EP3551788A1 - Procédé d'intégration de matériaux 2d sur un substrat nanostructure, film mince suspendu de matériaux 2d et utilisations associes - Google Patents

Procédé d'intégration de matériaux 2d sur un substrat nanostructure, film mince suspendu de matériaux 2d et utilisations associes

Info

Publication number
EP3551788A1
EP3551788A1 EP17832986.8A EP17832986A EP3551788A1 EP 3551788 A1 EP3551788 A1 EP 3551788A1 EP 17832986 A EP17832986 A EP 17832986A EP 3551788 A1 EP3551788 A1 EP 3551788A1
Authority
EP
European Patent Office
Prior art keywords
dimensional materials
materials
substrate
dimensional
integrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17832986.8A
Other languages
German (de)
English (en)
Inventor
Gilles Lerondel
Hyun Jeong
Anisha Gokarna
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Universite de Technologie de Troyes
Original Assignee
Universite de Technologie de Troyes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite de Technologie de Troyes filed Critical Universite de Technologie de Troyes
Publication of EP3551788A1 publication Critical patent/EP3551788A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • C30B33/06Joining of crystals

Definitions

  • the invention relates to the field of integration of 2D materials. More particularly, the invention relates to a method for integrating 2D materials onto a nanostructured substrate to obtain a monolayer of 2D materials entirely suspended. The invention also relates to fully suspended films and the use of said suspended films in different technologies.
  • a two-dimensional material sometimes called a monolayer material or 2D material, is a material consisting of a single (or some) layer of atoms or molecules. Due to their unusual characteristics and for potential use in applications such as semiconductors, photovoltaics, ...
  • the 2D materials of atomic thickness have unique properties (absorption, electrical conduction and thermal) and allow to consider a set of ultrafine devices, ultralight flexible etc .. however the thickness of these materials give them a very large sensitivity to the environment.
  • the simple fact of depositing these materials on a substrate modifies their intrinsic properties (ex: exchange of charges). This is related to the contact surface that makes each atom of the 2D material in contact with the substrate.
  • the new two-dimensional materials dichalcogenides of transition metals are the subject of important studies. The spectacular progress in controlling the electronic properties of graphene has indeed powerfully stimulated the search for new two-dimensional (2D) materials.
  • the object of the present invention is to obtain a monolayer of 2D material completely suspended, without stress, that is to say the layer does not interact with the substrate.
  • the present invention provides a solution to this problem by minimizing the contact areas of the 2D materials by transferring them to a nanostructured substrate.
  • the present invention relates to a method of integrating two-dimensional materials on a nanostructured substrate characterized in that it comprises the following steps:
  • the manufacture of two-dimensional materials by the vapor deposition method consists of:
  • the transfer of said PMMA-coated materials obtained in a previous step onto a nanostructured substrate further comprises the following steps:
  • the two-dimensional materials are manufactured by the exfoliation method in an inert environment and the transfer of said two-dimensional materials obtained by exfoliation on a synthesized nanostructured substrate consists of a single step of depositing said two-dimensional materials. on said synthesized nanostructured substrate.
  • the nanostructured substrate is ZnO nanowires, zinc oxide, said nanostructured substrate is synthesized by a liquid phase chemical deposition method, CBD, on an SiO 2 substrate or by all other growth technologies of ZnO nanowires.
  • the synthesized ZnO nanowires are disordered and of variable sizes so as to minimize the contact area with the two-dimensional materials obtained.
  • the ZnO nanowires have a diameter of less than 100 nm.
  • the two-dimensional materials are either molybdenum sulphide MoS 2, or tungsten sulphide WS 2 or diselenide Tungsten WSe 2.
  • two-dimensional materials are any two-dimensional rigid materials.
  • the invention also relates to a suspended thin film obtained by the transfer of the 2D materials onto a ZnO nanowire substrate according to the above method.
  • ZnO nanowires are disordered and of varying sizes.
  • the thin film suspended obtained by the above method is characterized in that the two-dimensional materials are either molybdenum sulphide MoS2, or tungsten sulphide WS2 or diselenide tungsten WSe2.
  • said two-dimensional materials are Rigid and are obtained by chemical vapor deposition on SiO 2 substrate or by exfoliation deposit on an SiO 2 substrate.
  • the invention also relates to the use of thin films suspended from 2D materials in the fields of electronics and / or optoelectronics and / or thermal and / or photonic.
  • the invention also relates to the use of thin films suspended from 2D materials in catalysis domains and / or in ultrasensitive surfaces.
  • FIG. 1 illustrates the concept and manufacture of 2D materials suspended according to the method object of the present invention
  • FIG. 2 illustrates the exalted optical properties and associated band structures
  • FIG. 3 illustrates the image obtained by SEM of the suspended integrated layers
  • FIGS 4A and 4B illustrate the concept of active substrate.
  • identical or similar elements are identified by identical reference signs throughout the figures.
  • the two-dimensional materials (2D) are atomically thin semiconductors made of transition metals m- (Mo, W, Sn, etc.) covalently bound to chalcogen X- (S, Se, Te). .
  • the optical and crystalline properties of these 2D materials integrated on flat substrates are still not satisfactory for an application
  • the simple fact of depositing these materials on a substrate modifies their intrinsic properties (ex: exchange of loads). This is related to the contact surface that makes each atom of the 2D material in contact with the substrate.
  • the present invention aims to circumvent this problem of modifying intrinsic characteristics of said 2D materials when they are transferred to a substrate, by proposing to minimize the contact surface using nanostructured substrates (carpet fakir).
  • a method for integrating 2D materials onto a nanostuctured substrate is proposed.
  • the first step of the process involves the development or growth of 2D materials by chemical vapor deposition on SiO 2 / Si substrates.
  • the 2D materials can also be obtained by simple exfoliation and in this case simply deposited on a SiO 2 / Si substrate.
  • the 2D materials are either molybdenum sulfide, MoS2, or tungsten sulfide, WS2 or tungsten diselenide, WSe2.
  • the next step is to deposit a layer of PMMA on said two-dimensional raw materials in the previous step.
  • the PMMA layer is used to support the single layer during chemical etching of SiO2.
  • the SiO 2 substrate is etched in a hydrofluoric acid (HF) solution, diluted.
  • the next step consists in transferring said 2D materials, covered with PMMA, onto nanowires of ZnO synthesized on a substrate (Si, SiO2, etc.).
  • an acetone solution was used.
  • the 2D materials were dried at 80 ° C to remove the residual layer of PMMA.
  • the sublimation technique can be used to avoid the mechanical stresses associated with drying.
  • ZnO nanowires on the silicon substrate was carried out by adopting a chemical deposition technique in liquid phase, CBD.
  • 0.025 M zinc acetate was dissolved in 250 ml of water; Then 0.3 ml of ammonium hydroxide was added to the solution and stirred at room temperature. The synthesis was carried out in the absence of catalysts or metal additives. The mixture was heated to 87 ° C.
  • the sample consisting of a ZnO layer previously deposited on a silicon substrate was immersed in the solution for 30 min. Then the sample was washed with water and air dried for 1 hour.
  • Figure 1 shows the three-dimensional schemas of the process of simplified transfer of two-dimensional materials on ZnO nanowires.
  • Fig. 1a, 1b and 1c illustrate MoS2, WS2 and WSe2 on ZnO nanowires respectively.
  • the two-dimensional materials were transferred to the ZnO nanowires by a method of vapor transfer.
  • Fig.ld, fig. 1 (e) and fig. 1 f are the 3D enlarged diagrams of materials, MoS2, WS2 and WSe2 on the ZnO nanowires respectively.
  • Fig.1 j shows the contact between 2D materials and nanowires. Note that the contact occurs only at the edge of the ZnO nanowires.
  • Fig 1k shows the spectrum of the photoluminescence intensity of said 2D materials on ZnO nanowires at room temperature.
  • Raman analysis shows that the layer of 2D material is free of stress and is fully relaxed. This is due to the limited number of contact points, which is partly explained by the fact that the nanowires are not all exactly the same length and slightly disoriented with respect to the vertical axis ( Figure 1).
  • the goal is to integrate the 2D material thin layer without changing its electronic structure.
  • the emission factor observed in emission is explained by the direct nature of the electronic transition.
  • the same 2D material deposited on a SiO 2 plane substrate becomes optically inefficient and this is explained by the indirect nature of the electronic transitions. We are talking here about the emission but the absorption is also modified.
  • the final material integrated on the ZnO nanowire substrate has preserved optical properties as shown in FIG. 2.
  • Figure 2 shows the optical properties and structures of the associated bands.
  • the photoluminescence intensities were measured at room temperature.
  • the position of the PL signal (photoluminescence) is closely related to the nature of the forbidden band, ie, it reveals a direct or indirect transition.
  • the PL spectra of MoS2, WS2 and WSe2 on the ZnO nanowires are shown in Figures 2a, 2b and 2c, respectively, together with the PL spectra of the same 2D materials deposited on them.
  • SiO2 substrates Said PL spectra of the 2D materials on the ZnO nanowires are represented by the gray color and on the SiO 2 substrate it is represented by the black color.
  • FIG. 2d, 2e and 2f The energy spectra of the MoS2, WS2 and WSe2 materials on the ZnO nanowires and SiO2 substrate are shown in Figures 2d, 2e and 2f.
  • Figures 2g, 2h and 2i show the energy band diagrams showing the optical transitions of the 2D materials on the nanowires and on the SiO2 substrate. Solid and dotted lines indicate 2D material on both nanowires and SiO2, respectively.
  • the maximum of the valence band for MoS2 and WS2 on the Nanowires is the minimum of the conduction band, which results in a higher PL intensity at an increase in the bandwidth when the layer is relaxed, as shown in FIG. 2g and 2h.
  • PL intensities of 2D materials can be affected by several factors such as doping and crystalline quality.
  • the influence of crystalline quality can be excluded because we have deposited identical 2D materials on SiO2 substrate and on ZnO nanowires.
  • the work function of ZnO is greater than the electronic affinity of all 2D materials. Therefore, the photoexcited electrons of 2D materials could be transferred to ZnO at the point of contact.
  • the PL intensities of 2D materials such as MoS2 and WS2 are not more than 3 times increased charge transfer. On the other hand, the intensity PL of WSe2 is decreased by photoexcited electron transfer.
  • FIGS. 4A and 4B illustrate the doping type being connected to the difference in energy level between the 2D material and that of the nanowires.
  • FIG. 4A illustrates the doping n: electron injection of the nanowire to the 2D material.
  • FIG. 4B illustrates the p-doping: electron transfer from the 2D material to the nanowire.
  • the solution proposed by the present invention is simply limited by the size of the 2D material layer. Indeed, the ZnO nanowire substrates can be obtained on centimeter or metric surfaces (chemical growth in solution).
  • ZnO zinc oxide
  • the invention thus relates to a thin film suspended obtained by the transfer of 2D materials on Zno nanowires.
  • the suspended thin film is obtained by the method object of the present invention described above.
  • the 2D materials used for the transfer on the ZnO nanowires are of the molybdenum sulfide type, MoS2, or tungsten sulphide, WS2 or tungsten diselenide, WSe2.
  • Said 2D materials are obtained by chemical vapor deposition on an SiO 2 substrate or simply exfoliated.
  • Another problem that can be solved by the present invention is the control of the contact surface so as to locally be able to inject carriers (contact engineering). This is particularly interesting in that we have shown that self-supporting layers can be obtained.
  • the only technique proposed today is to deposit the 2D material on a micro-perforated substrate obtained by lithography. In this case, suspended and unsprung areas are obtained. We can not speak of fully suspended layers.
  • the invention furthermore relates to the use of thin films suspended from 2D materials in electronic and / or optoelectronic and / or thermal and / or photonic domains.
  • the invention also relates to the use of thin films suspended from 2D materials in catalysis fields and / or in ultrasensitive surfaces.

Abstract

L'invention concerne un procédé d'intégration des matériaux bidimensionnels sur un substrat nanostructuré caractérisé en ce qu'il comprend les étapes suivantes: fabriquer des matériaux bidimensionnels par une méthode de dépôt en phase vapeur ou par une méthode d'exfoliation; transférer lesdits matériaux bidimensionnels, obtenus à l'étape précédente, sur un substrat nanostructuré synthétisé, ledit substrat nanostructuré est choisi de tel sorte qu'une surface de contact entre lesdits matériaux bidimensionnels et ledit substrat nanostructuré soit minimisée. L'invention concerne en outre des films minces entièrement suspendus obtenus par le procédé ci-dessus ainsi que l'utilisation des films minces suspendus dans différents domaines comme l'électronique, optoélectronique, photovoltaïque, catalyse, des surfaces ultrasensibles et les circuits intégrés, etc.

Description

PROCEDE D'INTEGRATION DE MATERIAUX 2D SUR UN SUBSTRAT NANOSTRUCTURE, FILM MINCE SUSPENDU DE MATERIAUX 2D ET
UTILISATIONS ASSOCIES
DOMAINE TECHNIQUE DE L'INVENTION
[0001] L'invention se rapporte au domaine d'intégration des matériaux 2D. Plus particulièrement, l'invention concerne un procédé d'intégration des matériaux 2D sur un substrat nanostructuré pour obtenir une monocouche de matériaux 2D entièrement suspendu. L'invention concerne également des films entièrement suspendus ainsi que l'utilisation desdits films suspendus dans les différentes technologies.
[0002] Un matériau bidimensionnel, parfois appelé matériau monocouche ou matériau 2D, est un matériau constitué d'une seule (ou quelques) couche d'atomes ou de molécules. En raison de leurs caractéristiques inhabituelles et pour une potentielle utilisation dans des applications telles que le semi-conducteur, le photovoltaïque, ...
ETAT DE LA TECHNIQUE ANTERIEURE
[0003] Les matériaux 2D d'épaisseur atomique présentent des propriétés (absorption, conduction électrique et thermique) uniques et permettent d'envisager un ensemble de dispositifs ultrafins, ultralégers flexibles etc .. cependant l'épaisseur de ces matériaux leurs confèrent une très grande sensibilité à l'environnement. Le simple fait de déposer ces matériaux sur un substrat modifie leur propriétés intrinsèques (ex : échange de charges). Cela est lié à la surface de contact qui fait que chaque atome du matériau 2D est en contact avec le substrat. [0004] Depuis quelques années les nouveaux matériaux bidimensionnels: dichalcogénures de métaux de transition font l'objet d'études importantes. Les progrès spectaculaires sur le contrôle des propriétés électroniques du graphène ont en effet puissamment stimulé la recherche de nouveaux matériaux bidimensionnels (2D). Les monocouches de Dichalcogénures de Métaux de Transition tels que M0S2 (et ses cousins MoSe2, WS2, WSe2... ) sont apparues très récemment comme des nanostructures très prometteuses pour des applications variées à la fois dans le domaine de l'optique et de l'électronique. En parallèle, les connaissances sur le Nitrure de Bore et les Hétérostructures de Van der Waals, constituant l'empilement de différents matériaux 2D, progressent très rapidement.
[0005] Document « Nanoscale Intégration of Two-Dimensional Materials by Latéral Heteroepitaxy, Nano Lett., 2014.. » enseigne la fabrication par voie ascendante de nanostructures 2D. L'I'intégration des matériaux dans les hétérostructures avec de nouvelles propriétés différentes de celles des constituants. Les résultats ne sont obtenus que sur un substrat approprié. Ce document donne une méthode pour la construction de nano et hétéro-structures à partir d'une large gamme de matériaux 2D. [0006] Concernant l'exaltation de propriétés optiques de matériaux 2D après intégration sur structures photoniques, le document « Two-dimensional material nanophotonics. Nat Photon 2014, 8, 899-907 » décrit deux approches pour améliorer les interactions des matériaux bidimensionnels avec la lumière : - par leur intégration avec des structures photoniques externes et - par des résonances polaritoniques intrinsèques. Le phosphore noir a été présenté comme un matériau stratifié à bandes étroites, qui relie ponctuellement l'intervalle d'énergie entre le graphène à bande nulle et les dichalcogénures de métal de transition à large bande interdite.
[0007] Document « Parallel Stitching of 2D Materials. Adv Mater 2016, 28, 2322- 2329» décrit, l'intégration à grande échelle de matériaux 2D par croissance sélective, dans lequel, diverses hétérostructures 2D à piqûre (stretching) parallèle, y compris le métal-semiconducteur, le semiconducteur-semiconducteur et l'isolant- semiconducteur, sont synthétisées directement par croissance sélective. La méthodologie permet la fabrication à grande échelle d'hétérostructures latérales. [0008] En ce qui concerne, l'intégration de matériaux 2D sur substrats lithographiés à l'échelle microscopique : On obtient dans ce cas des zones suspendues de taille relativement petite mais l'ensemble de la couche n'est pas suspendue. Les documents « Local Strain Engineering in Atomically Thin MoS2, Nano Lett., 2013, 13 (1 1 ), pp 5361 -5366 " ainsi que "Exciton Dynamics in Suspended Monolayer and Few-Layer MoS2 2D Crystals, ACS Nano, 2013, 7 (2), pp 1072-1080".
[0009]Aucun documents ou références sur la possibilité d'obtenir des films entièrement suspendus n'est enseigné. Aucun des documents ne donne une méthode de transfert des matériaux 2D sur des nanostructures de sorte que les caractéristiques intrinsèques desdits matériaux 2D ne soient pas modifiées.
EXPOSE DE L'INVENTION
[0010] L'objet de la présente invention est d'obtenir une monocouche de matériau 2D entièrement suspendue, sans contrainte, c'est-à-dire la couche n'interagit pas avec le substrat. La présente invention donne une solution à ce problème en minimisant les zones de contacts des matériaux 2D en les reportant sur un substrat nanostructuré.
[0011] C'est pourquoi et dans ce contexte, la présente invention à pour objet un procédé d'intégration des matériaux bidimensionnels sur un substrat nanostructuré caractérisé en ce qu'il comprend les étapes suivantes :
A) fabriquer des matériaux bidimensionnels par une méthode de dépôt en phase vapeur ou par une méthode d'exfoliation ;
B) transférer lesdits matériaux bidimensionnels, obtenus à l'étape précédente, sur un substrat nanostructuré synthétisé, ledit substrat nanostructuré est choisi de tel sorte qu'une surface de contact entre lesdits matériaux bidimensionnels et ledit substrat nanostructuré soit minimisée.
[0012] Selon des caractéristiques particulières, la fabrication des matériaux bidimensionnels par la méthode de dépôt en phase vapeur consiste en :
A1 ) croître des matériaux bidimensionnels par dépôt chimique en phase vapeur sur un substrat Si02 ;
A2) déposer une couche de PMMA sur lesdits matériaux bidimensionnels obtenus à l'étape précédente ;
A3) graver le substrat SI02 dans une solution diluée d'acide fluorhydrique HF ; et en ce que
le transfert desdits matériaux, couvert de PMMA, obtenus à étape précédente, sur un substrat nanostructuré comprend en outre les étapes suivantes :
B1 ) retrait du PMMA à l'aide d'une solution acétone ;
B2) séchage desdits matériaux bidimensionnels afin d'éliminer les couches résiduelles de PMMA ; ou
B2') sublimation desdits matériaux bidimensionnels afin d'éliminer les couches résiduelles de PMMA. [0013] Avantageusement, l'utilisation de la technique de sublimation, pour éliminer les couches résiduelles de PMMA, permet d'éviter les contraintes mécaniques liées au séchage.
[0014] Selon une variante de l'invention, les matériaux bidimensionnels sont fabriqués par la méthode d'exfoliation dans un environnement inerte et le transfert desdits matériaux bidimensionnels obtenus par exfoliation sur un substrat nanostructuré synthétisé consiste en une seule étape de dépôt desdits matériaux bidimensionnels sur ledit substrat nanostructuré synthétisé.
[0015] Selon une variante de l'invention, le substrat nanostructuré est de nanofils de ZnO, d'oxyde de zinc, ledit substrat nanostructuré est synthétisé par un procédé de dépôt chimique en phase liquide, CBD, sur un substrat Si02 ou par toutes autres technologies de croissance des nanofils de ZnO.
[0016] Selon des caractéristiques particulières, les nanofils de ZnO synthétisés sont désordonnés et de tailles variables de sorte à minimiser la surface de contact avec les matériaux bidimensionnels obtenus.
[0017] De préférence, les nanofils de ZnO présentent un diamètre inférieur à 100 nm.
[0018] Selon une variante de l'invention, les matériaux bidimensionnels sont soit du sulfure de molybdène MoS2, soit du sulfure de tungstèneWS2 soit du diselenide de Tungsten WSe2.
[0019] Selon des caractéristiques particulières, les matériaux bidimensionnels sont n'importe quels matériaux bidimensionnels rigides.
[0020] L'invention concerne également un film mince suspendu obtenu par le transfert des matériaux 2D sur un substrat de nanofils de ZnO selon le procédé ci- dessus. Les nanofils de ZnO sont désordonnés et de tailles variables.
[0021] Selon des caractéristiques particulières, le film mince suspendu obtenue par le procédé ci-dessus est caractérisé en ce que les matériaux bidimensionnels sont soit du sulfure de molybdène MoS2, soit du sulfure de tungstène WS2, soit du diselenide de tungsten WSe2. De plus, lesdits matériaux bidimensionnels sont rigides et sont obtenus par le dépôt chimique en phase vapeur sur un substrat Si02 ou par l'exfoliation déposer sur un substrat Si02.
[0022] L'invention concerne également l'utilisation de films minces suspendus de matériaux 2D dans des domaines de l'électronique et/ou de l'optoélectronique et/ou de thermique et/ou photonique.
[0023] L'invention concerne encore l'utilisation de films minces suspendus de matériaux 2D dans des domaines de catalyse et/ou dans des surfaces ultrasensibles.
BREVE DESCRIPTION DES FIGURES
[0024] D'autres caractéristiques, détails et avantages de l'invention ressortiront à la lecture de la description qui suit, en référence aux figures annexées, qui illustrent : la figure 1 illustre le concept et la fabrication des matériaux 2D suspendus selon le procédé objet de la présente invention ;
la figure 2 illustre les propriétés optiques exaltés et structures de bandes associées;
la figure 3 illustre l'image obtenue par MEB des couches intégrés suspendues ;
les figures 4A et 4B illustrent le concept de substrat actif. [0025] Pour plus de clarté, les éléments identiques ou similaires sont repérés par des signes de référence identiques sur l'ensemble des figures.
DESCRIPTION DETAILLEE D'UN MODE DE REALISATION
[0026] Les matériaux bidimensionnelles (2D), sont des semi-conducteurs atomiquement minces constitués de métaux de transition m- (Mo, W, Sn, etc.) liés de manière covalente à des chalcogènes X- (S, Se, Te). Le groupe monocouche des matériaux bidimensionnelle avec formule chimique MX2. (M = Mo, W, X = S, se) sont des matériaux prometteurs pour la fabrication des photodétecteurs ultraminces, des systèmes photovoltaïques, etc,... Cependant, les propriétés optiques et cristallines de ces matériaux 2D intégrés sur des substrats plans ne sont toujours pas satisfaisantes pour une application Le simple fait de déposer ces matériaux sur un substrat modifie leur propriétés intrinsèques (ex : échange de charges). Cela est lié à la surface de contact qui fait que chaque atome du matériau 2D est en contact avec le substrat.
[0027] La présente invention vise à contourner ce problème de modification de caractéristiques intrinsèques desdits matériaux 2D lorsqu'ils sont transférés sur un substrat, en proposant de minimiser la surface de contact à l'aide de substrats nanostructurés (tapis de fakir). Pour ce faire il est proposé un procédé d'intégration des matériaux 2D sur un substrat nanostucturé. La première étape du procédé consiste au développement ou croissance des matériaux 2D par dépôt chimique en phase vapeur sur des substrats Si02/Si. Les matériaux 2D peuvent aussi être obtenus par simple exfoliation et dans ce cas simplement déposés sur un substrat Si02/Si. Lesdits matériaux 2D sont soit du sulfure de molybdène, MoS2, soit du sulfure de tungstène, WS2 soit du diséléniure de tungstène, WSe2. L'étape suivante consiste à déposer une couche de PMMA sur lesdits matériaux bidimensionnels crus à l'étape précédente. La couche de PMMA sert à soutenir la monochouche lors de la gravure chimique du Si02. Ensuite le substrat Si02 est gravé dans une solution d'acide fluorhydrique (HF), diluée. L'étape suivante consiste à transférer lesdits matériaux 2D, recouvert de PMMA, sur des nanofils de ZnO synthétisé sur un substrat (Si, Si02... ). Pour retirer le PMMA, une solution acétone a été utilisée. Ensuite les matériaux 2D ont été séchés à 80° C pour éliminer la couche résiduelle de PMMA. Avantageusement, on peut utiliser la technique de sublimation pour éviter les contraintes mécaniques liées au séchage.
[0028] A noter que la croissance des nanofils de ZnO sur le substrat de silicium a été réalisée en adoptant une technique de dépôt chimique en phase liquide, CBD. Tout d'abord, 0,025 M d'acétate de zinc a été dissous dans 250 ml d'eau; Puis on ajoute 0,3 ml d'hydroxyde d'ammonium à la solution et on agite à température ambiante. La synthèse a été réalisée en l'absence de catalyseurs ou d'additifs métalliques. Le mélange a été chauffé à 87 °C. L'échantillon constitué d'une couche de ZnO préalablement déposée sur un substrat de silicium a été immergé dans la solution pendant 30 min. Ensuite, l'échantillon a été lavé à l'eau et séché à l'air pendant 1 heure.
[0029] A noter que pour obtenir des nanofils, toutes autres techniques de croissance ou de structuration, approche top-down, peuvent être utilisés dès l'instant où on obtient des fils de diamètres assez petits. [0030] Figure 1 montre les schémas tridimensionnels du processus de transfère simplifié de matériaux bidimensionnels sur des nanofils de ZnO. Fig. 1 a, 1 b et 1 c illustrent le MoS2, WS2 et WSe2 sur les nanofils de ZnO respectivement. Les matériaux bidimensionnels ont été transférés sur les nanofils de ZnO par une méthode de transfert en phase vapeur. Fig.l d, fig. 1 (e) et fig. 1 f sont les schémas 3D agrandi de matériaux, MoS2, WS2 et WSe2 sur les Nanofils de ZnO respectivement. Des images MEB en fig. 1 g, fig .1 h et 1 i, montrent que lesdits matériaux 2D sont partiellement soutenus par les Nanofils. Fig.1 j montre le contact entre les matériaux 2D et les nanofils. On remarque que le contact se produit seulement au bord des nanofils de ZnO. Fig 1 k montre le spectre de l'intensité photoluminescence desdits matériaux 2D sur des nanofils de ZnO, à température ambiante.
[0031] L'analyse Raman montre que la couche de matériau 2D est exempt de contraintes et est entièrement relaxée. Cela est due au nombre limité de points de contact qui s'explique en partie par le fait que les nanofils ne sont pas tous exactement de la même longueur et légèrement désorienté par rapport à l'axe vertical (figure 1 ).
[0032] Le but est donc d'intégrer la couche mince matériau 2D sans modifier sa structure électronique. Le facteur d'éxaltation observé en émission s'explique par le caractère direct de la transition électronique. Le même matériau 2D déposé sur un substrat plan Si02 devient inefficace optiquement et cela s'explique par la nature indirecte des transitions électroniques. On parle ici de l'émission mais l'absorption est également modifiée.
[0033] Le matériau final intégré sur le substrat de nanofils de ZnO présente des propriétés optiques préservées comme le montre la figure 2.
[0034] Figure 2 montre les propriétés optiques et structures des bandes associées. Pour vérifier les propriétés optiques, les intensités de photoluminescence ont été mesurées à température ambiante. La position du signal PL (photoluminescence) est étroitement liée à la nature de la bande interdite, à savoir, il révèle d'une transition directe ou indirecte. Les spectres PL du MoS2, WS2 et WSe2 sur les nanofils de ZnO sont représentés sur les figures 2a, 2b et 2c, respectivement, conjointement avec les spectres PL des mêmes matériaux 2D déposées sur les substrats de Si02. Lesdits spectres PL des matériaux 2D sur les nanofils de ZnO sont représentés par la couleur grise et sur le substrat Si02 il est représenté par la couleur noir. Les spectres d'énergie des matériaux MoS2, WS2 et WSe2 sur les nanofils de ZnO et sur substrat de SiO2 sont représentés sur les figures 2d, 2e et 2f. Les figures 2g, 2h et 2i représentent les diagrammes de bande d'énergie montrant les transitions optiques des matériaux 2D sur les nanofils et sur le substrat SiO2. Les traits pleins et pointillés indiquent de matériau 2D sur les nanofils et sur le SiO2, respectivement. Le maximum de la bande de valence pour MoS2 et WS2 sur les Nanofils correspond au minimum de la bande de conduction, ce qui entraîne une meilleure intensité de PL à une augmentation de la largeur de bande lorsque la couche est détendue, comme illustré sur la figure 2g et 2h. De l'analyse PL des matériaux 2D sur les nanofils de ZnO, nous en déduisons que lesdits matériaux 2D sur les nanofils se comportent presque comme un film suspendu. [0035] On déduit que le transfert des matériaux 2D sur des nanofils de ZnO permet de minimiser la surface de contact. Pour plus encore minimiser la surface de contact un certain désordre sur l'orientation et la taille des plots ou des fils est introduit. On obtient ainsi des lignes voir des points de contact en nombre très limité dont l'effet sur les propriétés des matériaux 2D peut être négligé. [0036] L'analyse MEB révèle que le contact se fait au niveau des bords des nanofils (lignes blanche sur la figure 3).
[0037] Comme le montre la figure 3, l'effet est observé quel que soit le matériau 2D. Déjà démontré sur un certain nombre de matériaux comme le MoS2 le procédé proposé dans la présente invention peut être étendu à tout type de matériaux à condition qu'il soit suffisamment rigide. S'agissant d'un effet purement géométrique d'autres substrats peuvent être également considérés.
[0038] On parle ici de facteur d'exaltation par rapport au même matériau contraint déposé sur une couche mince de SiO2.
[0039] Les intensités PL des matériaux 2D peuvent être affectées par plusieurs facteurs tels que le dopage et la qualité cristalline. Dans la présente invention l'influence de la qualité cristalline peut être exclue parce que nous avons déposé les matériaux 2D identiques sur un substrat SiO2 et sur les nanofils de ZnO. Par contre possible l'effet du dopage des matériaux 2D par contact avec ZnO ne peut être exclu parce que la fonction de travail de ZnO est supérieure à l'affinité électronique de tous les matériaux 2D. Par conséquent, les électrons photoexcitées de matériaux 2D pourraient être transférés à ZnO au point de contact. Toutefois, nous avons remarqué que les intensités PL de matériaux 2D tels que MoS2 et WS2 ne sont pas plus de 3 fois augmentée de transfert de charge. Par ailleurs, l'intensité PL de WSe2 est diminuée par transfert d'électrons photoexcitée. Cela signifie que le transfert de charge se produisant dans les matériaux 2D sur les nanofils de ZnO a un effet mineur. [0040] On peut imaginer le processus suivant : Modification des propriétés de la couche mince déposé (cf. l'analogie avec les semiconducteurs dopés). Le procédé de croissance permet d'obtenir un lingot pur et l'on vient ensuite ajouter des dopants pour contrôler le type et le niveau de dopage.
[0041] Cela amène au concept de substrat actif. Par le biais des fils on peut injecter ou piéger des électrons et modifier ainsi le dopage de la couche de matériau 2D. La nature du dopant est contrôlée par le substrat ; exemple de réseaux de nanofils de matériaux type p ou n ou encore métallisation des nanofils de ZnO avec une couche d'or. L'idée du substrat actif est illustrée sur les figures 4A et 4B, le type de dopage étant relié à la différence de niveau d'énergie entre le matériau 2D et celui des nanofils. La figure 4A illustre le dopage n : injection d'électron du nanofil vers le matériau 2D. la figure 4B illustre le dopage p : transfert d'électron du matériau 2D vers le nanofil.
[0042] La solution proposée par la présente invention est simplement limitée par la taille de la couche du matériau 2D. En effet, les substrats de nanofils de ZnO peuvent être obtenus sur des surfaces centimétriques voir métriques (croissance chimique en solution).
[0043] Avantage de la combinaison de matériau 2D avec les nanofils de ZnO est prometteur pour l'optoélectronique intégrée. En effet, l'oxyde de zinc (ZnO) est un semi-conducteur de la bande interdite directe avec un large intervalle de bande de 3,2 eV.
[0044] A noter que le procédé objet de la présente invention peut être étendu à n'importe quels matériaux 2D suffisamment rigides. [0045] L'invention concerne ainsi un film mince suspendu obtenu par le transfert des matériaux 2D sur des nanofils de Zno. Le film mince suspendu est obtenu par le procédé objet de la présente invention décrite ci-dessus. Les matériaux 2D utilisé pour le transfert sur les nanofils de ZnO sont du type sulfure de molybdène, MoS2, ou du sulfure de tungstène, WS2 ou du diséléniure de tungsten, WSe2. Lesdits matériaux 2D sont obtenus par dépôt chimique en phase vapeur sur un substrat Si02 ou encore simplement exfoliés.
[0046] Le développement de cette technologie bas cout compatible avec une production en masse des matériaux 2D (on obtient aujourd'hui des surfaces centimétriques voir métriques) et à très grande échelle ouvre de nombreuses perspectives d'applications dans plusieurs domaines comme de (électronique, optoélectronique et photonique, thermique... ).
[0047]Avec le procédé de la présente invention en minimisant les zones de contacte en reportant les matériaux 2D sur un substrat nanostructuré, on obtient une monocouche de matériau 2D entièrement suspendue (sans contrainte). Autrement dit, la couche ne voit pas le substrat (n'interagit pas avec le substrat) . Les matériaux 2D de la présente invention sont rigides.
[0048] Autre problème qui pourra être résolu par la présente invention est le contrôle de la surface de contact de manière à localement pouvoir injecter des porteurs (ingénierie des contacts). Cela est particulièrement intéressant dans la mesure où nous avons montré qu'on pouvait obtenir des couches auto-supportées.
[0049] La seule technique proposée aujourd'hui consiste à déposer le matériau 2D sur un substrat micro-perforé obtenu par lithographie. On obtient dans ce cas des zones suspendues et non suspendues. On ne peut donc parler de couches entièrement suspendues.
[0050] L'invention concerne en outre l'utilisation de films minces suspendus de matériaux 2D dans des domaines électronique et/ou optoélectronique et/ou thermique et/ou photonique.
[0051] L'invention concerne encore l'utilisation de films minces suspendus de matériaux 2D dans des domaines de catalyse et/ou dans des surfaces ultrasensibles.
[0052] De nombreuses combinaisons peuvent être envisagées sans sortir du cadre de l'invention ; l'homme de métier choisira l'une ou l'autre en fonction des contraintes économiques, ergonomiques, dimensionnelles ou autres qu'il devra respecter.

Claims

REVENDICATIONS
1 . Procédé d'intégration des matériaux bidimensionnels sur un substrat nanostructuré caractérisé en ce qu'il comprend les étapes suivantes :
A) fabriquer des matériaux bidimensionnels par une méthode de dépôt en phase vapeur ou par une méthode d'exfoliation ;
B) transférer lesdits matériaux bidimensionnels, obtenus à l'étape précédente, sur un substrat nanostructuré synthétisé, ledit substrat nanostructuré est choisi de tel sorte qu'une surface de contact entre lesdits matériaux bidimensionnels et ledit substrat nanostructuré soit minimisée.
2. Procédé d'intégration des matériaux bidimensionnels sur un substrat nanostructuré selon la revendication 1 caractérisé en ce que la fabrication des matériaux bidimensionnels par la méthode de dépôt en phase vapeur consiste en :
A1 ) croître des matériaux bidimensionnels par dépôt chimique en phase vapeur sur un substrat Si02 ;
A2) déposer une couche de PMMA sur lesdits matériaux bidimensionnels obtenus à l'étape précédente ;
A3) graver le substrat SI02 dans une solution diluée d'acide fluorhydrique HF ; et en ce que
le transfert desdits matériaux bidimensionnels, couvert de PMMA, obtenus à étape précédente sur un substrats nanostructuré comprend les étapes suivantes :
B1 ) retrait du PMMA à l'aide d'une solution acétone ;
B2) séchage desdits matériaux bidimensionnels afin d'éliminer les couches résiduelles de PMMA ; ou
B2') sublimation desdits matériaux bidimensionnels afin d'éliminer les couches résiduelles de PMMA.
3. Procédé d'intégration des matériaux bidimensionnels sur un substrat nanostructuré selon la revendication 1 caractérisé en ce que les matériaux bidimensionnels sont en outre fabriqués par la méthode d'exfoliation dans un environnement inerte ; et en ce que le transfert desdits matériaux bidimensionnels obtenue par exfoliation sur un substrat nanostructuré synthétisé consiste en une seule étape de dépôt desdits matériaux bidimensionnels sur ledit substrat nanostructuré synthétisé.
4. Procédé d'intégration des matériaux bidimensionnels selon la revendication 1 dans lequel le substrat nanostructuré est de nanofils de ZnO, d'oxyde de zinc, ledit substrat est synthétisé par un procédé de dépôt en phase liquide sur un substrat Si02 ou par structuration approche 'top-down' ou toutes autres techniques de croissance de nanofils de ZnO.
5. Procédé d'intégration selon la revendication 4 dans lequel les nanofils de ZnO sont désordonnés et de tailles variables de sorte à minimiser la surface de contact avec les matériaux bidimensionnels obtenus.
6. Procédé d'intégration des matériaux bidimensionnels selon la revendication 4 ou 5, dans lequel les nanofils de ZnO présentent un diamètre inférieur à 100 nm.
7. Procédé d'intégration des matériaux bidimensionnels selon l'une des revendications précédentes caractérisé en ce que les matériaux bidimensionnels sont soit du sulfure de molybdène MoS2, soit du sulfure de tungstène WS2 soit du diselenide de Tungsten WSe2.
8. Procédé d'intégration selon la revendication 1 dans lequel les matériaux bidimensionnels sont n'importe quels matériaux bidimensionnels rigides.
9. Film mince suspendu obtenu par le procédé de transfert de matériaux 2D sur un substrat nanostructuré selon l'une des revendications 1 à 8 caractérisé en ce que le substrat nanostaructuré est un substrat de nanofils de ZnO ; et en ce que les nanofils de ZnO sont désordonnés et de tailles variables.
1 0. Film mince suspendu de matériau 2D selon la revendication 9 caractérisé en ce que les matériaux bidimensionnels sont soit du sulfure de molybdène MoS2, soit du sulfure de tungstène WS2 soit du diséléniure de Tungstène WSe2, lesdits matériaux bidimensionnels sont rigides ; et en ce qu'ils sont obtenus par le dépôt en phase vapeur sur un substrat SiO2 ou par l'exfoliation.
1 1 . Utilisation du film mince suspendu de matériau 2D selon les revendications 9 et 10 dans des domaines électronique et/ou optoélectronique et/ou thermique et/ou photonique.
1 2. Utilisation du film mince suspendu de matériaux 2D selon les revendications 9 et 10 dans des domaines de catalyse et/ou dans des surfaces ultrasensibles.
EP17832986.8A 2016-12-09 2017-12-09 Procédé d'intégration de matériaux 2d sur un substrat nanostructure, film mince suspendu de matériaux 2d et utilisations associes Withdrawn EP3551788A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1670741A FR3060023A1 (fr) 2016-12-09 2016-12-09 Procede d'integration de materiaux 2d sur un substrat nanostructure, filme mince suspendu de materiaux 2d et utilisations associes.
PCT/IB2017/057764 WO2018116048A1 (fr) 2016-12-09 2017-12-09 Procédé d'intégration de matériaux 2d sur un substrat nanostructure, film mince suspendu de matériaux 2d et utilisations associes

Publications (1)

Publication Number Publication Date
EP3551788A1 true EP3551788A1 (fr) 2019-10-16

Family

ID=58992949

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17832986.8A Withdrawn EP3551788A1 (fr) 2016-12-09 2017-12-09 Procédé d'intégration de matériaux 2d sur un substrat nanostructure, film mince suspendu de matériaux 2d et utilisations associes

Country Status (3)

Country Link
EP (1) EP3551788A1 (fr)
FR (1) FR3060023A1 (fr)
WO (1) WO2018116048A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109473490A (zh) * 2018-11-08 2019-03-15 天津理工大学 一种垂直多结结构二硫化钼太阳能电池及其制备方法
CN110203879B (zh) * 2019-05-10 2021-12-31 中国科学院上海微系统与信息技术研究所 一种硅纳米线的制备方法
CN110344022B (zh) * 2019-07-19 2021-07-30 河南师范大学 p型戴维南星形MoS2单层二维材料、制备方法及电子器件
CN110564417B (zh) * 2019-09-04 2022-06-07 暨南大学 悬浮二维材料光致发光的光电调控器及制备、调控方法
CN111312593B (zh) * 2019-11-15 2023-08-22 杭州电子科技大学 一种二维过渡金属硫族化合物明、暗激子的调控方法
CN112608736B (zh) * 2020-12-30 2023-07-25 东北师范大学 一种提升二维碘化铅光稳定性和荧光强度的方法
CN113200523B (zh) * 2021-03-25 2022-11-22 华南师范大学 一种大面积层状二维材料的剥离及其转移方法
CN113206005A (zh) * 2021-04-21 2021-08-03 武汉大学 二维材料拉应变工程的激光制造方法
CN113264557A (zh) * 2021-06-01 2021-08-17 南开大学 一种利用流体边界层效应自组装同质/异质结纳米膜的方法
CN113666418A (zh) * 2021-06-09 2021-11-19 湖南大学 一种二维原子晶体多层转角ws2纳米材料及其制备方法
CN114018297A (zh) * 2021-11-04 2022-02-08 电子科技大学 一种基于磁场调控二维铁磁CrI3荧光手性的多波长磁编码器
CN114657534B (zh) * 2022-02-18 2023-06-16 华南理工大学 一种基于MoS2上的InN纳米柱及其制备方法与应用
CN115595551A (zh) * 2022-09-20 2023-01-13 西北工业大学(Cn) 一种高保真度2D TMDs的转移方法
CN116732141B (zh) * 2023-07-10 2024-04-02 海南大学 一种快速检测生物dna特异性的方法

Also Published As

Publication number Publication date
FR3060023A1 (fr) 2018-06-15
WO2018116048A1 (fr) 2018-06-28

Similar Documents

Publication Publication Date Title
EP3551788A1 (fr) Procédé d'intégration de matériaux 2d sur un substrat nanostructure, film mince suspendu de matériaux 2d et utilisations associes
Qi et al. Photonics and optoelectronics of 2D metal‐halide perovskites
Sheng et al. Hydrogen addition for centimeter-sized monolayer tungsten disulfide continuous films by ambient pressure chemical vapor deposition
Petoukhoff et al. Ultrafast charge transfer and enhanced absorption in MoS2–Organic van der Waals heterojunctions using plasmonic metasurfaces
Yan et al. Nanowire photonics
Bilgin et al. Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality
Erkılıç et al. Vapor phase selective growth of two-dimensional perovskite/WS2 heterostructures for optoelectronic applications
Zhang et al. Self-catalyzed ternary core–shell GaAsP nanowire arrays grown on patterned Si substrates by molecular beam epitaxy
US20170179314A1 (en) Photovoltaic cells
Chen et al. Rational design of nanowire solar cells: from single nanowire to nanowire arrays
Seo et al. Low dimensional freestanding semiconductors for flexible optoelectronics: materials, synthesis, process, and applications
WO2013057446A1 (fr) Procede de croissance en epaisseur de nanofeuillets colloïdaux et materiaux composes desdits nanofeuillets
Yang et al. Light trapping in conformal graphene/silicon nanoholes for high-performance photodetectors
Kim et al. Dielectric nanowire hybrids for plasmon-enhanced light–matter interaction in 2d semiconductors
Rahman et al. Nano-engineering and nano-manufacturing in 2D materials: marvels of nanotechnology
Knutsson et al. Atomic scale surface structure and morphology of InAs nanowire crystal superlattices: the effect of epitaxial overgrowth
Nalamati et al. A Study of GaAs1–x Sb x Axial Nanowires Grown on Monolayer Graphene by Ga-Assisted Molecular Beam Epitaxy for Flexible Near-Infrared Photodetectors
WO2013057448A1 (fr) Procede de croissance en epaisseur de nanofeuillets colloidaux et materiaux composes desdits nanofeuillets
Skinner et al. Electrospinning for nano-to mesoscale photonic structures
Xiang et al. Mo doping assisting the CVD synthesis of size-controlled, uniformly distributed Single-layer MoS2 on rutile TiO2 (110)
Nalamati et al. Hybrid GaAsSb/GaAs heterostructure core–shell nanowire/graphene and photodetector applications
An et al. Recent advances in single crystal narrow band-gap semiconductor nanomembranes and their flexible optoelectronic device applications: Ge, GeSn, InGaAs, and 2D materials
Zhao et al. Solvent-free preparation of closely packed MoS2 nanoscrolls for improved photosensitivity
Hasani et al. Self-powered, broadband photodetector based on two-dimensional tellurium-silicon heterojunction
Abrand et al. Localized self-assembly of InAs nanowire arrays on reusable Si substrates for substrate-free optoelectronics

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20190709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
18W Application withdrawn

Effective date: 20200217