EP3551358B1 - Verfahren und form- oder kernwerkzeug zur herstellung von formen oder kernen - Google Patents

Verfahren und form- oder kernwerkzeug zur herstellung von formen oder kernen Download PDF

Info

Publication number
EP3551358B1
EP3551358B1 EP17816409.1A EP17816409A EP3551358B1 EP 3551358 B1 EP3551358 B1 EP 3551358B1 EP 17816409 A EP17816409 A EP 17816409A EP 3551358 B1 EP3551358 B1 EP 3551358B1
Authority
EP
European Patent Office
Prior art keywords
core
sand
mixture
tool
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP17816409.1A
Other languages
English (en)
French (fr)
Other versions
EP3551358A1 (de
Inventor
Wolfram Bach
Michael Kaftan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soplain GmbH
Original Assignee
Soplain GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Soplain GmbH filed Critical Soplain GmbH
Publication of EP3551358A1 publication Critical patent/EP3551358A1/de
Application granted granted Critical
Publication of EP3551358B1 publication Critical patent/EP3551358B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • B22C1/10Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives for influencing the hardening tendency of the mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/02Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by additives for special purposes, e.g. indicators, breakdown additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/18Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents
    • B22C1/186Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of inorganic agents contaming ammonium or metal silicates, silica sols
    • B22C1/188Alkali metal silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/06Core boxes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/06Core boxes
    • B22C7/065Venting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C7/00Patterns; Manufacture thereof so far as not provided for in other classes
    • B22C7/06Core boxes
    • B22C7/067Ejector elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening

Definitions

  • the present invention relates to a method for the production of molds or cores for foundry purposes using electricity by adapting the specific electrical resistance of the core box material to a mixture of a molding material and a water-containing inorganic binder, which in dissolved form forms an electrolyte and a sufficient electrical Has conductivity.
  • the invention also relates to a mold or core tool for producing molds or cores.
  • a gas-permeable molding tool for the production of casting and core molds from hardenable molding sand is known, the tool being made of heteroporous, open-pored material and the wall of the molding tool having a first fine-pored layer area of 0.2-2 mm thickness adjoining the molding sand, 75-95% of the theoretical material density and pore diameter ⁇ 50 ⁇ m, to which a second, massive area in the form of a large-pored supporting skeleton of ⁇ 80% of the theoretical material density and an average pore diameter ⁇ 100 ⁇ m is materially adjacent.
  • a method for producing foundry molds or cores by introducing a mixture of aggregate and binder into a mold or core box and heating the mixture, the heating being effected by passing an electric current through the mixture.
  • a template which has a frame-shaped or box-shaped configuration, preferably slightly tapering downwards, with a circumferential wall and, in the case of a box-shaped configuration, also a base.
  • Forming or core tools for inorganic processes are mainly made of metal such as steel or aluminum.
  • Metallic core tools have a resistance range of, for example, 2x10 -7 ohmmeters (steel) with sand-binder mixtures in the range of approx. 10 1 to 10 2 ohmmeters. Since the resistance at the core box is significantly lower than in the sand-binder mixture, the current flows to the contact area inside the core box and is then passed through the sand-binder mixture for a short distance. As a result, there is almost no current flowing through thicker parts of the sand core, which means that there is insufficient heating. This means that the mixture does not harden evenly.
  • the present invention therefore deals with the problem of specifying an improved or at least an alternative embodiment for a method of the generic type which in particular overcomes the disadvantages known from the prior art.
  • the present invention is based on the general idea when selecting the material of the separable mold or core tools specific electrical conductivity must be taken into account in such a way that it corresponds approximately to the electrical conductivity of a (sand-binder) mixture during the optimum working temperature.
  • the electrical specific conductivity of the mold or core tool (cavity) is therefore determined by the sand-binder mixture used.
  • an electrically conductive material is first permanently introduced into a housing of the mold or core tool and there takes the previously described mixture of a molding material, e.g. sand (foundry sand), and water-containing binder, which is in dissolved form Forms electrolyte and has sufficient electrical conductivity.
  • a molding material e.g. sand (foundry sand)
  • water-containing binder which is in dissolved form Forms electrolyte and has sufficient electrical conductivity.
  • the present invention is further based on the general idea of specifying a mold or core tool for producing molds or cores, for example casting cores, from a mixture of a molding material and a binder containing water, which in dissolved form forms an electrolyte and has sufficient electrical power Has conductivity, wherein the mold or core tool according to the invention has an electrically non-conductive housing consisting of at least two parts.
  • the form or The core tool also has at least two electrodes, one electrode in each case being arranged in a part of the housing. Electrical energy is later introduced into the material via the two parallel electrodes and into the mixture via this, whereby the mixture is heated and thereby hardened.
  • the process requires direct contact between the conductive material and the electrodes of the core box. An insulation layer between the core box parts can thus be dispensed with.
  • the mixture is introduced for each cycle of sand core production, with the electrically conductive material being introduced once per production of the mold or core tool.
  • the material thus forms the negative contour of the sand core or mold to be produced later in it.
  • electrical energy and above that heat is then supplied to the material via the electrodes arranged in / on the housing of the mold or core tool, which leads to hardening of the mixture.
  • the housing only represents a container for holding the conductive material and does not have to be electrically conductive, since otherwise the current is only passed through the housing and not through the material or the mixture.
  • the housing can be made of plastic and offers the advantage that it is comparatively light and therefore easy to handle. Alternatively, insulating ceramics or another electrically non-conductive material can also be used.
  • Parts of the housing can be connected to one another via one or more parting planes, the electrodes preferably being parallel can be arranged to one another or even embedded in a part of the housing.
  • a device for controlling / regulating the electrical voltage is provided on the electrodes.
  • the voltage applied to the electrodes can be regulated, for example increased, so that short cycle times for the curing process can be achieved. Short cycle times, in turn, enable the molds or cores to be manufactured in a comparatively cost-effective manner.
  • the power / voltage can be regulated by means of an inverter / power controller or by connecting different voltages. Alternatively, the method can also be operated with a constant applied voltage.
  • the electrical energy can be supplied to the material and sand-binder mixture (mixture) in the form of alternating current or direct current. Alternating current is available everywhere and can be regulated in almost any way.
  • ventilation slots are to be provided in the material, in the electrodes and in the housing to allow the gases or water vapor to escape.
  • the gases or water vapor produced during the hardening process can be removed from the sand core (core) and the material, the electrodes and the housing via bores using core marks (nozzles).
  • the material can also be porous and thus allow the gases or water vapor to escape.
  • holes for non-conductive ejector bolts are provided in the material, which are used to remove the (sand) cores. These allow the sand cores to be removed after the mixture has hardened and the moving apart of the housing parts.
  • the ejector bolts should be made of non-conductive material to avoid a short circuit.
  • the ejector bolts required are attached to the base plate of the tool in the ejector holes provided for this purpose.
  • conductive ejector bolts can also be used, provided that the design ensures that they do not come into contact with a conductive material while the current is switched on.
  • the solution according to the invention according to which the specific electrical conductivity of the material at least approximately corresponds to the specific electrical conductivity of the mixture at working temperature, a uniform and in particular uniform passage of current or voltage through both the material and through the mixture can be achieved, whereby the latter evenly heated and can therefore be cured particularly evenly and thus of high quality.
  • each binder has an optimal working temperature which ensures the best possible curing. In the case of the binders tested, this was around 150-180 ° C and depends on the manufacturer's information and any binder additives used.
  • the method according to the invention can be used for the first time to achieve a uniform, This means that uniform and also process-reliable curing of the mixture can be achieved, whereby molds or casting cores of can be produced in a particularly high quality regardless of their geometric structure.
  • the method according to the invention prevents the risk of shell formation on a core surface or a mold surface, which would be the case, for example, with curing by means of external heat (eg oil heating).
  • Another advantage results from the fact that no external heating devices are required. This not only increases the efficiency of the process, as described above, but also reduces the acquisition and maintenance costs for any external heating devices. In addition, this makes it possible to provide systems with a smaller space requirement, so that more systems can tend to be accommodated in the same area.
  • Another advantage results from the use of materials such as silicon carbide ceramic, which is a very hard material compared to existing core tool materials such as steel or aluminum (Mohs strength 9.5) and thus the life of the core box is extended due to less wear.
  • a method according to the invention for the production of molds or cores for foundry purposes works by adapting the specific Electrical resistance of the material of the tool insert to the specific electrical resistance of a mixture of at least one molding material, in particular foundry sand, and at least one water-containing inorganic, thermosetting binder, which has sufficient electrical conductivity of at least 5 ⁇ 10 -3 S / m.
  • Fig. 1 has a mold or core tool 1 according to the invention for producing molds 2 or cores 2 'for foundry purposes, a housing 3 which is electrically insulated towards the machine and which consists of two parts 4, 5 which are connected to one another via a parting plane 6.
  • the housing 3 is fastened on a base plate 12.
  • the housing 3 is made of plastic, insulating ceramic or some other non-conductive material and accommodates an electrically conductive material 7.
  • the material 7 forms a mold for receiving a mixture 9 from which the core 2 ′ or the mold 2 is formed after the hardening.
  • the material 7 can for example be a ceramic material.
  • the specific electrical conductivity of the mixture 9 and the specific electrical conductivity of the material 7 are at least approximately the same, for example do not differ more than in phase 2 of Fig. 2 so that essentially the same specific electrical conductivity and the same specific electrical resistance prevail in the material 7 and the mixture 9.
  • the molding or core tool 1 according to the invention also has at least two electrodes 10 which are arranged parallel to one another. A device 8 for regulating or controlling the voltage supplied to the electrodes 10 is provided.
  • the specific electrical conductivity of the material 7 of the core 2 ′ or of the form 2 now approximately corresponds to the specific one electrical conductivity of mixture 9 in phase 2 of Fig. 2 , whereby a comparatively uniform passage of electrical energy through the mixture 9 is possible.
  • a mold 2 or a core 2 'or a casting core 2' can be produced at the highest level of quality, since the electrical conductivity of the mold 2 or the core is at least almost the same 2 'used mixture 9 and the material 7 a uniform passage of electrical current through the material 7 and the mixture 9 and thus a uniform heating and curing of the mixture 9 can take place regardless of the respective geometric dimensions of the mold 2 or the core 2 '.
  • the mold 2 or the core 2 ' is produced as follows: First, after the material selection mentioned, the electrically conductive material 7 is introduced into the housing 3 of the mold or core tool 1 during the initial construction and forms a negative mold for the later mold 2 or The mixture 9 which will later form the core 2 'is then supplied to the material 7 via the electrodes 10 with electrical energy and thus heat, which leads to the mixture 9 hardening.
  • the mixture 9 is hardened in particular by evaporation of water from the mixture 9, the mixture 9 containing an inorganic binder, water and foundry sand.
  • the inorganic binder used in the mixture 9 can be water-soluble, but contains at least water and is in any case electrically conductive.
  • a casting core or core 2 ′ that is particularly uniformly heated and therefore also particularly uniformly cured and thus homogeneous can be created and this regardless of the respective geometrical dimensions of the core 2 'or the shape 2, since due to the preferably identical electrical conductivity of the mixture 9 for the core 2' and the material 7, the electric current does not seek shorter paths, as was previously the case with the Prior art mold or core tools was the case.
  • the device 8 can in particular increase or decrease the voltage, whereby a cycle time for the production of the mold 2 or the core 2 ′ can be controlled.
  • the base plate of the tool 12 accommodates the housing 3 or the parts 4, 5 and the material 7, and insulating screws 13 and angles 14 ensure fastening. Insulating screws 13 can also be replaced by quick-release systems to enable easier and faster removal.
  • the material "floats" on the electrode 10 and the electrode 10 is held in place by alignment bolts 15.
  • Table 1 is attached below for further understanding. Table 1 shows several series of measurements with different sand-binder mixtures 9. The finding is that the specific electrical conductivity depends on the desired sand-binder mixture 9 and can be influenced by varying the additives and / or by changing the percentage. Ever The stronger the electrically conductive part in the sand-binder mixture 9, the lower the specific electrical resistance in the sand-binder mixture 9. Table 1: Series of measurements of sand-binder mixtures.
  • Each binder has an optimal
  • the test specimen consists of two opposing metallic electrodes and an insulating tube between the electrodes.
  • the geometry (area and distance of the electrodes) of the body within the insulating tube must be determined.
  • the cavity is filled with a green, not hardened sand-binder mixture 9.
  • the sand-binder mixture 9 must correspond to the mixture 9 to be used later during production.
  • the mixture 9 must be compressed according to real application conditions. Measuring devices for determining voltage, current and temperature are connected to the electrodes. A constant voltage is applied to the electrodes via a power supply. The calculated resistance results from the applied voltage divided by the measured current.
  • Fig. 2 the typical course of the electrical resistance and the electrical power introduced of a conductively heated mixture 9 of any inorganic sand / binder mixture is shown.
  • phase 1 capacitive load
  • phase 2 phase 2 of the slowly falling electrical resistance begins in the curve (increase in charge carriers).
  • the power absorbed by the sample increases continuously until charge carriers evaporate due to the temperature reached.
  • the resistance now increases very quickly (phase 3).
  • the specific electrical resistance of the tested mixtures 9 changes during the heating process. At below 100 ° C it is approx. 85
  • a material composition must be determined by means of test series, which has a suitable electrical specific resistance at a certain temperature. This specific temperature is based on the optimum temperature which the binder needs to best cure. In our tests, tested binders required temperatures of approx. 150 ° C to approx. 180 ° C in order to cure. The area around the optimal resistance was determined by means of a temperature resistance curve (see above) around 25 ohmmeters. Consequently, the tested binder mixture 9 requires a material 7 with a specific resistance of approx. 25 ohm meters at 150-180 ° C.
  • the specific resistance of the material 7 should be the same as the optimum specific resistance for the sand-binder mixture 9. If the specific resistance of the material 7 is higher than that of the sand-binder mixture 9 during implementation, this tends to lead to heating from the center of the core 2 in the direction of the core box material 7, since this is where the current finds the path of the lower resistance.
  • the course of the temperature-resistance curve of the material 7 should run similarly to the temperature-resistance curve of the sand-binder mixture 9. The smaller the deviation of the two curves, the more effective the method.
  • the test series to determine the material can be carried out as follows: A starting material such as Example silicon carbide, is produced in the form of a small test plate. This material sample is then clamped in a device between two electrodes so that these electrodes are in direct contact with the sample plate. The temperature-resistance curve for this sample material is then determined. If the deviation between the specific resistance of the sample material and the optimal specific resistance of the sand-binder mixture 9 is too great, the material composition must be revised. In tests carried out, silicon carbide compositions with a variation in the proportion of graphite in the ceramic mixture have proven to be positive. But in principle there are also other material compositions or material additives that add to the electrical affect specific resistance, possible. The graphite content is bound in the ceramic and therefore has no influence on further casting processes. These tests have to be repeated until a suitable material composition has been found which has the desired specific resistance.
  • a starting material such as Example silicon carbide
  • the selected material 7 must also meet the other physical properties for the environment of foundries. For example, breaking strength, surface roughness, thermal expansion and thermal conductivity are mentioned here.
  • the ceramic selected for further tests has a specific resistance of approx. 30 ohmmeters for the above-mentioned sand-binder mixture 9.
  • the maximum short-term load on the material 7 must then be determined at which no permanent damage to the material 7 occurs. This maximum short-term load subsequently plays an important role for the electrical control. This is determined with load tests and can lead to chipping on the material 7 if the maximum short-term load is exceeded.
  • the material 7 mentioned above and below can be replaced by other materials as defined in the independent claims, provided that these are electrically conductive and the adjustment of the electrical resistivity corresponds to the selected mixture 9 and also the other requirements for the foundry are met.
  • the repeated term "adaptation" describes the aforementioned steps for selecting a suitable material 7 to the specific electrical properties of sand-binder mixtures 9.
  • the structure of the core box can be produced for the application of the method.
  • the most critical work step is the production of the material 7.
  • the ceramic is produced in several production steps using common ceramic production processes.
  • the fine machining after sintering in particular requires the greatest care because of the very hard material (Mohs hardness of approx. 9.5). The more precise the fine machining, the lower the later tolerance deviations for sand cores 2 produced with the method.
  • the material 7 requires a direct contact area with the respective electrode on the opposite side of the contouring surface. In experiments it has been recommended to grind the contact surface flat in order to enable very good contact between the electrode 10 and the material 7. This leads to the desired effect of keeping the contact resistance low.
  • the electrode 10 should be laid floating on the back of the material part. This is necessary because the material of the electrodes 10 normally has a higher thermal expansion than the core box material. For this purpose, two pins can be attached to the rear of the material, which hold the electrodes 10 in position during the production process.
  • Electrodes 10 Due to the parallel arrangement of the electrodes 10, a comparatively uniform transmission of electrical energy through the material 7 and the mixture 9 can be achieved, which in turn results in advantages with regard to uniform heating and uniform curing.
  • One possible embodiment also provides for the electrodes 10 to be introduced into the material 7. In this case, no pins would be needed for alignment. The electrodes 10 and the material 7 are then received by means of a recess in an insulating material.
  • the multi-layer planes can be fastened by means of anchoring in the base plate 12 of the tool.
  • Brackets 14 with screw connections 15 can be used for fastening, as in Figure 5 shown as an example.
  • quick locking systems can be used instead of screws.
  • the fastening screws 15 should be made of non-conductive material in order to avoid a current flow to the housing 3.
  • ventilation slots 17 are to be provided in the material 7, in the electrodes 10 and in the housing 3, in order to allow the gases or water vapor to escape.
  • gases or water vapor produced during curing can be removed from the sand core 2 ′′ (core) and the material 7, the electrodes 10 and the housing 3 via bores 17 using core marks (nozzles).
  • the material can also be porous and thus allow the gases or water vapor to escape.
  • the electrodes 10 require a power supply which is connected to the external switchgear cabinet and thus enables an electrical control 8.
  • the electrical control 8 must be adapted to the core box and the process.
  • the electrical control 8 takes on the task of supplying the core box with sufficient power by means of power supply and electrodes 10.
  • the electrical control 8 (device 8) must be planned accordingly.
  • existing switchgear may be converted and adapted. It is important that the energy is supplied to the material 7 via electrodes 10. Alternating current or direct current is conceivable.
  • the control of the power supply must take into account the maximum short-term load of the selected material 7 as well as the resistance-temperature curve of the material 7 and the sand-binder mixture 9.
  • the electrical control 8 is to be selected so that the highest possible power input takes place by means of high voltage, but the maximum short-term load limit is never exceeded in order to prevent damage to the material 7 and thus ensure an economical process.
  • the power input and the associated heat development in the sand-binder mixture 9 is dependent on the specific resistance and the applied voltage. Therefore, the power input and the temperature can also be controlled by regulating the voltage.
  • the core box should have temperature sensors to prevent it from heating up beyond the prescribed working range of the binder, as too high a temperature would otherwise negatively affect the binding force.
  • the electrical control 8 also regulates the different process steps of the core shooter. Particularly when moving the core box parts together, care must be taken to ensure that they are brought together in one adjusted speed happens in order to avoid a shock effect in the core box material and thus a possible permanent damage.
  • the regular production process is divided into three processes.
  • the first process describes the commissioning of the system after a short or long downtime.
  • a feature during this process is that the material 7 has not yet reached the planned operating temperature.
  • the core box is heated in the same way as in the typical production process.
  • the parts 4, 5 are brought together from their starting position and form a contact surface.
  • the sand-binder mixture 9 can be shot into the core box.
  • the energy is supplied by means of electricity thanks to the electrical control 8. Due to the increased specific resistances of the material 7, the warming-up process takes a little longer than the regular production cycle times.
  • the core box slowly warms up and, as the temperature rises, it falls Specific resistance of the material 7. The more the resistance falls, the faster the material 7 continues to heat up according to the principle of resistance heating. Since the heat input in the first sand cores 2 does not take place under optimal conditions, increased rejects can occur during this process.
  • the process parameters can be described as follows.
  • the material 7 of the core box has the operating temperature and thus the optimal specific resistance of the sand-binder mixture 9.
  • the core box parts 4, 5 have moved apart and the sand core cavity is empty.
  • the core box parts 4, 5 are closed and then the sand-binder mixture 9 is shot into the core box.
  • the specific resistance is dependent on the temperature of the sand-binder mixture 9.
  • the mixture 9 can be at room temperature or can already be preheated.
  • the direct contact surface with the sand-binder mixture 9 of the core box material cools down somewhat.
  • the sand-binder mixture 9 has now heated up from the initial temperature to approx. 100 to 130 ° C. within a few seconds, depending on its size. As soon as the free charge carriers are reduced as a result of the evaporation of the water content in the sand-binder mixture 9, the specific resistance of the sand-binder mixture 9 suddenly begins to increase. At this moment, the current flow within the sand core 2 is reduced. In order to achieve the desired optimum operating temperature for the sand-binder mixture 9, the remaining thermal energy must now be transferred via the core box material 7, as is the case with existing methods.
  • the silicon carbide material is continuously further heated by means of a current flow in order to compensate for the heat loss of the material 7 to the sand core 2 ′′.
  • the particular advantage of the method therefore lies in the heating of the sand-binder mixture 9 from the temperature at the point of injection up to approx. 130 ° C through the principle of resistance heating by means of current flow within the sand core 2.
  • the further advantage is the efficient heating of the material 7 and thus the supply of heat in the phase from 130 ° C. to the desired operating temperature of the sand-binder mixture 9.
  • a sand-binder mixture 9 with an operating temperature of approx. 170 ° C. and an injection temperature of approx. 20 ° C. is used as an example.
  • approx. 150 ° C are required for heating.
  • 2/3 (approx. 100 ° C.) of the required thermal energy can therefore be generated very quickly by means of resistance heating within the sand core 2 and approx. 1/3 by means of heat transfer from the material 7 to the sand core 2 ′′.
  • the sand core 2 ′′ can be removed as with existing core shooting processes. Ejection bolts 16 required for ejecting the sand core from the cavity are fastened in the ejection bores 16 ′ provided for this purpose and enable the sand cores 2 to be detached from the material 7.
  • the third process describes the cool down phase before a break or shutdown.
  • the core box can simply cool down in the extended state and is then available again at any time for the first process step.
  • the method according to the invention can be used for the first time with a uniform , that is to say uniform and also reliable curing of the mixture 9 can be achieved, whereby molds 2 or casting cores 2 'of particularly high quality can be produced regardless of their geometric structure.
  • the method according to the invention prevents the risk of shell formation on a core surface or a mold surface, which would be the case, for example, with curing by means of external heat (e.g. oil heating).
  • molds 2 or cores 2 ′ are possible for the first time by adapting the electrical specific conductivity of the mold core box material 7 to the sand-binder mixture 9. This allows uniform passage of electrical energy and thus uniform heating and thus uniform curing. So far this has not been possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Mold Materials And Core Materials (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Formen oder Kernen für Gießereizwecke unter Verwendung von Strom mittels Anpassung des spezifischen elektrischen Widerstandes des Kernkastenmaterials an eine Mischung aus einem Formstoff und einem Wasser enthaltenden anorganischen Bindemittel, welches in gelöster Form ein Elektrolyt bildet und eine ausreichende elektrische Leitfähigkeit aufweist. Die Erfindung betrifft außerdem ein Form- oder Kernwerkzeug zum Herstellen von Formen oder Kernen.
  • Aus der WO 2003/013761 A1 und US 2004/0192806 A1 ist ein gattungsgemäßes Verfahren bekannt, bei welchem als anorganisches Bindemittel Magnesiumsulfat verwendet wird, welches in Wasser dispergiert und/oder gelöst und anschließend mit Gießereisand vermischt ist. Anschließend wird diese Mischung aus einem Formstoff, das heißt bspw. Gießereisand und dem Wasser enthaltenden Bindemittel, in das Form- oder Kernwerkzeug eingebracht und dort durch Erhitzen ausgehärtet. Durch die Verwendung eines anorganischen Bindemittels soll ein Austreten von umweltschädigenden Gasen beim Aushärten der Mischung vermieden werden. Dies Anmeldung basiert dabei teilweise auf der Patentanmeldung DE 24 35 886 A1 aus dem Jahre 1974 zum Erhärten von Sandkernen mittels "Hindurchleiten eines elektrischen Stromes".
  • In der erwähnten Druckschrift WO 2003/013761 A1 ist ausgeführt, dass die zur Aushärtung erforderliche Energie mittels Elektrizität zur Verfügung gestellt wird. Die Elektrizität wird dabei über zwei oder mehrere Elektroden an "wenigstens teilweise elektrisch leitenden, gegeneinander isolierten Teilen der trennbaren Form- oder Kernwerkzeuge" angelegt. Die genannte Anmeldung berücksichtigt nicht die Unterschiede zwischen den elektrisch spezifischen Widerstandseigenschaften des Kernwerkzeugs und den elektrisch spezifischen Widerstandseigenschaften des Sand-Binder-Gemisches. Es verwendet "gegeneinander isolierte[n] Teile der trennbaren Form- oder Kernwerkzeuge".
  • Aus der DE 37 35 751 A1 ist ein gasdurchlässiges Formwerkzeug zur Herstellung von Guss- und Kernformen aus aushärtbarem Formsand bekannt, wobei das Werkzeug aus heteroporös aufgebautem, offenporigem Material besteht und wobei die Wand des Formwerkzeuges einen ersten, an den Formsand angrenzenden feinporigen Schichtbereich von 0,2-2 mm Dicke, 75-95% der theoretischen Materialdichte und Porendurchmesser < 50 µm aufweist, an den ein zweiter, massiver Bereich in Form eines großporigen Stützskeletts von < 80% der theoretischen Materialdichte und einem mittleren Porendurchmesser < 100 µm materialschlüssig angrenzt.
  • Aus der DE 24 35 886 A1 ist ein Verfahren zur Herstellung von Gießereiformen oder -kernen durch Einbringen eines Gemisches aus Aggregat und Binder in einen Form- oder Kernkasten und Erhitzen des Gemisches bekannt, wobei das Erhitzen mittels Durchleiten eines- elektrischen Stromes durch das Gemisch bewirkt wird.
  • Aus der EP 3 103 562 A1 ist eine Schablone bekannt, welche eine rahmenförmige oder kastenförmige, sich vorzugsweise nach unten leicht verjüngend ausgebildete, Ausgestaltung mit einer umlaufende Wandung und bei kastenförmiger Ausgestaltung auch einem Boden aufweist.
  • Form- oder Kernwerkzeuge für anorganische Verfahren werden vornehmlich aus Metall wie z.B. Stahl oder Aluminium hergestellt.
  • Der Nachteil der oben genannten Anmeldung ist, dass eine Isolationsschicht zwischen den Teilen des Form- oder Kernwerkzeuge benötigt wird, welche den Kurzschluss beim Anlegen der Spannung verhindern soll und somit den Stromfluss durch das Sand-Binder-Gemisch bewirken soll.
  • Ein weiterer Nachteil der Technik ergibt sich trotz der Verwendung einer Isolationsschicht. Der elektrische Strom sucht stets den Weg des geringsten Widerstandes zum Ausgleich der elektrischen Potentiale.
  • Metallische Kernwerkzeuge haben einen Widerstandsbereich von z.B. 2x10-7 Ohmmeter(Stahl) wobei Sand-Bindergemische im Bereich von ca. 101 bis 102 Ohmmeter liegen. Da der Widerstand am Kernkasten wesentlich geringer ist als im Sandbinder-Gemisch fließt der Strom bis zur Kontaktfläche innerhalb des Kernkastens und wird dann für eine kurze Strecke durch das Sand-Bindergemisch geleitet. Dies hat zur Folge, dass an dickeren Teilen des Sandkerns fast kein Strom fließt und somit keine ausreichende Erwärmung erfolgt. Damit ergibt sich keine gleichmäßige Aushärtung der Mischung.
  • Wird ein derartig lediglich teilweise ausgehärteter Kern aus dem Form- oder Kernwerkzeug entnommen, kann dieser Schaden nehmen oder zu einem Schaden bei einer späteren Verwendung in einem Gießwerkzeug führen.
  • Ein weiterer Nachteil basiert auf dem gleichen Ansatz, dass Strom sich immer den Weg des geringsten Widerstandes sucht. Bei Kernkästen aus nichtleitendem Material und zwei gegenüberliegenden Elektroden würde das Verfahren daher nur bei Geometrien mit gleichen Sandkerndicken funktionieren. Zum Beispiel ist dies der Fall bei Zylindern und Quadern. Somit ist das Verfahren nur anwendbar bei einfachen geometrischen Formen.
  • Ein weiterer Nachteil ist bei Aushärtung mittels Wärmeübertragung zu beobachten. Da Sand-Bindergemische gemeinhin eher schlechte Wärmeleiter darstellen kommt es bei Wärmeübertragung von beheizten Kernkästen zur Schalenbildung an den Außenkanten des Sandkernes da die Schale eher aushärtet als das Sandkerninnere. Aus wirtschaftlichen Gründen wird dabei nicht immer die vollständige Aushärtung vor der Entnahme abgewartet, so dass die Sandkerne leichter Brechen können.
  • Ein weiterer Nachteil ergibt sich durch den Effekt der oben genannten Schalenbildung. Da Aufgrund der Schalenbildung das Innere des Sandkerns noch nicht vollständig ausgehärtet ist, führt dies zu einer Begrenzung der maximalen Sandkerndicken, welche mit bestehenden Verfahren hergestellt werden können. Die maximale Dicke des Sandkerns hängt dabei von der Dauer der Erwärmung sowie dem Eigengewicht des Sandkerns ab. Ist die Erwärmung nicht ausreichend, so kann die äußere Schale des Sandkerns trotz vollständiger Aushärtung das Gewicht nicht vollständig tragen und kann somit zum Bruch des Sandkerns führen.
  • Die vorliegende Erfindung beschäftigt sich daher mit dem Problem, für ein Verfahren der gattungsgemäßen Art eine verbesserte oder zumindest eine alternative Ausführungsform anzugeben, die insbesondere die aus dem Stand der Technik bekannten Nachteile überwindet.
  • Dieses Problem wird erfindungsgemäß durch die Gegenstände der unabhängigen Ansprüche gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
  • Die vorliegende Erfindung beruht auf dem allgemeinen Gedanken, bei der Auswahl des Materials der trennbaren Form- oder Kernwerkzeuge die spezifische elektrische Leitfähigkeit so zu berücksichtigen, dass sie der elektrischen Leitfähigkeit einer (Sand-Binder-) Mischung annährend während der optimale Arbeitstemperatur entspricht. Die elektrische spezifische Leitfähigkeit des Form- oder Kernwerkzeuges (Kavität) wird also durch das verwendete Sand-Bindergemisch bestimmt.
  • Hierdurch kann der besondere Effekt erreicht werden, dass ein in das Material eingeleiteter Strom in diesem und in der Mischung überall die annährend gleiche elektrische Leitfähigkeit vorfindet und dadurch sich keinen gravierend kürzerer, insbesondere abkürzenden, Weg durch die Mischung sucht, wodurch eine gleichmäßige Durchströmung der Mischung mit Strom und damit auch ein gleichmäßiges Erhitzen und hierdurch auch ein gleichmäßiges Aushärten derselben erreicht werden können und zwar unabhängig von der jeweils individuellen Form bzw. Gestalt des Kerns.
  • Generell wird bei dem erfindungsgemäßen Verfahren zunächst ein elektrisch leitfähiges Material permanent in ein Gehäuse des Form- oder Kernwerkzeugs eingebracht und nimmt dort die zuvor beschriebene Mischung aus einem Formstoff, bspw. aus Sand (Gießereisand), und Wasser enthaltenden Bindemittel, welches in gelöster Form ein Elektrolyt bildet und eine ausreichende elektrische Leitfähigkeit aufweist, auf.
  • Die vorliegende Erfindung beruht weiter auf dem allgemeinen Gedanken, ein Form- oder Kernwerkzeug zum Herstellen von Formen oder Kernen, bspw. Gießkernen, aus einer Mischung aus einem Formwerkstoff und einem Wasser enthaltenden Bindemittel anzugeben, welches in gelöster Form ein Elektrolyt bildet und eine ausreichende elektrische Leitfähigkeit aufweist, wobei das erfindungsgemäße Form- oder Kernwerkzeug ein aus zumindest zwei Teilen bestehendes, elektrisch nicht leitendes, Gehäuse besitzt. Das Form- oder Kernwerkzeug weist darüber hinaus zumindest zwei Elektroden auf, wobei jeweils eine Elektrode in einem Teil des Gehäuses angeordnet ist. Über die beiden parallelen Elektroden wird später elektrische Energie in das Material und über dieses in die Mischung eingeleitet, wodurch die Mischung erhitzt und dadurch ausgehärtet wird.
  • Für das Verfahren ist ein direkter Kontakt des leitenden Materials und der Elektroden des Kernkastens notwendig. Somit kann auf eine Isolationsschicht zwischen den Kernkastenteilen verzichtet werden.
  • Die Einbringung der Mischung erfolgt für jeden Zyklus der Sandkernherstellung wobei das elektrisch leitfähige Material einmalig pro Herstellung des Form- oder Kernwerkzeugs eingebracht wird. Das Material bildet somit die Negativkontur des später darin herzustellenden Sandkerns bzw. der Form. Nachdem die Mischung in dem Material eingebettet ist, wird anschließend dem Material über die im/am Gehäuse des Form- oder Kernwerkzeugs angeordneten Elektroden, elektrische Energie und darüber Wärme zugeführt, die zu einem Aushärten der Mischung führt.
  • Wie bei bestehenden Patentanmeldungen, stellt das Gehäuse lediglich ein Behältnis zur Aufnahme des leitenden Materials dar und muss elektrisch nicht leitfähig sein, da ansonsten der Strom ausschließlich über das Gehäuse geführt wird und nicht durch das Material bzw. die Mischung. Das Gehäuse kann aus Kunststoff sein und bietet den Vorteil, dass es vergleichsweise leicht und damit leicht zu handhaben ist. Alternativ kann auch eine Isolationskeramik oder ein anderes elektrisch nicht leitendes Material verwendet werden.
  • Teile des Gehäuses können dabei über eine oder mehrere Trennebenen miteinander verbunden sein, wobei die Elektroden vorzugsweise parallel zueinander angeordnet oder sogar in einen Teil des Gehäuses eingebettet sein können.
  • Bei einer weiteren vorteilhaften Ausführungsform ist eine Einrichtung zur Steuerung/Regulierung der elektrischen Spannung an den Elektroden vorgesehen. Mittels einer derartigen Einrichtung kann die an die Elektroden angelegte Spannung reguliert, bspw. erhöht werden, so dass kurze Taktzeiten für den Aushärtevorgang erreichbar sind. Kurze Taktzeiten wiederum ermöglichen eine vergleichsweise kostengünstige Fertigung der Formen bzw. Kerne. Die Regelung der Leistung/Spannung kann mittels Wechselrichter/Leistungssteller erfolgen oder durch Aufschalten unterschiedlicher Spannungen. Alternativ kann das Verfahren auch mittels konstanter angelegter Spannung betrieben werden.
  • Wie bereits in der DE 24 35 886 A1 ausgeführt, kann die elektrische Energie in Form von Wechselstrom oder Gleichstrom dem Material und Sand-Bindergemisch (Mischung) zugeführt werden. Wechselstrom ist überall vorhanden und kann fast beliebig geregelt werden.
  • Zusätzlich sind im Material, in den Elektroden sowie im Gehäuse Entlüftungsschlitze (Düsen) vorzusehen, um das Entweichen der Gase bzw. des Wasserdampfes zu ermöglichen. Beim Aushärten entstehende Gase bzw. Wasserdampf kann wie bei bestehenden Verfahren mittels Kernmarken(Düsen) aus dem Sandkern (Kern) und dem Material, der Elektroden und dem Gehäuse über Bohrungen abgeführt werden. Alternativ kann das Material auch porös sein und somit das Entweichen der Gase oder Wasserdampf ermöglichen.
  • Weiterhin sind im Material Bohrungen für nichtleitende Ausstoßbolzen vorgesehen, welche zur Entnahme der (Sand-)kerne Verwendung finden. Diese erlauben die Entnahme der Sandkerne nach dem Aushärten der Mischung und dem Auseinanderfahren der Gehäuseteile. Die Ausstoßbolzen sollten dabei aus nichtleitendem Material sein, um einen Kurzschluss zu vermeiden. Benötigte Ausstoßbolzen werden in den dafür vorgesehenen Ausstoßbohrungen mit der Grundplatte des Werkzeuges befestigt.
  • Alternativ können auch leitende Ausstoßbolzen verwendet werden, sofern konstruktionstechnisch sichergestellt ist, dass diese keinen Kontakt mit einem Strom leitenden Material haben, während der Strom eingeschaltet ist.
  • Durch die erfindungsgemäße Lösung, wonach die spezifische elektrische Leitfähigkeit des Materials zumindest annähernd der spezifischen elektrischen Leitfähigkeit der Mischung bei Arbeitstemperatur entspricht, kann ein gleichmäßiges und insbesondere gleichförmiges Durchleiten von Strom bzw. Spannung durch sowohl das Material als auch durch die Mischung erreicht werden, wodurch letztere gleichmäßig erwärmt und dadurch besonders gleichmäßig und dadurch qualitativ hochwertig ausgehärtet werden kann.
  • Zur optimalen Auswahl elektrisch leitender Materialien für dieses Verfahren sind mehrere Schritte notwendig. Jeder Binder verfügt über eine optimale Arbeitstemperatur welche die bestmögliche Aushärtung sicherstellt. Bei den getesteten Bindern lag diese bei ca. 150-180°C und ist abhängig von den Herstellerangaben sowie möglicherweise von verwendeten Binderzusätzen. Im Vergleich zu bisher aus dem Stand der Technik bekannten Verfahren, bei welchen stets befürchtet werden musste, dass die Mischung aufgrund unterschiedlicher interner elektrischer Widerstände, bspw. hervorgerufen durch unterschiedliche Sandkerndicken, einen lokal unterschiedlichen Aushärtegrad aufwies, kann mit dem erfindungsgemäßen Verfahren erstmals eine gleichförmige, das heißt gleichmäßige und zudem prozesssichere Aushärtung der Mischung erreicht werden, wodurch sich Formen bzw. Gießkerne von besonders hoher Qualität unabhängig von ihrer geometrischen Struktur herstellen lassen. Darüber hinaus wird mit dem erfindungsgemäßen Verfahren die Gefahr der Schalenbildung an einer Kernoberfläche bzw. einer Formoberfläche verhindert, was beispielsweise bei einem Aushärten mittels Wärme von außen (z.B. Ölheizung) der Fall wäre.
  • Mit dem erfindungsgemäßen Form- oder Kernwerkzeug ist somit erstmals eine prozesssichere Herstellung von Formen bzw. Kernen möglich, durch die Anpassung der elektrisch spezifischen Leitfähigkeit des Form-Kernkastenmaterials an das Sand-Binder-Gemisch. Dies erlaubt die gleichmäßige Durchleitung von elektrischer Energie und somit gleichmäßige Erhitzung und dadurch ein gleichmäßiges Aushärten. Dies war bislang aufgrund der oben genannten Nachteile nicht möglich.
  • Durch die Anpassung des elektrischen Widerstandes des Materials an das Sand-Binder-Gemisch können auch größere und kompliziertere Sandkerne mittels einer Elektrode pro Kernteil wirtschaftlich hergestellt werden da es an keiner Stelle zu signifikanten Widerstandsunterschieden aufgrund von Sandkerndicken durch unterschiedliche Konturen kommt.
  • Zudem kann mittels Anpassung des spezifischen elektrischen Widerstandes je nach Sandkerndicke auch entsprechend den Richtlinien der Niederspannung von bis zu 1000 V gearbeitet werden. Damit weist das Verfahren nicht nur eine höhere Sicherheit für die Mitarbeiter auf, sondern ist auch kostengünstiger. Grundsätzlich sind aber auch höhere Spannungen wie in bestehenden Patenten möglich. Dabei gilt, dass je dicker der Sandkern ist, desto höhere Spannungen sollten verwendet werden.
  • Durch die direkte Erwärmung des Sandkerns sowie des Materials ohne Umwege über externe Heizvorrichtungen wie bei Ölheizungen oder Wasserdampf steigt die Effizienz des Verfahrens und dank der gleichmäßigen Wärmzuführung über die gesamte Oberfläche des Kerns ergeben sich kurze Erwärmungsphasen und damit kurze Taktzeiten.
  • Ein weiterer Vorteil ergibt sich dadurch, dass keine externen Heizvorrichtungen benötigt werden. Dies steigert nicht nur wie oben beschrieben die Effizienz des Verfahrens sondern reduziert auch die Anschaffungs- und Unterhaltskosten für eventuelle externe Heizvorrichtungen. Zudem ermöglicht dies Anlagen mit einem geringerem Platzbedarf vorzusehen so dass tendenziell mehr Anlage auf der gleichen Fläche untergebracht werden können.
  • Ein weiterer Vorteil ergibt sich für das Kernwerkzeug. Bestehende Systeme welche Wärmeenergie zum Aushärten benötigen, erfordern, dass die Wärme von der Heizquelle möglichst nah an den Sandkern im Kernkasten zugeführt wird. Dies wird teilweise durch komplizierte Heizbohrungen innerhalb der Grundplatte oder des Kernkastens gelöst. Diese Arbeitsschritte können komplett entfallen, da die Wärme direkt dort erzeugt wird, wo sie benötigt wird: Im Sandkern und Kernkasten.
  • Ein weiterer Vorteil ergibt sich aus der Verwendung von Materialien wie z.B. Siliziumkarbid-Keramik welche im Vergleich zu bestehenden Kernwerkzeugmaterialien wie Stahl oder Aluminium eine sehr hartes Material darstellt (Mohs Stärke 9,5) und somit sich die Lebensdauer des Kernkastens verlängert aufgrund geringerem Verschleiß.
  • Generell funktioniert dabei ein erfindungsgemäßes Verfahren zur Herstellung von Formen oder Kernen für Gießereizwecke, mittels Anpassung des spezifischen elektrischen Widerstandes des Materials des Werkzeugeinsatzes an den spezifischen elektrischen Widerstand einer Mischung aus mindestens einem Formstoff, insbesondere Gießereisand, und mindestens einem Wasser enthaltenden anorganischen, Wärme aushärtbaren Bindemittel, welches eine ausreichende elektrische Leitfähigkeit von mindestens 5 · 10-3 S/m aufweist.
  • Dabei
    • wird in ein elektrisch nicht leitendes Gehäuse mindestens ein Werkzeugeinsatz aus einem elektrisch leitfähigen Material zur Aufnahme der Mischung eingebracht, wobei die elektrische Leitfähigkeit des Materials bei Betriebstemperatur zwischen 150 und 180 °C zumindest näherungsweise der spezifischen elektrischen Leitfähigkeit der Mischung bei einer Temperatur zwischen ca. 100°C bis 130°C entspricht,
    • wird dem Werkzeugeinsatz über in/an dem Gehäuse parallel angeordnete und bei Bedarf vollflächigen Elektroden elektrische Energie und darüber Wärme zugeführt, die zum Aushärten der Mischung führt,
    • besteht das Gehäuse aus mindestens zwei Gehäuseteilen, welche zum Beginn und Abschluss des Taktvorgangs der Form- oder Kernherstellung zusammen- bzw. auseinandergefahren werden und zusammengefahren eine direkte Kontaktfläche ohne isolierende Zwischenschicht bilden,
    • sind benötigte Bohrungen für Ausstoßbolzen im Werkzeug, mindestens einer Elektrode sowie mindestens eines Teiles des Gehäuses zur Entnahme der Sandkerne vorhanden,
    • sind zum Entweichen von Wasserdampf oder Gasen sowohl das Werkzeug als auch die Elektroden sowie mindestens ein Teil des Gehäuses porös ausgeführt und/oder Entlüftungsschlitze vorhanden und
    • werden der oder die Formen oder Kerne nach dem Aushärten der Mischung und dem Auseinanderfahren der Gehäuseteile mittels Ausstoßbolzen aus dem Werkzeug gedrückt und entnommen.
  • Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
  • Es versteht sich, dass die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen, der durch die Ansprüche definiert wird.
  • Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder ähnliche oder funktional gleiche Komponenten beziehen.
  • Es zeigen, jeweils schematisch,
  • Fig. 1
    eine Schnittdarstellung durch ein erfindungsgemäßes Form- oder Kernwerkzeug,
    Fig. 2
    ein Phasendiagramm mit qualitativer Darstellung einer eingebrachten elektrischen Leistung und eines zugehörigen Widerstandes in einem Kern oder einer Form,
    Fig. 3
    eine Darstellung der Erwärmung mittels bestehenden elektrischen Verfahren ohne Anpassung des spezifischen Widerstandes des (Kernkasten-) Materials an das Sand-Bindergemisch (Mischung),
    Fig. 4
    eine Darstellung einer möglichen Kernkastenausführung,
    Fig. 5
    eine Befestigung des Materials mit isolierendem Gehäuse und Grundplatte,
    Fig. 6
    eine Darstellung von Entlüftungs- und Ausstoßbohrungen mit einer Ansicht von oben (Fig. 6 a.)), einer Ansicht von vorne (Fig. 6 b.)) und einer Seitenansicht (Fig. 6 c.)).
  • Entsprechend der Fig. 1 weist ein erfindungsgemäßes Form- oder Kernwerkzeug 1 zur Herstellung von Formen 2 oder Kernen 2' für Gießereizwecke, ein zur Maschine hin elektrisch isoliertes Gehäuse 3 auf, das aus zwei Teilen 4, 5 besteht, die über eine Trennebene 6 miteinander verbunden sind. Das Gehäuse 3 ist auf einer Grundplatte 12 befestigt. Das Gehäuse 3 ist dabei aus Kunststoff, Isolationskeramik oder einem anderem nicht leitenden Material ausgebildet und nimmt ein elektrisch leitfähiges Material 7 auf. Das Material 7 bildet eine Form zur Aufnahme einer Mischung 9, aus welcher nach dem Aushärten der Kern 2' bzw. die Form 2 gebildet wird. Das Material 7 kann beispielsweise ein Keramikmaterial sein. Erfindungsgemäß sind dabei die spezifische elektrische Leitfähigkeit der Mischung 9 und die spezifische elektrische Leitfähigkeit des Materials 7 zumindest annähernd gleich groß, unterscheiden sich bspw. nicht mehr als in Phase 2 von Fig. 2, so dass im Material 7 und der Mischung 9 im Wesentlichen dieselbe spezifische elektrische Leitfähigkeit und derselbe spezifische elektrische Widerstand herrschen. Das erfindungsgemäße Form- oder Kernwerkzeug 1 besitzt darüber hinaus zumindest zwei Elektroden 10, die parallel zueinander angeordnet sind. Vorgesehen ist eine Einrichtung 8 zur Regulierung bzw. Steuerung der den Elektroden 10 zugeführten Spannung.
  • Erfindungsgemäß entspricht nun die spezifische elektrische Leitfähigkeit des Materials 7 des Kerns 2' oder der Form 2 näherungsweise der spezifischen elektrischen Leitfähigkeit der Mischung 9 in Phase 2 von Fig. 2, wodurch ein vergleichsweise gleichmäßiges Durchleiten von elektrischer Energie durch die Mischung 9 möglich ist.
  • Mit dem erfindungsgemäßen Form- oder Kernwerkzeug 1 lässt sich dabei eine Form 2 bzw. ein Kern 2' bzw. ein Gießkern 2', auf qualitativ höchstem Niveau herstellen, da aufgrund der zumindest nahezu gleichen elektrischen Leitfähigkeit der für die Form 2 bzw. den Kern 2' benutzten Mischung 9 und des Materials 7 eine gleichmäßige Durchleitung von elektrischem Strom durch das Material 7 und die Mischung 9 und damit ein gleichmäßiges Erwärmen und Aushärten der Mischung 9 erfolgen können und zwar unabhängig von den jeweiligen geometrischen Abmessungen der Form 2 bzw. des Kerns 2'.
  • Hergestellt wird die Form 2 oder der Kern 2' dabei wie folgt: Zunächst wird nach der genannten Materialauswahl beim erstmaligen Aufbau das elektrisch leitfähige Material 7 in das Gehäuse 3 des Form- oder Kernwerkzeugs 1 eingebracht und bildet eine Negativform für die die spätere Form 2 bzw. den späteren Kern 2' bildende Mischung 9. Anschließend wird dem Material 7 über die Elektroden 10 elektrische Energie und damit Wärme zugeführt, die zu einem Aushärten der Mischung 9 führen. Ein Aushärten der Mischung 9 erfolgt dabei insbesondere durch ein Verdampfen von Wasser aus der Mischung 9, wobei die Mischung 9 ein anorganisches Bindemittel, Wasser und Gießereisand enthält.
  • Das in der Mischung 9 (Sand-Bindergemisch) eingesetzte anorganische Bindemittel kann dabei wasserlöslich sein, enthält aber zumindest Wasser und ist auf alle Fälle elektrisch leitfähig. Mit dem erfindungsgemäßen Verfahren und mit dem erfindungsgemäßen Form- oder Kernwerkzeug 1 lässt sich ein besonders gleichmäßig erhitzter und dadurch auch besonders gleichmäßig ausgehärteter und damit homogener Gießkern bzw. Kern 2' schaffen und dies unabhängig von der jeweiligen geometrischen Abmessung des Kerns 2' bzw. der Form 2, da aufgrund der vorzugsweise gleichen elektrischen Leitfähigkeit der Mischung 9 für den Kern 2' und des Materials 7 sich der elektrische Strom keine kürzeren Wege sucht, wie dies bei bislang aus dem Stand der Technik bekannten Form- oder Kernwerkzeugen der Fall war. Dies hatte bislang nämlich dazu geführt, dass aufgrund der durch die geometrischen Abmessungen des Kerns 2' bzw. der Form 2 bedingten elektrischen Pfade diese unter Umständen bislang nicht gleichmäßig ausgehärtet waren und somit Bereiche mit vollständiger Aushärtung und lediglich teilweise oder gar keiner Aushärtung aufwiesen, wodurch die Qualität der bislang mit den bisherigen Form- oder Kernwerkzeugen hergestellten Formen bzw. Kernen oftmals nicht zufriedenstellend war.
  • Durch die Einrichtung 8 lässt sich insbesondere die Spannung erhöhen oder erniedrigen, wodurch eine Taktzeit zur Herstellung der Form 2 bzw. des Kerns 2' steuerbar ist.
  • Die Grundplatte des Werkzeuges 12 nimmt das Gehäuse 3 bzw. die Teile 4,5 sowie das Material 7 auf und Isolierschrauben 13 und Winkel 14 sorgen für eine Befestigung. Isolierschrauben 13 können dabei auch durch Schnellspannsysteme ersetzt werden, um einen leichteren und schnelleren Ausbau zu ermöglichen. Das Material "schwimmt" auf der Elektrode 10 und die Elektrode 10 wird durch Ausrichtungsbolzen 15 in ihrer Position gehalten.
  • Nachfolgend ist die Tabelle 1 zum weiteren Verständnis beigefügt. Tabelle 1 zeigt dabei mehrere Messreihen mit unterschiedlichen Sand-Bindergemischen 9. Die Erkenntnis ist dabei, dass die spezifische elektrische Leitfähigkeit dabei vom gewünschten Sand-Bindergemisch 9 abhängt und durch Variation von Zusätzen und/oder von Veränderung der prozentualen Anteile beeinflusst werden kann. Je stärker der elektrisch leitenden Anteil im Sand-Bindergemisch 9, desto geringer der spezifische elektrische Widerstand im Sand-Bindergemisch 9. Tabelle 1: Messreihen Sand-Binder Gemische.
    Messreihe spezifische Wärme Sand Fläche Probekörper cm2 Höhe Probekörper cm2 Geringster gemessener Widerstand (Optimaler Punkt) Ohm
    Wasserglass 2% 0,835J/g*K 6,1 2 1080
    Wasserglass 3% 0,835J/g*K 6,1 2 1130
    Wasserglass 3% und Graphit 0,5% 0,835J/g*K 6,1 2 588
    Wasserglass 3% Graphit 1% Messreihe 1 0,835J/g*K 6,1 2 529
    Wasserglass 3% Graphit 1% Messreihe 2 0,835J/g*K 6,1 2 498
    Wasserglass 4% Messreihe 1 0,835J/g*K 6,1 2 523
    Wasserglass 4% Messreihe 2 0,835J/g*K 6,1 2 584
    Wasserglass 10% und Graphit 5,0% 0,835J/g*K 6,1 2 12,78
    Innotek Binder von ASK 0,835J/g*K 6,1 2 781
    Cordis Binder von Hüttenes Albertus 0,835J/g*K 6,1 2 683
    Gießerbinder (undisclosed) 0,835J/g*K 9,6 3,5 499
  • Daher ist die nachfolgend beschriebene Vorgehensweise zur Ermittlung der spezifischen elektrischen Eigenschaft des gewünschten Sand-Bindergemisches 9 anzuwenden. Allerdings kann auch dieses Verfahren angewendet werden, wenn die (Sand-Binder-)Mischung 9 noch nicht definiert ist. In diesem Falle kann versucht werden z.B. mittels der Variation von Zusätzen die elektrisch spezifische Eigenschaft des Sand-Bindergemisches 9 gezielt zu beeinflussen, um die Effizienz des Verfahrens zu verbessern.
  • Zur optimalen Auswahl elektrisch leitender Materialien für dieses Verfahren sind mehrere Schritte notwendig. Jeder Binder verfügt über eine optimale
  • Arbeitstemperatur welche die bestmögliche Aushärtung sicherstellt. Bei den getesteten Bindern lag diese bei ca. 150-180°C und ist abhängig von den Herstellerangaben sowie möglicherweise von verwendeten Binderzusätzen. Zuerst muss die spezifische Widerstandskurve des gewünschten anorganischen Sand-Binder-Gemisches 9 in Abhängigkeit der Temperatur ermittelt werden. In Tabelle 1 sind beispielhaft ausgewählte Widerstands-Temperaturwerte für Sand-Bindergemische basierend auf anorganischer Binder und Bindervariationen abgebildet. Dabei wurden ebenfalls verschiedene Wasserglasanteile sowie Graphitzusätze untersucht. Die Kurven wurden wie folgt ermittelt:
  • Zuerst muss ein Vergleichsprobekörper erstellt werden. Der Probekörper besteht aus zwei gegenüberliegenden metallischen Elektroden und einem Isolierrohr zwischen den Elektroden. Geometrie (Fläche und Abstand der Elektroden) des Körpers innerhalb des Isolierrohres muss bestimmt werden. Der Hohlraum wird mit einer grünen, nicht ausgehärteten Sand-Bindermischung 9 befüllt. Das Sand-Bindergemisch 9 muss der später zu verwendenden Mischung 9 während der Produktion entsprechen. Die Mischung 9 muss entsprechend realen Anwendungsbedingungen verdichtet werden. An die Elektroden werden Messgeräte zur Ermittlung der Spannung, des Stromes und der Temperatur angeschlossen. An die Elektroden wird über eine Stromzuführung eine konstante Spannung angelegt. Der berechnete Widerstand ergibt sich aus der angelegten Spannung geteilt durch den gemessenen Strom.
  • Eine Berechnung des temperaturabhängigen spezifischen Widerstandes erfolgt dabei wie folgt: Rho = R * A / I
    Figure imgb0001
    mit
  • Rho:
    spezifischer elektrischer Widerstand der Mischung
    R:
    Widerstand vor Anstieg des elektrischen Widerstandes der Probe
    A:
    Elektrodenfläche der Mischung
    I:
    Dicke der Probe
  • Damit ergibt sich für jedes Sand-Bindergemisch 9 eine temperaturabhängige Widerstandskurve.
  • Alle gemessenen Widerstandskurven weisen dabei folgende charakteristische Form auf wie in Figur 2.
  • In Fig. 2 ist der typische Verlauf des elektrischen Widerstandes und der eingebrachten elektrischen Leistung einer konduktiv erwärmten Mischung 9 eines beliebigen anorganischen Sand-/Bindergemischs dargestellt. Nach dem Einschalten der Spannung sinkt der Widerstand innerhalb kürzester Zeit deutlich (Phase 1: Kapazitive Last). Danach beginnt die Phase 2 des langsam abfallenden elektrischen Widerstandes im Kurvenverlauf (Zunahme der Ladungsträger). In dieser Zeit steigt auch die durch die Probe aufgenommene Leistung kontinuierlich bis durch die erreichte Temperatur Ladungsträger verdampfen. Der Widerstand steigt nun sehr schnell an (Phase 3).
  • Für die Wahl des spezifischen elektrischen Widerstandes (Rho) des keramischen Materials für eine spätere Form ist der Zeitpunkt vor dem Anstieg des elektrischen Widerstandes der Probe in Phase 3 optimal, da hier die größte Leistung eingebracht werden kann (kurz vor Ende Phase 2). Dies ist in Fig. 2 mit 11 bezeichnet.
  • Weiterhin sind auch spezifische elektrische Widerstände, die sich aus der Berechnung der Werte innerhalb der Phase 2 ergeben, denkbar.
  • Der spezifische elektrische Widerstand der getesteten Mischungen 9 ändert sich während des Erwärmungsprozesses. Er liegt bei unter 100°C bei ca. 85
  • Ohmmeter und fällt bei weiterer Erwärmung unter 25 Ohmmeter bei über 130°C. Mit weiterer Erwärmung nimmt der spezifische Widerstand sprunghaft zu. Dann ist aber auch die erforderliche Energie zur Austreibung des Wassers aus dem Binder, das zur Aushärtung führt, im Sand-Bindergemisch 9 vorhanden.
  • Zur optimalen Auswahl elektrisch leitender Materialien für dieses Verfahren ist nach der Ermittlung der Temperatur-Widerstandskurve des Sand-Bindergemisches 9 die Bestimmung des Materials 7 basierend auf dem benötigten spezifischen Widerstand möglich.
  • Basierend auf dem spezifischen Widerstandes des Sand-Binder-Gemisches 9 muss eine Materialkomposition mittels Testreihen bestimmt werden, welche einen passenden elektrischen spezifischen Widerstand bei bestimmter Temperatur aufweist. Diese bestimmte Temperatur richtet sich dabei nach der optimalen Temperatur welche der Binder benötigt um am besten auszuhärten. Bei unseren Versuchen benötigten getestete Binder Temperaturen von ca. 150°C bis ca. 180°C um auszuhärten. Der Bereich um den optimalen Widerstand wurde dabei mittels Temperatur-Widerstandskurve (siehe oben) um ca. 25 Ohmmeter ermittelt. Folglich erfordert die getestete Binder-Mischung 9 ein Material 7 mit einem spezifischen Widerstand von ca. 25 Ohmmeter bei 150-180°C.
  • Prinzipiell sollte der spezifische Widerstand des Materials 7 gleich sein gegenüber dem optimalen spezifischen Widerstand für das Sand-Bindergemisch 9. Sollte bei der Umsetzung der spezifische Widerstand des Materials 7 über dem des Sand-Bindergemisches 9 liegen, so führt dies tendenziell zu einer Erwärmung vom Zentrum des Kernes 2 in Richtung des Kernkastenmaterials 7, da hier der Strom den Weg des geringeren Widerstandes vorfindet.
  • Sollte bei der Umsetzung der spezifische Widerstand des Materials 7 geringer sein als im Sand-Bindergemisch 9, so erfolgt tendenziell die Erwärmung von dem Kernkastenmaterial 7 in Richtung Sandkernzentrum.
  • Ebenso sollte der Verlauf der Temperatur-Widerstandskurve des Materials 7 ähnlich verlaufen wie die Temperatur-Widerstandskurve des Sand-Bindergemisches 9. Je geringer die Abweichung beider Kurven ist, desto effektiver ist das Verfahren.
  • Die Testreihen zur Bestimmung des Materials können dabei wie folgt durchgeführt werden:
    Ein Ausgangsmaterial, wie z. Beispiel Silizium Karbid, wird in Form einer kleinen Probeplatte hergestellt. Diese Materialprobe wird dann in eine Vorrichtung zwischen zwei Elektroden eingespannt, so dass diese Elektroden einen direkten Kontakt zur Probeplatte haben. Anschließend wird die Temperatur-Widerstandskurve für dieses Probematerial ermittelt. Sollte die Abweichung zwischen dem spezifischen Widerstand des Probematerials und des optimalen spezifischen Widerstandes des Sand-Bindergemisches 9 zu groß sein, muss die Materialkomposition überarbeitet werden. Bei durchgeführten Tests haben sich Siliziumkarbid-Kompositionen mit einer Variation des Graphitanteils in der Keramikmischung als positiv erwiesen. Aber grundsätzlich sind auch andere Materialkompositionen oder Materialzusätze, welche den elektrischen spezifischen Widerstand beeinflussen, möglich. Der Graphitanteil ist dabei in der Keramik gebunden und hat somit keinen Einfluss auf weitere Abguss-Prozesse. Diese Tests müssen solange wiederholt werden, bis eine geeignete Materialkomposition gefunden wurde, welche den gewünschten spezifischen Widerstand aufweist.
  • Weiterhin muss das ausgewählte Material 7 auch die sonstigen physischen Eigenschaften für das Umfeld von Gießereien erfüllen. Beispielweise sind hier Bruchfestigkeit, Oberflächenrauigkeit, Wärmausdehnung und Wärmeleitfähigkeit genannt.
  • Beispielsweise verfügt die für weitere Tests ausgewählte Keramik bei Erreichen der erforderlichen Betriebstemperatur von ca. 180°C einen spezifischen Widerstand von ca. 30 Ohmmeter für das oben genannte Sand-Bindergemisch 9. Anschließend muss die maximale Kurzzeitbelastung des Materials 7 ermittelt werden, bei der noch keine permanente Beschädigung des Materials 7 auftritt. Diese maximale Kurzzeitbelastung spielt nachfolgend für die Elektrosteuerung eine wichtige Rolle. Dies wird mit Belastungstests ermittelt und kann zu Abplatzungen am Material 7 bei Überschreiten der maximalen Kurzzeitbelastung führen.
  • Bei einer weiteren vorteilhaften Ausführungsform der erfindungsgemäßen Lösung kann das vorstehend und nachstehend genannte Material 7 durch andere Materialien ersetzt werden, wie sie in den unabhängigen Ansprüchen definiert werden, sofern diese elektrisch leitfähig sind und die Anpassung des elektrisch spezifischen Widerstandes der gewählten Mischung 9 entspricht und auch die sonstigen Anforderungen an den Gießereibetrieb erfüllt werden.
  • Der wiederholte Begriff der "Anpassung" beschreibt die vorher genannten Schritte zur Auswahl eines geeigneten Materials 7 an die spezifisch elektrischen Eigenschaften von Sand-Bindergemischen 9. Nachdem die Auswahl(Anpassung) des geeigneten Materials 7 nach dem oben beschriebenen Verfahren erfolgreich war und an das Sand-Bindergemisch 9 angepasst wurde, kann der Aufbau des Kernkastens für die Anwendung des Verfahrens hergestellt werden. Der kritischste Arbeitsschritt ist dabei die Herstellung des Materials 7. Bei der beispielhaft genannten Siliziumkarbid-Keramik wird die Keramik in mehreren Fertigungsschritten nach gängigen Keramikherstellungsverfahren hergestellt. Besonders die Feinbearbeitung nach dem Sintern erfordert größte Aufmerksamkeit aufgrund des sehr harten Materials (Mohshärte von ca. 9,5). Je genauer die Feinbearbeitung erfolgt, desto geringer sind die späteren Toleranzabweichungen für mit dem Verfahren produzierten Sandkerne 2.
  • Sobald die Feinbearbeitung des Materials 7 erfolgreich abgeschlossen ist, kann die Befestigung im Kernkasten erfolgen. Das Material 7 benötigt auf der gegenüberliegenden Seite der konturgebenden Oberfläche eine direkte Kontaktfläche mit der jeweiligen Elektrode. In Versuchen hat sich dabei empfohlen, die Kontaktfläche eben zu schleifen, um einen sehr guten Kontakt zwischen der Elektrode 10 und dem Material 7 zu ermöglichen. Dies führt zu dem gewünschten Effekt die Übergangswiderstände dabei gering zu halten.
  • Wie in Figur 4 dargestellt sollte die Elektrode 10 dabei auf der Rückseite des Materialteils schwimmend verlegt werden. Dies ist geboten, da das Material der Elektroden 10 normalerweise eine höhere Wärmeausdehnung besitzt als das Kernkastenmaterial. Hierzu können in der Rückseite des Materials zwei Stifte befestigt werden, welche die Elektroden 10 während des Produktionsprozesses in Position halten.
  • Durch die parallele Anordnung der Elektroden 10 kann eine vergleichsweise gleichmäßige Durchleitung elektrischer Energie durch das Material 7 und die Mischung 9 erreicht werden, woraus sich wiederum Vorteile bezüglich einer gleichmäßigen Erwärmung und einer gleichmäßigen Aushärtung ergeben. Eine mögliche Ausführung sieht auch eine Einbringung der Elektroden 10 in das Material 7 vor. In diesem Falle würden keine Stifte zur Ausrichtung benötigt. Die Elektroden 10 sowie das Material 7 werden dann mittels einer Vertiefung in einem isolierenden Material aufgenommen werden.
  • Die Befestigung der mehrlagigen Ebenen kann dabei mittels Verankerung in der Grundplatte 12 des Werkzeugs erfolgen. Für die Befestigung können Winkel 14 mit Schraubverbindungen 15 verwendet werden, wie in Figur 5 beispielhaft aufgezeigt. Um einen schnellen Austausch einzelner Materialien zu ermöglichen, können hierbei auch Schnellschlusssystem anstelle von Schrauben verwendet werden.
  • Die Befestigungsschrauben 15 sollten dabei aus nichtleitendem Material sein, um eine Stromführung auf das Gehäuse 3 zu vermeiden. Zusätzlich sind im Material 7, in den Elektroden 10 sowie im Gehäuse 3 Entlüftungsschlitze 17 (Düsen) vorzusehen, um das Entweichen der Gase bzw. des Wasserdampfes zu ermöglichen. Beim Aushärten entstehende Gase bzw. Wasserdampf kann wie bei bestehenden Verfahren mittels Kernmarken(Düsen) aus dem Sandkern 2" (Kern) und dem Material 7, der Elektroden 10 und dem Gehäuse 3 über Bohrungen 17 abgeführt werden. Alternativ kann das Material auch porös sein und somit das Entweichen der Gase oder Wasserdampf ermöglichen.
  • Die Elektroden 10 benötigen eine Stromzuführung, welche mit dem externen Schaltschrank verbunden ist und somit eine Elektrosteuerung 8 ermöglicht.
  • Die Elektrosteuerung 8 muss auf den Kernkasten sowie das Verfahren angepasst werden. Die Elektrosteuerung 8 übernimmt dabei die Aufgabe den Kernkasten mittels Stromführung und Elektroden 10 ausreichend mit Strom zu versorgen. Bei neuen Anlagen muss die Elektrosteuerung 8 (Einrichtung 8) entsprechend mit eingeplant werden. Beim Umbau von bestehenden Anlagen auf das neue Verfahren können unter Umständen bestehende Schaltanlagen umgebaut und angepasst werden. Wichtig ist, dass die Energiezufuhr in das Material 7 über Elektroden 10 erfolgt. Dabei ist Wechselstrom oder Gleichstrom denkbar.
  • Die Steuerung der Stromzuführung muss die maximale Kurzzeitbelastung des gewählten Materials 7 sowie die Widerstands-Temperaturkurve des Materials 7 und des Sand-Bindergemisches 9 berücksichtigen.
  • Die Elektrosteuerung 8 ist so zu wählen, dass ein möglichst hoher Leistungseintrag mittels hoher Spannung erfolgt jedoch die maximale Kurzzeitbelastungsgrenze nie überschritten wird um Beschädigungen am Material 7 zu verhindern und somit ein wirtschaftliches Verfahren zu gewährleisten. Der Leistungseintrag und damit zusammenhängende Wärmeentwicklung in das Sand-Binder-Gemisch 9 ist abhängig von dem spezifischen Widerstand sowie der angelegten Spannung. Daher kann mit Regelung der Spannung auch der Leistungseintrag und die Temperatur gesteuert werden. Zusätzlich sollte der Kernkasten über Temperatursensoren verfügen, um eine Erwärmung über den vorgeschriebenen Arbeitsbereichs des Binders zu vermeiden, da eine zu hohe Temperatur die Bindungskraft ansonsten negativ beeinflussen würde.
  • Die Elektrosteuerung 8 regelt dabei auch die unterschiedlichen Prozessschritte der Kernschießmaschine. Dabei muss speziell beim Zusammenfahren der Kernkastenteile darauf geachtet werden, das die Zusammenführung in einem angepassten Tempo passiert um eine Stoßwirkung im Kernkastenmaterial und somit eine mögliche permanente Beschädigung zu vermeiden.
  • Bei Kernwerkzeugen mit mehreren Sandkernen 2 können entweder ein Elektrodenpaar pro Sandkern 2" verwendet werden oder ein Elektrodenpaar welche alle Sandkerne 2 des kompletten Kernkasten abdeckt. Hierbei ist zu berücksichtigen, dass beim Erwärmungsprozess die Steuerung so zu wählen ist, dass alle Sandkerne 2 in der gewünschten Taktzeit aushärten können aber auch niemals die Temperatur im Sandkern 2" über den Punkt steigt, an dem die Binder ihre Bindungskraft verlieren.
  • Sonstige Vorrichtungen zur externen Beheizung von Kernkästen können entfallen. Andere Vorrichtungen wie zum Beispiel zur Drucklüftung können weiterverwendet werden.
  • Der regelmäßige Produktionsprozess unterteilt sich dabei in drei Prozesse. Der erste Prozess beschreibt die Inbetriebnahme der Anlage nach einem kurzen oder längeren Stillstand.
  • Ein Merkmal während dieses Prozesses ist, dass das Material 7 noch nicht die geplante Betriebstemperatur erreicht hat. Die Erwärmung des Kernkastens erfolgt dabei wie auch bei dem typischen Produktionsprozess. Die Teile 4, 5 werden von ihrer Ausgangsposition zusammengeführt und bilden eine Kontaktfläche. Anschließend kann das Sand-Bindergemisch 9 in den Kernkasten geschossen werden. Im nächsten Schritt erfolgt dann die Energiezuführung mittels Strom dank der Elektrosteuerung 8. Aufgrund erhöhter spezifischer Widerstände des Materials 7 benötigt der Aufwärmprozess etwas länger als die regulären Produktionstaktzeiten. Während des Aufwärmprozesses erwärmt sich langsam der Kernkasten und mit dem Anstieg der Temperatur fällt der spezifische Widerstand des Materials 7. Je stärker der Widerstand fällt, umso schneller erwärmt sich das Material 7 weiter nach dem Prinzip der Widerstandsheizung. Da der Wärmeeintrag bei den ersten Sandkernen 2 nicht unter optimalen Bedingungen erfolgt, kann es zu einem erhöhten Ausschuss während dieses Prozesses kommen.
  • Sobald die gewünschte Betriebstemperatur für den Binder am Kernkasten erreicht ist, beginnt der eigentliche Produktionsprozess. Die Prozessparameter können dabei wie folgt beschrieben werden. Das Material 7 des Kernkastens verfügt über die Betriebstemperatur und damit über den optimalen spezifischen Widerstand des Sand-Bindergemisches 9. Die Kernkastenteile 4, 5 sind auseinandergefahren und die Sandkernkavität ist leer. Im ersten Schritt werden die Kernkastenteile 4, 5 geschlossen und anschließend das Sand-Bindergemisch 9 in den Kernkasten geschossen. Der spezifische Widerstand ist abhängig von der Temperatur des Sand-Bindergemisches 9. Das Gemisch 9 kann dabei Raumtemperatur haben oder bereits vorgeheizt sein. Sobald das Sand-Bindergemisch 9 in den Kernkasten geschossen wurde, kühlt die direkte Kontaktfläche zum Sand-Bindergemisch 9 des Kernkastenmaterials etwas ab. Damit steigt kurzfristig der Widerstand des Kernkastenmaterials 7, wobei gleichzeitig dank der Wärmeaufnahme der spezifische Widerstand des Sand-Bindergemisches 9 fällt. Da wie oben beschrieben die Temperatur-Widerstandskurven des Materials 7 und des Sand-Bindergemisches 9 ähnlich verlaufen, bleibt die Abweichung des spezifischen Widerstandes begrenzt. Die Elektrosteuerung 8 aktiviert den Stromfluss und dies führt zu einem Stromfluss durch das Material 7 als auch durch den Sandkern 2". Mit steigender Erwärmung nimmt nun der Widerstand des Sand-Bindergemisches 9 als auch im Material 7 ab bis annährend der optimale Widerstand erreicht ist. In diesem Moment ist der Leistungseintrag optimal.
  • Das Sand-Bindergemisch 9 hat sich nun von der Ausgangstemperatur auf ca. 100 bis 130°C je nach Größe innerhalb weniger Sekunden erwärmt. Sobald durch Verdampfung des Wasseranteils im Sand-Bindergemisch 9 die freien Ladungsträger reduziert werden, beginnt schlagartig der spezifische Widerstand des Sand-Bindergemisches 9 zu steigen. In diesem Moment ist der Stromfluss innerhalb des Sandkerns 2 reduziert. Um die gewünschte optimale Betriebstemperatur für den Sand-Bindergemisch 9 zu erreichen, muss nun die verbleibende Wärmeenergie über das Kernkastenmaterial 7 wie auch bei bestehenden Verfahren übertragen werden.
  • In durchgeführten Tests wird dabei das Siliziumkarbidmaterial kontinuierlich weiter mittels Stromfluss erwärmt, um den Wärmeverlust des Materials 7 an den Sandkern 2" auszugleichen.
  • Der besondere Vorteil des Verfahrens liegt daher besonders in der Erwärmung des Sand-Bindergemisches 9 von der Temperatur bei Einschuss bis auf ca. 130°C durch das Prinzip der Widerstandsheizung mittels Stromfluss innerhalb des Sandkerns 2. Der weitere Vorteil ist das effiziente Erwärmen des Materials 7 und damit der Wärmezuführung in der Phase von 130°C bis auf die gewünschte Betriebstemperatur des Sand-Bindergemisches 9.
  • Als Beispiel wird ein Sand-Bindergemisch 9 mit einer Betriebstemperatur von ca. 170°C und einer Einschusstemperatur von ca. 20°C herangezogen. In Summe werden ca. 150°C zur Erwärmung benötigt. Mittels des Verfahrens kann daher 2/3 (ca. 100°C) der benötigten Wärmeenergie sehr schnell mittels Widerstandsheizung innerhalb des Sandkerns 2 erzeugt werden und ca. 1/3 mittels Wärmeübertragung des Materials 7 auf den Sandkern 2".
  • Nach dem Erreichen der Betriebstemperatur bzw. dem Aushärten kann der Sandkern 2" wie bei bestehenden Kernschießverfahren entnommen werden. Benötigte Ausstoßbolzen 16 zum Ausstoß des Sandkerns aus der Kavität werden in den dafür vorgesehenen Ausstoßbohrungen 16' befestigt und ermöglichen die Loslösung der Sandkerne 2 aus dem Material 7.
  • Der dritte Prozess beschreibt die Abkühlungsphase vor einer Pause bzw. Abschaltung. In dieser Phase kann der Kernkasten einfach im ausgefahrenen Zustand abkühlen und steht dann jederzeit für den 1. Prozessschritt wieder zur Verfügung.
  • Im Vergleich zu bisher aus dem Stand der Technik bekannten Verfahren, bei welchen stets befürchtet werden musste, dass die Mischung 9 aufgrund unterschiedlicher interner elektrischer Widerstände, bspw. hervorgerufen durch unterschiedliche Sandkerndicken, einen lokal unterschiedlichen Aushärtegrad aufwies, kann mit dem erfindungsgemäßen Verfahren erstmals eine gleichförmige, das heißt gleichmäßige und zudem prozesssichere Aushärtung der Mischung 9 erreicht werden, wodurch sich Formen 2 bzw. Gießkerne 2' von besonders hoher Qualität unabhängig von ihrer geometrischen Struktur herstellen lassen. Darüber hinaus wird mit dem erfindungsgemäßen Verfahren die Gefahr der Schalenbildung an einer Kernoberfläche bzw. einer Formoberfläche verhindert, was beispielsweise bei einem Aushärten mittels Wärme von außen (z.B. Ölheizung) der Fall wäre.
  • Mit dem erfindungsgemäßen Form- oder Kernwerkzeug 1 ist somit erstmals eine prozesssichere Herstellung von Formen 2 bzw. Kernen 2' möglich, durch die Anpassung der elektrisch spezifischen Leitfähigkeit des Form-Kernkastenmaterials 7 an das Sand-Binder-Gemisch 9. Dies erlaubt die gleichmäßige Durchleitung von elektrischer Energie und somit gleichmäßige Erhitzung und dadurch ein gleichmäßiges Aushärten. Dies war bislang nicht möglich.

Claims (10)

  1. Verfahren zur Herstellung von Formen (2) oder Kernen (2') für Gießereizwecke, mittels Anpassung des spezifischen elektrischen Widerstandes des Materials des Werkzeugeinsatzes an den spezifischen elektrischen Widerstand einer Mischung (9) aus mindestens einem Formstoff, insbesondere Gießereisand, und mindestens einem Wasser enthaltenden anorganischen, Wärme aushärtbaren Bindemittel, welches eine elektrische Leitfähigkeit von mindestens 5 · 10-3 S/m aufweist, wobei,
    - in ein elektrisch nicht leitendes Gehäuse (3) mindestens ein Werkzeugeinsatz aus einem elektrisch leitfähigen Material (7) zur Aufnahme der Mischung (9) eingebracht wird, wobei die elektrische Leitfähigkeit des Materials (7) bei Betriebstemperatur zwischen 150 und 180 °C zumindest näherungsweise der spezifischen elektrischen Leitfähigkeit der Mischung (9) bei einer Temperatur zwischen 100°C bis 130°C entspricht,
    - dem Werkzeugeinsatz (7) über in/an dem Gehäuse (3) parallel angeordnete Elektroden (10) elektrische Energie und darüber Wärme zugeführt wird, die zum Aushärten der Mischung (9) führt,
    - wobei das Gehäuse (3) aus mindestens zwei Gehäuseteilen (4, 5) besteht, welche zum Beginn und Abschluss des Taktvorgangs der Form- oder Kernherstellung zusammen- bzw. auseinandergefahren werden und zusammengefahren eine direkte Kontaktfläche bilden,
    - wobei Bohrungen (16') für Ausstoßbolzen (16) im Werkzeug, mindestens einer Elektrode (10) sowie mindestens eines Teiles (4, 5) des Gehäuses (3) zur Entnahme der Sandkerne vorhanden sind,
    - wobei zum Entweichen von Wasserdampf oder Gasen sowohl das Werkzeug als auch die Elektroden sowie mindestens ein Teil des Gehäuses (4, 5) porös ausgeführt und/oder Entlüftungsschlitze (17) vorhanden sind und
    - wobei der oder die Formen oder Kerne (2,2') nach dem Aushärten der Mischung (9) und dem Auseinanderfahren der Gehäuseteile (4, 5) mittels Ausstoßbolzen (16) aus dem Werkzeug gedrückt und entnommen werden dadurch gekennzeichnet, dass ein Material (7) für Werkzeugeinsätze verwendet wird, welches folgende Eigenschaften aufweist:
    - es handelt sich um einen gesinterten Festkörper, der
    - eine Mohshärte von mehr als 4 aufweist, wobei
    - der spezifische elektrische Widerstand des Materials (7) zwischen 0,5 Ohmmeter und 200 Ohmmeter bei einer Betriebstemperatur von 150°C bis 180 °C liegt und
    - die Wärmeleitfähigkeit mindestens 0,56 w/(mK) beträgt.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass dem Werkzeugeinsatz (7) die elektrische Energie in Form von Wechselstrom oder Gleichstrom zugeführt wird und mittels einer Einrichtung (8) zur Steuerung/Regulierung die elektrische Spannung unter Berücksichtigung der spezifischen Temperatur-Widerstandskurve des Sand-Bindergemisches, der Temperatur des Werkzeugeinsatzes (7) sowie der maximalen Kurzzeitbelastung des Werkzeugeinsatzmaterials regelt wird.
  3. Verfahren nach Anspruch 1 bis 2,
    dadurch gekennzeichnet,
    dass als Material (7) ein gesintertes Keramikmaterial verwendet wird, das überwiegend aus Siliziumkarbid oder Siliziumnitrid besteht.
  4. Verfahren nach Anspruch 1 bis 3,
    dadurch gekennzeichnet,
    dass für das Verfahren zur Herstellung von Formen (2) oder Kernen (2') mindestens ein Werkzeugeinsatz mit mindestens einer Kavität für die herzustellende Form (2) oder den herzustellenden Kern (2') verwendet wird.
  5. Verfahren nach Anspruch 1 bis 4,
    dadurch gekennzeichnet,
    dass Ausstoßbolzen (16) zum Ausstoßen der Sandkerne aus nichtleitendem Material sind, oder konstruktionstechnisch so verwendet werden, dass leitende Ausstoßbolzen (16) während des Herstellungsvorganges der Formen (2) oder Kerne (2') nicht in Kontakt mit stromführenden Komponenten des Kernkastens kommen.
  6. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    dass durch Hinzufügen von Zusätzen, wie z.B. Graphit oder Kochsalz die elektrische Leitfähigkeit der Mischung (9) so beeinflusst wird, dass ein geringer spezifischer Widerstand erzielt wird.
  7. Form- oder Kernwerkzeug (1) zum Herstellung von Formen (2) oder Kernen (2') für Gießereizwecke, mit einem aus zumindest zwei Teilen (4,5) bestehenden Gehäuse (3), wobei,
    - in ein elektrisch nicht leitendes Gehäuse (3) mindestens ein Werkzeugeinsatz aus einem elektrisch leitfähigen Material (7) zur Aufnahme einer Mischung (9) eingebracht ist, wobei das Material (7) aus einem gesinterten, überwiegend aus Siliziumcarbid oder Siliziumnitrid bestehenden Sinterwerkstoff besteht,
    - zumindest zwei parallel angeordnete Elektroden (10) vorgesehen sind, wobei jeweils mindestens eine Elektrode (10) in mindestens einem Teil (4, 5) des Gehäuses (3) angeordnet ist,
    - zum Entweichen von Wasserdampf oder Gasen sowohl das Form- oder Kernwerkzeug (1) als auch die Elektroden (10) sowie mindestens ein Teil des Gehäuses (4, 5) porös ausgeführt sind und/oder Entlüftungsschlitze (17) enthalten.
  8. Form- oder Kernwerkzeug nach Anspruch 7,
    dadurch gekennzeichnet,
    dass zumindest ein Teil (4, 5) des Gehäuses (3) aus Kunststoff, elektrischem Isolierstoff oder Isolationskeramik ausgebildet ist.
  9. Form- oder Kernwerkzeug nach einem der Ansprüche 7 oder 8,
    dadurch gekennzeichnet,
    dass die mindestens zwei Teile (4, 5) des Gehäuses (3) über mindestens eine Trennebene (6) miteinander verbunden sind, wobei die Elektroden (10) parallel zueinander und zwischen dem Material (7) und der Isolationsschicht angeordnet sind.
  10. Form- oder Kernwerkzeug nach einem der Ansprüche 7 bis 9
    dadurch gekennzeichnet,
    dass in mindestens einem Werkzeugeinsatz mindestens eine Sandkernkavität vorgesehen ist, welche mit einem Schnellspannsystem im Gehäuse (3) befestigbar ist und somit den schnellen Austausch des Werkzeugeinsatzes innerhalb des Kernkastens ermöglicht.
EP17816409.1A 2016-12-06 2017-11-20 Verfahren und form- oder kernwerkzeug zur herstellung von formen oder kernen Not-in-force EP3551358B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016224183 2016-12-06
DE102017217096.4A DE102017217096B3 (de) 2016-12-06 2017-09-26 Werkzeugeinsatz, Form- oder Kernwerkzeug sowie Verfahren zur Herstellung von Formen oder Kernen
PCT/DE2017/100995 WO2018103784A1 (de) 2016-12-06 2017-11-20 Verfahren und form- oder kernwerkzeug zur herstellung von formen oder kernen

Publications (2)

Publication Number Publication Date
EP3551358A1 EP3551358A1 (de) 2019-10-16
EP3551358B1 true EP3551358B1 (de) 2021-01-13

Family

ID=61302632

Family Applications (2)

Application Number Title Priority Date Filing Date
EP17816409.1A Not-in-force EP3551358B1 (de) 2016-12-06 2017-11-20 Verfahren und form- oder kernwerkzeug zur herstellung von formen oder kernen
EP17825733.3A Withdrawn EP3551359A1 (de) 2016-12-06 2017-12-02 Werkzeugeinsatz, form- oder kernwerkzeug sowie verfahren zur herstellung von formen oder kernen

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17825733.3A Withdrawn EP3551359A1 (de) 2016-12-06 2017-12-02 Werkzeugeinsatz, form- oder kernwerkzeug sowie verfahren zur herstellung von formen oder kernen

Country Status (6)

Country Link
US (2) US10967420B2 (de)
EP (2) EP3551358B1 (de)
JP (1) JP2019536638A (de)
CN (1) CN110248747B (de)
DE (2) DE102017217096B3 (de)
WO (2) WO2018103784A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202018106268U1 (de) 2018-11-04 2018-11-28 Wolfram Bach Werkzeug zur Herstellung von Formen oder Kernen durch elektrische Widerstandserwärmung eines kunststoffbasierten Materials
DE102018128605B4 (de) * 2018-11-14 2020-07-30 Meissner Ag Modell- Und Werkzeugfabrik Gusswerkzeug, beispielsweise Kernschießwerkzeug oder Kokille, und ein entsprechendes Gießverfahren
DE102019113008A1 (de) 2019-05-16 2020-11-19 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verwendung eines partikulären Materials umfassend ein teilchenförmiges synthetisches amorphes Siliciumdioxid als Additiv für eine Formstoffmischung, entsprechende Verfahren, Mischungen und Kits
DE102019116406A1 (de) 2019-06-17 2020-12-17 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Additivmischung für Formstoffmischungen zur Herstellung wasserglasgebundener Gießereiformen und Gießereikerne
DE102019131676A1 (de) 2019-11-22 2021-05-27 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Kerne für den Druckguss
DE102020119013A1 (de) 2020-07-17 2022-01-20 HÜTTENES-ALBERTUS Chemische Werke Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Artikels zur Verwendung in der Gießereiindustrie, entsprechende Form, Kern, Speiserelement oder Formstoffmischung sowie Vorrichtungen und Verwendungen
DE102020209100B4 (de) 2020-07-21 2024-05-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren zur Herstellung von Sandkernen, die für Gießereizwecke einsetzbar sind
DE102020131492A1 (de) 2020-11-27 2022-06-02 Chemex Foundry Solutions Gmbh Herstellverfahren, Gießformen, Kerne oder Speiser sowie Kit und Verfahren zur Herstellung eines metallischen Gussteils.
CN116851662A (zh) * 2023-06-26 2023-10-10 中国第一汽车股份有限公司 串联制作多个砂芯的方法及装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1429837A (en) * 1973-08-01 1976-03-31 White Sea & Baltic Co Manufacture of foundry moulds and cores
JPS5839017B2 (ja) * 1980-04-22 1983-08-26 淡路産業株式会社 鋳造用砂型の製作方法
JPS5741844A (en) * 1980-08-26 1982-03-09 Kubota Ltd Manufacture of mold
JPS58350A (ja) * 1981-06-23 1983-01-05 Yamakawa Sangyo Kk 鋳型の製法
JPS589744A (ja) * 1981-07-09 1983-01-20 Yamakawa Sangyo Kk 精密鋳型の製造方法
JPS5893351U (ja) * 1981-12-21 1983-06-24 株式会社小松製作所 マイクロ波加熱硬化鋳型用模型のインジエクタピン装置
DE3735751A1 (de) * 1987-10-22 1989-05-03 Plansee Metallwerk Heteroporoeses formwerkzeug zur herstellung von gussformen aus formsand und verfahren zu dessen herstellung
JPH02217367A (ja) * 1989-02-20 1990-08-30 Teijin Ltd 複合セラミックス成形物及びその製造法
US5715885A (en) * 1995-12-29 1998-02-10 Georg Fischer Disa, Inc. Apparatus and method for cleaning core box vents
JPH10211541A (ja) * 1997-01-27 1998-08-11 Hitachi Metals Ltd 耐久性鋳型
CN1538887A (zh) * 2001-08-10 2004-10-20 ��ķ�չ���ʦ���޹�˾ 铸造用的模具或型芯的制造方法和装置
US6666253B2 (en) * 2002-03-18 2003-12-23 Hormel Foods, Llc Method and apparatus for making a sand core with an improved hardening rate
DE10340491B3 (de) * 2003-09-03 2005-03-10 Laempe & Gies Gmbh Verfahren und Vorrichtung zur Herstellung von Formen oder Kernen
DE102011050264B4 (de) * 2011-05-11 2015-11-19 Stephanus Bigos Vorrichtung zum Begasen von Gusskernen
CN103192031A (zh) * 2013-04-03 2013-07-10 苏州苏铸成套装备制造有限公司 优化的砂芯成型方法
CN203804141U (zh) * 2014-04-17 2014-09-03 宁波高盛模具制造有限公司 大型发动机机体的机前端大皮芯盒模具
CN203804139U (zh) * 2014-04-17 2014-09-03 象山东风模具制造有限公司 用于制造大型发动机机前端齿轮箱的芯盒模具
CN104014740B (zh) * 2014-06-11 2016-08-31 武汉纺织大学 一种提高微波硬化水玻璃砂型抗吸湿性的方法
EP3103562B9 (de) * 2015-06-12 2019-05-08 Bierkämper GmbH Stahl- und Anlagenbau Schablone

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN110248747B (zh) 2021-07-16
JP2019536638A (ja) 2019-12-19
WO2018103784A1 (de) 2018-06-14
US20200188988A1 (en) 2020-06-18
CN110248747A (zh) 2019-09-17
EP3551359A1 (de) 2019-10-16
DE102017217096B3 (de) 2018-03-22
US10967420B2 (en) 2021-04-06
EP3551358A1 (de) 2019-10-16
DE102017217098B3 (de) 2018-04-05
US20200391279A1 (en) 2020-12-17
WO2018103792A1 (de) 2018-06-14

Similar Documents

Publication Publication Date Title
EP3551358B1 (de) Verfahren und form- oder kernwerkzeug zur herstellung von formen oder kernen
EP3053675B1 (de) Pulverauftragseinheit, entsprechende vorrichtung und verwendung einer pulverauftragseinheit
DE2505618C3 (de) Formwerkzeug
DE102004042422A1 (de) Beheizbares Formwerkzeug für die Herstellung von Bauteilen aus Faserverbundstoffen
DE10231436A1 (de) Verfahren und Vorrichtung zum Herstellen eines Gusskörpers
DE102007050312A1 (de) Verfahren zum Herstellen eines Faserverbundbauteils
DE1479113B2 (de) Durch elektrische Induktion beheizte Gießform
DE102019127680A1 (de) Werkzeug, Werkzeugsystem und Verfahren zum Herstellen von Partikelschaumstoffteilen
EP1230050B1 (de) Verfahren zum urformen eines werkstoffes und vorrichtung zu dessen durchführung
DE102011120725A1 (de) Vorrichtung und Verfahren zum Warmumformen und partiellen Härten eines Bauteils
WO2020088718A2 (de) Werkzeug zur herstellung von formen oder kernen durch elektrische widerstandserwärmung eines kunststoffbasierten materials
DE102020209100B4 (de) Verfahren zur Herstellung von Sandkernen, die für Gießereizwecke einsetzbar sind
DE3243780A1 (de) Heizkoerper und verfahren zu seiner herstellung
DE102019109775A1 (de) Verfahren zur Herstellung eines Werkzeugs mit einem Kühlkanal
WO2020187981A1 (de) VERFAHREN UND ANLAGE ZUR HERSTELLUNG EINES GIEßEREIPRODUKTES
EP0441264B1 (de) Elektrode zur Funkenerosion und Verfahren zur Herstellung einer Elektrode zur Funkenerosion
DE102019118153A1 (de) Verfahren und Vorrichtung zur Herstellung eines Faserverbundbauteils
DE4439694C2 (de) Vorrichtung zum Trocknen von Gießerei-Formen oder Gießerei-Kernen
DE10326711B4 (de) Vorrichtung zum Trocknen einer Auskleidungsmasse
DE102007014225B4 (de) Verfahren und Formwerkzeug zur Herstellung im Wesentlichen zweidimensionaler Formkörper aus duroplastischen Werkstoffen
DE102010007270B3 (de) Formkern zum Formen und Temperieren einer Hohlstruktur
DE102016102415A1 (de) Vorrichtung und Verfahren zur Herstellung von Werkstücken aus Kunststoff
EP1375453A2 (de) Verfahren und Vorrichtung zum Herstellen eines Formlings
DE8912756U1 (de) Spritzgießwerkzeug zur Verarbeitung plastischer Massen, insbesondere Kunststoff-Spritzgießwerkzeug
WO2019101684A1 (de) Formgebungsvorrichtung, formgebungswerkzeug mit einem umzuformenden teil und verfahren zum erwärmen einer formgebungsoberfläche einer formgebungshalbschale oder eines umzuformenden teils

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190617

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20200303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017009087

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B22C0001020000

Ipc: B22C0009120000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B22C 1/10 20060101ALI20200703BHEP

Ipc: B22C 9/12 20060101AFI20200703BHEP

Ipc: B22C 7/06 20060101ALI20200703BHEP

Ipc: B22C 1/18 20060101ALI20200703BHEP

INTG Intention to grant announced

Effective date: 20200805

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017009087

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1354166

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210113

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210413

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210413

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017009087

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

26N No opposition filed

Effective date: 20211014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210513

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502017009087

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211120

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211130

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211120

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20221117

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210113

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20171120

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231124

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1354166

Country of ref document: AT

Kind code of ref document: T

Effective date: 20231120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20231120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20241120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20241120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20241130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210113