EP3569769B1 - Gründungspfahl - Google Patents

Gründungspfahl Download PDF

Info

Publication number
EP3569769B1
EP3569769B1 EP18173174.6A EP18173174A EP3569769B1 EP 3569769 B1 EP3569769 B1 EP 3569769B1 EP 18173174 A EP18173174 A EP 18173174A EP 3569769 B1 EP3569769 B1 EP 3569769B1
Authority
EP
European Patent Office
Prior art keywords
foundation engineering
columnar structure
ground
evaluation unit
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18173174.6A
Other languages
English (en)
French (fr)
Other versions
EP3569769A1 (de
Inventor
Hans Dr. REGLER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bauer Spezialtiefbau GmbH
Original Assignee
Bauer Spezialtiefbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bauer Spezialtiefbau GmbH filed Critical Bauer Spezialtiefbau GmbH
Priority to EP18173174.6A priority Critical patent/EP3569769B1/de
Priority to US17/055,766 priority patent/US11377811B2/en
Priority to PCT/EP2019/059948 priority patent/WO2019219320A1/de
Priority to CA3100562A priority patent/CA3100562A1/en
Priority to CN201980033420.0A priority patent/CN112400045A/zh
Publication of EP3569769A1 publication Critical patent/EP3569769A1/de
Application granted granted Critical
Publication of EP3569769B1 publication Critical patent/EP3569769B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D13/00Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers
    • E02D13/06Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers for observation while placing
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/18Bulkheads or similar walls made solely of concrete in situ
    • E02D5/187Bulkheads or similar walls made solely of concrete in situ the bulkheads or walls being made continuously, e.g. excavating and constructing bulkheads or walls in the same process, without joints
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • E02D5/46Concrete or concrete-like piles cast in position ; Apparatus for making same making in situ by forcing bonding agents into gravel fillings or the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/22Placing by screwing down
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2200/00Geometrical or physical properties
    • E02D2200/16Shapes
    • E02D2200/1685Shapes cylindrical
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2250/00Production methods
    • E02D2250/003Injection of material
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D2600/00Miscellaneous
    • E02D2600/10Miscellaneous comprising sensor means

Definitions

  • the invention relates to a civil engineering method for creating a columnar structure in the ground, in which a civil engineering tool is driven to rotate about an axis of rotation and introduced into a ground with a feed, the columnar structure being created in the ground, according to the preamble of claim 1.
  • the invention further relates to a construction device for creating a columnar structure in the ground, with a civil engineering tool which can be driven to rotate about an axis of rotation by means of a rotary drive and can be moved into the ground by means of a feed drive in a feed direction, at least one detection device for detecting a rotary movement of the civil engineering tool and a feed movement and at least one sensor device for detecting at least one further operating parameter, according to the preamble of claim 10.
  • a generic civil engineering method and a generic construction equipment go from the EP 2 806 070 B1 emerged.
  • a high-pressure injection body is created in the ground by means of a drill rod which has an outlet for ejecting an injection medium into the ground.
  • a gyroscopic measuring means is provided on the drill rod for detecting a direction of movement of at least a part of the drill rod caused by the ejection of the injection medium.
  • An electronic evaluation means makes it possible to assign the depths of propagation of the injection medium determined to the current output direction.
  • the injection medium By rotating the drill string with the outlet, the injection medium is delivered radially around the drill string into the ground. It is possible to first erode the soil with a high pressure water jet and then expel the injection medium into the environment, which consists of eroded soil and water. By lifting the drill rod with the outlet, an approximately cylindrical high-pressure injection body (HDI body) can be formed.
  • HDI body high-pressure injection body
  • HDI bodies or HDI columns are used for various purposes.
  • a subsoil can be consolidated or sealed against the ingress of groundwater.
  • HDI bodies can be used to connect different wall types, for example pile walls and sheet piling.
  • the injection medium can in principle be any fluid or any liquid or suspension, which can also be mixed with solids.
  • a cement suspension, chemicals or synthetic resins can be used.
  • the dimensions of the HDI body actually produced must match the desired dimensions sufficiently. This is of particular importance if several HDI bodies are to provide a seal next to one another in the floor. In this case, there must be no free space between the HDI bodies.
  • an HDI body in particular in the radial direction to the drill pipe, can, however, vary depending on the soil. For example, an obstacle in the ground can prevent the injection medium from penetrating. As a result, an HDI body produced does not usually have an exact cylindrical shape. Rather, its radial extent is dependent on the depth and the azimuthal angle. This indicates a direction in a plane perpendicular to the drilling axis.
  • HDI bodies In order to nevertheless provide a sealing effect with HDI bodies, these are usually created with an overlap in the floor.
  • the overlap is selected to be larger, the more uncertain the knowledge of the dimensions of the HDI bodies. This increases the number of HDI bodies to be erected, which is associated with a greater time requirement and higher costs.
  • measuring devices are used.
  • the erection of an HDI body is monitored with a geophone. This is driven into the ground at a distance from the drill pipe. By detecting ground vibrations, the range up to which the injection medium is expelled can be estimated.
  • Driving in a geophone represents an additional amount of work, which increases the time required and the personnel requirements. In addition, the accuracy that can be achieved in this way is limited.
  • the measuring device there comprises a sound transmitter and receiver.
  • the emitted sound is reflected back at a boundary surface of the borehole, in particular with an injection body.
  • the radial extent of the borehole or the depth of propagation of the injection medium can then be determined from the transit time of the sound signal.
  • the measuring device comprises a spool with an unwindable measuring line. By detecting the extent to which the measuring line has unrolled, conclusions can be drawn about the radial dimensions of the high-pressure injection body.
  • the method according to the invention is characterized in that, when creating the columnar structure, a rotary movement and a feed movement of the civil engineering tool are recorded over time and forwarded to an evaluation unit, that at least one further processing parameter for creating the columnar structure in the ground over time is detected and forwarded to the evaluation unit and that a three-dimensional model of the columnar structure is created and displayed by the evaluation unit.
  • One aspect of the invention is to acquire certain measured values over time in a civil engineering method for creating a columnar structure in the ground and to use them to create and display a three-dimensional model of the columnar structure created in the most descriptive way possible.
  • the three-dimensional model of the columnar structure created does not have to be a true-to-scale model of the columnar structure actually created in the ground, such as a foundation pile. It is essential that the three-dimensional model produced can clearly show the correct implementation of the civil engineering process and possible defects in the structure produced.
  • a rotary movement of the rotating civil engineering tool and, at the same time, a feed movement of the civil engineering tool are recorded over time.
  • At least one further processing parameter is recorded over time, which is essential for creating the columnar structure in the ground.
  • the evaluation unit can then create a clear three-dimensional column model of the columnar structure and display it directly on a display device on an operating or monitoring station, for example directly in the construction equipment.
  • a machine operator can be shown immediately if the created columnar structure has an undesirable flaw in the floor. With this immediate display, the machine operator can immediately, in particular as long as an introduced cement suspension has not yet hardened, a Carry out rework with the civil engineering tool. Such prompt troubleshooting is much easier and more cost-effective to carry out than if a defect is only found in the floor when the structure is finished and cured.
  • any columnar structure can be created in the ground, such as an HDI element for an injection anchor or a lime or gravel column. It is particularly preferred according to the invention that a foundation pile is created in the ground as a columnar structure.
  • the foundation pile is produced by material-removing drilling or by displacement drilling, a hardenable suspension being introduced into the drill hole produced.
  • a drilling tool with an injection opening or an injection lance for injecting a hardenable suspension is used as the civil engineering tool and that a hardenable suspension is introduced into the ground by the rotating civil engineering tool to create the columnar structure .
  • the borehole can be created at the same time and the hardenable suspension can be introduced in the same or a subsequent operation.
  • the drilling tool executes a helical movement with the injection opening, which is produced by a superposition between a rotary movement and a feed movement.
  • each parameter can be recorded when creating the columnar structure in the ground, which allows a statement to be made about the created structure in the ground. It is particularly advantageous that an injection pressure, a pump pressure, an injection volume, a temperature, a tool deflection and / or a sound measurement value is recorded as at least one further operating parameter. These parameters can be recorded individually or in any combination with one another and used to generate the three-dimensional model. A particularly good statement about the introduction of a hardenable suspension can be recorded by measuring a tool deflection or a sound, as is the case, for example, in the documents mentioned in the introduction to the description EP 2 896 070 B1 respectively DE 196 22 282 C1 and is also known in principle to an average person skilled in the art.
  • the evaluation unit forms a helical time axis as a function of the rotational movement and feed movement recorded over time and that the at least one processing parameter recorded over time for forming the three-dimensional model is assigned to the helical time axis.
  • the evaluation unit combines the determined rotary movement and the determined feed movement in such a way that no linear, straight time axis is formed, but a helical time axis.
  • the central axis of the helical shape can preferably be a measure of the distance covered, that is to say the depth in the ground. If the at least one further parameter is now plotted over the helical time axis, this results in a clear representation that allows direct comparisons to the column structure actually created in the ground and, in particular, allows deviations and flaws to be easily identified.
  • the three-dimensional model of the columnar structure is formed by interpolation by the evaluation unit after the at least one processing parameter has been assigned to the helical time axis.
  • the areas missing between the screw turns are mathematically determined by corresponding interpolation of the operating parameters that are opposite in the axial direction on the adjacent turns of the helical time axis.
  • a linear interpolation is preferably provided here. In this way, a spatial, columnar model can be created relatively easily from a linear acquisition of a parameter.
  • a preferred variant of the method also consists in that the rotary movement is detected directly on a rotary drive or by a speed measuring element on the civil engineering tool.
  • the speed measuring element can in particular be a speedometer.
  • the rotary movement can also be picked up directly by a tachometer on the rotary drive.
  • the feed movement can be measured in any suitable manner. It is particularly preferred that the feed movement is detected directly on a feed drive or by a displacement measuring element on the civil engineering tool.
  • a particularly efficient civil engineering method is achieved according to a further development of the invention in that a three-dimensional target model for the columnar structure to be created in the ground is stored in the evaluation unit, and that the three-dimensional model determined for the columnar structure as an actual model by the evaluation unit is compared with the target model and that deviations between the target model and the actual model are displayed on a display device.
  • These deviations can be viewed as flaws, especially if the outer circumference of the actual model does not correspond to the target model with its outer circumference.
  • These flaws can preferably be shown on a colored display with a different color, for example the color red. A flaw or an insufficient formation of the columnar structure in the floor is thus immediately apparent to a machine operator.
  • the depth at which there is a defect in the created columnar structure in the ground can also be determined directly. In this way, the machine operator can remedy this defect immediately by means of post-processing.
  • the construction device is characterized in that an evaluation unit is provided which is connected to the at least one detection device and the sensor device, the evaluation unit being designed to create a three-dimensional model of the columnar structure based on the recorded data, and that a display device is provided with which the created three-dimensional model of the columnar structure can be displayed.
  • the construction device can in particular be a drilling device for creating a foundation pile in the ground or an injection anchor.
  • the civil engineering tool is a drilling tool with an injection opening or an injection lance for injecting a curable suspension.
  • a measured value is preferably used as a further processing parameter, which represents a measure for the curable suspension introduced per time and place.
  • a further advantageous embodiment of the drilling device according to the invention is that a speed measuring element is provided with which a rotational movement of the civil engineering tool can be detected over time, and / or that a displacement measuring element is provided with which a travel path of the civil engineering tool can be detected over time.
  • Fig. 1 shows schematically an embodiment of a construction device 100 according to the invention for producing a columnar structure 32 in a floor 3.
  • the construction equipment 100 comprises, as a civil engineering tool 10, a drill pipe with which an in Fig. 1 Borehole 5 shown in detail can be generated.
  • An injection opening 20 is formed on the rod-shaped civil engineering tool 10.
  • An injection medium 22 can flow through this from the civil engineering tool 10 into the ground 3 be expelled.
  • the injection opening 20 can be rotated together with the civil engineering tool 10 or independently thereof about an axis of rotation 14, also called the drilling axis. This creates a columnar structure 32 which surrounds the rod-shaped civil engineering tool 10.
  • the ejected injection medium 22 penetrates up to a propagation depth 28.
  • the propagation depth 28 is a radial distance which can be determined from the injection opening 20 or from the axis of rotation 14. Due to obstacles in the ground, the size of the propagation depth 28 can depend on the azimuth angle about the axis of rotation 14 and / or on the height of the injection opening 20 along the axis of rotation 14.
  • a sensor device 40 is arranged on the civil engineering tool 10 so that it rotates with it. This receives a measurement signal, for example a sound signal.
  • the injection noise can be used as the sound signal, or an acoustic signal can be transmitted with a transmitter, the reflections of which are measured as a sound signal by the sensor device 40.
  • the signal can in particular be reflected back at an interface between the injection medium 22 and the soil 3.
  • the associated azimuthal direction is also determined, which indicates a rotational position of the injection opening 20 about the axis of rotation 14.
  • gyroscopic measuring means 30 can be provided on the rod-shaped civil engineering tool 10. These detect a direction of movement 26 of at least part of the civil engineering tool 10. This movement is caused by the ejection of the injection medium 22. Therefore, an ejection direction 24 and the direction of movement 26 of the drill rod 10 are exactly opposite to one another.
  • an electronic evaluation unit can be calculated from the measured values of the gyroscopic measuring means 30 of different ejection or output directions 24 of the injection opening 20.
  • a correct rotational position can also be determined and recorded by recording the rotational angle or a rotational speed based on an initial rotational position.
  • Fig. 2 a possible raw data curve is shown, which can be obtained with the arrangement of Fig. 2 is determined by a sound measurement. It shows Fig. 2 The sound intensity I measured periodically per revolution over a time axis t, which represents a measure of the depth of propagation of the injection medium 22 and thus as a measure of the external shape of the columnar structure 32 created in the ground.
  • the columnar structure 32 can in particular be a foundation pile in the ground 3.
  • the raw data curve which is not very meaningful, is transferred to a helical time axis t, which is shown schematically in FIG Fig. 3 is shown.
  • the longitudinal axis s of the helical shape is a measure of the distance covered or the depth of the civil engineering tool 10 in the ground 3.
  • a 360 ° winding of the helical shape represents a 360 ° rotation of the civil engineering tool 10 during operation, with the associated axial travel s with corresponds to an advance of the civil engineering tool 10 per revolution.
  • Fig. 3 can use the raw data curve according to Fig. 2 can be transferred with the sound value as a further processing parameter.
  • a simple mathematical interpolation can then be used in accordance with Fig. 4 a columnar model 50 is created and displayed on a display device, preferably on the construction equipment 100.
  • the values for the sound intensity I can be plotted in a radial direction relative to the longitudinal axis s, so that an essentially cylindrical column shape is obtained. Due to deviations in the sound intensity, deviations can be recognized directly in the columnar model 50 as dents 52 or dents and thus as possible flaws in the created foundation pile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Paleontology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • Piles And Underground Anchors (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

  • Die Erfindung betrifft ein Tiefbauverfahren zum Erstellen einer säulenförmigen Struktur im Boden, bei dem ein Tiefbauwerkzeug um eine Drehachse drehend angetrieben und mit einem Vorschub in einen Boden eingebracht wird, wobei die säulenförmige Struktur im Boden erstellt wird, gemäß dem Oberbegriff des Anspruchs 1.
  • Die Erfindung betrifft weiterhin ein Baugerät zum Erstellen einer säulenförmigen Struktur im Boden, mit einem Tiefbauwerkzeug, welches drehend um eine Drehachse mittels eines Drehantriebes antreibbar und mittels eines Vorschubantriebes in einer Vorschubrichtung in den Boden verfahrbar ist, mindestens einer Erfassungseinrichtung zum Erfassen einer Drehbewegung des Tiefbauwerkzeugs und einer Vorschubbewegung und mindestens einer Sensoreinrichtung zum Erfassen mindestens eines weiteren Betriebsparameters, gemäß dem Oberbegriff des Anspruchs 10.
  • Ein gattungsgemäßes Tiefbauverfahren und ein gattungsgemäßes Baugerät gehen aus der EP 2 806 070 B1 hervor. Bei diesem bekannten Verfahren wird ein Hochdruckinjektionskörper im Boden mittels eines Bohrgestänges erstellt, welches einen Auslass zum Ausstoßen eines Injektionsmediums in den Boden aufweist. An dem Bohrgestänge ist ein gyroskopisches Messmittel zum Erfassen einer durch den Ausstoß des Injektionsmediums hervorgerufenen Bewegungsrichtung von zumindest einem Teil des Bohrgestänges vorgesehen. Ein elektronisches Auswertemittel ermöglicht es, der momentanen Ausgaberichtung ermittelte Ausbreitungstiefen des Injektionsmediums zuzuordnen.
  • Indem das Bohrgestänge mit dem Auslass gedreht wird, wird das Injektionsmedium radial um das Bohrgestänge in den Boden gegeben. Es ist möglich, den Boden zunächst durch einen Hochdruckwasserstrahl zu erodieren und sodann das Injektionsmedium in die Umgebung auszustoßen, welche aus erodiertem Boden und Wasser besteht. Durch Anheben des Bohrgestänges mit dem Auslass kann ein etwa zylinderförmiger Hochdruckinjektionskörper (HDI-Körper) gebildet werden.
  • HDI-Körper oder HDI-Säulen werden für verschiedene Zwecke eingesetzt. Insbesondere kann ein Baugrund verfestigt werden oder gegen das Eindringen von Grundwasser abgedichtet werden. Bei Baugrubenabsicherungen können durch HDI-Körper unterschiedliche Wandtypen miteinander verbunden werden, beispielsweise Pfahlwände und Spundwände.
  • Das Injektionsmedium kann grundsätzlich ein beliebiges Fluid oder eine beliebige Flüssigkeit oder Suspension sein, welche auch mit Feststoffen versetzt sein kann. Beispielsweise können eine Zementsuspension, Chemikalien oder Kunstharze eingesetzt werden.
  • Damit ein HDI-Körper die gewünschte Abdichtung oder Stabilität bietet, müssen die tatsächlich erzeugten Abmessungen des HDI-Körpers mit gewünschten Abmessungen ausreichend übereinstimmen. Dies ist von besonderer Bedeutung, wenn mehrere HDI-Körper nebeneinander im Boden eine Abdichtung bereitstellen sollen. In diesem Fall darf zwischen den HDI-Körpern kein Freiraum verbleiben.
  • Die genauen Abmessungen eines HDI-Körpers, insbesondere in Radialrichtung zu dem Bohrgestänge, können jedoch abhängig vom Boden verschieden ausfallen. So kann beispielsweise ein Hindernis im Boden ein Eindringen des Injektionsmediums verhindern. Als Folge hat ein erzeugter HDI-Körper in der Regel keine exakte Zylinderform. Vielmehr ist dessen radiale Ausdehnung abhängig von der Tiefe und dem Azimutalwinkel. Dieser gibt eine Richtung in einer Ebene senkrecht zur Bohrachse an.
  • Um dennoch eine abdichtende Wirkung mit HDI-Körpern bereitzustellen, werden diese üblicherweise mit einem Überlapp im Boden erzeugt. Der Überlapp wird umso größer gewählt, je unsicherer die Kenntnis der Abmessungen der HDI-Körper ist. Damit steigt die Anzahl zu errichtenden HDI-Körper, womit ein größerer Zeitbedarf und höhere Kosten einhergehen.
  • Um den Überlapp zwischen benachbarten HDI-Körpern gering halten zu können, werden Messeinrichtungen eingesetzt. Bei DE 195 21 639 A1 wird die Errichtung eines HDI-Körpers mit einem Geophon überwacht. Dieses wird beabstandet zum Bohrgestänge in den Boden getrieben. Indem es Bodenerschütterungen erfasst, kann die Reichweite geschätzt werden, bis zu welcher das Injektionsmedium ausgestoßen wird. Das Eintreiben eines Geophons stellt aber einen zusätzlichen Arbeitsaufwand dar, durch den der Zeitbedarf und die personellen Anforderungen steigen. Zudem ist die hierdurch erreichbare Genauigkeit begrenzt.
  • Demgegenüber werden bei einer gattungsgemäßen Vorrichtung und einem gattungsgemäßen Verfahren, wo die Messeinrichtung am Bohrgestänge befestigt ist, Vorteile erreicht. Der Betrieb einer solchen Messeinrichtung ist mit praktisch keinem zusätzlichen Arbeitsaufwand verbunden. Eine solche Vorrichtung und ein solches Verfahren werden beispielsweise in DE 196 22 282 C1 beschrieben. Die Messeinrichtung umfasst dort einen Schallsender und -empfänger. Der ausgesendete Schall wird an einer Grenzfläche des Bohrlochs, insbesondere zu einem Injektionskörper, zurückgeworfen. Aus der Laufzeit des Schallsignals kann sodann die radiale Ausdehnung des Bohrlochs oder die Ausbreitungstiefe des Injektionsmediums bestimmt werden.
  • Eine weitere Vorrichtung und ein weiteres Verfahren sind aus DE 198 34 731 C1 bekannt. Dort umfasst die Messeinrichtung eine Spule mit abwickelbarer Messleine. Indem die Ausmaße des Abrollens der Messleine erfasst werden, kann auf die radialen Abmessungen des Hochdruckinjektionskörpers geschlossen werden.
  • In dieser Weise können zwar die Maße des Injektionskörpers bestimmt werden, jedoch bedarf die Auswertung und Interpretation der Messdaten eines nicht unerheblichen Aufwandes. Es ist aber wünschenswert, die im Boden erstellte dreidimensionale Struktur besonders genau zu bestimmen und eine effiziente Überprüfung des Bearbeitungsergebnisses zu Weiter ist aus der GB 2 328 700 A ein Tiefbauverfahren bzw. ein Baugerät nach dem Oberbegriff des Anspruchs 1 respektive 10 bekannt.
  • Es ist eine Aufgabe der Erfindung, ein Verfahren und ein Baugerät zum Erstellen einer dreidimensionalen Struktur im Boden bereitzustellen, mit denen die erstellte Struktur besonders effizient ermittelt und überprüft werden kann.
  • Diese Aufgabe wird durch ein Tiefbauverfahren mit den Merkmalen des Anspruchs 1 sowie durch ein Baugerät mit den Merkmalen des Anspruchs 10 gelöst.
  • Bevorzugte Varianten der Erfindung sind Gegenstand der abhängigen Ansprüche.
  • Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, dass beim Erstellen der säulenförmigen Struktur eine Drehbewegung und eine Vorschubbewegung des Tiefbauwerkzeugs über die Zeit erfasst und zu einer Auswerteeinheit weitergeleitet werden, dass mittels einer Sensoreinrichtung mindestens ein weiterer Bearbeitungsparameter zum Erstellen der säulenförmigen Struktur in dem Boden über die Zeit erfasst und zu der Auswerteeinheit weitergeleitet wird und dass durch die Auswerteeinheit ein dreidimensionales Modell der säulenförmigen Struktur erstellt und angezeigt wird.
  • Ein Aspekt der Erfindung besteht darin, bei einem Tiefbauverfahren zum Erstellen einer säulenförmigen Struktur im Boden bestimmte Messwerte über die Zeit zu erfassen und hieraus in möglichst anschaulicher Weise ein dreidimensionales Modell der erstellten säulenförmigen Struktur zu bilden und anzuzeigen. Dabei muss das erstellte dreidimensionale Modell der säulenförmigen Struktur kein maßstabgetreues Modell der tatsächlich im Boden erstellten säulenförmigen Struktur, etwa eines Gründungspfahles, sein. Maßgeblich ist, dass das erzeugte dreidimensionale Modell anschaulich eine korrekte Durchführung des Tiefbauverfahrens und mögliche Fehlstellen der erzeugten Struktur darstellen kann. Dabei werden während des Herstellungsprozesses eine Drehbewegung des drehenden Tiefbauwerkzeuges und gleichzeitig eine Vorschubbewegung des Tiefbauwerkzeuges über die Zeit erfasst.
  • Weiterhin wird mindestens ein weiterer Bearbeitungsparameter über die Zeit erfasst, welcher für das Erstellen der säulenförmigen Struktur im Boden wesentlich ist. Hieraus kann dann durch die Auswerteeinheit ein anschauliches dreidimensionales Säulenmodell der säulenförmigen Struktur erstellt und unmittelbar an einer Anzeigeeinrichtung an einer Bedien- oder Überwachungsstation, etwa unmittelbar im Baugerät, angezeigt werden.
  • So kann etwa einem Maschinenbediener unmittelbar angezeigt werden, wenn die erstellte säulenförmige Struktur im Boden eine unerwünschte Fehlstelle aufweist. Durch dieses unmittelbare Anzeigen kann der Maschinenbediener unmittelbar, insbesondere solange etwa eine eingebrachte Zementsuspension noch nicht ausgehärtet ist, eine Nacharbeitung mit dem Tiefbauwerkzeug durchführen. Eine derartige zeitnahe Fehlerbehebung ist deutlich einfacher und kostengünstiger durchführbar als wenn eine Fehlstelle erst bei der fertigen und ausgehärteten Struktur im Boden festgestellt wird.
  • Grundsätzlich kann eine beliebige säulenförmige Struktur im Boden erstellt werden, etwa ein HDI-Element für einen Injektionsanker oder eine Kalk- oder Kiessäule. Besonders bevorzugt ist es nach der Erfindung, dass als säulenförmige Struktur ein Gründungspfahl im Boden erstellt wird. Der Gründungspfahl wird dabei durch ein materialabtragendes Bohren oder durch ein Verdrängungsbohren hergestellt, wobei in das erzeugte Bohrloch eine aushärtbare Suspension eingeleitet wird.
  • Dabei ist es nach einer Weiterbildung der Erfindung besonders vorteilhaft, dass als Tiefbauwerkzeug ein Bohrwerkzeug mit Injektionsöffnung oder eine Injektionslanze zum Injizieren einer aushärtbaren Suspension verwendet wird und dass eine aushärtbare Suspension durch das drehende Tiefbauwerkzeug in den Boden zum Erstellen der säulenförmigen Struktur in den Boden eingebracht wird. Mit derartigen drehenden Bohrwerkzeugen können gleichzeitig das Bohrloch erstellt und im gleichen oder einem anschließenden Arbeitsgang die aushärtbare Suspension eingebracht werden. Bei diesem Einbringen führt das Bohrwerkzeug mit der Injektionsöffnung eine schraubenförmige Bewegung durch, welche durch eine Überlagerung zwischen einer Drehbewegung und einer Vorschubbewegung entsteht.
  • Als weiterer Betriebsparameter kann jeder Parameter beim Erstellen der säulenförmigen Struktur im Boden erfasst werden, welcher eine Aussage über die erstellte Struktur im Boden zulässt. Besonders vorteilhaft ist es dabei, dass als mindestens ein weiterer Betriebsparameter ein Injektionsdruck, ein Pumpendruck, ein Injektionsvolumen, eine Temperatur, eine Werkzeugauslenkung und/oder ein Schallmesswert erfasst wird. Diese Parameter können einzeln oder auch in einer beliebigen Kombination zueinander erfasst und zum Erzeugen des dreidimensionalen Modells herangezogen werden. Eine besonders gute Aussage über das Einbringen einer aushärtbaren Suspension kann durch Messung einer Werkzeugauslenkung oder eines Schalls erfasst werden, so wie dies etwa in den in der Beschreibungseinleitung genannten Druckschriften EP 2 896 070 B1 beziehungsweise DE 196 22 282 C1 angegeben und einem Durchschnittsfachmann auch grundsätzlich bekannt ist.
  • Nach einer weiteren Verfahrensvariante der Erfindung ist es bevorzugt, dass durch die Auswerteeinheit abhängig von der über die Zeit erfassten Drehbewegung und Vorschubbewegung eine helixförmige Zeitachse gebildet wird und dass der mindestens eine über die Zeit erfasste Bearbeitungsparameter zum Bilden des dreidimensionalen Modells der helixförmigen Zeitachse zugeordnet wird. Die Auswerteeinheit kombiniert dabei die ermittelte Drehbewegung und die ermittelte Vorschubbewegung so, dass keine linienförmige gerade Zeitachse gebildet wird, sondern eine helixförmige Zeitachse. Dabei kann die Mittenachse der Helixform vorzugsweise ein Maß für den zurückgelegten Weg, also die Tiefe im Boden, sein. Wird nunmehr der mindestens eine weitere Parameter über die helixförmige Zeitachse abgetragen, ergibt dies eine anschauliche Darstellung, die unmittelbare Vergleiche zu der im Boden tatsächlich erstellten Säulenstruktur zulässt und insbesondere Abweichungen und Fehlstellen leicht erkennen lässt.
  • Besonders vorteilhaft ist es dabei, dass durch die Auswerteeinheit nach Zuordnung des mindestens einen Bearbeitungsparameters zu der helixförmigen Zeitachse das dreidimensionale Modell der säulenförmigen Struktur durch Interpolation gebildet wird. Dabei werden die zwischen den Schraubenwindungen fehlenden Bereiche durch entsprechende Interpolation der in Axialrichtung gegenüberliegenden Betriebsparameter auf den angrenzenden Windungen der helixförmigen Zeitachse mathematisch bestimmt. Vorzugsweise wird hierbei eine lineare Interpolation vorgesehen. So kann relativ einfach aus einer linearen Erfassung eines Parameters ein räumliches, säulenförmiges Modell erstellt werden.
  • Eine bevorzugte Verfahrensvariante besteht weiter darin, dass die Drehbewegung unmittelbar an einem Drehantrieb oder durch ein Drehzahlmesselement an dem Tiefbauwerkzeug erfasst wird. Das Drehzahlmesselement kann insbesondere ein Drehzahlmesser sein. Alternativ kann die Drehbewegung auch unmittelbar von einem Drehzahlmesser am Drehantrieb abgenommen werden.
  • Eine Messung der Vorschubbewegung kann grundsätzlich in jeder geeigneten Weise erfolgen. Besonders bevorzugt ist es, dass die Vorschubbewegung unmittelbar an einem Vorschubantrieb oder durch ein Wegmesselement an dem Tiefbauwerkzeug erfasst wird.
  • Ein besonders effizientes Tiefbauverfahren wird nach einer Weiterbildung der Erfindung dadurch erreicht, dass in der Auswerteeinheit ein dreidimensionales Soll-Modell für die zu erstellende säulenförmige Struktur im Boden abgespeichert ist, dass durch die Auswerteeinheit das ermittelte dreidimensionale Modell für die säulenförmige Struktur als ein Ist-Modell mit dem Soll-Modell verglichen wird und dass an einer Anzeigeeinrichtung Abweichungen zwischen dem Soll-Modell und dem Ist-Modell angezeigt werden. Diese Abweichungen können als Fehlstellen angesehen werden, insbesondere wenn das Ist-Modell in seinem Außenumfang nicht dem Soll-Modell mit seinem Außenumfang entspricht. Diese Fehlstellen können vorzugsweise auf einem farbigen Display mit einer anderen Farbe, etwa der Farbe Rot, dargestellt werden. Somit ist für einen Maschinenbediener unmittelbar eine Fehlstelle oder eine nicht ausreichende Ausbildung der säulenförmigen Struktur im Boden ersichtlich. Wenn die Längsachse des säulenförmigen Modells einer Vertikalachse der säulenförmigen Struktur im Boden entspricht, kann auch unmittelbar die Tiefenlage festgestellt werden, in der eine Fehlstelle bei der erstellten säulenförmigen Struktur im Boden vorliegt. Somit kann diese Fehlstelle unmittelbar durch den Maschinenbediener durch eine Nachbearbeitung beseitigt werden.
  • Das erfindungsgemäße Baugerät ist dadurch gekennzeichnet, dass eine Auswerteeinheit vorgesehen ist, welche mit der mindestens einen Erfassungseinrichtung und der Sensoreinrichtung verbunden ist, wobei die Auswerteeinheit ausgebildet ist, basierend auf den erfassten Daten ein dreidimensionales Modell der säulenförmigen Struktur zu erstellen, und dass eine Anzeigeeinrichtung vorgesehen ist, mit der das erstellte dreidimensionale Modell der säulenförmigen Struktur anzeigbar ist.
  • Mit dem erfindungsgemäßen Bohrgerät kann insbesondere das zuvor beschriebene erfindungsgemäße Verfahren ausgeführt werden. Es ergeben sich dabei die zuvor beschriebenen Vorteile.
  • Das Baugerät kann insbesondere ein Bohrgerät zum Erstellen eines Gründungspfahles im Boden oder eines Injektionsankers sein.
  • Besonders bevorzugt ist es nach einer Weiterbildung der Erfindung, dass das Tiefbauwerkzeug ein Bohrwerkzeug mit Injektionsöffnung oder einer Injektionslanze zum Injizieren einer aushärtbaren Suspension ist. Dabei wird als weiterer Bearbeitungsparameter vorzugsweise ein Messwert herangezogen, welcher ein Maß für die eingebrachte aushärtbare Suspension pro Zeit und Ort darstellt.
  • Eine weitere vorteilhafte Ausgestaltung des erfindungsgemäßen Bohrgerätes besteht darin, dass ein Drehzahlmesselement vorgesehen ist, mit dem eine Drehbewegung des Tiefbauwerkzeugs über die Zeit erfassbar ist, und/oder dass ein Wegmesselement vorgesehen ist, mit dem ein Verfahrweg des Tiefbauwerkzeuges über die Zeit erfassbar ist.
  • Die Erfindung wird nachfolgend anhand von bevorzugten Ausführungsbeispielen erläutert, welche schematisch in den Zeichnungen dargestellt sind. In den Zeichnungen zeigen:
  • Fig. 1
    einen Ausschnitt eines stark schematisierten Baugeräts bei der Herstellung einer säulenförmigen Struktur im Boden;
    Fig. 2
    ein Messdatenbeispiel einer Datenkurve einer gemessenen Schallintensität über die Zeit bei der Erstellung einer säulenförmigen Struktur im Boden gemäß der Anordnung von Fig. 1;
    Fig. 3
    eine helixförmige Darstellung der Zeitachse t über den Weg s, wobei ein 360°-Abschnitt der Helix einer Drehung des Tiefbauwerkzeuges gemäß Fig. 1 entspricht; und
    Fig. 4
    eine Veranschaulichung der schematischen Übertragung einer Rohdatenkurve gemäß Fig. 2 auf die helixförmige Zeitachse und die schematische Ermittlung eines dreidimensionalen säulenförmigen Modells hieraus.
  • Fig. 1 zeigt schematisch ein Ausführungsbeispiel eines erfindungsgemäßen Baugeräts 100 zur Herstellung einer säulenförmigen Struktur 32 in einem Boden 3.
  • Das Baugerät 100 umfasst als ein Tiefbauwerkzeug 10 ein Bohrgestänge, mit dem ein in Fig. 1 ausschnittsweise dargestelltes Bohrloch 5 erzeugt werden kann. An dem gestängeförmigen Tiefbauwerkzeug 10 ist eine Injektionsöffnung 20 ausgebildet. Durch diese kann ein Injektionsmedium 22 aus dem Tiefbauwerkzeug 10 in den Boden 3 ausgestoßen werden. Die Injektionsöffnung 20 ist gemeinsam mit dem Tiefbauwerkzeug 10 oder auch unabhängig hiervon um eine Drehachse 14, auch Bohrachse genannt, drehbar. Dadurch wird eine säulenförmige Struktur 32 erzeugt, welche das stangenförmige Tiefbauwerkzeug 10 umgibt.
  • Das ausgestoßene Injektionsmedium 22 dringt bis zu einer Ausbreitungstiefe 28 vor. Die Ausbreitungstiefe 28 ist eine radiale Strecke, die ab der Injektionsöffnung 20 oder ab der Drehachse 14 bestimmt sein kann. Aufgrund von Hindernissen im Boden kann die Größe der Ausbreitungstiefe 28 vom Azimutwinkel um die Drehachse 14 und/oder von der Höhe der Injektionsöffnung 20 entlang der Drehachse 14 abhängen.
  • Zur Messung der Ausbreitungstiefe 28 ist eine Sensoreinrichtung 40 mitdrehend an dem Tiefbauwerkzeug 10 angeordnet. Dieses empfängt ein Messsignal, beispielsweise ein Schallsignal. Als Schallsignal kann das Injektionsgeräusch verwendet werden oder es kann mit einem Sender ein akustisches Signal ausgesandt werden, dessen Reflexionen als Schallsignal von der Sensoreinrichtung 40 gemessen wird. Das Signal kann insbesondere an einer Grenzfläche zwischen dem Injektionsmedium 22 und dem Boden 3 zurückgeworfen werden.
  • Zu der ermittelten Ausbreitungstiefe 28 wird auch die zugehörige Azimutalrichtung ermittelt, welche eine Drehstellung der Injektionsöffnung 20 um die Drehachse 14 angibt. Hierfür können gyroskopische Messmittel 30 am stangenförmigen Tiefbauwerkzeug 10 vorgesehen sein. Diese erfassen eine Bewegungsrichtung 26 von zumindest einem Teil des Tiefbauwerkzeuges 10. Diese Bewegung wird durch den Ausstoß des Injektionsmediums 22 verursacht. Daher sind eine Ausstoßrichtung 24 und die Bewegungsrichtung 26 des Bohrgestänges 10 gerade entgegengesetzt zueinander. Somit kann eine elektronische Auswerteeinheit aus den Messwerten der gyroskopischen Messmittel 30 verschiedener Ausstoß- oder Ausgaberichtungen 24 der Injektionsöffnung 20 errechnet werden. Eine korrekte Drehstellung kann auch über die Erfassung des Drehwinkels oder einer Drehzahl ausgehend von einer Ausgangsdrehstellung ermittelt und erfasst werden.
  • Vorzugsweise werden für eine 360°-Drehung der Injektionsöffnung 20 mehrere verschiedene Ausgaberichtungen 24 nacheinander mit den gyroskopischen Messmitten 30 erfasst und die zugehörigen Ausbreitungstiefen 28 zu der Auswerteeinheit weitergeleitet. Dadurch können die Abmessungen der gebildeten säulenförmigen Struktur 32 im Boden mit hoher Genauigkeit ermittelt werden.
  • In Fig. 2 ist eine mögliche Rohdatenkurve gezeigt, welche mit der Anordnung von Fig. 2 durch eine Schallmessung ermittelt wird. Dabei zeigt Fig. 2 über eine Zeitachse t die periodisch je Umdrehung gemessene Schallintensität I, welche ein Maß für die Ausbreitungstiefe des Injektionsmediums 22 und damit als ein Maß für die äußere Form der im Boden erstellten säulenförmigen Struktur 32 darstellt. Die säulenförmige Struktur 32 kann dabei insbesondere ein Gründungpfahl im Boden 3 sein.
  • Gemäß der Erfindung wird die unmittelbar wenig aussagekräftige Rohdatenkurve auf eine helixförmige Zeitachse t übertragen, welche schematisch in Fig. 3 dargestellt ist. Dabei ist die Längsachse s der Helixform ein Maß für den zurückgelegten Weg beziehungsweise die Tiefe des Tiefbauwerkzeuges 10 im Boden 3. Eine 360°-Wicklung der Helixform stellt dabei eine 360°-Drehung des Tiefbauwerkzeugs 10 im Betrieb dar, wobei der zugehörige Axialweg s mit einem Vorschub des Tiefbauwerkzeuges 10 pro Umdrehung korrespondiert.
  • Auf die so gebildete helixförmige Zeitachse t gemäß Fig. 3 kann die Rohdatenkurve gemäß Fig. 2 mit dem Schallwert als weiterem Bearbeitungsparameter übertragen werden. Hieraus kann dann durch eine einfache mathematische Interpolation gemäß Fig. 4 ein säulenförmiges Modell 50 erstellt und an einer Anzeigeeinrichtung vorzugsweise an dem Baugerät 100, angezeigt werden. Dabei können die Werte für die Schallintensität I in einer radialen Richtung zur Längsachse s aufgetragen werden, so dass sich eine im Wesentlichen zylindrische Säulenform ergibt. Aufgrund von Abweichungen in der Schallintensität lassen sich in dem säulenförmigen Modell 50 Abweichungen als Dellen 52 oder Beulen und damit als mögliche Fehlstellen bei dem erstellten Gründungspfahl unmittelbar erkennen.

Claims (12)

  1. Tiefbauverfahren zum Erstellen einer säulenförmigen Struktur (32) im Boden (3), bei dem ein Tiefbauwerkzeug (10) um eine Drehachse (14) drehend angetrieben und mit einem Vorschub in einen Boden (3) eingebracht wird, wobei als säulenförmige Struktur (32) ein Gründungspfahl im Boden (3) erstellt wird, wobei durch ein materialabtragendes Bohren oder ein Verdrängungsbohren ein Bohrloch erzeugt wird, in das eine aushärtbare Suspension zum Bilden der säulenförmigen Struktur (32) eingeleitet wird,
    dadurch gekennzeichnet,
    dass beim Erstellen der säulenförmigen Struktur (32) eine Drehbewegung und eine Vorschubbewegung des Tiefbauwerkzeugs (10) über die Zeit erfasst und zu einer Auswerteeinheit weitergeleitet werden,
    dass mittels einer Sensoreinrichtung (40) mindestens ein weiterer Bearbeitungsparameter beim Erstellen der säulenförmigen Struktur (32) in dem Boden (3) über die Zeit erfasst und zu der Auswerteeinheit weitergeleitet wird und
    dass durch die Auswerteeinheit ein dreidimensionales Modell (50) der säulenförmigen Struktur (32) erstellt und angezeigt wird.
  2. Tiefbauverfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die säulenförmige Struktur (32) als ein HDI-Element erstellt wird.
  3. Tiefbauverfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass als Tiefbauwerkzeug (10) ein Bohrwerkzeug mit Injektionsöffnung (20) oder eine Injektionslanze zum Injizieren einer aushärtbaren Suspension verwendet wird und
    dass eine aushärtbare Suspension durch das drehende Tiefbauwerkzeug (10) in den Boden (3) zum Erstellen der säulenförmigen Struktur (32) eingebracht wird.
  4. Tiefbauverfahren nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet,
    dass als mindestens ein weiterer Betriebsparameter ein Injektionsdruck, ein Pumpendruck, ein Injektionsvolumen, eine Temperatur, eine Werkzeugauslenkung und/oder ein Schallmesswert erfasst wird.
  5. Tiefbauverfahren nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass durch die Auswerteeinheit abhängig von der über die Zeit erfassten Drehbewegung und Vorschubbewegung eine helixförmige Zeitachse gebildet wird und dass der mindestens eine über die Zeit erfasste Bearbeitungsparameter zum Bilden des dreidimensionalen Modells (50) der helixförmigen Zeitachse zugeordnet wird.
  6. Tiefbauverfahren nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass die Drehbewegung unmittelbar an einem Drehantrieb oder durch ein Drehzahlmesselement an dem Tiefbauwerkzeug (10) erfasst wird.
  7. Tiefbauverfahren nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass die Vorschubbewegung unmittelbar an einem Vorschubantrieb oder durch ein Wegmesselement an dem Tiefbauwerkzeug (10) erfasst wird.
  8. Tiefbauverfahren nach einem der Ansprüche 5 bis 7,
    dadurch gekennzeichnet,
    dass durch die Auswerteeinheit nach Zuordnung des mindestens einen Bearbeitungsparameters zu der helixförmigen Zeitachse das dreidimensionale Modell (50) der säulenförmigen Struktur (32) durch Interpolation gebildet wird.
  9. Tiefbauverfahren nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    dass in der Auswerteeinheit ein dreidimensionales Soll-Modell für die zu erstellende säulenförmige Struktur (32) im Boden (3) abgespeichert ist,
    dass durch die Auswerteeinheit das ermittelte dreidimensionale Modell (50) für die säulenförmige Struktur (32) als ein Ist-Modell mit dem Soll-Modell verglichen wird und
    dass an einer Anzeigeeinrichtung Abweichungen zwischen dem Soll-Modell und dem Ist-Modell angezeigt werden.
  10. Baugerät zum Erstellen einer säulenförmigen Struktur (32) im Boden (3), insbesondere mit einem Tiefbauverfahren nach einem der Ansprüche 1 bis 9,
    mit
    - einem Tiefbauwerkzeug (10), welches drehend um eine Drehachse (14) mittels eines Drehantriebes drehend antreibbar ist und mittels eines Vorschubantriebes in einer Vorschubrichtung in den Boden (3) verfahrbar ist, wobei durch ein materialabtragendes Bohren oder ein Verdrängungsbohren ein Bohrloch erzeugbar ist, in das eine aushärtbare Suspension zum Bilden eines Gründungspfahles als säulenförmige Struktur (32) einleitbar ist,
    - mindestens einer Erfassungseinrichtung zum Erfassen einer Drehbewegung des Tiefbauwerkzeuges (10) und einer Vorschubbewegung über die Zeit und
    - mindestens einer Sensoreinrichtung (40) zum Erfassen mindestens eines weiteren Bearbeitungsparameters,
    dadurch gekennzeichnet,
    - dass eine Auswerteeinheit vorgesehen ist, welche mit der mindestens einen Erfassungseinrichtung und der Sensoreinrichtung (40) verbunden ist, wobei die Auswerteeinheit ausgebildet ist, basierend auf den erfassten Daten ein dreidimensionales Modell der säulenförmigen Struktur (32) zu erstellen, und
    - dass eine Anzeigeeinrichtung vorgesehen ist, mit der das erstellte dreidimensionale Modell (50) der säulenförmigen Struktur (32) anzeigbar ist.
  11. Baugerät nach Anspruch 10,
    dadurch gekennzeichnet,
    dass das Tiefbauwerkzeug (10) ein Bohrwerkzeug mit Injektionsöffnung (22) oder einer Injektionslanze zum Injizieren einer aushärtbaren Suspension ist.
  12. Baugerät nach Anspruch 10 oder 11, dadurch gekennzeichnet,
    dass ein Drehzahlmesselement vorgesehen ist, mit dem eine Drehbewegung des Tiefbauwerkzeugs (10) über die Zeit erfassbar ist, und/oder dass ein Wegmesselement vorgesehen ist, mit dem ein Verfahrweg des Tiefbauwerkzeuges (10) über die Zeit erfassbar ist.
EP18173174.6A 2018-05-18 2018-05-18 Gründungspfahl Active EP3569769B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18173174.6A EP3569769B1 (de) 2018-05-18 2018-05-18 Gründungspfahl
US17/055,766 US11377811B2 (en) 2018-05-18 2019-04-17 Foundation engineering method and construction apparatus for producing a columnar structure in the ground
PCT/EP2019/059948 WO2019219320A1 (de) 2018-05-18 2019-04-17 Tiefbauverfahren und baugerät zum erstellen einer säulenförmigen struktur im boden
CA3100562A CA3100562A1 (en) 2018-05-18 2019-04-17 Foundation engineering method and construction apparatus for producing acolumnar structure in the ground
CN201980033420.0A CN112400045A (zh) 2018-05-18 2019-04-17 用于在土壤中制造柱形结构的地下工程方法及建筑设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP18173174.6A EP3569769B1 (de) 2018-05-18 2018-05-18 Gründungspfahl

Publications (2)

Publication Number Publication Date
EP3569769A1 EP3569769A1 (de) 2019-11-20
EP3569769B1 true EP3569769B1 (de) 2021-08-11

Family

ID=62217799

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18173174.6A Active EP3569769B1 (de) 2018-05-18 2018-05-18 Gründungspfahl

Country Status (5)

Country Link
US (1) US11377811B2 (de)
EP (1) EP3569769B1 (de)
CN (1) CN112400045A (de)
CA (1) CA3100562A1 (de)
WO (1) WO2019219320A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4063567B1 (de) * 2021-03-25 2023-10-18 BAUER Spezialtiefbau GmbH Bauverfahren und anordnung zum durchführen eines bauprojekts
CN113901562B (zh) * 2021-10-27 2024-07-26 国核电力规划设计研究院有限公司 一种基于基础三维模型自动计算开挖量的方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5099696A (en) * 1988-12-29 1992-03-31 Takechi Engineering Co., Ltd. Methods of determining capability and quality of foundation piles and of designing foundation piles, apparatus for measuring ground characteristics, method of making hole for foundation pile such as cast-in-situ pile and apparatus therefor
JP2704839B2 (ja) * 1994-07-14 1998-01-26 セルテック・プラン有限会社 軟弱地盤強化パイル基礎工法
DE19521639C2 (de) 1995-06-14 1996-08-08 Bilfinger Berger Bau Verfahren zur Überwachung eines HDI-Verfahrens
GB2303868B (en) * 1995-07-31 1999-04-14 Cementation Piling & Found Improved auger piling
DE19622282C1 (de) 1996-06-03 1997-08-07 Schneider Nikolaus Dipl Ing Un Verfahren und Vorrichtung zur Vermessung von Bohrlochwandungen oder von Wandungen eines von einem Bohrloch aus erzeugten Hohlraums
JP3643674B2 (ja) 1997-07-04 2005-04-27 三菱重工業株式会社 コア把持装置
JPH11209978A (ja) * 1998-01-20 1999-08-03 Ohbayashi Corp 杭打設の施工管理装置
DE19834731C1 (de) 1998-03-06 1999-08-26 Bauer Spezialtiefbau Meßvorrichtung und Verfahren zum Bestimmen des Durchmessers eines HDI-Körpers
WO2014040834A2 (en) 2012-09-17 2014-03-20 Imec Method for improving the adhesion of plated metal layers to silicon
DE102013008621B4 (de) 2013-05-21 2016-08-04 Bauer Spezialtiefbau Gmbh Vorrichtung und Verfahren zur überwachten Herstellung eines Hochdruckinjektionskörper
CN103898931B (zh) * 2014-04-11 2016-06-08 广州建设工程质量安全检测中心有限公司 一种基于钻孔雷达的基桩三维检测装置及基桩三维检测方法
CN105317434A (zh) * 2015-10-21 2016-02-10 同济大学 一种钻孔超声波反射三维探测装置及方法
CN207314331U (zh) * 2017-10-11 2018-05-04 杭州长杰科技有限公司 一种水泥土搅拌桩监测系统
CN107503733B (zh) 2017-10-18 2021-05-07 徐工集团工程机械有限公司 高压旋喷注浆参数监测系统、方法及高压旋喷钻机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US11377811B2 (en) 2022-07-05
CA3100562A1 (en) 2019-11-21
CN112400045A (zh) 2021-02-23
WO2019219320A1 (de) 2019-11-21
EP3569769A1 (de) 2019-11-20
US20210230826A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
EP2843137B1 (de) Verfahren und Anordnung zum Ermitteln des Radius eines mittels Düsenstrahlverfahren herstellbaren Bodenelements
EP3081737B2 (de) Bohrgerät zum erstellen einer verrohrten bohrung und verfahren zum betreiben eines bohrgerätes
DE3911467C2 (de)
DE2233324C3 (de) Vorrichtung zur Bohrlochmessung während der Bohrung
EP2543770A1 (de) Vorrichtung und Verfahren zum Vermessen von Düsenstrahlsäulen im Untergrund
WO2009146895A2 (de) Bohrkopf
DE19521639C2 (de) Verfahren zur Überwachung eines HDI-Verfahrens
EP3569769B1 (de) Gründungspfahl
DE4429917A1 (de) Bestimmung des Durchmessers oder der Wandstärke von Stütz- oder Wandelementen
WO2018036713A1 (de) Arbeitsmaschine und verfahren zum bearbeiten eines bodens
DE60115741T2 (de) Aushubgerät für die Herstellung von Ortbetonpfählen
WO2017016714A1 (de) Bohrgerät und verfahren zum erstellen einer bohrung von einer schwimmenden plattform
WO2007101500A1 (de) Vorrichtung und verfahren zum herstellen von bodenkörpern im untergrund
DE3819818A1 (de) Messverfahren zur vorfelderkundung im erdreich beim unterirdischen auffahren von tunnelquerschnitten
EP2806070A1 (de) Vorrichtung und Verfahren zur überwachten Herstellung eines Hochdruckinjektionskörpers
DE102016117242B4 (de) Vorrichtung und Verfahren zum Reinigen der Innenfläche von Flüssigkeit führenden Rohren
DE19648547A1 (de) Vorrichtung zur Qualitätsüberwachung des Düsenstrahlverfahrens im Baugrund
DE19622282C1 (de) Verfahren und Vorrichtung zur Vermessung von Bohrlochwandungen oder von Wandungen eines von einem Bohrloch aus erzeugten Hohlraums
EP3907371B1 (de) Arbeitsmaschine und verfahren zum bearbeiten eines bodens
DE102015200530A1 (de) Verfahren zur Bewertung von Düsenstrahlsäulen
DE19807060A1 (de) Verfahren und Vorrichtung zur Einbringung eines fließfähigen Mittels in den Erdboden
EP2730702B1 (de) Verfahren und Vorrichtung zur Herstellung von parallelen Bodenkörpern mittels Düsenstrahlwerkzeugen
DE102010032134B4 (de) Verfahren zum Einbringen einer Bohrung in das Erdreich und Erdbohrvorrichtung
DE10105658A1 (de) Arbeitsgerät, Vorrichtung und Verfahren zur Kontrolle eines mittels Hochdruckinjektionsverfahren im Boden hergestellten Injektionskörpers
DE29624375U1 (de) Vorrichtung zur Qualitätsüberwachung des Düsenstrahlverfahrens im Baugrund

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200220

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200619

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210326

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018006502

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 1419513

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211111

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211213

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018006502

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220518

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20180518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210811

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20250530

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20250522

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20250530

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20250523

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20250519

Year of fee payment: 8