EP2806070B1 - Vorrichtung und Verfahren zur überwachten Herstellung eines Hochdruckinjektionskörpers - Google Patents

Vorrichtung und Verfahren zur überwachten Herstellung eines Hochdruckinjektionskörpers Download PDF

Info

Publication number
EP2806070B1
EP2806070B1 EP14161423.0A EP14161423A EP2806070B1 EP 2806070 B1 EP2806070 B1 EP 2806070B1 EP 14161423 A EP14161423 A EP 14161423A EP 2806070 B1 EP2806070 B1 EP 2806070B1
Authority
EP
European Patent Office
Prior art keywords
drill rod
outlet
gyroscopic
measuring instruments
injection medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14161423.0A
Other languages
English (en)
French (fr)
Other versions
EP2806070A1 (de
Inventor
Albert Hartmann
Dominik Hartmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bauer Spezialtiefbau GmbH
Original Assignee
Bauer Spezialtiefbau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bauer Spezialtiefbau GmbH filed Critical Bauer Spezialtiefbau GmbH
Publication of EP2806070A1 publication Critical patent/EP2806070A1/de
Application granted granted Critical
Publication of EP2806070B1 publication Critical patent/EP2806070B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D3/00Improving or preserving soil or rock, e.g. preserving permafrost soil
    • E02D3/12Consolidating by placing solidifying or pore-filling substances in the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/34Concrete or concrete-like piles cast in position ; Apparatus for making same
    • E02D5/46Concrete or concrete-like piles cast in position ; Apparatus for making same making in situ by forcing bonding agents into gravel fillings or the soil
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/66Mould-pipes or other moulds

Definitions

  • the invention relates to a device for the monitored production of a high-pressure injection body in a floor according to the preamble of claim 1.
  • the invention relates to a method for the monitored production of a high-pressure injection body in a floor according to the preamble of claim 14.
  • a generic apparatus for supervised production of a high-pressure injection body in a floor comprises a drill pipe having an outlet for ejecting an injection medium into the ground, the drill pipe being rotatable for changing an output direction of the outlet, and a measuring device for determining a propagation depth of the injection medium from the nozzle Outlet into the ground, with the measuring device is attached to the drill string.
  • a generic method for supervised production of a high pressure injection body in a floor comprises at least the steps of sinking a drill pipe into the ground, ejecting an injection medium into the ground from an outlet of the drill pipe, the drill pipe being rotatable to change a drill pipe Output direction of the outlet, and that with a measuring device which is attached to the drill string, a propagation depth of the injection medium from the outlet is determined in the soil.
  • the injection medium By rotating the drill string with the outlet, the injection medium is placed radially around the drill string in the ground. It is possible to start the floor first eroded by a high-pressure water jet and then eject the injection medium into the environment, which consists of eroded soil and water. By raising the drill string with the outlet, an approximately cylindrical high pressure injection body (HDI body) can be formed.
  • HDI body high pressure injection body
  • HDI bodies or HDI columns are used for various purposes.
  • a ground can be solidified or sealed against the ingress of groundwater.
  • HDI bodies can connect different wall types, such as pile walls and sheet pile walls.
  • the injection medium may in principle be any fluid or any liquid or suspension which may also be mixed with solids.
  • a cement suspension, chemicals or synthetic resins can be used.
  • the actual dimensions of the HDI body that are actually created must match sufficiently well with desired dimensions. This is of particular importance when several HDI bodies are to provide a seal next to each other in the ground. In this case, there must be no clearance between the HDI bodies.
  • an HDI body particularly in the radial direction of the drill string, may vary depending on the soil.
  • an obstacle in the ground can prevent penetration of the injection medium.
  • a generated HDI body usually has no exact cylindrical shape. Rather, its radial extent depends on the depth and the azimuthal angle. This indicates a direction in a plane perpendicular to the drilling axis.
  • HDI bodies are usually created with an overlap in the soil.
  • measuring devices are used.
  • DE 195 21 639 A1 the erection of an HDI body is monitored with a geophone. This is driven spaced from the drill string in the ground. By detecting ground vibrations, the range to which the injection medium is ejected can be estimated.
  • driving in a geophone is an additional workload that increases the time and staffing requirements. In addition, the achievable accuracy is limited.
  • the measuring device includes a sound transmitter and receiver there.
  • the emitted sound is reflected back at an interface of the borehole, in particular to an injection body. From the duration of the sound signal then the radial extent of the borehole or the propagation depth of the injection medium can be determined.
  • the measuring device comprises a coil with unwindable measuring line. By detecting the amounts of unwinding of the measuring line, it is possible to deduce the radial dimensions of the high-pressure injection body.
  • the invention provides that gyroscopic measuring means are provided on the drill pipe for detecting a caused by the ejection of an injection medium direction of movement of at least a portion of the drill string and that electronic evaluation means are provided and adapted to a current output direction of the outlet to determine on the basis of the detected direction of movement of the drill string and to assign a determined output direction to different determined propagation depths of the injection medium.
  • the invention provides that with gyroscopic measuring means, which are provided on the drill string, caused by the ejection of the injection medium movement direction of at least a portion of the drill string is detected and that with electronic evaluation means a momentary output direction of the outlet based on detected movement direction of the drill string is determined and each determined a determined output direction is assigned to different determined propagation depths of the injection medium.
  • the invention is based first of the finding that the accuracy of the determined dimensions of an HDI body are limited by the fact that an azimuthal orientation of the measuring device, that is, an alignment about the drilling axis of the drill string, is not known exactly.
  • an azimuthal orientation of the measuring device that is, an alignment about the drilling axis of the drill string
  • the determined propagation depths of the injection medium can not be assigned precise radial directions.
  • a drill string usually comprises a plurality of interconnected drill string elements. A rotational position between these elements, that is, an azimuthal orientation, is always subject to uncertainty. This is the result Azimuthal alignment of the drill string, or the drill string element with the measuring device, not exactly known. This limits the accuracy with which the dimensions of an HDI body can be determined.
  • an instantaneous output direction of the outlet need not be determined based on previously known information as well as a rotational position of an off-well portion of the drill string. Rather, the actual orientation of the drill pipe at the height of the outlet is detected.
  • the ejection of the injection medium generates a force on the drill pipe, which is opposite to the discharge direction of the injection medium.
  • the discharge direction can be determined to be in the opposite direction.
  • the direction of movement of the drill string can be understood here as a radial component of the movement of the drill string.
  • the radial component is perpendicular to the drilling axis.
  • the drill string can additionally perform a rotational movement, which superimposes the radial movement.
  • the movement of the entire drill string does not have to be detected. Rather, the measurement of the direction of movement of a portion of the drill string is sufficient.
  • This part may, for example, be connected to a line for the injection medium within the drill string to the outlet so that it is displaced by the passing injection medium in a direction to be determined.
  • the part of the drill pipe can be in particular a nozzle head on which the outlet for the injection medium is formed. Because the force generated by the ejection of the injection medium usually acts on the entire drill string, movement of the outer wall of the drill string can also be detected for directional determination. It is expedient, but not mandatory, to measure a movement of that drill pipe element on which the outlet is located or of a part thereof.
  • the absolute direction should be understood as a direction in a predetermined reference frame.
  • the absolute direction may in particular be related to a fixed reference point or to the rotating drill pipe.
  • an orientation of the gyroscopic measuring means can be determined and recorded before they are sunk with the drill string. After drilling, a rotational position of the gyroscopic measuring equipment and the drill string has changed. This change can be determined by the gyroscopic measuring device. Likewise, the gyroscopic measuring means react to a radial movement of at least a portion of the drill pipe, so that the direction of this radial movement can be determined.
  • electronic evaluation means are provided, which in principle can be positioned at any location.
  • the evaluation can be added adjacent to the gyroscopic measuring means in the drill string.
  • the electronic evaluation means are spaced from the drill string so that they are in operation outside the wellbore.
  • they can be formed as a commercial computer with appropriate software.
  • the direction of movement of the drill string and thus the output direction of the outlet are measured and stored time-resolved.
  • a current output direction can be determined. This can also be understood as meaning that instantaneous output directions are calculated only subsequently, in particular after the establishment of the HDI body, on the basis of the recorded data of the gyroscopic measuring means.
  • the propagation depths of the injection medium for different azimuth angles of the outlet and different heights are also detected time-resolved with the measuring device.
  • the electronic evaluation means can assign to a certain determined propagation depth just the determined output direction which has been measured at the same time.
  • the gyroscopic measuring means are accommodated within the drill pipe. As a result, they are protected from the environment of the drill string. They can be coupled to an outer wall of the drill pipe to determine their movement.
  • the gyroscopic measuring means may comprise at least one gyroscope, with which a movement of the drill string can be detected at least in a plane transverse to the drilling axis of the drill string.
  • several gyroscopes can be used for this purpose, whereby the measurement accuracy increases.
  • the gyroscopic measuring means can measure a movement of the drill string in the direction of the drilling axis.
  • an inclination of the drill string can be measured in a time-resolved manner.
  • the inclination of the drill string can then be taken into account for the calculation of the propagation depth of the injection medium.
  • the gyroscope or the gyroscopes can be formed in any desired manner, in particular as a MEMS (micro-electro-mechanical system), as a fiber-optic gyroscope or as a gyrostat.
  • MEMS micro-electro-mechanical system
  • fiber-optic gyroscope or as a gyrostat.
  • a gyroscope may also be arranged to detect a direction of the earth's magnetic field. Based on this direction, alignment of the gyroscope can be determined or updated. This avoids that the accuracy with which the orientation of the gyroscope is known, significantly reduced over time.
  • the gyroscopic measuring means preferably have at least one acceleration sensor. With this an acceleration direction of the drill string is at least in a plane transverse to the drilling axis of the drill string measurable.
  • the electronic evaluation means are set up to calculate the instantaneous output direction of the outlet on the basis of measured values of the at least one gyroscope and of the at least one acceleration sensor.
  • a plurality of acceleration sensors are used for different directions within the plane transverse to the drilling axis.
  • an acceleration sensor can also be designed to detect a movement out of this plane.
  • the gyroscopic measuring means can be arranged on a rotation axis of the drill pipe. As a result, a radial movement of the drill string can be detected more easily, wherein the effects of a possible rotation of the drill string are reduced to the gyroscopic measuring means.
  • the gyroscopic measuring means can also be arranged at a distance from the axis of rotation. This allows them to better detect rotation of the drill pipe. This can be used to calculate an instantaneous rotational position of the outlet based on a previously determined rotational position of the outlet.
  • a high measurement accuracy can also be provided if the gyroscopic measuring means have at least one gyroscope and at least one acceleration sensor, wherein the gyroscope is arranged on the axis of rotation and the acceleration sensor is at a distance from the axis of rotation.
  • the orientation of the gyroscopic measuring means can be detected well, while movements of the drill pipe element can also be detected precisely.
  • the gyroscopic measuring means can be arranged at a basically arbitrary height in the longitudinal direction of the drill string, since a deflection of the drill string takes place by ejecting the injection medium over a large part of the drill pipe or even the entire drill pipe.
  • the gyroscopic measuring means are preferably arranged at the level of the outlet or at least at that drill pipe element on which the outlet is located. This makes use of the fact that the deflection of the drill string at the height of the outlet is greatest.
  • the gyroscopic measuring means and the outlet can also be arranged immovably relative to one another on the drill string.
  • the relative position between the gyroscopic measuring means and the outlet fixed and therefore precisely known.
  • Rotation of the outlet can be determined by measuring the rotation of the gyroscopic measuring means. This can then be taken into account in the calculation of the output direction.
  • a rotary measuring device can also be present outside the borehole. With this, a rotational position of an upper drill string element can be detected.
  • the gyroscopic measuring means can be used for a first determination of the dispensing direction. Later output directions can then be determined based on this first determined output direction as well as the rotation of the drill string measured since then with the rotary measuring device.
  • the rotary metering device need not necessarily be located outside the borehole. More generally, a rotation measuring device different from the gyroscopic measuring means is provided for determining a rotation of the drill pipe, and the electronic evaluation means are adapted to calculate an instantaneous output direction of the outlet on the basis of measured values of the gyroscopic measuring means and of the rotary measuring device.
  • an electronic memory for storing measurement data of the gyroscopic measuring means.
  • the detected dimensions of the HDI body can thus be documented.
  • the measured data are recorded in the memory for later evaluations.
  • the data transmission means comprise at least one cable. This may in particular extend along the drill pipe or each drill string.
  • the BohrgestSheschüssen wireless transmission means may be provided which are based for example on induction, light signals or ultrasound.
  • radio can be used, whereby a particularly flexible use is possible and conventional devices can be easily retrofitted. Especially when using It is preferred by radio resources if a battery for supplying energy to the gyroscopic measuring means, the measuring device and optionally the electronic memory and the radio is present within the drill string.
  • the power supply of the gyroscopic measuring means can also be done via a cable, which runs along the drill string and in particular is also used for data transmission. If the data transmission already takes place during the measuring operation, the shape of the HDI body can already be determined while it is being generated. As a result, further improvements can be made before the injection medium has cured.
  • the measuring device can in principle be of any type as long as it can determine a propagation depth of the injection medium, that is to say a radius of the resulting HDI body.
  • the measuring device preferably comprises a receiver device with which an acoustic signal can be detected.
  • the acoustic signal may in particular be due to the ejected injection medium and accordingly be referred to as injection noise.
  • the receiver device can also be designed as a transmitter-receiver device and can emit acoustic signals in a direction transverse to the drilling axis of the drill string.
  • the emitted signals may be reflected at an interface between the injection medium and a surrounding soil material. Reflected signals can be measured with the transceiver device to determine the propagation depth.
  • any other signals may be used instead of acoustic signals, but preferably the transmitter-receiver device is designed to transmit and detect sound waves.
  • Sound waves can be understood in principle any pressure waves. These do not have to be within the human frequency range.
  • infra or ultrasound can be used.
  • the transmitting and receiving direction of the transceiver device is arranged co-rotating with the output direction of the outlet. In particular, it may be parallel to the output direction.
  • the azimuth direction of the transmission and reception of the transceiver device is also known.
  • the drill string is not only rotated, but also raised from a lowered position to create an injection body radially surrounding the drill string in the ground.
  • the cross-sectional dimensions of the HDI body can advantageously be determined for different heights along the HDI body.
  • Fig. 1 1 schematically shows an exemplary embodiment of a device 100 according to the invention for the monitored production of a high-pressure injection body 22 (HDI body 22) in a base 3.
  • HDI body 22 high-pressure injection body 22
  • the device 100 comprises at least one drill pipe 10 with which a in Fig. 1 partially illustrated hole 5 can be generated.
  • an outlet 20 is formed at the drill pipe 10.
  • an injection medium 22 can be ejected from the drill string 10 into the bottom 3.
  • the outlet 20 is rotatable together with the drill string 10 or independently of the drill pipe 10 about a rotation axis 14 or drilling axis 14. This creates an HDI body 22 that surrounds the drill pipe 10.
  • the ejected injection medium 22 penetrates to a propagation depth 28.
  • the propagation depth 28 is a radial distance that may be determined from the outlet 20 or from the drilling axis 14. Due to obstacles in the ground, the size of the propagation depth 28 may depend on the azimuth angle about the axis of rotation 14 and / or on the height of the outlet 20 along the axis of rotation 14.
  • a measuring device 40 is co-rotating with the drill string 10. This receives a measurement signal, such as a sound signal.
  • a measurement signal such as a sound signal.
  • the injection noise can be used or It can be sent with a transmitter an audible signal whose reflections are measured as a sound signal. In particular, the signal can be reflected back at an interface between the injection medium 22 and the bottom 3.
  • the associated azimuthal direction which indicates a rotational position of the outlet 20 about the axis of rotation 14, is also determined for a determined propagation depth 28.
  • gyroscopic measuring means 30 are present on the drill pipe 10. These detect a direction of movement 26 of at least part of the drill string 10. This movement is caused by the ejection of the injection medium 22. Therefore, an ejection direction 24 and the direction of movement 26 of the drill string 10 are just opposite to each other.
  • electronic evaluation means (not shown) can calculate different ejection or dispensing directions 24 of the outlet 20 from the measured values of the gyroscopic measuring means 30.
  • At least four, preferably at least eight different dispensing directions 24 are successively detected with the gyroscopic measuring means 30 and the associated propagation depths 28 are stored.
  • the dimensions of the resulting HDI body can be monitored with high accuracy.
  • HDI bodies sealed to one another in a reliable manner can be produced side by side in the ground, without requiring an excessively large overlap between the HDI bodies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Soil Sciences (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

  • In einem ersten Aspekt betrifft die Erfindung eine Vorrichtung zur überwachten Herstellung eines Hochdruckinjektionskörpers in einem Boden nach dem Oberbegriff des Anspruchs 1.
  • In einem weiteren Gesichtspunkt betrifft die Erfindung ein Verfahren zur überwachten Herstellung eines Hochdruckinjektionskörpers in einem Boden gemäß dem Oberbegriff des Anspruchs 14.
  • Eine gattungsgemäße Vorrichtung zur überwachten Herstellung eines Hochdruckinjektionskörpers in einem Boden umfasst ein Bohrgestänge, welches einen Auslass aufweist zum Ausstoßen eines Injektionsmediums in den Boden, wobei das Bohrgestänge drehbar ist zum Ändern einer Ausgaberichtung des Auslasses, und eine Messeinrichtung zum Ermitteln einer Ausbreitungstiefe des Injektionsmediums von dem Auslass in den Boden, wobei die Messeinrichtung an dem Bohrgestänge befestigt ist.
  • In entsprechender Weise umfasst ein gattungsgemäßes Verfahren zur überwachten Herstellung eines Hochdruckinjektionskörpers in einem Boden zumindest die Schritte, dass ein Bohrgestänge in den Boden abgeteuft wird, das aus einem Auslass des Bohrgestänges ein Injektionsmedium in den Boden ausgestoßen wird, wobei das Bohrgestänge drehbar ist zum Ändern einer Ausgaberichtung des Auslasses, und dass mit einer Messeinrichtung, die an dem Bohrgestänge befestigt ist, eine Ausbreitungstiefe des Injektionsmediums von dem Auslass in den Boden ermittelt wird.
  • Indem das Bohrgestänge mit dem Auslass gedreht wird, wird das Injektionsmedium radial um das Bohrgestänge in den Boden gegeben. Es ist möglich, den Boden zunächst durch einen Hochdruckwasserstrahl zu erodieren und sodann das Injektionsmedium in die Umgebung auszustoßen, welche aus erodiertem Boden und Wasser besteht. Durch Anheben des Bohrgestänges mit dem Auslass kann ein etwa zylinderförmiger Hochdruckinjektionskörper (HDI-Körper) gebildet werden.
  • HDI-Körper oder HDI-Säulen werden für verschiedene Zwecke eingesetzt. Insbesondere kann ein Baugrund verfestigt werden oder gegen das Eindringen von Grundwasser abgedichtet werden. Bei Baugrubenabsicherungen können durch HDI-Körper unterschiedliche Wandtypen miteinander verbunden werden, beispielsweise Pfahlwände und Spundwände.
  • Das Injektionsmedium kann grundsätzlich ein beliebiges Fluid oder eine beliebige Flüssigkeit oder Suspension sein, welche auch mit Feststoffen versetzt sein kann. Beispielsweise können eine Zementsuspension, Chemikalien oder Kunstharze eingesetzt werden.
  • Damit ein HDI-Körper die gewünschte Abdichtung oder Stabilität bietet, müssen die tatsächlich erzeugten Abmessungen des HDI-Körpers mit gewünschten Abmessungen ausreichend übereinstimmen. Dies ist von besonderer Bedeutung, wenn mehrere HDI-Körper nebeneinander im Boden eine Abdichtung bereitstellen sollen. In diesem Fall darf zwischen den HDI-Körpern kein Freiraum verbleiben.
  • Die genauen Abmessungen eines HDI-Körpers, insbesondere in Radialrichtung zu dem Bohrgestänge, können jedoch abhängig vom Boden verschieden ausfallen. So kann beispielsweise ein Hindernis im Boden ein Eindringen des Injektionsmediums verhindern. Als Folge hat ein erzeugter HDI-Körper in der Regel keine exakte Zylinderform. Vielmehr ist dessen radiale Ausdehnung abhängig von der Tiefe und dem Azimutalwinkel. Dieser gibt eine Richtung in einer Ebene senkrecht zur Bohrachse an.
  • Um dennoch eine abdichtende Wirkung mit HDI-Körpern bereitzustellen, werden diese üblicherweise mit einem Überlapp im Boden erzeugt. Der Überlapp wird umso größer gewählt, je unsicherer die Kenntnis der Abmessungen der HDI-Körper ist. Damit steigt die Anzahl zu errichtenden HDI-Körper, womit ein größerer Zeitbedarf und höhere Kosten einhergehen.
  • Um den Überlapp zwischen benachbarten HDI-Körpern gering halten zu können, werden Messeinrichtungen eingesetzt. Bei DE 195 21 639 A1 wird die Errichtung eines HDI-Körpers mit einem Geophon überwacht. Dieses wird beabstandet zum Bohrgestänge in den Boden getrieben. Indem es Bodenerschütterungen erfasst, kann die Reichweite geschätzt werden, bis zu welcher das Injektionsmedium ausgestoßen wird. Das Eintreiben eines Geophons stellt aber einen zusätzlichen Arbeitsaufwand dar, durch den der Zeitbedarf und die personellen Anforderungen steigen. Zudem ist die hierdurch erreichbare Genauigkeit begrenzt.
  • Demgegenüber werden bei einer gattungsgemäßen Vorrichtung und einem gattungsgemäßen Verfahren, wo die Messeinrichtung am Bohrgestänge befestigt ist, Vorteile erreicht. Der Betrieb einer solchen Messeinrichtung ist mit praktisch keinem zusätzlichen Arbeitsaufwand verbunden. Eine gattungsgemäße Vorrichtung und ein gattungsgemäßes Verfahren werden beispielsweise in DE 196 22 282 C1 beschrieben. Die Messeinrichtung umfasst dort einen Schallsender und -empfänger. Der ausgesendete Schall wird an einer Grenzfläche des Bohrlochs, insbesondere zu einem Injektionskörper, zurückgeworfen. Aus der Laufzeit des Schallsignals kann sodann die radiale Ausdehnung des Bohrlochs oder die Ausbreitungstiefe des Injektionsmediums bestimmt werden.
  • Eine weitere gattungsgemäße Vorrichtung und ein weiteres gattungsgemäßes Verfahren sind aus DE 198 34 731 C1 bekannt. Dort umfasst die Messeinrichtung eine Spule mit abwickelbarer Messleine. Indem die Ausmaße des Abrollens der Messleine erfasst werden, kann auf die radialen Abmessungen des Hochdruckinjektionskörpers geschlossen werden.
  • In dieser Weise können zwar mit verhältnismäßig geringem Aufwand die Maße des Injektionskörpers bestimmt werden. Es ist aber wünschenswert, die Genauigkeit dieser Bestimmung weiter zu verbessern.
  • Als eine Aufgabe der Erfindung kann erachtet werden, eine Vorrichtung und ein Verfahren zur überwachten Herstellung eines Hochdruckinjektionskörpers bereitzustellen, mit denen die Abmessungen des Hochdruckinjektionskörpers besonders genau ermittelt werden können.
  • Diese Aufgabe wird durch die Vorrichtung zur überwachten Herstellung eines Hochdruckinjektionskörpers mit den Merkmalen des Anspruchs 1 gelöst sowie durch das Verfahren zur überwachten Herstellung eines Hochdruckinjektionskörpers mit den Merkmalen des Anspruchs 14.
  • Bevorzugte Varianten der erfindungsgemäßen Vorrichtung und des erfindungsgemäßen Verfahrens sind Gegenstand der abhängigen Ansprüche und werden in der folgenden Beschreibung erläutert.
  • Bei der Vorrichtung der oben genannten Art ist erfindungsgemäß vorgesehen, dass gyroskopische Messmittel an dem Bohrgestänge vorgesehen sind zum Erfassen einer durch den Ausstoß eines Injektionsmediums hervorgerufenen Bewegungsrichtung von zumindest einem Teil des Bohrgestänges und dass elektronische Auswertemittel vorgesehen und dazu eingerichtet sind, eine momentane Ausgaberichtung des Auslasses auf Basis der erfassten Bewegungsrichtung des Bohrgestänges zu ermitteln und verschiedenen ermittelten Ausbreitungstiefen des Injektionsmediums jeweils eine ermittelte Ausgaberichtung zuzuordnen.
  • Bei dem oben beschriebenen Verfahren ist erfindungsgemäß vorgesehen, dass mit gyroskopischen Messmitteln, die an dem Bohrgestänge vorgesehen sind, eine durch den Ausstoß des Injektionsmediums hervorgerufene Bewegungsrichtung von zumindest einem Teil des Bohrgestänges erfasst wird und dass mit elektronischen Auswertemitteln eine momentane Ausgaberichtung des Auslasses auf Basis der erfassten Bewegungsrichtung des Bohrgestänges ermittelt wird und verschiedenen ermittelten Ausbreitungstiefen des Injektionsmediums jeweils eine ermittelte Ausgaberichtung zugeordnet wird.
  • Der Erfindung liegt zunächst die Erkenntnis zugrunde, dass die Genauigkeit der ermittelten Abmessungen eines HDI-Körpers dadurch beschränkt sind, dass eine azimutale Ausrichtung der Messeinrichtung, das heißt eine Ausrichtung um die Bohrachse des Bohrgestänges, in der Regel nicht genau bekannt ist. Dadurch können herkömmlicherweise den ermittelten Ausbreitungstiefen des Injektionsmediums keine genauen radialen Richtungen zugewiesen werden. Dies beruht wesentlich darauf, dass ein Bohrgestänge in der Regel mehrere miteinander verbundene Bohrgestängeelemente umfasst. Eine Drehstellung zwischen diesen Elementen, das heißt eine azimutale Ausrichtung, ist stets mit einer Unsicherheit behaftet. Dadurch ist die azimutale Ausrichtung des Bohrgestänges, beziehungsweise des Bohrgestängeelements mit der Messeinrichtung, nicht genau bekannt. Dadurch ist die Genauigkeit begrenzt, mit welcher die Ausmessungen eines HDI-Körpers bestimmt werden können.
  • Als ein Kerngedanke der Erfindung kann erachtet werden, eine Drehstellung, das heißt einen Azimutwinkel, des Bohrgestänges und dessen Auslasses zu messen.
  • Eine momentane Ausgaberichtung des Auslasses muss also nicht auf Grundlage vorab bekannter Informationen sowie einer Drehstellung eines außerhalb des Bohrlochs befindlichen Abschnitts des Bohrgestänges bestimmt werden. Vielmehr wird die tatsächliche Ausrichtung des Bohrgestänges in der Höhe des Auslasses erfasst.
  • Hierzu wird eine weitere der Erfindung zugrundeliegende Erkenntnis genutzt. So erzeugt der Ausstoß des Injektionsmediums eine Kraft auf das Bohrgestänge, welche der Ausgaberichtung des Injektionsmediums entgegengerichtet ist. Indem die Bewegungsrichtung des Bohrgestänges erfasst wird, kann daher die Ausgaberichtung als entgegengesetzte Richtung bestimmt werden.
  • Die Bewegungsrichtung des Bohrgestänges kann hier als eine Radialkomponente der Bewegung des Bohrgestänges aufgefasst werden. Die Radialkomponente verläuft senkrecht zur Bohrachse. Das Bohrgestänge kann zusätzlich eine Drehbewegung ausführen, welche die Radialbewegung überlagert.
  • Grundsätzlich muss nicht die Bewegung des gesamten Bohrgestänges erfasst werden. Vielmehr reicht die Messung der Bewegungsrichtung eines Teils des Bohrgestänges. Dieser Teil kann beispielsweise mit einer Leitung für das Injektionsmedium innerhalb des Bohrgestänges zu dem Auslass so verbunden sein, dass er durch das vorbeiströmende Injektionsmedium in eine zu bestimmende Richtung verdrängt wird.
  • Auch kann der Teil des Bohrgestänges insbesondere ein Düsenkopf sein, an dem der Auslass für das Injektionsmedium gebildet ist. Weil die Kraft, die durch den Ausstoß des Injektionsmediums erzeugt wird, in der Regel auf das gesamte Bohrgestänge wirkt, kann auch eine Bewegung der Außenwand des Bohrgestänges für die Richtungsbestimmung erfasst werden. Es ist zweckmäßig, aber nicht zwingend erforderlich, dass eine Bewegung desjenigen Bohrgestängeelements, an dem sich der Auslass befindet, oder eines Teils davon gemessen wird.
  • Zur Erfassung der Bewegungsrichtung sind erfindungsgemäß gyroskopische Messmittel vorhanden. Diese können grundsätzlich in beliebiger Weise gestaltet sein, solange sie eine Absolutrichtung im Raum bestimmen können. Die Absolutrichtung soll als eine Richtung in einem zuvor festgelegten Bezugssystem verstanden werden. Die Absolutrichtung kann insbesondere auf einen ortsfesten Referenzpunkt bezogen sein oder auch auf das rotierende Bohrgestänge.
  • Beispielsweise kann eine Ausrichtung der gyroskopischen Messmittel bestimmt und aufgezeichnet werden, bevor sie mit dem Bohrgestänge abgeteuft werden. Nach dem Abteufen hat sich eine Drehstellung der gyroskopischen Messmittel und des Bohrgestänges verändert. Diese Änderung kann durch die gyroskopischen Messmittel bestimmt werden. Ebenso reagieren die gyroskopischen Messmittel auf eine radiale Bewegung von zumindest einem Teil des Bohrgestänges, so dass die Richtung dieser Radialbewegung bestimmt werden kann.
  • Hierzu sind elektronische Auswertemittel vorhanden, welche grundsätzlich an beliebigem Ort positioniert sein können. So können die Auswertemittel benachbart zu den gyroskopischen Messmitteln im Bohrgestänge aufgenommen sein. Dies kann für ein leichtes Nachrüsten herkömmlicher Vorrichtungen vorteilhaft sein. Bevorzugt befinden sich die elektronischen Auswertemittel aber beabstandet zu dem Bohrgestänge derart, dass sie in sich im Betrieb außerhalb des Bohrloches befinden. Beispielsweise können sie als handelsüblicher Computer mit entsprechender Software gebildet sein.
  • Mit den gyroskopischen Messmitteln werden die Bewegungsrichtung des Bohrgestänges und damit die Ausgaberichtung des Auslasses zeitaufgelöst gemessen und gespeichert. So kann eine momentane Ausgaberichtung ermittelt werden. Hierunter kann auch verstanden werden, dass momentane Ausgaberichtungen erst nachträglich berechnet werden, insbesondere nach Errichtung des HDI-Körpers, auf Grundlage der aufgezeichneten Daten der gyroskopischen Messmittel.
  • Die Ausbreitungstiefen des Injektionsmediums für verschiedene Azimutwinkel des Auslasses und verschiedene Höhen werden mit der Messeinrichtung ebenfalls zeitaufgelöst erfasst. Dadurch können die elektronischen Auswertemittel einer bestimmten ermittelten Ausbreitungstiefe gerade diejenige ermittelte Ausgaberichtung zuordnen, die zur gleichen Zeit gemessen worden ist.
  • Bevorzugt sind die gyroskopischen Messmittel innerhalb des Bohrgestänges aufgenommen. Dadurch sind sie vor der Umgebung des Bohrgestänges geschützt. Sie können mit einer Außenwand des Bohrgestänges gekoppelt sein, um deren Bewegung zu ermitteln.
  • Zweckmäßigerweise können die gyroskopischen Messmittel mindestens ein Gyroskop umfassen, mit dem zumindest in einer Ebene quer zur Bohrachse des Bohrgestänges eine Bewegung des Bohrgestänges erfassbar ist. Prinzipiell können zu diesem Zweck auch mehrere Gyroskope eingesetzt werden, womit die Messgenauigkeit steigt. Es kann auch vorgesehen sein, dass die gyroskopischen Messmittel eine Bewegung des Bohrgestänges in Richtung der Bohrachse messen können. Damit kann zusätzlich eine Neigung des Bohrgestänges zeitaufgelöst gemessen werden. Vorteilhafterweise kann für die Berechnung der Ausbreitungstiefe des Injektionsmediums sodann die Neigung des Bohrgestänges berücksichtigt werden.
  • Das Gyroskop oder die Gyroskope können in prinzipiell beliebiger Weise gebildet sein, insbesondere als MEMS (mikro-elektromechanisches System), als faseroptisches Gyroskop oder als Gyrostat.
  • Ein Gyroskop kann auch dazu eingerichtet sein, eine Richtung des Erdmagnetfeldes zu erfassen. Basierend auf dieser Richtung kann eine Ausrichtung des Gyroskops bestimmt oder aktualisiert werden. Dadurch wird vermieden, dass die Genauigkeit, mit der die Ausrichtung des Gyroskops bekannt ist, sich über die Zeit deutlich verringert.
  • Um die Messgenauigkeit zu erhöhen, weisen die gyroskopischen Messmittel vorzugsweise mindestens einen Beschleunigungssensor auf. Mit diesem ist eine Beschleunigungsrichtung des Bohrgestänges zumindest in einer Ebene quer zur Bohrachse des Bohrgestänges messbar. Die elektronischen Auswertemittel sind bei dieser Ausführung dazu eingerichtet, die momentane Ausgaberichtung des Auslasses auf Basis von Messwerten des mindestens einen Gyroskops sowie des mindestens einen Beschleunigungssensors zu berechnen. Bevorzugt werden mehrere Beschleunigungssensoren für verschiedene Richtungen innerhalb der Ebene quer zur Bohrachse verwendet. Dabei kann ein Beschleunigungssensor auch dazu gestaltet sein, eine Bewegung aus dieser Ebene heraus zu erfassen.
  • Die gyroskopischen Messmittel können auf einer Drehachse des Bohrgestänges angeordnet sein. Dadurch kann eine Radialbewegung des Bohrgestänges leichter erfasst werden, wobei die Auswirkungen einer möglichen Drehung des Bohrgestänges auf die gyroskopischen Messmittel reduziert sind.
  • Alternativ können die gyroskopischen Messmittel aber auch beabstandet zu der Drehachse angeordnet sein. Dadurch können sie eine Drehung des Bohrgestänges besser erfassen. Diese kann verwendet werden, um eine momentane Drehstellung des Auslasses basierend auf einer zuvor ermittelten Drehstellung des Auslasses zu berechnen.
  • Eine hohe Messgenauigkeit kann auch bereitgestellt werden, wenn die gyroskopischen Messmittel mindestens ein Gyroskop und mindestens einen Beschleunigungssensor aufweisen, wobei das Gyroskop auf der Drehachse angeordnet ist und der Beschleunigungssensor beabstandet zur Drehachse. Dadurch kann die Orientierung der gyroskopischen Messmittel gut erfasst werden, während Bewegungen des Bohrgestängeelements ebenfalls präzise erfasst werden können.
  • Die gyroskopischen Messmittel können an einer prinzipiell beliebigen Höhe in Längsrichtung des Bohrgestänges angeordnet sein, da eine Auslenkung des Bohrgestänges durch Ausstoßen des Injektionsmediums über einen Großteil des Bohrgestänges oder sogar das gesamte Bohrgestänge erfolgt. Bevorzugt sind die gyroskopischen Messmittel aber auf der Höhe des Auslasses angeordnet oder zumindest an demjenigen Bohrgestängeelement, an welchem sich auch der Auslass befindet. Dadurch wird ausgenutzt, dass die Auslenkung des Bohrgestänges an der Höhe des Auslasses am größten ist.
  • Die gyroskopischen Messmittel und der Auslass können relativ zueinander beweglich am Bohrgestänge angeordnet sein. Somit kann die Auslassrichtung verändert werden, ohne dass die gyroskopischen Messmittel mitgedreht werden. Dadurch können diese eine Bewegung des Bohrgestänges aufgrund des Ausstoßes an Injektionsmedium besonders genau ermitteln, ohne dass eine eigene Drehbewegung überlagert.
  • Alternativ können die gyroskopischen Messmittel und der Auslass aber auch relativ zueinander unbeweglich am Bohrgestänge angeordnet sein. Vorteilhafterweise ist damit die Relativposition zwischen den gyroskopischen Messmitteln und dem Auslass fest vorgegeben und daher präzise bekannt. Eine Drehung des Auslasses kann bestimmt werden, indem die Drehung der gyroskopischen Messmittel gemessen wird. Dies kann sodann in der Berechnung der Ausgaberichtung berücksichtigt werden.
  • Grundsätzlich kann auch außerhalb des Bohrlochs eine Drehmesseinrichtung vorhanden sein. Mit dieser kann eine Drehstellung eines oberen Bohrgestängeelements erfasst werden. In diesem Fall können die gyroskopischen Messmittel für eine erste Bestimmung der Ausgaberichtung verwendet werden. Spätere Ausgaberichtungen können sodann basierend auf dieser ersten ermittelten Ausgaberichtung sowie der seitdem mit der Drehmesseinrichtung gemessenen Drehung des Bohrgestänges ermittelt werden.
  • Bei dieser Ausführung muss die Drehmesseinrichtung nicht zwangsläufig außerhalb des Bohrlochs angeordnet sein. Allgemeiner ausgedrückt ist eine von den gyroskopischen Messmitteln verschiedene Drehmesseinrichtung zum Ermitteln einer Drehung des Bohrgestänges vorhanden und die elektronischen Auswertemittel sind dazu eingerichtet, eine momentane Ausgaberichtung des Auslasses auf Basis von Messwerten der gyroskopischen Messmittel sowie der Drehmesseinrichtung zu berechnen.
  • Vorzugsweise ist neben dem gyroskopischen Messmitteln im Bohrgestänge ein elektronischer Speicher vorhanden zum Speichern von Messdaten der gyroskopischen Messmittel. Die erfassten Ausmaße des HDI-Körpers können somit dokumentiert werden. Alternativ oder zusätzlich werden für spätere Auswertungen die Messdaten in dem Speicher aufgezeichnet. Es können auch Datenübertragungsmittel vorhanden sein, mit denen eine Datenübertragung zwischen den gyroskopischen Messmitteln und elektronischen Auswertemitteln, die sich im Betrieb außerhalb des Bohrlochs befinden, möglich ist. Für eine robuste Ausführung umfassen die Datenübertragungsmittel mindestens ein Kabel. Dieses kann sich insbesondere entlang des Bohrgestänges oder jedes einzelnen Bohrgestängeschusses erstrecken. An den Verbindungsstellen zwischen den Bohrgestängeschüssen können drahtlose Übertragungsmittel vorgesehen sein, die etwa auf Induktion, Lichtsignalen oder Ultraschall beruhen. Anstelle oder zusätzlich zu Kabeln können aber auch Funkmittel verwendet werden, womit ein besonders flexibler Einsatz möglich wird und herkömmliche Vorrichtungen leichter nachgerüstet werden können. Insbesondere bei der Verwendung von Funkmitteln ist es bevorzugt, wenn innerhalb des Bohrgestänges eine Batterie zur Energieversorgung der gyroskopischen Messmittel, der Messeinrichtung und gegebenenfalls des elektronischen Speichers und der Funkmittel vorhanden ist.
  • Die Energieversorgung der gyroskopischen Messmittel kann aber auch über ein Kabel erfolgen, welches entlang des Bohrgestänges verläuft und insbesondere auch zur Datenübertragung genutzt wird. Erfolgt die Datenübertragung bereits während des Messbetriebs, so kann die Form des HDI-Körpers bereits ermittelt werden, während dieser erzeugt wird. Dadurch können noch Nachbesserungen vorgenommen werden, bevor das Injektionsmedium ausgehärtet ist.
  • Die Messeinrichtung kann grundsätzlich beliebiger Art sein, solange sie eine Ausbreitungstiefe des Injektionsmediums, das heißt einen Radius des entstehenden HDI-Körpers, bestimmen kann. Hierzu umfasst die Messeinrichtung vorzugsweise eine Empfänger-Einrichtung, mit welcher ein akustisches Signal nachgewiesen werden kann. Das akustische Signal kann insbesondere auf das ausgestoßene Injektionsmedium zurückgehen und demgemäß als Injektionsgeräusch bezeichnet werden.
  • Alternativ oder zusätzlich kann die Empfänger-Einrichtung aber auch als Sender-Empfänger-Einrichtung gestaltet sein und akustische Signale in eine Richtung quer zur Bohrachse des Bohrgestänges aussenden können. Die ausgesendeten Signale können an einer Grenzfläche zwischen dem Injektionsmedium und einem umgebenden Bodenmaterial reflektiert werden. Reflektierte Signal können mit der Sender-Empfänger-Einrichtung zum Ermitteln der Ausbreitungstiefe gemessen werden.
  • Grundsätzlich können anstelle von akustischen Signalen zwar beliebige andere Signale genutzt werden, bevorzugt ist aber die Sender-Empfänger-Einrichtung dazu gestaltet, Schallwellen auszusenden und nachzuweisen. Unter Schallwellen können prinzipiell beliebige Druckwellen verstanden werden. Diese müssen nicht innerhalb des vom Menschen hörbaren Frequenzbereichs liegen. Insbesondere kann auch Infra- oder Ultraschall genutzt werden.
  • Vorzugsweise ist die Sende- und Empfangsrichtung der Sender-Empfänger-Einrichtung mitdrehend zur Ausgaberichtung des Auslasses angeordnet. Insbesondere kann sie parallel zur Ausgaberichtung sein. Durch Kenntnis der Azimutrichtung der Ausgaberichtung ist daher auch die Azimutrichtung des Sendens und Empfangens der Sender-Empfänger-Einrichtung bekannt.
  • Zur Herstellung des HDI-Körpers wird das Bohrgestänge nicht nur gedreht, sondern auch von einer abgeteuften Position angehoben zum Erzeugen eines das Bohrgestänge radial umgebenden Injektionskörpers im Boden. Durch das beschriebene Messprinzip können vorteilhafterweise die Querschnittsabmessungen des HDI-Körpers für verschiedene Höhen entlang des HDI-Körpers bestimmt werden.
  • Weitere Merkmale und Vorteile der Erfindung werden nachstehend mit Bezug auf die beigefügte schematische Figur beschrieben. Dabei zeigt:
  • Fig. 1
    ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung zur überwachten Herstellung eines Hochdruckinjektionskörpers in einem Boden.
  • Fig. 1 zeigt schematisch ein Ausführungsbeispiel einer erfindungsgemäßen Vorrichtung 100 zur überwachten Herstellung eines Hochdruckinjektionskörpers 22 (HDI-Körper 22) in einem Boden 3.
  • Die Vorrichtung 100 umfasst mindestens ein Bohrgestänge 10, mit dem ein in Fig. 1 ausschnittsweise dargestelltes Bohrloch 5 erzeugt werden kann. An dem Bohrgestänge 10 ist ein Auslass 20 gebildet. Durch diesen kann ein Injektionsmedium 22 aus dem Bohrgestänge 10 in den Boden 3 ausgestoßen werden. Der Auslass 20 ist gemeinsam mit dem Bohrgestänge 10 oder auch unabhängig vom Bohrgestänge 10 um eine Drehachse 14 oder Bohrachse 14 drehbar. Dadurch wird ein HDI-Körper 22 erzeugt, der das Bohrgestänge 10 umgibt.
  • Das ausgestoßene Injektionsmedium 22 dringt bis zu einer Ausbreitungstiefe 28 vor. Die Ausbreitungstiefe 28 ist eine radiale Strecke, die ab dem Auslass 20 oder ab der Bohrachse 14 bestimmt sein kann. Aufgrund von Hindernissen im Boden kann die Größe der Ausbreitungstiefe 28 vom Azimutwinkel um die Drehachse 14 und/oder von der Höhe des Auslasses 20 entlang der Drehachse 14 abhängen.
  • Zur Messung der Ausbreitungstiefe 28 ist eine Messeinrichtung 40 mitdrehend am Bohrgestänge 10 vorhanden. Diese empfängt ein Messsignal, beispielsweise ein Schallsignal. Als Schallsignal kann das Injektionsgeräusch verwendet werden oder es kann mit einem Sender ein akustisches Signal ausgesandt werden, dessen Reflexionen als Schallsignal gemessen werden. Das Signal kann insbesondere an einer Grenzfläche zwischen dem Injektionsmedium 22 und dem Boden 3 zurückgeworfen werden.
  • Erfindungsgemäß wird zu einer ermittelten Ausbreitungstiefe 28 auch die zugehörige Azimutalrichtung ermittelt, welche eine Drehstellung des Auslasses 20 um die Drehachse 14 angibt. Hierfür sind gyroskopische Messmittel 30 am Bohrgestänge 10 vorhanden. Diese erfassen eine Bewegungsrichtung 26 von zumindest einem Teil des Bohrgestänges 10. Diese Bewegung wird durch den Ausstoß des Injektionsmediums 22 verursacht. Daher sind eine Ausstoßrichtung 24 und die Bewegungsrichtung 26 des Bohrgestänges 10 gerade entgegengesetzt zueinander. Somit können elektronische Auswertemittel (nicht dargestellt) aus den Messwerten der gyroskopischen Messmittel 30 verschiedene Ausstoß- oder Ausgaberichtungen 24 des Auslasses 20 berechnen.
  • Vorzugsweise werden für eine 360°-Drehung des Auslasses 20 mindestens vier, vorzugsweise mindestens acht verschiedene Ausgaberichtungen 24 nacheinander mit den gyroskopischen Messmitteln 30 erfasst und die zugehörigen Ausbreitungstiefen 28 abgespeichert. Dadurch können die Abmessungen des entstehenden HDI-Körpers mit hoher Genauigkeit überwacht werden.
  • Mit der Erfindung können in zuverlässiger Weise zueinander abdichtende HDI-Körper nebeneinander im Boden erzeugt werden, ohne dass ein übermäßig großer Überlapp zwischen den HDI-Körpern nötig ist.

Claims (15)

  1. Vorrichtung zur überwachten Herstellung eines Hochdruckinjektionskörpers in einem Boden (3),
    mit einem Bohrgestänge (10), welches einen Auslass (20) aufweist zum Ausstoßen eines Injektionsmediums (22) in den Boden (3),
    wobei das Bohrgestänge (10) drehbar ist zum Ändern einer Ausgaberichtung (24) des Auslasses (20),
    mit einer Messeinrichtung (40) zum Ermitteln einer Ausbreitungstiefe (28) des Injektionsmediums (22) von dem Auslass (20) in den Boden (3), wobei die Messeinrichtung (40) an dem Bohrgestänge (10) befestigt ist,
    dadurch gekennzeichnet,
    dass gyroskopische Messmittel (30) an dem Bohrgestänge (10) vorgesehen sind zum Erfassen einer durch den Ausstoß eines Injektionsmediums (22) hervorgerufenen Bewegungsrichtung von zumindest einem Teil des Bohrgestänges (10) und
    dass elektronische Auswertemittel vorgesehen und dazu eingerichtet sind,
    - eine momentane Ausgaberichtung (24) des Auslasses (20) auf Basis der erfassten Bewegungsrichtung des Bohrgestänges (10) zu ermitteln und
    - verschiedenen ermittelten Ausbreitungstiefen (28) des Injektionsmediums (22) jeweils eine ermittelte Ausgaberichtung (24) zuzuordnen.
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die gyroskopischen Messmittel (30) innerhalb des Bohrgestänges (10) aufgenommen sind und mit einer Außenwand des Bohrgestänges (10) gekoppelt sind, um deren Bewegung zu ermitteln.
  3. Vorrichtung nach Anspruch 1 oder 2,
    dadurch gekennzeichnet,
    dass die gyroskopischen Messmittel (30) mindestens ein Gyroskop umfassen, mit dem zumindest in einer Ebene quer zur Bohrachse (14) des Bohrgestänges (10) eine Bewegung des Bohrgestänges (10) erfassbar ist.
  4. Vorrichtung nach Anspruch 3,
    dadurch gekennzeichnet,
    dass die gyroskopischen Messmittel (30) zusätzlich mindestens einen Beschleunigungssensor aufweisen, mit dem eine Beschleunigungsrichtung des Bohrgestänges (10) zumindest in einer Ebene quer zur Bohrachse (14) des Bohrgestänges (10) messbar ist, und
    dass die elektronischen Auswertemittel dazu eingerichtet sind, die momentane Ausgaberichtung (24) des Auslasses (20) auf Basis von Messwerten des mindestens einen Gyroskops und des mindestens einen Beschleunigungssensors zu berechnen.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet,
    dass die gyroskopischen Messmittel (30) auf einer Drehachse (14) des Bohrgestänges (10) angeordnet sind.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet,
    dass die gyroskopischen Messmittel (30) in Längsrichtung des Bohrgestänges (10) auf der Höhe des Auslasses (20) angeordnet sind.
  7. Vorrichtung nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass die gyroskopischen Messmittel (30) und der Auslass (20) relativ zueinander beweglich am Bohrgestänge (10) angeordnet sind.
  8. Vorrichtung nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet,
    dass die gyroskopischen Messmittel (30) und der Auslass (20) relativ zueinander unbeweglich am Bohrgestänge (10) angeordnet sind.
  9. Vorrichtung nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet,
    dass eine von den gyroskopischen Messmitteln (30) verschiedene Drehmesseinrichtung zum Ermitteln einer Drehung des Bohrgestänges (10) vorhanden ist und
    dass die elektronischen Auswertemittel dazu eingerichtet sind, eine momentane Ausgaberichtung (24) des Auslasses (20) auf Basis von Messwerten der gyroskopischen Messmittel (30) sowie der Drehmesseinrichtung zu berechnen.
  10. Vorrichtung nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet,
    dass neben den gyroskopischen Messmitteln (30) im Bohrgestänge (10) ein elektronischer Speicher vorhanden ist zum Speichern von Messdaten der gyroskopischen Messmittel (30).
  11. Vorrichtung nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet,
    dass innerhalb des Bohrgestänges (10) ein Kabel vorgesehen ist zum Übertragen von Daten und/oder zur Energieversorgung der gyroskopischen Messmittel (30).
  12. Vorrichtung nach einem der Ansprüche 1 bis 11,
    dadurch gekennzeichnet,
    dass die Messeinrichtung (40) zum Ermitteln einer Ausbreitungstiefe (28) des Injektionsmediums (22) eine Empfänger-Einrichtung (40) umfasst, mit welcher ein akustisches Signal nachweisbar ist.
  13. Vorrichtung nach Anspruch 12,
    dadurch gekennzeichnet,
    dass die Sender-Empfänger-Einrichtung (40) dazu gestaltet ist, Schallwellen auszusenden und nachzuweisen.
  14. Verfahren zur überwachten Herstellung eines Hochdruckinjektionskörpers in einem Boden (3),
    bei dem ein Bohrgestänge (10) in den Boden (3) abgeteuft wird,
    bei dem aus einem Auslass (20) des Bohrgestänges (10) ein Injektionsmedium (22) in den Boden (3) ausgestoßen wird,
    wobei das Bohrgestänge (10) drehbar ist zum Ändern einer Ausgaberichtung (24) des Auslasses (20),
    bei dem mit einer Messeinrichtung (40), die an dem Bohrgestänge (10) befestigt ist, eine Ausbreitungstiefe (28) des Injektionsmediums (22) von dem Auslass (20) in den Boden (3) ermittelt wird,
    dadurch gekennzeichnet,
    dass mit gyroskopischen Messmitteln (30), die an dem Bohrgestänge (10) vorgesehen sind, eine durch den Ausstoß des Injektionsmediums (22) hervorgerufene Bewegungsrichtung von zumindest einem Teil des Bohrgestänges (10) erfasst wird und
    dass mit elektronischen Auswertemitteln eine momentane Ausgaberichtung (24) des Auslasses (20) auf Basis der erfassten Bewegungsrichtung des Bohrgestänges (10) ermittelt wird und verschiedenen ermittelten Ausbreitungstiefen (28) des Injektionsmediums (22) jeweils eine ermittelte Ausgaberichtung (24) zugeordnet wird.
  15. Verfahren nach Anspruch 14,
    dadurch gekennzeichnet,
    dass das Bohrgestänge (10) gedreht wird und von einer abgeteuften Position angehoben wird zum Erzeugen eines das Bohrgestänge (10) radial umgebenden Injektionskörpers im Boden (3).
EP14161423.0A 2013-05-21 2014-03-25 Vorrichtung und Verfahren zur überwachten Herstellung eines Hochdruckinjektionskörpers Active EP2806070B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013008621.3A DE102013008621B4 (de) 2013-05-21 2013-05-21 Vorrichtung und Verfahren zur überwachten Herstellung eines Hochdruckinjektionskörper

Publications (2)

Publication Number Publication Date
EP2806070A1 EP2806070A1 (de) 2014-11-26
EP2806070B1 true EP2806070B1 (de) 2015-09-23

Family

ID=50345909

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14161423.0A Active EP2806070B1 (de) 2013-05-21 2014-03-25 Vorrichtung und Verfahren zur überwachten Herstellung eines Hochdruckinjektionskörpers

Country Status (3)

Country Link
EP (1) EP2806070B1 (de)
DE (1) DE102013008621B4 (de)
HK (1) HK1204025A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3569769A1 (de) 2018-05-18 2019-11-20 BAUER Spezialtiefbau GmbH Gründungspfahl

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105672381B (zh) * 2016-04-12 2018-08-03 西南石油大学 一种超声波桩底沉渣厚度检测装置及检测方法
CN112267499A (zh) * 2020-11-17 2021-01-26 上海长凯岩土工程有限公司 一种旋喷桩成桩直径检测装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19521639C2 (de) * 1995-06-14 1996-08-08 Bilfinger Berger Bau Verfahren zur Überwachung eines HDI-Verfahrens
DE19622282C1 (de) * 1996-06-03 1997-08-07 Schneider Nikolaus Dipl Ing Un Verfahren und Vorrichtung zur Vermessung von Bohrlochwandungen oder von Wandungen eines von einem Bohrloch aus erzeugten Hohlraums
DE19807060A1 (de) * 1997-02-21 1998-08-27 Socon Sonar Control Kavernenve Verfahren und Vorrichtung zur Einbringung eines fließfähigen Mittels in den Erdboden
DE19834731C1 (de) * 1998-03-06 1999-08-26 Bauer Spezialtiefbau Meßvorrichtung und Verfahren zum Bestimmen des Durchmessers eines HDI-Körpers
DE102008005452B4 (de) * 2008-01-21 2009-12-31 Dmi Injektionstechnik Gmbh Verfahren zum Verfestigen von Bodenabschnitten und Vorrichtung zur Durchführung des Verfahrens
IT1394900B1 (it) * 2009-06-09 2012-07-20 Soilmec Spa Dispositivo di scavo ed analisi del profilo dello scavo stesso e metodo associato.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3569769A1 (de) 2018-05-18 2019-11-20 BAUER Spezialtiefbau GmbH Gründungspfahl
US11377811B2 (en) 2018-05-18 2022-07-05 Bauer Spezialtiefbau Gmbh Foundation engineering method and construction apparatus for producing a columnar structure in the ground

Also Published As

Publication number Publication date
DE102013008621B4 (de) 2016-08-04
EP2806070A1 (de) 2014-11-26
HK1204025A1 (en) 2015-11-06
DE102013008621A1 (de) 2014-11-27

Similar Documents

Publication Publication Date Title
WO2009146895A2 (de) Bohrkopf
EP2806070B1 (de) Vorrichtung und Verfahren zur überwachten Herstellung eines Hochdruckinjektionskörpers
EP1001134B1 (de) Verankerungseinrichtung mit seismischem Sensor
EP2770306A1 (de) Verfahren zur Messung der Lage des Medienspiegels in einer Erdreichöffnung
DE3819818C2 (de)
EP3109399B1 (de) Messvorrichtung und verfahren zur vermessung eines loches im boden
DE102005038313B4 (de) Verfahren zur Messung der geologischen Lagerungsdichte und zur Detektion von Hohlräumen im Bereich eines Vortriebstunnels
EP3569769B1 (de) Gründungspfahl
WO2003080988A2 (de) Bohrkopf und verfahren für das steuerbare horizontalbohren
EP2662499B1 (de) Qualitätssicherungsverfahren zum Erstellen von Pfählen sowie offenes Profil dafür
EP0154821B1 (de) Akustische Messvorrichtung zur Untersuchung der Permeabilität und Klüftigkeit von Gesteinen im durchteuften Gebirge
CN103091726A (zh) 高压富水断层工程地质岩土的遥感量化勘察方法
EP3252234B1 (de) Verfahren und vorrichtung zum entfernen eines pfahlelements aus einem boden
DE102015200530B4 (de) Verfahren zur Bewertung von Düsenstrahlsäulen
DE102010032134B4 (de) Verfahren zum Einbringen einer Bohrung in das Erdreich und Erdbohrvorrichtung
DE19648547A1 (de) Vorrichtung zur Qualitätsüberwachung des Düsenstrahlverfahrens im Baugrund
DE19807060A1 (de) Verfahren und Vorrichtung zur Einbringung eines fließfähigen Mittels in den Erdboden
DE19648548C2 (de) Verfahren zur Qualitätssicherung von Injektionsverfahrung oder von Düsenstrahlverfahren
WO2010130269A2 (de) Verfahren und vorrichtung zur seismischen erkundung einer geologischen formation
DE10309144A1 (de) Bohrkopf und Verfahren für das steuerbare Horizontalbohren
DE102015017138B4 (de) Mud-Sirenen-Anordnung
DE102015104101A1 (de) Mud-Sirenen-Anordnungen und Verfahren zum Codieren und Übertragen von einer mehrere Bits aufweisenden Information
EP1624153B1 (de) Verfahren zur Bestimmung von Bodeneigenschaften
DE102021122140A1 (de) Verfahren zur Lagebestimmung von Kampfmitteln, sowie Vorrichtung und Bohrgerät zur Durchführung des Verfahrens
EP3891359A1 (de) Anordnung und verfahren zur datenübertragung aus einem oder in ein loch im boden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140325

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

R17P Request for examination filed (corrected)

Effective date: 20150330

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

INTG Intention to grant announced

Effective date: 20150507

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 751333

Country of ref document: AT

Kind code of ref document: T

Effective date: 20151015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014000109

Country of ref document: DE

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1204025

Country of ref document: HK

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151223

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151224

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160123

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1204025

Country of ref document: HK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160125

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014000109

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20160624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160325

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502014000109

Country of ref document: DE

Representative=s name: WUNDERLICH & HEIM PATENTANWAELTE PARTNERSCHAFT, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150923

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240320

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240318

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240327

Year of fee payment: 11

Ref country code: GB

Payment date: 20240322

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240329

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240401

Year of fee payment: 11