyl,
Heterocyclenyl, Heteroaryl, Arylheterocyclyl, Arylheterocylenyl,
Heteroarylheterocyclyl, Heteroarylhetercyclenyl, Heterocyclylheteroaryl oder
Heterocyclenylheteroaryl, wobei jeder dieser Ringe wiederum durch m Reste aus der Gruppe bestehend aus Halogen, Cyano, (Ci-C6)-Alkyl, Halogen-(Ci-C6)-alkyl, (C3-C6)- Cycloalkyl, (C3-C6)-Cycloalkenyl, R10O(O)C, (R10)2N(O)C, R10O, (R10)2N, Ru(0)nS,
R10O(O)2S, (R10)2N(O)2S und R10O-(Ci-C6)-Alkyl und Oxo substituiert ist, m bedeutet 0, 1, 2 oder 3,
n bedeutet 0, 1 oder 2,
s bedeutet 0, 1, 2, 3, 4 oder 5.
5. Verbindungen der Formel (I) nach einem der Ansprüche 1 bis 4, worin
X bedeutet CH2,
R1 bedeutet Cyclopropyl, wobei die Cyclopropylgruppe durch s Reste aus der Gruppe bestehend aus Halogen, (G-G,)- Alkyl und Halogen-(Ci-C6)-alkyl substituiert ist,
R2 bedeutet Hydroxy, (G-G)-Alkoxy, (Ci-C6)-Halogenalkoxy, (C2-C6)-Alkenyloxy, (G-G)-
Halogenalkenyloxy, (C2-C6)-Alkinyloxy,
R3 bedeutet Cyano, Fluor, Chlor, Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl,
Cyclopropyl, Hydroxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Methoxy, Ethoxy, Methylsulfanyl, Methylsulfinyl oder Methylsulfonyl,
R4, R5, R6 und R7 bedeuten unabhängig voneinander jeweils Wasserstoff, Cyano, Fluor, Chlor,
Brom, Methyl, Ethyl, Trifluormethyl, Difluormethyl, Cyclopropyl, Hydroxycarbonyl, Methoxycarbonyl, Ethoxycarbonyl, Methoxy, Ethoxy, Methylsulfanyl, Methylsulfinyl oder Methylsulfonyl, m bedeutet 0, 1, 2 oder 3,
n bedeutet 0, 1 oder 2,
s bedeutet 0, 1, 2, 3, 4 oder 5.
6. Herbizide Mittel enthaltend mindestens eine Verbindung der Formel (I) gemäß einem der Ansprüche 1 bis 5 in Mischung mit Formulierungshilfsmitteln.
7. Herbizide Mittel gemäß Anspruch 6 enthaltend mindestens einen weiteren pestizid wirksamen Stoff aus der Gruppe Insektizide, Akarizide, Herbizide, Fungizide, Safener und Wachstumsregulatoren.
8. Verfahren zur Bekämpfung unerwünschter Pflanzen, dadurch gekennzeichnet, daß man eine wirksame Menge mindestens einer Verbindung der Formel (I) gemäß einem der Ansprüche 1 bis 5 oder von herbiziden Mitteln nach Anspruch 6 oder 7 auf die Pflanzen oder auf den Ort des unerwünschten Pflanzenwachstums appliziert.
9. Verwendung von Verbindungen der Formel (I) gemäß einem der Ansprüche 1 bis 5 oder von herbiziden Mitteln nach Anspruch 6 oder 7 zur Bekämpfung unerwünschter Pflanzen.
10. Verwendung nach Anspruch 8, dadurch gekennzeichnet, daß die Verbindungen der Formel (I) zur Bekämpfung unerwünschter Pflanzen in Kulturen von Nutzpflanzen eingesetzt werden.
11. Verwendung nach Anspruch 10, dadurch gekennzeichnet, daß die Nutzpflanzen transgene Nutzpflanzen sind.
EP19728921.8A 2018-06-04 2019-05-29 Herbizid wirksame substituierte phenylpyrimidine Withdrawn EP3802516A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18175675 2018-06-04
PCT/EP2019/064006 WO2019233862A1 (de) 2018-06-04 2019-05-29 Herbizid wirksame substituierte phenylpyrimidine

Publications (1)

Publication Number Publication Date
EP3802516A1 true EP3802516A1 (de) 2021-04-14

Family

ID=62528295

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19728921.8A Withdrawn EP3802516A1 (de) 2018-06-04 2019-05-29 Herbizid wirksame substituierte phenylpyrimidine

Country Status (10)

Country Link
US (1) US11390589B2 (de)
EP (1) EP3802516A1 (de)
JP (1) JP7389059B2 (de)
CN (1) CN112513028A (de)
AR (1) AR114913A1 (de)
AU (1) AU2019283310B2 (de)
BR (1) BR112020024044A2 (de)
CA (1) CA3102161A1 (de)
EA (1) EA202092927A1 (de)
WO (1) WO2019233862A1 (de)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3250034B1 (de) * 2015-01-30 2020-03-11 Basf Se Herbizide phenylpyrimidine
AU2017298874A1 (en) * 2016-07-20 2019-01-03 Basf Se Herbicidal compositions comprising phenylpyrimidines
WO2018019552A1 (en) * 2016-07-25 2018-02-01 Basf Se Herbicidal pyrimidine compounds
BR112018077111A2 (pt) 2016-07-26 2019-04-02 Basf Se uso de compostos de pirimidina, compostos de pirimidina, mistura herbicida, composições herbicidas, método para controlar vegetação indesejada e uso das composições
WO2018019765A1 (en) * 2016-07-27 2018-02-01 Basf Se Herbicidal pyrimidine compounds

Also Published As

Publication number Publication date
BR112020024044A2 (pt) 2021-02-09
CA3102161A1 (en) 2019-12-12
AR114913A1 (es) 2020-10-28
JP2021527032A (ja) 2021-10-11
AU2019283310A1 (en) 2021-01-07
US11390589B2 (en) 2022-07-19
WO2019233862A1 (de) 2019-12-12
EA202092927A1 (ru) 2021-05-26
JP7389059B2 (ja) 2023-11-29
AU2019283310B2 (en) 2023-10-12
US20210317089A1 (en) 2021-10-14
CN112513028A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
EP3638665A1 (de) Herbizid wirksame 3-phenylisoxazolin-5-carboxamide von tetrahydro- und dihydrofurancarbonsäuren und -estern
WO2019145245A1 (de) Herbizid wirksame 3-phenylisoxazolin-5-carboxamide von cyclopentenylcarbonsäurederivaten
EP3638666A1 (de) Herbizid wirksame 3-phenylisoxazolin-5-carboxamide von tetrahydro- und dihydrofurancarbonsäureamiden
WO2019219587A1 (de) 2-brom-6-alkoxyphenyl-substituierte pyrrolin-2-one und deren verwendung als herbizide
WO2021122728A1 (de) 1,5-diphenylpyrazolyl-3-oxyalkylsäuren und 1-phenyl-5-thienylpyrazolyl-3-oxyalkylsäuren und deren verwendung zur bekämpfung unerwünschten pflanzenwachstums
WO2020245044A1 (de) 1-phenyl-5-azinylpyrazolyl-3-oxyalkylsäuren und deren verwendung zur bekämpfung unerwünschten pflanzenwachstums
WO2022084278A1 (de) 1-(pyridyl)-5-azinylpyrazol derivate und deren verwendung zur bekämpfung unerwünschten pflanzenwachstums
WO2019219584A1 (de) Neue spirocyclohexylpyrrolin-2-one und deren verwendung als herbizide
EP3853219B1 (de) Herbizid wirksame substituierte phenylpyrimidinhydrazide
WO2022043205A1 (de) Substituierte n-phenyluracile sowie deren salze und ihre verwendung als herbizide wirkstoffe
WO2020187627A1 (de) Neue 3-(2-brom-4-alkinyl-6-alkoxyphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2019228788A1 (de) 2-brom-6-alkoxyphenyl-substituierte pyrrolin-2-one und deren verwendung als herbizide
WO2019228787A1 (de) Speziell substituierte 2-alkyl-6-alkoxyphenyl-3-pyrrolin-2-one und deren verwendung als herbizide
WO2020002087A1 (de) Substituierte 3-heteroaryloxypyridine sowie deren salze und ihre verwendung als herbizide wirkstoffe
EP3898612B1 (de) Substituierte pyridinyloxybenzole sowie deren salze und ihre verwendung als herbizide wirkstoffe
EP3802516A1 (de) Herbizid wirksame substituierte phenylpyrimidine
WO2023099381A1 (de) (1,4,5-trisubstituierte-1h-pyrazol-3-yl)oxy-2-alkylthio-alkylsäuren und -alkylsäure-derivate, deren salze und ihre verwendung als herbizide wirkstoffe
WO2023274869A1 (de) 3-(4-alkenyl-phenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
WO2022253700A1 (de) Speziell substituierte pyrrolin-2-one und deren verwendung als herbizide
EP4367105A1 (de) N-(1,3,4-oxadiazol-2-yl)phenylcarboxamide als herbizide
WO2024078871A1 (de) 1-pyridyl-5-phenylpyrazolyl-3-oxy- und -3-thioalkylsäuren und derivate und deren verwendung zur bekämpfung unerwünschten pflanzenwachstums
WO2022268933A1 (de) (1,4,5-trisubstituierte-1h-pyrazol-3-yl)oxy-2-alkoxy-alkylsäuren und -alkylsäure-derivate, deren salze und ihre verwendung als herbizide wirkstoffe
WO2020002083A1 (de) Substituierte heterocyclylpyrrolone sowie deren salze und ihre verwendung als herbizide wirkstoffe
EP3938346A1 (de) Speziell substituierte 3-(2-halogen-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide
EP3938349A1 (de) Speziell substituierte 3-(2-alkoxy-6-alkyl-4-propinylphenyl)-3-pyrrolin-2-one und deren verwendung als herbizide

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20221019

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20230301