EP3550139B1 - Vorrichtung zum anziehen von schraubverbindungen - Google Patents

Vorrichtung zum anziehen von schraubverbindungen Download PDF

Info

Publication number
EP3550139B1
EP3550139B1 EP19163027.6A EP19163027A EP3550139B1 EP 3550139 B1 EP3550139 B1 EP 3550139B1 EP 19163027 A EP19163027 A EP 19163027A EP 3550139 B1 EP3550139 B1 EP 3550139B1
Authority
EP
European Patent Office
Prior art keywords
tool
tool carrier
screw
drive
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP19163027.6A
Other languages
English (en)
French (fr)
Other versions
EP3550139A1 (de
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3550139A1 publication Critical patent/EP3550139A1/de
Application granted granted Critical
Publication of EP3550139B1 publication Critical patent/EP3550139B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • B23P19/06Screw or nut setting or loosening machines
    • B23P19/067Bolt tensioners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B29/00Accessories
    • B25B29/02Bolt tensioners
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/08Structures made of specified materials of metal
    • E04H12/085Details of flanges for tubular masts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/728Onshore wind turbines

Definitions

  • a device with these features is from the EP 2 607 685 B1 known. It is used to tighten screw connections arranged in a row along a flange. Each screw connection consists of a threaded element and a nut screwed onto it, the nut being supported against the top of the flange.
  • a tool arranged on a self-propelled vehicle is used to tighten the screw connection and rotate the nut relative to the flange.
  • the vehicle has a position sensor.
  • the vehicle with the tool placed on it is driven in a controlled manner until the signals show that the tool is in axial alignment with the screw connection axis of the screw connection to be tightened.
  • the position signals from the position sensor are processed into signals for driving the vehicle in terms of control technology.
  • the controller is also designed to control the tightening process.
  • the positioning of the vehicle while evaluating the signals from the position sensor is complex in terms of control technology because of the necessary accuracy.
  • the position sensor e.g. is designed for sensing upwardly from the top of the flange protruding structures, can be irritated by objects that are not part of the screw connections. What is required is a very good, but also expensive, sensing technology.
  • the invention is therefore based on the object of using technical measures to move the tool, which can be moved by means of a controlled travel drive along the flange connection to the next working position, in a technically less complex and safe manner.
  • the control unit for moving to the respective working position of the tool carrier comprises a path control module with a path control, which is designed to stop the travel drive after reaching a predetermined path length as the target variable.
  • the path control implemented as a module of the control unit is designed to stop the travel drive after a path variable specified in the control unit has been reached as a setpoint or target variable, and thus to interrupt the travel of the tool carrier.
  • the respective next working position can be reliably approached without evaluating position signals from a position sensor.
  • a position sensor only works reliably if it is able to safely and reliably detect features or structures that are characteristic of the screw connection to be approached. Achieving this error-free requires a great deal of technical effort in terms of the sensor electronics used and when converting them into driving signals.
  • This type of position determination is also not always error-free, since structures that do not belong to the screw connection can influence the sensor signal with the risk that the screw connection to be tightened next cannot be reliably found.
  • the invention makes use of the knowledge that in the case of ring-shaped flange connections, as are typical for screwing together tower sections of a wind turbine, the positions of the screw connections are determined by the construction and are therefore known. Using the design data, at least the relative arrangement of the screw connections to one another can therefore be determined with high accuracy. As a rule, the screw connections always have a constant distance, that is, circumferential distance, from one another. Once the position of the first screw connection to be tightened has been reliably found, the positions can be Calculate all other screw connections on the basis of geometric relationships, and thus in particular the path lengths to be covered in the circumferential direction of the flange, ie distances.
  • the control unit includes a route control module with internal route or distance specifications, the vehicle control method implemented in the route control module being designed to stop the drive after the route or distance specification has been reached as the target variable, so that at that point in time Working position of the screwing process can be initiated, which also takes place as a function of signals from the control unit.
  • the sequence in which the screw connections are tightened can be freely programmed in the path control module. Because it is not always advantageous to tighten the adjacent screw connection next. It can also be advantageous, after tightening a nut, to next tighten, for example, the nut of a screw connection which is opposite in relation to the center of the flange connection, and so on.
  • the tool carrier is provided with rollers for its support on the upper side of the flange connection, which rollers are mounted on the tool carrier on horizontal axes of rotation.
  • the main task of these roles is to carry the weight of the tool carrier with the tool arranged on it.
  • the tool carrier can be provided with additional rollers for its lateral support, for example against the inner wall of the tower of the wind turbine, which are mounted on the tool carrier on essentially vertical axes of rotation.
  • the tool carrier is preferably provided with rigidly attached alignment elements, on which an alignment surface is formed which extends in the direction of travel and whose surface normal is opposite to the direction in which the tool carrier extends supported on the additional roles, so on the supported against the vertical inner wall roles.
  • the alignment surfaces are in a plane in which they can be supported on the rear sides of the exposed threaded end sections of the screw connections.
  • the alignment elements guide the car sideways and prevent it from leaving its intended driving line to the side. With an effect in the opposite direction, that is to say outwards, corresponding alignment elements or alignment surfaces are not required. Because the lateral guidance of the carriage in this direction is already achieved via the additional rollers.
  • rollers i.e. those on horizontal axes of rotation and those on essentially vertical axes of rotation, do not all have to be driven. Rather, an embodiment is preferred in which the rollers are only partially, for example only a single roller, driven rollers. The remaining roles are then non-driven, idle rollers.
  • each driven roller is one of those rollers that are mounted on horizontal axes of rotation.
  • a coupling preferably an electromagnetic coupling, between the or each driven roller and a drive motor of the travel drive, which drives this roller, is proposed with a further embodiment. If the clutch is disconnected or switched off, these roles of the vehicle are also freely rotatable so that the vehicle can move freely and with little friction in the direction of travel and the resulting play makes it easier to center the tool on the screw axis of the respective screw connection.
  • control unit is preferably also designed to switch the clutch on and / or off via clutch switching signals.
  • At least one of the rollers can be coupled non-rotatably to an angle encoder for the purpose of detecting the angle of rotation. This records the angle of rotation of the roller, from which the exact distance covered by the roller can be calculated in the control unit in order to arrive at exact values for the path control for approaching the next screw connection.
  • roller coded for the angle of rotation is not a driven roller but one of the non-driven rollers.
  • the roller coded for the angle of rotation is preferably one of the additional rollers which laterally support the tool carrier.
  • the advantage of this configuration is based on the fact that the inner walls of the tower of a wind power plant are generally relatively smooth-walled, so that a roller running on this surface exhibits particularly exact and reproducible angle values.
  • the angle encoder should be coupled to the angle-of-rotation-encoded roller via a chain or a toothed belt that works with appropriate freedom from slippage.
  • the angle encoder is also connected to the path control of the control unit for signaling purposes.
  • the tool carrier forming the vehicle is preferably provided with a vertical guide, via which the tool is mounted on the tool carrier so that it can be adjusted in height.
  • a further embodiment provides a transverse guide with a guide direction transverse to the longitudinal extension or direction of travel of the tool carrier.
  • the vertical guide and / or the tool is mounted horizontally displaceably on the tool carrier via this transverse guide.
  • the transverse guide is preferably designed to be particularly low-friction and is provided with a spring arrangement which acts on the vertical guide or the tool with a restoring force in a central position.
  • the tool used in the device can e.g. B. be an electrically or hydraulically driven screwing tool working with a high drive torque.
  • a largely torsion-free method for tightening the screw connections is preferred.
  • Such a tightening is made possible if the tool is a screw tensioning cylinder that works axially with respect to the respective screw connection.
  • Such screw tensioning cylinders are known. They usually work with hydraulic power, are provided with a cylinder housing surrounding a hydraulic working space and an interchangeable bushing which is rotatably arranged in the cylinder housing and can be screwed to a threaded end section of the screw connection. A part of such a screw tensioning cylinder is also a rotary sleeve for positive engagement, i.e. Turning the nut while the threaded element of the screw connection is slightly stretched by the hydraulic pressure.
  • a screw tensioning cylinder is used as a tool, it is provided with an electric drive for turning the interchangeable socket.
  • the screw tensioning cylinder can be provided with a second electric drive. This is responsible for turning the rotary sleeve and thus the application of the nut, and is also designed for vertical adjustment of the screw tensioning cylinder relative to the tool carrier.
  • auxiliary units of the device for. B. an energy module
  • One embodiment of the device is therefore characterized by a hydraulic line leading from a hydraulic pump to the hydraulic working space of the screw tensioning cylinder.
  • the hydraulic pump is arranged stationary at one location, separate from the screw tensioning cylinder and the vehicle on which the screw tensioning cylinder is arranged, and is part of an energy module.
  • control unit is arranged on the energy module and, for example, arranged together with it on a carrier.
  • An electrical signal line leads from the control unit to the tool carrier for the transmission of the travel drive control signals and the tool control signals, wherein the signal line can be mechanically connected to the power supply line over at least part of its length.
  • a pivotable frame is proposed with one or more vertical pivot axes, the frame being provided with fastening means for its attachment, and a longitudinal section of the power supply line being suspended in the frame.
  • the pivotable frame is preferably designed to support the power supply line over an angle of rotation of approximately 360 °.
  • the tool carrier preferably has a lead-through for the power supply line, the lead-through being located on a slide which is movably arranged on the tool carrier, preferably movable in the direction of travel of the tool carrier.
  • the device for tightening screw connections is made up of a movable unit 1, a spatially separated stationary unit 2 and a cable harness, in particular a supply and signal harness 3, between the movable unit 1 and the stationary unit 2.
  • a tool 5 for tightening screw connections Part of the movable unit 1 is a tool 5 for tightening screw connections.
  • the tool is a hydraulically operated screw tensioning cylinder 5.
  • the power supply for the device is located in the stationary unit 2.
  • part of the stationary unit 2 is an electronic control unit 4, which in turn includes, inter alia, a path control module 4A and a documentation module 4B.
  • a data record is stored for each individual tightened screw connection, which thus enables the most important characteristic data of the screwing process to be checked later.
  • the tool 5 is arranged in a height-adjustable manner on a carriage 6 which can be moved by means of a drive.
  • the carriage 6 is therefore the tool carrier of the device.
  • the carriage or tool carrier is set up by means of rollers mounted on it to drive along an annular flange connection 7, which is part of a tower-shaped wind turbine, into various circumferential positions in order to tighten, tighten or loosen a screw connection there at each of these positions.
  • the flange connection 7 is here a double flange made up of an upper annular flange 7A and a lower annular flange 7B preferably lying flatly thereon.
  • the upper ring flange 7A is located at the lower edge of an upper annular tower section 8A.
  • the lower annular flange 7B is located on the upper edge of a lower tower section 8B.
  • the tower sections 8A, 8B, together with other, similar tower sections, form the vertical tower of a wind turbine.
  • Such wind turbines with heights of up to 150 m consist of tower sections for assembly reasons. These are essentially cylindrical and enclose a circular space 9 surrounded by the flange connection 7.
  • the tower sections can taper conically towards the top.
  • the tower sections are screwed to one another in that the annular flange 7A is formed on the respective upper tower section 8A and the annular flange 7B is formed on the tower section 8B arranged immediately below.
  • the flange connection 7, which thus consists of two ring flanges, is held together by a large number of screw connections. These are distributed over the circumference at equal intervals.
  • Each screw connection 10 consists of a bolt-like threaded element 11 and a threaded nut 12 screwed onto the threaded section of the threaded element 11.
  • the threaded nut 12 is supported with its lower side on the preferably flat upper side of the annular flange 7A.
  • the threaded element 11 is designed in such a way that it is supported like a screw with a radially expanded collar or head from below against the lower annular flange 7B of the flange connection 7.
  • a washer can also be located between the threaded nut 12 and the upper annular flange 7A, as is usual with screw connections.
  • the screw connections 10 are arranged uniformly around the space 9, that is to say distributed at equal distances along the flange connection 7.
  • the circumferential distance of the screwing axis of a screw connection to the screwing axis of the immediately following screw connection is always the same. If, therefore, the radius of the ring in relation to the center of the space 9, on which the axes of the screw connections 10 are located, is known and also the total number of screw connections, the distances in the circumferential direction between the axes of the screw connections can be calculated.
  • the tool 5 used in the device can be a hydraulic torque wrench, an electric screwdriver or a screw tensioning cylinder.
  • All screw connections 10 extend with their screwing axes at right angles to the upper side of the annular flange 7A and parallel to the central main axis of the tower sections 8A, 8B.
  • the basic element of the movable unit 1 is the tool carrier 20. So that it can be moved into individual working positions along the flange connection, the tool carrier 20 is provided with several rollers, some of which are driven and thus move the tool carrier 20 forward, and which are partly not driven, i.e. just take part in the process.
  • rollers 21A, 21B are present, via which the tool carrier 20 is supported on the top of the flange connection 7.
  • the rollers 21A, 21B are mounted on the tool carrier 20 on horizontal axes of rotation.
  • the roller 21A is a driven roller
  • the roller 21B is a freely rotating roller.
  • the rollers 21A, 21B carry the predominant part of the weight forces of the tool carrier 20 and the units arranged thereon, including the tool 5. Since the rollers 21A, 21B are heavily weight-loaded, it is advisable that at least one of these rollers, here the roller 21A, the drive roller is.
  • An electric drive motor 24 drives the roller 21A and together with it forms the drive of the device.
  • the drive motor 24 of the travel drive is not seated on the same shaft as the driven roller 21A, but rather a toothed belt or a chain transmits the rotation of the drive motor 24 into an equal, step-up or step-down rotation of the drive roller 21A. However, if there is enough space, the drive motor 24 can be arranged on the same shaft as the roller 21A.
  • the drive motor 24 of the travel drive receives travel drive control signals from the control unit 4.
  • the clutch 25 also receives its clutch switching signals from the electronic control unit 4. If the clutch 25 is disconnected or switched off, the roller 24A is thus freely rotatable, so that the tool carrier 20 can move freely in the direction of travel and the possible play the centering of the tool 5 to the screwing axis of the respective screw connection 10.
  • rollers 22 are mounted on tool carrier 20, albeit mounted on essentially vertical axes of rotation. These additional rollers support the carriage against the inner wall 23 of the tower section.
  • the rollers 22 are only slightly weight-loaded compared to the rollers 21A, 21B. Nevertheless, they are supported against the inner wall 23, which is achieved by an arrangement of the rollers 21A, 21B in which the center of gravity of the carriage is further out than the rolling line of the rollers 21A, 21B.
  • the additional rollers 22 are not driven, that is, only co-rotating rollers. At least one of the rollers 22 is preferably coupled to an angle encoder 26 without slipping.
  • the angle encoder 26 enables the sensing of angle signals from the roller. From the angle signals, the processor of the electronic control unit 4 calculates the distance of the tool carrier 20 along the inner wall 23. From this, the processor can in turn determine and check the distances covered by the tool carrier 20 along the ring on which the screw connections 10 are arranged or has traveled.
  • an alignment element 30, which is preferably provided twice, is fastened at the bottom of the tool carrier 20.
  • the alignment element 30 is provided with an alignment surface 30A extending in the direction of travel, the surface normal of which points inward and therefore opposite to the direction in which the tool carrier is supported via the additional rollers 22.
  • the alignment surfaces 30A are arranged at such a height on the carriage 6 that, during operation, they are at the height of the threaded end sections 11A of the threaded elements 11 and above the nut 12. They are also located slightly outward of the threaded end portions 11A on which they can be supported.
  • Components of the driven tool carrier 20 are a lower platform 31 and an upper platform 32 which is fixed to the lower platform 31.
  • the rollers 21A, 21B are supported under the lower platform 31.
  • 32 eyelets are attached to the upper platform, into which a crane hook can be latched.
  • a frame 33 holding the tool 5 is supported on a surface on the upper side of the lower platform 31.
  • the frame 33 is designed as a vertical guide 34 for adjusting the height of the tool 5.
  • a transverse guide 35 with a guide direction transverse to the longitudinal direction and thus the direction of travel of the tool carrier 20.
  • the frame 33 and thus the tool 5 arranged therein is slidably mounted on the platform 31, with the possibility of displacement transversely to the direction of travel of the tool carrier.
  • the frame 33 also forms a vertical guide 34 for the height adjustment of the tool 5.
  • the frame is composed of the frame base 41, which rests on the platform 31 and is guided in the transverse guide 35, and of vertical guide rods 42 rigidly attached to the frame base an upper rack frame 49 connecting the upper ends of these rods and a rack frame 50 adjustable in height by a motor drive.
  • the rack frame 50 which can be moved up and down is guided by the guide rods 42 of the vertical guide 34.
  • the tool 5 is fixed to the rack frame 50.
  • the tool 5 works hydraulically for the actual clamping process.
  • at least two electric drives 51, 52 are also available for automatic tool operation. Both drives 51, 52 work as a function of tool control signals from the control unit.
  • the first electric drive 51 drives an interchangeable socket rotatably arranged in the screw tensioning cylinder. It is preferably located on top of the cylinder housing of the Bolt tensioning cylinder.
  • the second electric drive 52 is arranged further down and preferably on the height-adjustable rack frame 50.
  • the second electric drive 52 drives a rotary sleeve through which the threaded nut 12 can be set in rotation by means of a form fit.
  • the second drive 52 can be designed to raise and lower the rack frame 50 and thus the tool 5 relative to the rack 33, which in the exemplary embodiment is achieved via a screw drive 56 arranged parallel to the guide rods 42 with which the drive shaft of the second Drive 52 can be coupled.
  • the second drive 52 therefore has two functions. Depending on the corresponding tool control signals from the control unit, it can be coupled either to the rotating sleeve or to the screw drive 56.
  • a holding tool 70 serving as a counterholder is arranged on the tool carrier 20 in addition to the tightening tool.
  • Part of the holding tool 70 is at least one counter-holding surface 75, which can be supported against a surface on the radially expanded section of the threaded element 11, for example on the surface of a hexagon with which the threaded element 11 is provided below the flange connection 7. The form-fit caused by this prevents the threaded element 11 from rotating at the same time during the tightening, retightening or loosening of the screw connection 10.
  • an electric drive 77 is on the lower platform 31 for moving the holding tool 70 back and forth between a passive position and an active position, the counter-holding position, arranged. Only in the active position does the counter-holding surface 75 come into contact with the corresponding surface and in particular the hexagonal surface of the threaded element 11.
  • the processor of the control unit 4 is designed to control the electric drive 77 via holding tool control signals.
  • the tool section 79 of the holding tool 70 is designed in the manner of an open-ended wrench with two oppositely arranged and mutually parallel counter-holding surfaces 75.
  • the drive 77 of the holding tool 70 works here transversely to the axes of the screw connections.
  • the drive 77 for moving the holding tool 70 back and forth is designed as a rack and pinion drive in the embodiment described here.
  • the drive of the holding tool works parallel to the axis of the screw connection 10, that is, vertically.
  • the holding tool 70 comprises a tool base body 78 connected on the drive side to the drive 77 as well as the tool section 79 with the counter-holding surfaces 75 formed thereon.
  • the tool section 79 is movably guided on the tool base body 78 counter to the force of a spring 80. If, therefore, the holding tool 70 is moved against the threaded element 11, the spring 80 holds the tool section 79 back until these parts have assumed a rotational position with respect to one another that enables the form fit. Because by relative rotation of the parts involved, a rotational position is reached at some point in which the counter-holding surfaces 75 can engage securely and positively under spring pressure and thereby come into engagement.
  • the tool section 79 When the tool section 79 is unloaded, that is to say without contact or form fit on the threaded element, the tool section 79 is supported under the force of the spring 80 against a stop 81 which is located on the tool body 78.
  • rollers 21A, 21B define a standing plane E of the carriage or of the tool carrier 20, the drive 77 of the holding tool 70 is located above this standing plane E, the drive preferably being attached to the platform 31. From there, the basic tool body 78 extends over the standing plane E down to the tool section 79. This is located at a level below the flange connection 7.
  • the length of the basic tool body 78 and thus the basic position of the tool section 79 can be adjusted by hand.
  • the position set in this way is secured by means of a clamping screw.
  • the drive 77 of the holding tool 70 is also controlled by control signals from the control unit 4, namely by holding tool control signals.
  • the control is such that the holding tool 70 is moved from its rest position to its active position at the earliest when the tool carrier 20 has assumed a working position in which the axis of the tool 5 is aligned with the axis of the respective threaded element 11.
  • the stationary unit 2 is spatially separated from the movable unit 1, that is to say the carriage, placed at a suitable location within the room 9.
  • This place can e.g. B. be an intermediate floor or a permanently mounted ladder for the service staff, which connects the individual levels of the tower.
  • the stationary unit 2 is preferably placed as centrally as possible within the space 9. It is therefore necessary to connect the units and devices of the stationary unit 2 to the carriage 6 via the suitable supply and signal line 3.
  • the stationary unit 2 includes, for example, an energy module 88 or energy modules for supplying energy to the travel drive, the tool 5 including all of its functions, and the holding tool 70.
  • the control unit 4 is also part of the stationary unit 2.
  • the control unit 4 is designed, among other things, to use travel drive control signals to move the tool carrier 20 in the longitudinal direction of the tool carrier 20 to a working position in which the tool 5 is opposite the screw connection to be tightened, and to tighten the screw connection and turn the nut via tool control signals.
  • the control unit 4 is preferably arranged on the energy module 88 or arranged together with it on a carrier.
  • the stationary unit 2 is combined into a box. Castors under the box and handles on the box make it easier to handle during transport.
  • energy supply lines lead from the energy module 88 to the tool carrier 20. These include e.g. Power cable for the electrical supply of the various electrical drives of the tool carrier 20, the tool 5 and the holding tool 70.
  • An electrical power distributor can also be part of the energy module 88.
  • the supply lines also include a hydraulic line 87 for supplying the hydraulically driven tool 5.
  • the associated hydraulic pump 86 is also part of the stationary unit 2.
  • the tool control signals For the transmission of the travel drive control signals, the tool control signals, the holding tool control signals and the clutch switching signals, there is also at least one signal line between the control unit 4 and the tool carrier 20.
  • the signal connection can, however, also be wireless.
  • part of the device is a swivel frame 95 installed as centrally as possible in the room 9 with one or more vertical swivel axes.
  • the swivel frame 95 is to be attached within the space 9 with fastening means, for. B. screw-on brackets provided.
  • the supply and signal line 3 is suspended in the swivel frame 95. This is designed to support the strand 3 within the space 9 over an angle of rotation of at least approximately 360 °, so that the strand 3 can follow the movement of the carriage 6 over the entire circumference of the flange.
  • the tool carrier 20 has the option of moving the section of the supply and signaling string 3 ending there relative to the tool carrier 20 in the direction of travel.
  • the tool carrier 20 is provided on its upper platform 32 with a slide 96 that is movable in the direction of travel of the tool carrier 20.
  • the slide 96 is provided with an opening through which the strand 3 passes into the interior of the carriage or tool carrier 20.
  • the slide 96 with the opening is freely movable, so that, depending on the position of the slide, the strand 3 leads more towards the front or towards the rear into the interior of the carriage.
  • Fig. 10 shows the hydraulically operated bolt tensioning cylinder 5 which forms the tool here and which is used for tightening, especially retightening, and possibly also releasing the Figures 1 and 2 reproduced screw connections 10 is used.
  • the screw tensioning cylinder is shown in its operating position before hydraulic pressure is applied. In this position it is lowered to such an extent that it is supported with its underside 102 on the annular flange 7A.
  • a predetermined pretensioning force can be applied to the threaded element 11 in the longitudinal direction of the bolt, as a result of which the threaded element 11 expands somewhat in order to tighten or retighten the threaded nut 12 of the screw connection.
  • An interchangeable bush 114 rotatably arranged in a cylinder housing 100 of the screw tensioning cylinder 5 is provided with an internal thread 116 at one end. With this thread, the interchangeable bush 114 is screwed before the start of the tensioning process by turning the interchangeable bush 114 onto that free threaded end section 11A of the threaded element 11 which protrudes upward beyond the nut 12. This unscrewing of the interchangeable bush 114 is also accompanied by a corresponding lowering of the entire screw tensioning cylinder 5 until the underside 102 rests on the annular flange 7A, since the interchangeable bush has little or no play relative to the cylinder housing 100.
  • the interchangeable bush 114 screwed to the threaded element 11 is hydraulically put under tension, as a result of which the screw connection expands in the longitudinal direction.
  • the contact surface 12A of the threaded nut 12 is released so that the threaded nut 12 can then rotate with little rotational resistance and in this way can be tightened or retightened against the base, i.e. against the annular flange 7A and possibly against a washer.
  • the hydraulic clamping mechanism is located in the pressure-resistant cylinder housing 100.
  • This can also be composed of several cylinder sections in a modular manner.
  • the rigid continuation of the cylinder housing 100 is a support tube 101. This is either part of the cylinder housing 100 itself, as shown, or a separate component.
  • the support tube 101 is open towards the screw connection, surrounds the threaded nut 12 and is supported with the lower side 102 against the upper side of the annular flange 7A. This therefore forms the abutment during the tensioning process.
  • the tensioning process takes place by pulling the interchangeable bush 114 on the threaded end section 11A, with the nut 12 being screwed downward to tighten the nut 12 until it again rests firmly against the flange 7A with its contact surface 12A.
  • the support tube 101 is provided with at least one opening which is of such a size that the nut 12 can be rotated through the opening and thus tightened. Of course, this is only possible if the clamping device is working at the same time, and therefore the nut 12 is not subjected to considerable friction.
  • the threaded nut 12 is rotated by means of a rotating sleeve 110 surrounding the nut.
  • the rotating sleeve 110 is driven by a gear 111 which is attached to the side of the support tube 101 and works through its opening.
  • the cylinder housing 100 is provided with a hydraulic connection 112, via which a hydraulic working space 118 inside the tool is connected to a hydraulic pump 86 via the flexible but pressure-resistant hydraulic line 87 ( Fig. 1 ).
  • the hydraulic pump 86 is part of the stationary unit 2.
  • Hydraulic fluid under high pressure reaches the working chamber 118 via the hydraulic connection 112, as a result of which hydraulic pressure is applied to a piston 115 which is mounted longitudinally in the cylinder housing 100.
  • the piston 115 is pushed up. This takes place against the force of a spring 117 acting on the piston 115.
  • the spring 117 serves as a piston return spring and acts on the piston 115 directly with a force which strives to hold the piston in its basic position, in which the hydraulic working chamber 118 has its smallest volume.
  • the piston 115 surrounds the interchangeable bush 114 in a ring shape.
  • the piston 115 is provided on its inner edge with a circumferential step which forms a driver surface 121 on which the interchangeable bush 114 is supported with a radially expanded section 125.
  • the interchangeable bush 114 can be carried along by the piston 115. Without a pressure load, the interchangeable bush 114 is freely rotatable with respect to the piston 115 and with respect to the cylinder housing 100.
  • the interchangeable bushing 114 like the piston 115, is located centrally on the longitudinal axis of the cylinder housing 100 and is composed successively of a section with the internal thread 116, which is screwed onto the threaded end section 11A of the threaded element 11, of the radially expanded section 125 and of a Drive section 126.
  • the drive section 126 is located on the end of the interchangeable bush 114 facing away from the threaded element 11.
  • the shaft of the electric drive 51 which is operated as a function of tool control signals from the control unit, engages the drive section 126 in order to rotate the interchangeable sleeve 114 and either screw it onto the threaded end section 11A before the clamping process, lowering the entire cylinder housing 100, or afterwards the tensioning process by unscrewing the entire cylinder housing 100 from the threaded end portion 11A again.
  • this additional height adjustment is carried out by means of the electrically driven vertical guide 34. This also works as a function of control signals, namely tool control signals, the control unit 4.
  • the controlled, motor-driven screwing on and off of the interchangeable bush 114 also takes place as a function of tool control signals from the control unit 4.
  • Figure 11 shows an embodiment in which the holding tool 70, which prevents co-rotation, and the tool 5 are arranged in a combined manner on the carriage or the tool carrier.
  • the holding tool 70 is attached to the tool carrier 20, here on its lower platform 31, and comprises two clamping jaws 130 movable towards one another with alignment to the screwing axis. Their ends here form the counter-holding surfaces 75A, 75B and are designed as shells for this purpose.
  • the radius of the shells is essentially equal to the radius of the threaded section 11A of the threaded element 11.
  • the two clamping jaws 130 are driven electrically, with the control unit 4 ( Figure 1 ) is designed to control this drive via the holding tool control signals. So that in this embodiment the counter-holding surfaces 75A, 75B press directly onto the threaded section, the drive of the holding tool 70 must generate relatively high compressive forces.
  • the counter-holding surfaces 75A, 75B can have a suitable friction lining, for example rubber, or a suitable non-smooth surface. For example, the structure of this surface can be matched to the external structure of the thread in such a way that an extensive blocking against turning is achieved.
  • the clamping jaws 130 of the holding tool 70 extend through openings 131 in the tool 5, the counter-holding surfaces 75A, 75B being located within the tool 5.
  • the clamping jaws 130 are guided in the holding tool 70 fixedly mounted on the tool carrier in such a way that they can only be moved in their clamping direction by means of the drive.
  • the openings 131 are located in the support tube 101 of the tool 5. They extend continuously to the underside 102 of the support tube 101. This ensures that the tool 5, when it is lowered for the clamping process, is not affected by the components of the holding tool 70 is prevented. Although the tool 5 and the holding tool 70 are structurally combined, their functions are separate from one another.
  • the embodiment Figure 11 makes use of the fact that between the top of the nut 12 and that threaded end section 11A, which is enclosed by the interchangeable bush 114, in practice there is often still a thread longitudinal section of approx. 5 mm. This longitudinal thread section is sufficient to prevent the threaded element 11 from rotating at the same time by means of the clamping jaws 130 moved together there.
  • the control unit 4 ( Fig. 1 ) be designed to use travel drive control signals to move the tool carrier 20, including the screw clamping cylinder 5, into a working position in which the screw clamping cylinder 5 is opposite the screw connection to be tightened, and to axially tighten the screw connection and turn the nut 12 using tool control signals to control.
  • the control unit 4 ( Fig. 1 ) designed to control the drive of the holding tool 70 via holding tool control signals.
  • Fig. 12 shows another embodiment.
  • the holding tool 70 which prevents co-rotation, is arranged centrally in the tool 5 designed as a screw tensioning cylinder.
  • the basic design of the screw tensioning cylinder itself corresponds to the embodiment Fig. 10 or Fig. 11 .
  • a rod 140 is arranged on the longitudinal axis of the interchangeable socket 114, for which purpose the interchangeable socket 114 is provided with a corresponding longitudinal bore.
  • the one-part or multi-part rod 140 is at its in Fig. 12 the lower end is provided with the holding tool 70 and is in the area of its in Fig. 12 Provided with an anti-rotation lock 141 at the upper end.
  • the anti-rotation device 141 holds the rod 140 in a rotationally fixed manner relative to the cylinder housing 100. In the exemplary embodiment, this is achieved in that a housing-fixed bolt 142 engages in a longitudinal groove 143 in the rod 140.
  • the longitudinal groove 143 extends axially over only part of the length of the 140.
  • the embodiment Fig. 12 is suitable for those screw connections in which the threaded element 11 is additionally provided with a polygon 11B on the end face of its threaded end section 11A.
  • the polygon 11B is here an axially protruding square, but can also, for. B. a hexagon or a countersunk in the threaded end portion 11A formed internal square or hexagon socket.
  • the holding tool 70 is designed as a corresponding polygon, that is to say here as an internal square, which can be coupled to the polygon 11B by a form fit. To form the holding tool 70, the lower end of the rod 140 is enlarged accordingly.
  • the holding tool 70 is axially supported against the polygon 11B under constant spring force.
  • the spring force is applied by a spring element 147, which on the one hand against the holding tool 70 or the rod 140, and on the other hand against the interchangeable socket 114 is supported.
  • the spring element 147 ensures a permanent axial pretensioning force of the holding tool 70, so that the holding tool 70 already engages securely on the polygon 11B after a short relative rotation.
  • the axial clearance required for this is ensured by the length of the longitudinal groove 143.
  • the drive 51 for rotating the interchangeable bush 114 is part of the tool 5. However, the drive does not take place centrally on the longitudinal axis, since the rod 140 is located there. Rather, the drive 51 is laterally offset, with a gear 148 in the drive path between the drive 51 and the interchangeable socket 114.
  • a component of the transmission 148 is a gearwheel 149 which is fixed against rotation with respect to the interchangeable bushing 114.
  • the gearwheel 149 has a through-opening 150 through which the rod 140 extends freely rotatably.
  • control unit 4 ( Fig. 1 ) be designed to use travel drive control signals to move the tool carrier 20 including the screw tensioning cylinder 5 into a working position in which the screw tensioning cylinder 5 is opposite the screw connection to be tightened.
  • control unit 4 can be designed to control the axial tightening of the screw connection and the turning of the nut 12 via tool control signals.
  • control unit 4 ( Fig. 1 ) be designed to control the holding tool 70 via holding tool control signals and a corresponding drive in that the rod 140 with the holding tool 70 rigidly arranged thereon is lowered onto the screw connection in a controlled manner by means of the drive and raised again in a controlled manner.
  • the function of the controlled lowering and raising of the holding tool can also be performed by the spring element 147.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Combustion & Propulsion (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)
  • Wind Motors (AREA)
  • Jigs For Machine Tools (AREA)

Description

  • Die Erfindung betrifft eine Vorrichtung zum Anziehen von Schraubverbindungen, die entlang einer einen Raum und vorzugsweise das Innere des Turms einer Windkraftanlage in Ringform umgebenden Flanschverbindung angeordnet sind und von denen sich jede Schraubverbindung aus einem Gewindeelement und einer darauf aufgeschraubten Mutter zusammensetzt, und die Mutter gegen die Flanschverbindung abgestützt ist, wobei die Vorrichtung aufweist
    • einen entlang der Flanschverbindung fahrbaren, mit einem vorzugsweise elektrischen Fahrantrieb versehenen Werkzeugträger,
    • ein an dem Werkzeugträger angeordnetes Werkzeug zum Anziehen der Schraubverbindung und Drehen der Mutter relativ zu der Flanschverbindung,
    • eine Steuereinheit welche dazu ausgebildet ist, über Fahrantrieb-Steuersignale den Werkzeugträger bis in eine Arbeitsposition zu fahren, in der das Werkzeug der jeweils anzuziehenden Schraubverbindung gegenüberliegt, und über Werkzeug-Steuersignale das Anziehen der Schraubverbindung und Drehen der Mutter durchzuführen.
  • Eine Vorrichtung mit diesen Merkmalen ist aus der EP 2 607 685 B1 bekannt. Sie dient dazu, in einer Reihe entlang eines Flansches angeordnete Schraubverbindungen festzuziehen. Jede Schraubverbindung setzt sich aus einem Gewindeelement und einer darauf aufgeschraubten Mutter zusammen, wobei die Mutter gegen die Oberseite des Flansches abgestützt ist. Zum Anziehen der Schraubverbindung und Drehen der Mutter relativ zu dem Flansch dient ein auf einem selbstfahrenden Fahrzeug angeordnetes Werkzeug. Um das Werkzeug oberhalb der jeweils anzuziehenden Schraubverbindung zu positionieren, verfügt das Fahrzeug über einen Positionssensor. Aufgrund der durch den Sensor erfassten Positionssignale wird das Fahrzeug mit dem darauf angeordneten Werkzeug so kontrolliert gefahren, bis sich aus den Signalen ergibt, dass sich das Werkzeug in axialer Ausrichtung zur Verschraubungsachse der jeweils anzuziehenden Schraubverbindung befindet. Hierzu werden die Positionssignale des Positionssensors steuerungstechnisch zu Signalen für den Antrieb des Fahrzeugs verarbeitet. Die Steuerung ist außerdem dazu ausgebildet, den Anziehvorgang zu steuern.
  • Das Positionieren des Fahrzeugs unter Auswertung der Signale des Positionssensors ist steuerungstechnisch wegen der notwendigen Genauigkeit aufwendig. Zudem kann es passieren, dass der Positionssensor, wenn dieser z.B. für das Sensieren nach oben von der Oberseite des Flansches vorstehender Strukturen ausgebildet ist, sich durch Gegenstände irritieren lässt, die nicht Bestandteil der Schraubverbindungen sind. Erforderlich ist also eine sehr gute, damit aber auch teure Sensiertechnik.
  • Der Erfindung liegt daher die Aufgabe zugrunde, durch technische Maßnahmen das Bewegen des mittels eines gesteuerten Fahrantriebs entlang der Flanschverbindung fahrbaren Werkzeugs bis in die nächste Arbeitsposition technisch weniger aufwendig und trotzdem sicher durchzuführen.
  • Zur Lösung dieser Aufgabe wird bei einer Vorrichtung mit den eingangs angegebenen Merkmalen vorgeschlagen, dass die Steuereinheit zum Anfahren der jeweiligen Arbeitsposition des Werkzeugträgers ein Wegsteuermodul mit einer Wegsteuerung umfasst, welche dazu ausgebildet ist, nach Erreichen einer vorgegebenen Weglänge als Zielgröße den Fahrantrieb anzuhalten. Die als ein Modul der Steuereinheit implementierte Wegsteuerung ist dazu ausgebildet, nach Erreichen einer in der Steuereinheit vorgegebenen Weggröße als Soll- bzw. Zielgröße den Fahrantrieb anzuhalten, und so die Fahrt des Werkzeugträgers zu unterbrechen.
  • Mit einer solchen Vorrichtung lässt sich die jeweils nächste Arbeitsposition auch ohne die Auswertung von Positionssignalen eines Positionssensors zuverlässig anfahren. Denn ein solcher Sensor arbeitet zuverlässig nur dann, wenn er in der Lage ist, Merkmale oder Strukturen, die für die anzufahrende Schraubverbindung charakteristisch sind, sicher und zuverlässig zu detektieren. Dies fehlerfrei zu erreichen, erfordert einen hohen technischen Aufwand in der verwendeten Sensierelektronik und bei der Umrechnung in Fahrsignale. Diese Art der Positionsbestimmung ist auch nicht immer fehlerfrei, da Strukturen, die nicht zu der Schraubverbindung gehören, das Sensorsignal beeinflussen können mit der Gefahr, dass die als nächstes anzuziehende Schraubverbindung nicht sicher gefunden wird.
  • Die beschriebene Vorrichtung erfordert diese Art der Sensierung nicht. Stattdessen macht sich die Erfindung die Erkenntnis zunutze, dass bei ringförmigen Flanschverbindungen, wie sie typisch sind für die Verschraubung von Turmabschnitten einer Windkraftanlage, die Positionen der Schraubverbindungen konstruktionsseitig festgelegt und damit bekannt sind. Unter Verwendung der Konstruktionsdaten lässt sich daher mit hoher Genauigkeit zumindest die relative Anordnung der Schraubverbindungen zueinander bestimmen. Denn in der Regel haben die Schraubverbindungen einen stets gleichbleibenden Abstand, also Umfangsabstand, zueinander. Ist erst einmal die Position einer ersten anzuziehenden Schraubverbindung sicher gefunden, lassen sich die Positionen aller übrigen Schraubverbindungen aufgrund geometrischer Zusammenhänge errechnen, und damit insbesondere die in Umfangsrichtung des Flansches zurückzulegenden Weglängen, d.h. Distanzen.
  • Das Anfahren der nächsten Schraubverbindung, die entweder die benachbarte Schraubverbindung sein kann oder jede andere Schraubverbindung der Flanschverbindung, erfolgt daher nicht sensorgesteuert, sondern unter Anwendung eines Fahrzeug-Steuerungsverfahrens mit Weglängen bzw. Distanzen als Sollwertvorgabe. Dazu umfasst die Steuereinheit ein Wegsteuermodul mit internen Wegstrecken- bzw. Distanzvorgaben, wobei das in dem Wegsteuermodul implementierte Fahrzeug-Steuerungsverfahren dazu ausgebildet ist, nach Erreichen der Weg- bzw. Distanzvorgabe als Zielgröße den Fahrantrieb zu stoppen, so dass an der zu diesem Zeitpunkt erreichten Arbeitsposition der Verschraubungsprozess eingeleitet werden kann, was ebenfalls abhängig von Signalen der Steuereinheit erfolgt.
  • Da die Erfindung auf einem Steuerungsverfahren mit Wegsteuerung und unter Ausnutzen der bekannten geometrischen Positionen der Verschraubungsachsen aller Schraubverbindungen aufbaut, ist in dem Wegsteuermodul frei programmierbar, in welcher Reihenfolge die Schraubverbindungen angezogen werden. Denn nicht immer ist es von Vorteil, als nächstes die jeweils benachbarte Schraubverbindung anzuziehen. Es kann auch von Vorteil sein, nach dem Anziehen einer Mutter als nächstes zum Beispiel die Mutter einer in Bezug auf das Zentrum der Flanschverbindung gegenüberliegenden Schraubverbindung anzuziehen, und so weiter.
  • Vorteilhafte, aber nicht obligatorische Ausgestaltungen der Vorrichtung sind in den Unteransprüchen angegeben.
  • So ist mit einer Ausgestaltung vorgesehen, dass der Werkzeugträger zu seiner Abstützung auf der Oberseite der Flanschverbindung mit Rollen versehen ist, die auf horizontalen Drehachsen an dem Werkzeugträger gelagert sind. Aufgabe dieser Rollen ist es vor allem, das Gewicht des Werkzeugträgers mit dem darauf angeordneten Werkzeug zu tragen.
  • Zusätzlich kann der Werkzeugträger zu seiner seitlichen Abstützung, etwa gegen die Innenwandung des Turms der Windkraftanlage, mit zusätzlichen Rollen versehen sein, die auf im Wesentlichen vertikalen Drehachsen an dem Werkzeugträger gelagert sind.
  • Vorzugsweise ist der Werkzeugträger zu seiner seitlichen Führung mit starr angebrachten Ausrichtelementen versehen, an denen eine in Fahrtrichtung sich erstreckende Ausrichtfläche ausgebildet ist, deren Flächennormale entgegengesetzt ist zu der Richtung, in die sich der Werkzeugträger über die zusätzlichen Rollen abstützt, also über die gegen die vertikale Innenwandung abgestützten Rollen. Die Ausrichtflächen befinden sich in einer Ebene, in der sie sich an den Rückseiten der freiliegenden Gewindeendabschnitte der Schraubverbindungen abstützen können. Dadurch führen die Ausrichtelemente den Wagen seitlich und verhindern, dass er seine vorgesehene Fahrlinie seitlich verlässt. Mit Wirkung in die entgegengesetzte Richtung, also nach außen, sind entsprechende Ausrichtelemente bzw. Ausrichtflächen nicht erforderlich. Denn die seitliche Führung des Wagens in diese Richtung wird bereits über die zusätzlichen Rollen erzielt.
  • Die Rollen, also jene auf horizontalen Drehachsen und jene auf im Wesentlichen vertikalen Drehachsen gelagerten Rollen, müssen nicht alle angetrieben sein. Bevorzugt ist vielmehr eine Ausgestaltung, bei der die Rollen nur zum Teil, zum Beispiel nur eine einzige Rolle, angetriebene Rollen sind. Die übrigen Rollen sind dann nicht angetriebene, mitlaufende Rollen.
  • Von Vorteil ist, wenn eine Rolle, die besonders viel Gewicht trägt, eine angetriebene Rollen ist. Daher wird mit einer Ausgestaltung vorgeschlagen, dass jede angetriebene Rolle eine jener Rollen ist, die auf horizontalen Drehachsen gelagert sind.
  • Um das Zentrieren des Werkzeugs in Bezug auf die Verschraubungsachse der jeweiligen Schraubverbindung zu vereinfachen, wird mit einer weiteren Ausgestaltung eine Kupplung, vorzugsweise eine elektromagnetische Kupplung, zwischen der oder jeder angetriebenen Rolle und einem Antriebsmotor des Fahrantriebs, welcher diese Rolle antreibt, vorgeschlagen. Wird die Kupplung getrennt bzw. ausgeschaltet, werden dadurch auch diese Rollen des Fahrzeugs frei drehbar, so dass sich das Fahrzeug in Fahrtrichtung frei und reibungsarm bewegen kann und das so entstehende Spiel die Zentrierung des Werkzeugs auf der Verschraubungsachse der jeweiligen Schraubverbindung einfacher macht.
  • In Bezug auf die genannte Kupplung ist die Steuereinheit vorzugsweise zusätzlich dazu ausgebildet, über Kupplungs-Schaltsignale die Kupplung ein- und/oder auszuschalten.
  • Um die Wegsteuerung besonders exakt und überprüfbar auszugestalten, kann mindestens eine der Rollen zwecks Drehwinkelerfassung drehfest mit einem Winkelencoder gekoppelt sein. Dieser erfasst die Drehwinkel der Rolle, woraus in der Steuereinheit die exakte, von der Rolle zurückgelegte Wegstrecke berechnet werden kann, um so zu exakten Werten bei der Wegsteuerung zum Anfahren der nächsten Schraubverbindung zu gelangen.
  • Da angetriebene Rollen oft mit einem gewissen Schlupf arbeiten, ist es von Vorteil, wenn die drehwinkelcodierte Rolle nicht eine angetriebene Rolle, sondern eine der nicht angetriebenen Rollen ist.
  • Bevorzug ist die drehwinkelcodierte Rolle eine der den Werkzeugträger seitlich abstützenden, zusätzlichen Rollen. Der Vorteil dieser Ausgestaltung liegt darin begründet, dass bei dem Turm einer Windkraftanlage die Innenwandungen in der Regel relativ glattwandig sind, so dass eine an dieser Fläche ablaufende Rolle besonders exakte und reproduzierbare Winkelwerte zeigt.
  • Sofern der Winkelencoder nicht auf derselben Achse angeordnet ist, auf der die Rolle an dem Fahrzeug gelagert ist, sollte der Winkelencoder über eine Kette oder einen mit entsprechender Schlupffreiheit arbeitenden Zahnriemen mit der drehwinkelcodierten Rolle gekoppelt sein. Im Übrigen ist auch der Winkelencoder mit der Wegsteuerung der Steuereinheit signaltechnisch verbunden.
  • Der das Fahrzeug bildende Werkzeugträger ist vorzugsweise mit einer Vertikalführung versehen, über die das Werkzeug in der Höhe verstellbar an dem Werkzeugträger gelagert ist.
  • Um das Zentrieren des Werkzeugs in Bezug auf die Verschraubungsachse der jeweiligen Schraubverbindung zu verbessern, sieht eine weitere Ausgestaltung eine Querführung mit Führungsrichtung quer zur Längserstreckung bzw. Fahrtrichtung des Werkzeugträgers vor. Über diese Querführung ist die Vertikalführung und/oder das Werkzeug horizontal verschieblich an dem Werkzeugträger gelagert. Vorzugsweise ist die Querführung besonders reibungsarm gestaltet und mit einer Federanordnung versehen, welche die Vertikalführung bzw. das Werkzeug mit einer Rückstellkraft in eine mittlere Position beaufschlagt.
  • Ferner vorgeschlagen wird ein mit der Steuereinheit vorzugsweise in einem gemeinsamen Gehäuse zusammengefasstes Dokumentationsmodul. In diesem wird für jede angezogene Schraubverbindung ein Datensatz abgespeichert. Der Datensatz umfasst
    • die individuelle Kennung der jeweiligen Schraubverbindung, wobei diese Kennung z. B. durch ein Barcode-Scannen oder einen RFID Tag an der jeweiligen Schraubverbindung erfasst wird, oder die Kennung alternativ durch die Position der jeweiligen Schraubverbindung an der Flanschverbindung bestimmt wird,
    • und/oder die tatsächlich verwendete Anzugskraft des Werkzeugs,
    • und/oder den zurückgelegten Drehwinkel der Mutter relativ zu der Flanschverbindung,
    • und/oder die gemessene Längenänderung des Gewindeelements während des Anziehvorgangs.
  • Das in der Vorrichtung verwendete Werkzeug kann z. B. ein elektrisch oder hydraulisch angetriebenes, mit einem hohem Antriebsmoment arbeitendes Schraubwerkzeug sein. Bevorzugt wird jedoch ein weitgehend torsionsfrei arbeitendes Verfahren zum Anziehen der Schraubverbindungen. Ein solches Anziehen wird ermöglicht, wenn das Werkzeug ein bezüglich der jeweiligen Schraubverbindung axial arbeitender Schraubenspannzylinder ist.
  • Solche Schraubenspannzylinder sind bekannt. Sie arbeiten üblicherweise mit Hydraulikkraft, sind mit einem einen hydraulischen Arbeitsraum umgebenden Zylindergehäuse versehen sowie einer in dem Zylindergehäuse drehbar angeordneten Wechselbuchse, welche mit einem Gewindeendabschnitt der Schraubverbindung verschraubbar ist. Bestandteil eines solchen Schraubenspannzylinders ist ferner eine Drehhülse zum formschlüssigen Mitnehmen, d.h. Drehen der Mutter, während das Gewindeelement der Schraubverbindung durch den Hydraulikdruck leicht gedehnt ist.
  • Im Fall der Verwendung eines Schraubenspannzylinders als Werkzeug ist dieser mit einem elektrischen Antrieb für das Drehen der Wechselbuchse versehen. Außerdem kann der Schraubenspannzylinder mit einem zweiten elektrischen Antrieb versehen sein. Dieser ist für das Drehen der Drehhülse und damit das Anlegen der Mutter verantwortlich, und ist zusätzlich auch für ein vertikales Einstellen des Schraubenspannzylinders relativ zu dem Werkzeugträger ausgebildet.
  • Aufgrund der hohen Anzahl Verschraubungen und der erforderlichen Drücke von bis zu 300 bar ist es für die Zuverlässigkeit der Nebenaggregate erforderlich, diese entsprechend haltbar und stabil auszuführen, woraus ein hohes Gewicht resultiert.
  • Daher ist es für die Exaktheit der Wegsteuerung von zusätzlichem Vorteil, wenn diese Nebenaggregate der Vorrichtung, z. B. ein Energiemodul, nicht auf dem Werkzeugträger angeordnet sind, sondern räumlich getrennt von diesem. Eine Ausgestaltung der Vorrichtung ist daher gekennzeichnet durch eine von einer Hydraulikpumpe zu dem hydraulischen Arbeitsraum des Schraubenspannzylinders führende Hydraulikleitung. Die Hydraulikpumpe ist getrennt von dem Schraubenspannzylinder und dem Fahrzeug, auf dem der Schraubenspannzylinder angeordnet ist, an einem Ort stationär angeordnet und ist Bestandteil eines Energiemoduls.
  • Gemäß einer weiteren Ausgestaltung der Vorrichtung ist die Steuereinheit an dem Energiemodul angeordnet und zum Beispiel mit diesem gemeinsam auf einem Träger angeordnet. Zu der Übertragung der Fahrantrieb-Steuersignale und der Werkzeug-Steuersignale führt eine elektrische Signalleitung von der Steuereinheit zu dem Werkzeugträger, wobei die Signalleitung zumindest auf einer Teillänge mit der Energieversorgungsleitung mechanisch verbunden sein kann.
  • Ferner vorgeschlagen wird ein schwenkbewegliches Gestell mit einer oder mehreren senkrechten Schwenkachsen, wobei das Gestell zu seiner Befestigung mit Befestigungsmitteln versehen ist, und ein Längsabschnitt der Energieversorgungsleitung in das Gestell eingehängt ist.
  • Vorzugsweise ist das schwenkbewegliche Gestell ausgebildet, die Energieversorgungsleitung über einen Drehwinkel von annähernd 360° zu stützen.
  • Vorzugsweise weist der Werkzeugträger eine Hindurchführung für die Energieversorgungsleitung auf, wobei sich die Hindurchführung an einem Schieber befindet, welches beweglich an dem Werkzeugträger angeordnet ist, vorzugsweise in Fahrtrichtung des Werkzeugträgers beweglich.
  • Weitere Einzelheiten und Vorteile ergeben sich aus der nachfolgenden Beschreibung eines auf der Zeichnung dargestellten Ausführungsbeispiels. Darin zeigen:
  • Figur 1:
    ein perspektivischer Blick in zwei miteinander verbundene, ringförmige Abschnitte des Turms einer Windkraftanlage, wobei die Abschnitte nur als Hälfte auf jener Länge des Turms wiedergegeben sind, auf dem sie über eine ringförmige Flanschverbindung mit einer Vielzahl von Schraubverbindungen verbunden sind;
    Figur 2:
    einen horizontalen Schnitt, hier mit Darstellung des vollen Umfangs der ringförmigen Turmabschnitte;
    Figur 3:
    eine als Wagen ausgebildete verfahrbare Einheit der Vorrichtung zum Anziehen von Schraubverbindungen in perspektivischer Darstellung;
    Figur 4:
    die verfahrbare Einheit in einer Ansicht;
    Figur 5:
    die verfahrbare Einheit in einer Draufsicht;
    Figur 6:
    in einer Einzeldarstellung ein in der verfahrbaren Einheit angeordnetes Gestell einschließlich einem darin angeordneten Werkzeug;
    Figur 7:
    das Gestell in einer Ansicht;
    Figur 8:
    in einer Einzeldarstellung ein Haltewerkzeug, an dessen unterem Ende ein Werkzeug zum Gegenhalten beim Anziehen der Schraubverbindung angeordnet ist;
    Figur 9:
    das Haltewerkzeug in einer Ansicht;
    Figur 10:
    an einem Teilschnitt ein hydraulisches Werkzeug zum Anziehen von Schraubverbindungen, wobei das Werkzeug in einer Stellung wiedergegeben ist, in der es bis auf die Oberseite der Flanschverbindung abgesenkt ist und auf dieser aufsitzt, und
    Figur 11:
    den unteren Teil des hydraulischen Werkzeugs in einer Ausführungsform, bei der das Haltewerkzeug mit dem Werkzeug kombiniert ist.
  • Die Vorrichtung zum Anziehen von Schraubverbindungen setzt sich zusammen aus einer verfahrbaren Einheit 1, einer räumlich getrennt angeordneten stationären Einheit 2 und einem Leitungsstrang, insbesondere einem Versorgungs- und Signalstrang 3, zwischen der verfahrbaren Einheit 1 und der stationären Einheit 2. Bestandteil der verfahrbaren Einheit 1 ist ein Werkzeug 5 zum Anziehen von Schraubverbindungen. Das Werkzeug ist bei dem hier näher beschriebenen Ausführungsbeispiel ein hydraulisch betriebener Schraubenspannzylinder 5. In der stationären Einheit 2 befindet sich die Energieversorgung der Vorrichtung. Ferner ist Bestandteil der stationären Einheit 2 eine elektronische Steuereinheit 4, die wiederum unter anderem ein Wegsteuermodul 4A und ein Dokumentationsmodul 4B umfasst. In dem Dokumentationsmodul 4B wird für jede einzelne angezogene Schraubverbindung ein Datensatz abgespeichert, der so eine spätere Überprüfung der wichtigsten Kenndaten des Verschraubungsprozesses ermöglicht.
  • Das Werkzeug 5 ist höheneinstellbar auf einem mittels eines Antriebs verfahrbaren Wagen 6 angeordnet. Der Wagen 6 ist daher der Werkzeugträger der Vorrichtung.
  • Der Wagen bzw. Werkzeugträger ist mittels daran gelagerter Laufrollen dafür eingerichtet, an einer ringförmigen Flanschverbindung 7 entlang, welche Bestandteil einer turmförmigen Windkraftanlage ist, in verschiedene Umfangspositionen zu fahren, um an jeder dieser Positionen eine dortige Schraubverbindung anzuziehen, nachzuziehen oder auch zu lösen.
  • Die Flanschverbindung 7 ist hier ein Doppelflansch aus einem oberen Ringflansch 7A und einem vorzugsweise flächig daran anliegenden unteren Ringflansch 7B. Der obere Ringflansch 7A befindet sich am unteren Rand eines oberen ringförmigen Turmabschnitts 8A. Der untere Ringflansch 7B befindet sich am oberen Rand eines unteren Turmabschnitts 8B. Die Turmabschnitte 8A, 8B bilden, gemeinsam mit weiteren, ähnlichen Turmabschnitten, den vertikalen Turm einer Windkraftanlage. Solche Windkraftanlagen mit Höhen bis zu 150 m bestehen aus montagetechnischen Gründen aus Turmabschnitten. Diese sind im Wesentlichen zylindrisch und umschließen einen kreisförmigen, von der Flanschverbindung 7 umgebenen Raum 9. Die Turmabschnitte können sich nach oben hin konisch verjüngen.
  • Die Turmabschnitte sind miteinander verschraubt, indem an dem jeweils oberen Turmabschnitt 8A der Ringflansch 7A, und an dem jeweils unmittelbar darunter angeordneten Turmabschnitt 8B der Ringflansch 7B angeformt ist. Die so aus zwei Ringflanschen bestehende Flanschverbindung 7 wird durch eine Vielzahl von Schraubverbindungen zusammengehalten. Diese sind in jeweils gleichen Abständen über den Umfang verteilt angeordnet.
  • Jede Schraubverbindung 10 besteht aus einem bolzenartigen Gewindeelement 11 und einer auf den Gewindeabschnitt des Gewindeelements 11 aufgeschraubten Gewindemutter 12. Die Gewindemutter 12 stützt sich mit ihrer Unterseite auf der vorzugsweise flachen Oberseite des Ringflanschs 7A ab.
  • Das Gewindeelement 11 ist beim Ausführungsbeispiel in der Weise ausgebildet, dass es sich wie eine Schraube mit einem radial erweiterten Bund oder Kopf von unten her gegen den unteren Ringflansch 7B der Flanschverbindung 7 abstützt.
  • Zwischen der Gewindemutter 12 und dem oberen Ringflansch 7A kann sich, wie bei Schraubverbindungen üblich, zusätzlich eine Unterlegscheibe befinden.
  • Die Schraubverbindungen 10 sind um den Raum 9 herum gleichmäßig, d.h. in gleichen Abständen entlang der Flanschverbindung 7 verteilt angeordnet. Der Umfangsabstand der Verschraubungsachse einer Schraubverbindung zu der Verschraubungsachse der unmittelbar folgenden Schraubverbindung ist also stets derselbe. Sofern daher der auf das Zentrum des Raums 9 bezogene Radius des Rings, auf dem sich die Achsen der Schraubverbindungen 10 befinden, bekannt ist und ebenso die Gesamtzahl der Schraubverbindungen, lassen sich die Distanzen in Umfangsrichtung zwischen den Achsen der Schraubverbindungen rechnerisch ermitteln. Diese geometrischen Vorgaben werden genutzt, um den Wagen 6 mit dem darauf angeordneten Werkzeug 5 entlang der Erstreckung des Flansches 7 in einzelne Arbeitspositionen zu verfahren, wobei jede Arbeitsposition dadurch gekennzeichnet ist, dass sich das Werkzeug 5 über und in Fluchtung zu der Achse der jeweils anzuziehenden Schraubverbindung 10 befindet.
  • Das in der Vorrichtung verwendete Werkzeug 5 kann ein hydraulischer Drehmomentschrauber, ein elektrischer Drehschrauber oder ein Schraubenspannzylinder sein.
  • Nachfolgend anhand der Figur 10 näher beschrieben wird hierzu die Variante des Schraubenspannzylinders. Dieser zeichnet sich vor allem beim Nachziehen von Schraubverbindungen dadurch aus, dass ein weitgehend torsionsfreies Schraubenspannverfahren erreicht wird, also ohne das Auftreten größerer Torsionskräfte über der Schraubenlänge. Hierzu wird nicht unmittelbar die Mutter 12 mit hohem Anzugsmoment gedreht, sondern es wird, zum Beispiel durch hydraulische Kräfte, das Gewindeelement 11 in seiner Längsrichtung gedehnt, wodurch die Unterseite der Mutter 12 von dem Ringflansch 7A freikommt. In dem so gedehnten Zustand wird die Mutter 12 mit relativ geringem Drehmoment nachgezogen. Ein solcher Schraubenspannzylinder 5 und ein solches Schraubenspannverfahren unter Längung des Gewindeelements 11 werden später noch näher beschrieben.
  • Sämtliche Schraubverbindungen 10 erstrecken sich mit ihren Verschraubungsachsen rechtwinklig zur Oberseite des Ringflansches 7A und parallel zu der zentralen Hauptachse der Turmabschnitte 8A, 8B.
  • Grundelement der verfahrbaren Einheit 1 ist der Werkzeugträger 20. Damit dieser entlang der Flanschverbindung in einzelne Arbeitspositionen verfahren werden kann, ist der Werkzeugträger 20 mit mehreren Laufrollen versehen, die teils angetrieben sind und so den Werkzeugträger 20 vorwärtsbewegen, und die teils nicht angetrieben sind, also beim Verfahren nur mitrollen.
  • Bei dem hier wiedergegebenen Ausführungsbeispiel sind zwei Rollen 21A, 21B vorhanden, über die der Werkzeugträger 20 auf der Oberseite der Flanschverbindung 7 abgestützt ist. Die Rollen 21A, 21B sind auf horizontalen Drehachsen an dem Werkzeugträger 20 gelagert. Die Rolle 21A ist eine angetriebene Rolle, hingen die Rolle 21B eine frei mitlaufende Rolle. Die Rollen 21A, 21B tragen den überwiegenden Teil der Gewichtskräfte des Werkzeugträgers 20 und der darauf angeordneten Aggregate einschließlich des Werkzeugs 5. Da die Rollen 21A, 21B stark gewichtsbelastet sind, bietet es sich an, dass zumindest eine dieser Rollen, hier die Rolle 21A, die Antriebsrolle ist.
  • Ein elektrischer Antriebsmotor 24 treibt die Rolle 21A an und bildet mit dieser gemeinsam den Fahrantrieb der Vorrichtung. Der Antriebsmotor 24 des Fahrantriebs sitzt nicht auf derselben Welle wie die angetriebene Rolle 21A, vielmehr überträgt ein Zahnriemen oder eine Kette die Drehung des Antriebsmotors 24 in eine gleiche, übersetzte oder untersetzte Drehung der Antriebsrolle 21A. Jedoch kann, soweit genügend Platz vorhanden ist, der Antriebsmotor 24 auf derselben Welle wie die Rolle 21A angeordnet sein. Der Antriebsmotor 24 des Fahrantriebs erhält Fahrantriebs-Steuersignale von der Steuereinheit 4.
  • Im Antriebsweg zwischen Antriebsmotor 24 und Rolle 24A ist eine schaltbare Kupplung 25 angeordnet, vorzugsweise eine elektromagnetische Kupplung. Die Kupplung 25 erhält ihre Kupplungs-Schaltsignale ebenfalls von der elektronischen Steuereinheit 4. Wird die Kupplung 25 getrennt bzw. ausgeschaltet, wird dadurch die Rolle 24A frei drehbar, so dass sich der Werkzeugträger 20 in Fahrtrichtung frei bewegen kann und das so mögliche Spiel die Zentrierung des Werkzeugs 5 zu der Verschraubungsachse der jeweiligen Schraubverbindung 10 vereinfacht.
  • An dem Werkzeugträger 20 sind außerdem, allerdings auf im Wesentlichen vertikalen Drehachsen gelagert, Rollen 22 gelagert. Diese zusätzlichen Laufrollen stützen den Wagen gegen die Innenwand 23 des Turmabschnitts ab. Die Rollen 22 sind, verglichen mit den Rollen 21A, 21B, nur wenig gewichtsbelastet. Gleichwohl sind sie gegen die Innenwand 23 abgestützt, was durch eine Anordnung der Rollen 21A, 21B erreicht wird, bei der sich der Gewichtsschwerpunkt des Wagens weiter außen als die Rolllinie der Rollen 21A, 21B befindet.
  • Die zusätzlichen Rollen 22 sind nicht angetriebene, also nur mitlaufende Rollen. Vorzugsweise ist zumindest eine der Rollen 22 schlupffrei mit einem Winkelencoder 26 gekoppelt. Der Winkelencoder 26 ermöglicht die Sensierung von Winkelsignalen der Rolle. Aus den Winkelsignalen errechnet der Prozessor der elektronischen Steuereinheit 4 die Wegstrecke des Werkzeugträgers 20 längs der Innenwand 23. Daraus wiederum lässt sich rechnerisch mittels des Prozessors bestimmen und überprüfen, welche Distanzen der Werkzeugträger 20 längs des Rings, auf dem die Verschraubungen 10 angeordnet sind, zurücklegt oder zurückgelegt hat.
  • Zur Seitenführung des Wagens 6 ist unten am Werkzeugträger 20 ein vorzugsweise zweimal vorhandenes Ausrichtelement 30 befestigt. Das Ausrichtelement 30 ist mit einer sich in Fahrtrichtung erstreckenden Ausrichtfläche 30A versehen, deren Flächennormale nach innen und daher entgegengesetzt zu der Richtung weist, in die sich der Werkzeugträger über die zusätzlichen Rollen 22 abstützt. Die Ausrichtflächen 30A sind in solcher Höhe an dem Wagen 6 angeordnet, dass sie sich im Betrieb auf der Höhe der Gewindeendabschnitte 11A der Gewindeelemente 11 und oberhalb der Mutter 12 befinden. Sie befinden sich ferner geringfügig auswärts der Gewindeendabschnitte 11A, an denen sie sich abstützen können. Dies hat bei der Fahrt des Wagens 6 zur Folge, dass dieser an der Rückseite der Gewindeendabschnitte 11A abgestützt ist, so dass der Wagen 6 die durch die Rollen 21A, 21B vorgegebene Lauflinie nicht nach innen verlassen kann. In die andere Richtung, d. h. nach außen, bewirken bereits die zusätzlichen Rollen 22 die notwendige Seitenführung des Wagens.
  • Bestandteile des angetriebenen Werkzeugträgers 20 sind eine untere Plattform 31 und eine zu der unteren Plattform 31 fest angeordnete obere Plattform 32. Unter der unteren Plattform 31 sind die Rollen 21A, 21B abgestützt. Zum einfachen Anheben und Transportieren des kompletten Wagens 6 sind an der oberen Plattform 32 Ösen befestigt, in die sich ein Kranhaken einklinken lässt.
  • Auf einer Fläche an der Oberseite der unteren Plattform 31 ist ein das Werkzeug 5 aufnehmendes Gestell 33 abgestützt. Das Gestell 33 ist als eine Vertikalführung 34 zur Höhenverstellung des Werkzeugs 5 ausgebildet.
  • An der Oberseite der Plattform 31 einerseits und am Boden des Gestells 33 andererseits sind Elemente einer Querführung 35 mit Führungsrichtung quer zur Längsrichtung und damit Fahrtrichtung des Werkzeugträgers 20 vorhanden. Über die reibungsarm arbeitende Querführung 35 ist das Gestell 33 und damit das darin angeordnete Werkzeug 5 verschieblich auf der Plattform 31 gelagert, und zwar mit Verschiebemöglichkeit quer zur Fahrtrichtung des Werkzeugträgers.
  • Die Verschiebemöglichkeit des Gestells 33 relativ zu der Plattform 31 kann durch eine Federanordnung 36 ergänzt sein, welche, bei Fehlen von Querkräften, das Gestell 33 in Bezug auf die Plattform 31 in einer Mittelstellung hält. Wirken also keine Querkräfte auf das Werkzeug 5 und damit auf das Gestell 33, kehrt dieses, geführt durch die Querführung 35 und unter der Kraft der Federanordnung 36, selbsttätig in die Mittelstellung zurück.
  • Das Gestell 33 bildet zugleich eine Vertikalführung 34 für die Höhenverstellung des Werkzeugs 5. Hierzu setzt sich das Gestell zusammen aus der verschieblich auf der Plattform 31 aufliegenden und in der Querführung 35 geführten Gestellbasis 41, aus starr an der Gestellbasis befestigten, vertikalen Führungsstangen 42, aus einem die oberen Enden dieser Stangen verbindenden oberen Gestellrahmen 49 sowie aus einem durch Motorantrieb in der Höhe verstellbaren Gestellrahmen 50. Der auf und ab bewegliche Gestellrahmen 50 wird durch die Führungsstangen 42 der Vertikalführung 34 geführt. An dem Gestellrahmen 50 ist das Werkzeug 5 fixiert.
  • Für den eigentlichen Spannprozess arbeitet das Werkzeug 5 zwar hydraulisch. Für einen automatischen Werkzeugbetrieb sind jedoch auch mindestens zwei elektrische Antriebe 51, 52 vorhanden. Beide Antriebe 51, 52 arbeiten in Abhängigkeit von Werkzeug-Steuersignalen der Steuereinheit. Der erste elektrische Antrieb 51 treibt eine drehbar in dem Schraubenspannzylinder angeordnete Wechselbuchse an. Er befindet sich vorzugsweise oben auf dem Zylindergehäuse des Schraubenspannzylinders. Der zweite elektrische Antrieb 52 ist weiter unten und vorzugsweise an dem höhenverstellbaren Gestellrahmen 50 angeordnet.
  • Der zweite elektrische Antrieb 52 treibt eine Drehhülse an, durch welche die Gewindemutter 12 mittels Formschluss in Drehung versetzbar ist. Zusätzlich kann der zweite Antrieb 52 dafür ausgebildet sein, den Gestellrahmen 50 und damit das Werkzeug 5 gegenüber dem Gestell 33 zu heben und zu senken, was beim Ausführungsbeispiel über einen parallel zu den Führungsstangen 42 angeordneten Gewindetrieb 56 erreicht wird, mit dem die Antriebswelle des zweiten Antriebs 52 koppelbar ist.
  • Der zweite Antrieb 52 hat daher zwei Funktionen. Abhängig von entsprechenden Werkzeug-Steuersignalen der Steuereinheit ist er entweder mit der Drehhülse oder mit dem Gewindetrieb 56 koppelbar.
  • Beim Anziehen, Nachziehen oder auch Lösen der Schraubverbindungen 10 kann es prinzipiell passieren, dass die Gewindeelemente 11 ungewollt mitdrehen. Um dies während des Spannprozesses zu verhindern, ist an dem Werkzeugträger 20 außer dem Anzugswerkzeug noch ein als Gegenhalter dienendes Haltewerkzeug 70 angeordnet. Bestandteil des Haltewerkzeugs 70 ist mindestens eine Gegenhaltefläche 75, welche gegen eine Fläche an dem radial erweiterten Abschnitt des Gewindeelements 11 abstützbar ist, zum Beispiel an die Fläche eines Sechskants, mit dem das Gewindeelement 11 unterhalb der Flanschverbindung 7 versehen ist. Der dadurch bewirkte Formschluss verhindert das Mitdrehen des Gewindeelements 11 während des Anziehens, Nachziehens oder des Lösens der Schraubverbindung 10.
  • Um die Gegenhaltefläche 75 in Eingriff mit der Fläche an dem radial erweiterten Abschnitt des Gewindeelements 11 zu bringen, ist an der unteren Plattform 31 ein elektrischer Antrieb 77 zum Hin- und Zurückbewegen des Haltewerkzeugs 70 zwischen einer passiven Position und einer aktiven Position, der Gegenhalteposition, angeordnet. Nur in der aktiven Position gelangt die Gegenhaltefläche 75 zur Anlage an der entsprechenden Fläche und insbesondere Sechskantfläche des Gewindeelements 11. Der Prozessor der Steuereinheit 4 ist dazu ausgebildet, über Haltewerkzeug-Steuersignale den elektrischen Antrieb 77 zu steuern.
  • Der Werkzeugabschnitt 79 des Haltewerkzeugs 70 ist bei der dargestellten Ausführungsform nach Art eines Maulschlüssels mit zwei einander gegenüberliegend angeordneten und zueinander parallelen Gegenhalteflächen 75 gestaltet.
  • Der Antrieb 77 des Haltewerkzeugs 70 arbeitet hier quer zu den Achsen der Schraubverbindungen. Der Antrieb 77 zum Hin- und Zurückbewegen des Haltewerkzeugs 70 ist bei der hier beschriebenen Ausführungsform als Zahnstangenantrieb ausgebildet. Alternativ besteht die auf der Zeichnung nicht dargestellte Möglichkeit, dass der Antrieb des Haltewerkzeugs parallel zu der Achse der Schraubverbindung 10 arbeitet, also vertikal.
  • Das Haltewerkzeug 70 umfasst einen antriebsseitig mit dem Antrieb 77 verbundenen Werkzeuggrundkörper 78 sowie den Werkzeugabschnitt 79 mit den daran ausgebildeten Gegenhalteflächen 75. Der Werkzeugabschnitt 79 ist entgegen der Kraft einer Feder 80 beweglich an dem Werkzeuggrundkörper 78 geführt. Wird daher das Haltewerkzeug 70 gegen das Gewindeelement 11 gefahren, hält die Feder 80 den Werkzeugabschnitt 79 solange zurück, bis diese Teile eine den Formschluss ermöglichende Drehlage zueinander eingenommen haben. Denn durch Relativdrehung der beteiligten Teile ist irgendwann eine Drehlage erreicht, in der die Gegenhalteflächen 75 unter Federdruck sicher und formschlüssig einrasten können und dabei in Eingriff gelangen.
  • Bei unbelastetem Werkzeugabschnitt 79, also ohne Anlage oder Formschluss an dem Gewindeelement, ist der Werkzeugabschnitt 79 unter der Kraft der Feder 80 gegen einen Anschlag 81 abgestützt, der sich an dem Werkzeuggrundkörper 78 befindet.
  • Da die Rollen 21A, 21B eine Aufstandsebene E des Wagens bzw. des Werkzeugträgers 20 definieren, befindet sich der Antrieb 77 des Haltewerkzeugs 70 oberhalb dieser Aufstandsebene E, wobei der Antrieb vorzugsweise an der Plattform 31 befestigt ist. Von dort erstreckt sich der Werkzeuggrundkörper 78 über die Aufstandsebene E hinweg bis hinab zu dem Werkzeugabschnitt 79. Dieser befindet sich in einer Höhe unterhalb der Flanschverbindung 7.
  • Die Länge des Werkzeuggrundkörpers 78 und damit die Grundposition des Werkzeugabschnitts 79 ist von Hand einstellbar. Die so eingestellte Position ist mittels einer Klemmschraube gesichert.
  • Auch der Antrieb 77 des Haltewerkzeugs 70 wird durch Steuersignale der Steuereinheit 4 gesteuert, nämlich durch Haltewerkzeug-Steuersignale. Die Steuerung ist in der Weise, dass das Haltewerkzeug 70 frühestens dann aus seiner Ruhestellung in seine aktive Position bewegt wird, wenn der Werkzeugträger 20 eine Arbeitsposition eingenommen hat, in der die Achse des Werkzeugs 5 zu der Achse des jeweiligen Gewindeelements 11 fluchtet.
  • Im Praxisbetrieb der Vorrichtung wird die stationäre Einheit 2 räumlich getrennt von der verfahrbaren Einheit 1, also dem Wagen, an einem geeigneten Ort innerhalb des Raums 9 platziert. Dieser Ort kann z. B. ein Zwischenboden sein oder eine fest montierte Leiter für das Servicepersonal, welche einzelne Ebenen des Turms verbindet. Vorzugsweise aber wird die stationäre Einheit 2 möglichst zentral innerhalb des Raums 9 platziert. Daher ist es erforderlich, über den geeigneten Versorgungs- und Signalstrang 3 die Aggregate und Einrichtungen der stationären Einheit 2 mit dem Wagen 6 zu verbinden. Zu der stationären Einheit 2 gehören Beispiel ein Energiemodul 88 bzw. Energiemodule zur Energieversorgung des Fahrantriebs, des Werkzeugs 5 einschließlich aller seiner Funktionen, und des Haltewerkzeugs 70.
  • Auch die Steuereinheit 4 ist Bestandteil der stationären Einheit 2. Die Steuereinheit 4 ist unter anderem dazu ausgebildet, über Fahrantrieb-Steuersignale den Werkzeugträger 20 in Längsrichtung des Werkzeugträgers 20 bis in eine Arbeitsposition zu fahren, in der das Werkzeug 5 der jeweils anzuziehenden Schraubverbindung gegenüberliegt, und über Werkzeug-Steuersignale das Anziehen der Schraubverbindung und Drehen der Mutter durchzuführen.
  • Vorzugsweise ist die Steuereinheit 4 an dem Energiemodul 88 angeordnet, oder mit diesem gemeinsam auf einem Träger angeordnet. Bei der Ausführungsform nach den Figuren 1 und 2 ist die stationäre Einheit 2 zu einer Box zusammengefasst. Laufrollen unter der Box sowie Handgriffe an der Box erleichtern deren Handhabung beim Transport.
  • Für die Energieversorgung führen Energieversorgungsleitungen von dem Energiemodul 88 zu dem Werkzeugträger 20. Hierzu zählen z.B. Stromkabel für die elektrische Versorgung der verschiedenen elektrischen Antriebe des Werkzeugträgers 20, des Werkzeugs 5 und des Haltewerkzeugs 70. Auch ein elektrischer Stromverteiler kann Bestandteil des Energiemoduls 88 sein.
  • Zu den Versorgungssträngen zählen ferner eine Hydraulikleitung 87 zur Versorgung des hydraulisch angetriebenen Werkzeugs 5. Auch die zugehörige Hydraulikpumpe 86 ist Bestandteil der stationären Einheit 2.
  • Zur Übertragung der Fahrantrieb-Steuersignale, der Werkzeug-Steuersignale, der Haltewerkzeug-Steuersignale und der Kupplungs-Schaltsignale besteht ferner mindestens eine Signalleitung zwischen der Steuereinheit 4 und dem Werkzeugträger 20. Die Signalverbindung kann allerdings auch kabellos bzw. drahtlos sein.
  • Die genannten, als Versorgungs- und Signalstrang 3 zusammengefassten Leitungen zwischen stationärer Einheit 2 und dem Wagen 6 sind, soweit möglich und zumindest auf einer Teillänge, parallel bzw. miteinander mechanisch verbunden geführt.
  • Für das Führen des Strangs 3 ist Bestandteil der Vorrichtung ein möglichst zentral in dem Raum 9 installiertes Schwenkgestell 95 mit einer oder mehreren senkrechten Schwenkachsen. Das Schwenkgestell 95 ist zu seiner Befestigung innerhalb des Raums 9 mit Befestigungsmitteln, z. B. anschraubbaren Haltern, versehen. Der Versorgungs- und Signalstrang 3 ist in das Schwenkgestell 95 eingehängt. Dieses ist dafür ausgebildet, den Strang 3 innerhalb des Raums 9 über einen Drehwinkel von mindestens annähernd 360° zu stützen, so dass der Strang 3 der Bewegung des Wagens 6 über den gesamten Umfang des Flansches folgen kann.
  • Damit Einbauten und Hindernisse in dem Raum 9 die Bewegung des Strangs 3 über volle 360° nicht beeinträchtigen, ist an dem Werkzeugträger 20 die Möglichkeit geschaffen, den dort endenden Abschnitt des Versorgungs- und Signalstrangs 3 relativ zu dem Werkzeugträger 20 in Fahrtrichtung zu verlagern. Dazu ist der Werkzeugträger 20 an seiner oberen Plattform 32 mit einem in Fahrtrichtung des Werkzeugträgers 20 beweglichen Schieber 96 versehen. Der Schieber 96 ist mit einer Öffnung versehen, durch die hindurch der Strang 3 in das Innere des Wagens bzw. Werkzeugträgers 20 gelangt. Der Schieber 96 mit der Öffnung ist frei beweglich, so dass je nach Stellung des Schiebers der Strang 3 eher vorne oder eher hinten in das Innere des Wagens führt.
  • Fig. 10 zeigt den hier das Werkzeug bildenden, hydraulisch zu betreibenden Schraubenspannzylinder 5, welcher dem Anziehen, vor allem Nachziehen, und ggf. auch dem Lösen der in den Figuren 1 und 2 wiedergegebenen Schraubverbindungen 10 dient. Dargestellt ist der Schraubenspannzylinder in seiner Betriebsstellung vor dem Aufbringen von Hydraulikdruck. In dieser Stellung ist er soweit abgesenkt, dass mit sich mit seiner Unterseite 102 auf dem Ringflansch 7A abstützt.
  • Mit dem Schraubenspannzylinder 5 lässt sich in Bolzenlängsrichtung eine vorgegebene Vorspannkraft auf das Gewindeelement 11 aufbringen, wodurch sich das Gewindeelement 11 etwas dehnt, um währenddessen die Gewindemutter 12 der Schraubverbindung anzuziehen bzw. nachzuziehen.
  • Eine in einem Zylindergehäuse 100 des Schraubenspannzylinders 5 drehbar angeordnete Wechselbuchse 114 ist an ihrem einen Ende mit einem Innengewinde 116 versehen. Mit diesem Gewinde wird die Wechselbuchse 114 vor Beginn des Spannprozesses durch Drehen der Wechselbuchse 114 auf jenen freien Gewindeendabschnitt 11A des Gewindeelements 11 aufgeschraubt, der nach oben über die Mutter 12 hinausragt. Mit diesem Aufschrauben der Wechselbuchse 114 geht auch ein entsprechendes Absenken des ganzen Schraubenspannzylinders 5 bis zur Auflage der Unterseite 102 auf dem Ringflansch 7A einher, da die Wechselbuchse kein oder nur ein geringes Längsspiel relativ zu dem Zylindergehäuse 100 hat. Anschließend wird die so mit dem Gewindeelement 11 verschraubte Wechselbuchse 114 hydraulisch unter Zug gesetzt, wodurch sich die Verschraubung in Längsrichtung dehnt. Die Aufstandsfläche 12A der Gewindemutter 12 kommt dadurch frei, so dass sich die Gewindemutter 12 dann mit nur wenig Drehwiderstand drehen und auf diese Weise gegen die Unterlage, also gegen den Ringflansch 7A und ggf. gegen eine Unterlegscheibe anziehen bzw. Nachziehen lässt.
  • Der hydraulische Spannmechanismus befindet sich in dem druckfesten Zylindergehäuse 100. Dieses kann sich auch modulartig aus mehreren Zylinderabschnitten zusammensetzen. Die starre Fortsetzung des Zylindergehäuses 100 ist ein Stützrohr 101. Dieses ist entweder wie dargestellt selbst Teil des Zylindergehäuses 100, oder ein separates Bauteil. Das Stützrohr 101 ist zu der Schraubverbindung hin offen, umgibt dabei die Gewindemutter 12 und stützt sich mit der Unterseite 102 gegen die Oberseite des Ringflanschs 7A ab. Dieser bildet daher beim Spannprozess das Widerlager. Der Spannprozess erfolgt durch Zug der Wechselbuchse 114 an dem Gewindeendabschnitt 11A, wobei zum Nachziehen der Mutter 12 diese nach unten geschraubt wird, bis sie mit ihrer Aufstandsfläche 12A wieder fest gegen den Flansch 7A anliegt.
  • Das Stützrohr 101 ist mit mindestens einer Öffnung versehen, die von solcher Größe ist, dass sich durch die Öffnung hindurch die Mutter 12 drehen und damit nachziehen lässt. Dies ist natürlich nur möglich, wenn zugleich die Spannvorrichtung arbeitet, und daher die Mutter 12 nicht durch erhebliche Reibung belastet ist. Das Drehen der Gewindemutter 12 erfolgt mittels einer die Mutter umschließenden Drehhülse 110. Angetrieben wird die Drehhülse 110 durch ein Getriebe 111, welches seitlich an dem Stützrohr 101 angebracht ist und durch dessen Öffnung hindurch arbeitet.
  • Das Zylindergehäuse 100 ist mit einem Hydraulikanschluss 112 versehen, über den ein hydraulischer Arbeitsraum 118 im Inneren des Werkzeugs über die flexible, aber druckfeste Hydraulikleitung 87 mit einer Hydraulikpumpe 86 verbunden ist (Fig. 1). Die Hydraulikpumpe 86 ist Bestandteil der stationären Einheit 2.
  • Über den Hydraulikanschluss 112 gelangt unter hohem Druck stehendes Hydraulikfluid in den Arbeitsraum 118, wodurch ein längsbeweglich in dem Zylindergehäuse 100 gelagerter Kolben 115 mit Hydraulikdruck beaufschlagt wird. Durch den Aufbau von Hydraulikkraft in dem hydraulischen Arbeitsraum 118 wird der Kolben 115 hochgedrückt. Dies erfolgt entgegen der Kraft einer den Kolben 115 beaufschlagenden Feder 117. Die Feder 117 dient als Kolbenrückstellfeder und beaufschlagt den Kolben 115 unmittelbar mit einer Kraft die bestrebt ist, den Kolben in seiner Grundstellung zu halten, in der der hydraulische Arbeitsraum 118 sein kleinstes Volumen hat.
  • Der Kolben 115 umgibt in Ringform die Wechselbuchse 114. Der Kolben 115 ist an seinem Innenrand mit einer umlaufenden Stufe versehen, die eine Mitnehmerfläche 121 bildet, an der sich die Wechselbuchse 114 mit einem radial erweiterten Abschnitt 125 abstützt. Dadurch ist die Wechselbuchse 114 durch den Kolben 115 mitnehmbar. Ohne Druckbelastung ist die Wechselbuchse 114 gegenüber dem Kolben 115 und gegenüber dem Zylindergehäuse 100 frei drehbar.
  • Die Wechselbuchse 114 befindet sich ebenso wie der Kolben 115 zentral auf der Längsachse des Zylindergehäuses 100 und setzt sich aufeinanderfolgend zusammen aus einem Abschnitt mit dem Innengewinde 116, welches auf den Gewindeendabschnitt 11A des Gewindeelements 11 aufgeschraubt wird, aus dem radial erweiterten Abschnitt 125 und aus einem Antriebsabschnitt 126. Der Antriebsabschnitt 126 befindet sich an dem dem Gewindeelement 11 abgewandten Ende der Wechselbuchse 114.
  • An dem Antriebsabschnitt 126 greift die Welle des in Abhängigkeit von Werkzeug-Steuersignalen der Steuereinheit betriebenen elektrischen Antriebs 51 an, um die Wechselbuchse 114 zu drehen und diese entweder, vor dem Spannprozess, unter Absenken des gesamten Zylindergehäuses 100 auf den Gewindeendabschnitt 11A aufzuschrauben oder, nach dem Spannprozess, unter Anheben des gesamten Zylindergehäuses 100 wieder von dem Gewindeendabschnitt 11A abzuschrauben.
  • Soweit vor und nach dem Spannprozess eine weitergehende, also nicht allein durch das Drehen der Wechselbuchse 114 realisierbare Höhenverstellung des Zylindergehäuses 100 erforderlich ist, erfolgt diese zusätzliche Höhenverstellung mittels der elektrisch angetriebenen Vertikalführung 34. Auch diese arbeitet in Abhängigkeit von Steuersignalen, nämlich Werkzeug-Steuersignalen, der Steuereinheit 4.
  • Erst wenn die Wechselbuchse 114 auf den Gewindeendabschnitt 11A aufgeschraubt ist, wird durch die Steuereinheit 4 der hydraulische Spannprozess gestartet, indem die Hydraulikpumpe 86, aufgrund von Hydraulik-Steuersignalen der Steuereinheit 4, Hydraulikdruck aufbaut.
  • Auch das kontrollierte, motorgetriebene Auf- und Abschrauben der Wechselbuchse 114 erfolgt in Abhängigkeit von Werkzeug-Steuersignalen der Steuereinheit 4.
  • Figur 11 zeigt eine Ausführungsform, bei der das gegen Mitdrehen sichernde Haltewerkzeug 70 und das Werkzeug 5 kombiniert an dem Wagen bzw. dem Werkzeugträger angeordnet sind.
  • Das Haltewerkzeug 70 ist an dem Werkzeugträger 20 befestigt, hier an dessen unterer Plattform 31, und umfasst zwei aufeinander zu mit Ausrichtung auf die Verschraubungsachse bewegliche Klemmbacken 130. Deren Enden bilden hier die Gegenhalteflächen 75A, 75B, und sind hierzu als Schalen gestaltet. Der Radius der Schalen ist im Wesentlichen gleich dem Radius des Gewindeabschnitts 11A des Gewindeelements 11.
  • Der Antrieb der beiden Klemmbacken 130 erfolgt elektrisch, wobei wiederum die Steuereinheit 4 (Figur 1) dazu ausgebildet ist, diesen Antrieb über die Haltewerkzeug- Steuersignale zu kontrollieren. Damit bei dieser Ausführungsform die Gegenhalteflächen 75A, 75B unmittelbar auf den Gewindeabschnitt pressen, muss der Antrieb des Haltewerkzeugs 70 relativ hohe Druckkräfte erzeugen. Um hier zusätzlich den Reibungswiderstand zu erhöhen, können die Gegenhalteflächen 75A, 75B einen geeigneten Reibbelag, z.B. Gummi, oder eine geeingnete nichtglatte Oberfläche aufweisen. Z.B. kann diese Oberfläche in ihrer Struktur so auf die Außenstruktur des Gewindes abgestimmt sein, dass eine weitgehende Blockierung gegen Mitdrehen erreicht wird.
  • Die Klemmbacken 130 des Haltewerkzeugs 70 erstrecken sich durch Öffnungen 131 in dem Werkzeug 5, wobei sich die Gegenhalteflächen 75A, 75B innerhalb des Werkzeugs 5 befinden. Die Klemmbacken 130 sind in dem fest an dem Werkzeugträger montierten Haltewerkzeug 70 so geführt, dass sie ausschließlich, mittels des Antriebs, in ihrer Klemmrichtung beweglich sind.
  • Die Öffnungen 131 befinden sich in dem Stützrohr 101 des Werkzeugs 5. Sie reichen durchgehend bis zu der Unterseite 102 des Stützrohrs 101. Dadurch ist sichergestellt, dass das Werkzeug 5, wenn dieses für den Spannprozess abgesenkt wird, daran nicht durch die Bauteile des Haltewerkzeugs 70 gehindert wird. Das Werkzeug 5 und das Haltewerkzeug 70 sind zwar baulich kombiniert, ihre Funktionen sind jedoch getrennt voneinander.
  • Die Ausführungsform Figur 11 macht von dem Umstand Gebrauch, dass zwischen der Oberseite der Mutter 12 und jenem Gewindeendabschnitt 11A, welcher von der Wechselbuchse 114 umschlossen ist, in der Praxis oft noch ein Gewindelängsabschnitt von ca. 5 mm zur Verfügung steht. Dieser Gewindelängsabschnitt ist ausreichend, um mittels der dort zusammengefahrenen Klemmbacken 130 das Mitdrehen des Gewindeelements 11 zu unterbinden. Auch bei der Ausführungsform nach Fig. 11 kann die Steuereinheit 4 (Fig. 1) dazu ausgebildet sein, über Fahrantrieb-Steuersignale den Werkzeugträger 20 einschließlich des Schraubenspannzylinders 5 bis in eine Arbeitsposition zu fahren, in der der Schraubenspannzylinder 5 der jeweils anzuziehenden Schraubverbindung gegenüberliegt, und über Werkzeug- Steuersignale das axiale Anziehen der Schraubverbindung und das Drehen der Mutter 12 zu kontrollieren. Zusätzlich ist die Steuereinheit 4 (Fig. 1) dazu ausgebildet, über Haltewerkzeug-Steuersignale den Antrieb des Haltewerkzeugs 70 zu kontrollieren.
  • Fig. 12 zeigt eine weitere Ausführungsform. Bei dieser ist das gegen Mitdrehen sichernde Haltewerkzeug 70 zentral in dem als Schraubenspannzylinder ausgebildeten Werkzeug 5 angeordnet. Der Schraubenspannzylinder selbst entspricht in seiner Grundbauart der Ausführungsform nach Fig. 10 oder Fig. 11. Dies gilt für das Zylindergehäuse 100, für den darin geführten Kolben, welcher hier allerdings ein Doppelkolben 115 ist, für die in dem Zylindergehäuse drehbare Wechselbuchse 114 und für die drehbar in dem Zylindergehäuse angeordnete Drehhülse 110 zum Drehen der Mutter 12.
  • Bei Fig. 12 ist auf der Längsachse der Wechselbuchse 114 ein Stab 140 angeordnet, wozu die Wechselbuchse 114 mit einer entsprechenden Längsbohrung versehen ist. Der ein- oder mehrteilige Stab 140 ist an seinem in Fig. 12 unteren Ende mit dem Haltewerkzeug 70 versehen und ist im Bereich seines in Fig. 12 oberen Endes mit einer Verdrehsicherung 141 versehen. Die Verdrehsicherung 141 hält den Stab 140 drehfest relativ zu dem Zylindergehäuse 100. Dies wird beim Ausführungsbeispiel erreicht, indem ein gehäusefester Bolzen 142 in eine Längsnut 143 in dem Stab 140 eingreift. Die Längsnut 143 erstreckt sich axial nur über einen Teil der Länge des 140.
  • Die Ausführungsform Fig. 12 eignet sich für solche Schraubverbindungen, bei denen das Gewindeelement 11 an der Stirnseite seines Gewindeendabschnitts 11A zusätzlich mit einem Mehrkant 11B versehen ist. Der Mehrkant 11B ist hier ein axial vorstehender Vierkant, kann aber auch z. B. ein Sechskant oder ein versenkt in dem Gewindeendabschnitt 11A ausgebildeter Innenvierkant oder Innensechskant sein.
  • Das Haltewerkzeug 70 ist als korrespondierender Mehrkant gestaltet, hier also als Innenvierkant, welcher durch Formschluss mit dem Mehrkant 11B koppelbar ist. Zur Ausbildung des Haltewerkzeug 70 ist das untere Ende des Stabs 140 entsprechend vergrößert.
  • Das Haltewerkzeug 70 ist axial und unter dauernder Federkraft gegen den Mehrkant 11 B abgestützt. Aufgebracht wird die Federkraft durch ein Federelement 147, welches einerseits gegen das Haltewerkzeug 70 oder den Stab 140, und andererseits gegen die Wechselbuchse 114 abgestützt ist. Das Federelement 147 sorgt für eine dauernde axiale Vorspannkraft des Haltewerkzeugs 70, sodass es bereits nach kurzer Relativdrehung zu einem sicheren Eingriff des Haltewerkzeugs 70 an dem Mehrkant 11B kommt. Der hierfür erforderliche axiale Spielraum ist durch die Länge der Längsnut 143 gewährleistet.
  • Auch bei Fig. 12 ist Bestandteil des Werkzeugs 5 der Antrieb 51 zum Drehen der Wechselbuchse 114. Der Antrieb erfolgt allerdings nicht zentral auf der Längsachse, da sich dort der Stab 140 befindet. Der Antrieb 51 befindet sich vielmehr seitlich versetzt, wobei ein Getriebe 148 im Antriebsweg zwischen Antrieb 51 und Wechselbuchse 114 vorhanden ist. Bestandteil des Getriebes 148 ist ein zu der Wechselbuchse 114 drehfestes Zahnrad 149. Das Zahnrad 149 weist eine Durchgangsöffnung 150 auf, durch die hindurch sich der Stab 140 frei drehbar erstreckt.
  • Auch bei der Ausführungsform nach Fig. 12 kann die Steuereinheit 4 (Fig. 1) dazu ausgebildet sein, über Fahrantrieb-Steuersignale den Werkzeugträger 20 einschließlich des Schraubenspannzylinders 5 bis in eine Arbeitsposition zu fahren, in der der Schraubenspannzylinder 5 der jeweils anzuziehenden Schraubverbindung gegenüberliegt. Außerdem kann die Steuereinheit 4 dazu ausgebildet sein, über Werkzeug- Steuersignale das axiale Anziehen der Schraubverbindung und das Drehen der Mutter 12 zu kontrollieren.
  • Ferner kann auch bei der Ausführungsform nach Fig. 12 die Steuereinheit 4 (Fig. 1) dazu ausgebildet sein, über Haltewerkzeug-Steuersignale und einen entsprechenden Antrieb das Haltewerkzeug 70 zu kontrollieren, indem der Stab 140 mit dem daran starr angeordneten Haltewerkzeug 70 mittels des Antriebs gesteuert auf die Schraubverbindung abgesenkt und gesteuert wieder angehoben wird. Die Funktion des gesteuerten Absenkens und Anhebens des Haltewerkzeugs vermag aber auch das Federelement 147 durchzuführen.
  • Bezugszeichenliste
  • 1
    verfahrbare Einheit
    2
    stationäre Einheit
    3
    Strang, Versorgungs- und Signalstrang
    4
    Steuereinheit
    4A
    Wegsteuermodul
    4B
    Dokumentationsmodul
    5
    Werkzeug, Schraubenspannzylinder
    6
    Wagen
    7
    Flanschverbindung
    7A
    Ringflansch
    7B
    Ringflansch
    8A
    Turmabschnitt
    8B
    Turmabschnitt
    9
    Raum
    10
    Schraubverbindung
    11
    Gewindeelement
    11A
    Gewindeendabschnitt
    11B
    Mehrkant
    12
    Mutter
    12A
    Aufstandsfläche der Mutter
    20
    Werkzeugträger
    21A
    Rolle, angetrieben
    21B
    Rolle
    22
    Rolle
    23
    Innenwand
    24
    Antriebsmotor
    25
    Kupplung
    26
    Winkelencoder
    30
    Ausrichtelement
    30A
    Ausrichtfläche
    31
    untere Plattform
    32
    obere Plattform
    33
    Gestell
    34
    Vertikalführung
    35
    Querführung
    36
    Federanordnung
    41
    Gestellbasis
    42
    Führungsstange
    49
    oberer Gestellrahmen
    50
    Gestellrahmen, höhenverstellbar
    51
    elektrischer Antrieb
    52
    elektrischer Antrieb
    56
    Gewindetrieb
    70
    Haltewerkzeug
    75
    Gegenhaltefläche
    75A
    Gegenhaltefläche
    75B
    Gegenhaltefläche
    77
    Antrieb
    78
    Werkzeuggrundkörper
    79
    Werkzeugabschnitt
    80
    Feder
    86
    Hydraulikpumpe
    87
    Hydraulikleitung
    88
    Energiemodul
    95
    Schwenkgestell
    96
    Schieber
    100
    Zylindergehäuse
    101
    Stützrohr
    102
    Unterseite
    110
    Drehhülse
    111
    Getriebe
    112
    Hydraulikanschluss
    113
    Konus am Bolzen
    114
    Wechselbuchse
    115
    Kolben
    116
    Innengewinde
    117
    Feder
    118
    hydraulischer Arbeitsraum
    121
    Mitnehmerfläche
    125
    radial erweiterter Abschnitt
    126
    Antriebsabschnitt
    130
    Klemmbacke
    131
    Öffnung
    140
    Stab
    141
    Verdrehsicherung
    142
    Bolzen
    143
    Längsnut
    147
    Federelement
    148
    Getriebe
    149
    Zahnrad
    150
    Durchgangsöffnung
    E
    Aufstandsfläche
    N
    Flächennormale

Claims (25)

  1. Vorrichtung zum Anziehen von Schraubverbindungen, die entlang einer einen Raum und vorzugsweise das Innere des Turms einer Windkraftanlage in Ringform umgebenden Flanschverbindung (7) angeordnet sind und von denen sich jede Schraubverbindung (10) aus einem Gewindeelement (11) und einer darauf aufgeschraubten Mutter (12) zusammensetzt, und die Mutter (12) gegen die Flanschverbindung (7) abgestützt ist, wobei die Vorrichtung aufweist
    - einen entlang der Flanschverbindung (7) fahrbaren, mit einem vorzugsweise elektrischen Fahrantrieb versehenen Werkzeugträger (20),
    - ein an dem Werkzeugträger (20) angeordnetes Werkzeug (5) zum Anziehen der Schraubverbindung und Drehen der Mutter relativ zu der Flanschverbindung,
    - eine Steuereinheit (4) welche dazu ausgebildet ist, über Fahrantrieb-Steuersignale den Werkzeugträger (20) in Längsrichtung des Werkzeugträgers (20) bis in eine Arbeitsposition zu fahren, in der das Werkzeug (5) der jeweils anzuziehenden Schraubverbindung gegenüberliegt, und über Werkzeug-Steuersignale das Anziehen der Schraubverbindung und Drehen der Mutter durchzuführen,
    dadurch gekennzeichnet, dass die Steuereinheit (4) zum Anfahren der jeweiligen Arbeitsposition des Werkzeugträgers (20) ein Wegsteuermodul (4A) mit einer Wegsteuerung umfasst, welche dazu ausgebildet ist, nach Erreichen einer vorgegebenen Weglänge als Zielgröße den Fahrantrieb anzuhalten.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Werkzeugträger (20) zu seiner Abstützung auf der Flanschverbindung (7) mit Rollen (21A, 21B) versehen ist, die auf horizontalen Drehachsen an dem Werkzeugträger (20) gelagert sind.
  3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass der Werkzeugträger (20) zu seiner seitlichen Abstützung mit zusätzlichen Rollen (22) versehen ist, die auf im Wesentlichen vertikalen Drehachsen an dem Werkzeugträger (20) gelagert sind.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass der Werkzeugträger (20) zu seiner seitlichen Führung mit starr angebrachten Ausrichtelementen (30) versehen ist, an denen eine in Fahrtrichtung sich erstreckende Ausrichtfläche (30A) ausgebildet ist, deren Flächennormale (N) entgegengesetzt ist zu der Richtung, in die sich der Werkzeugträger (20) über die zusätzlichen Rollen (22) abstützt.
  5. Vorrichtung nach Anspruch 2, 3 oder 4, dadurch gekennzeichnet, dass die Rollen (21A, 21B, 22) zum Teil angetriebene Rollen des Fahrantriebs, und zum Teil nicht angetriebene Rollen sind.
  6. Vorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass jede angetriebene Rolle (21A) eine auf horizontaler Drehachse gelagerte Rolle ist.
  7. Vorrichtung nach Anspruch 5 oder 6, gekennzeichnet durch eine Kupplung (25), vorzugsweise eine elektromagnetische Kupplung, zwischen jeder angetriebenen Rolle (21A) und einem Antriebsmotor (24) des Fahrantriebs.
  8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Steuereinheit (4) außerdem dazu ausgebildet ist, über Kupplungs-Schaltsignale die Kupplung (25) ein- und/oder auszuschalten.
  9. Vorrichtung nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass mindestens eine Rolle (21A, 21B, 22) zu ihrer Drehwinkelcodierung schlupffrei mit einem Winkelencoder (26) gekoppelt ist.
  10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die drehwinkelcodierte Rolle eine der nicht angetriebenen Rollen ist.
  11. Vorrichtung nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die drehwinkelcodierte Rolle eine der den Werkzeugträger (20) seitlich abstützenden, zusätzlichen Rollen (22) ist.
  12. Vorrichtung nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass der Winkelencoder (26) über eine Kette oder einen Zahnriemen mit der drehwinkelcodierten Rolle gekoppelt ist.
  13. Vorrichtung nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass der Winkelencoder (26) mit dem Wegsteuermodul (4A) der Steuereinheit (4) signaltechnisch verbunden ist.
  14. Vorrichtung nach einem der vorangehenden Ansprüche, gekennzeichnet durch eine Vertikalführung (34), über die das Werkzeug (5) in der Höhe verstellbar an dem Werkzeugträger (20) gelagert ist.
  15. Vorrichtung nach einem der vorangehenden Ansprüche, gekennzeichnet durch eine Querführung (35) mit Führungsrichtung quer zur Längsrichtung des Werkzeugträgers (20), über welche die Vertikalführung (34) und/oder das Werkzeug (5) verschieblich an dem Werkzeugträger (20) gelagert ist.
  16. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Querführung (35) mit einer Federanordnung (36) versehen ist, welche die Vertikalführung (34) bzw. das Werkzeug (5) mit einer Rückstellkraft in eine mittlere Position beaufschlagt.
  17. Vorrichtung nach einem der vorangehenden Ansprüche, gekennzeichnet durch ein vorzugsweise mit der Steuereinheit in einem gemeinsamen Gehäuse zusammengefasstes Dokumentationsmodul (4B), in welchem für jede angezogene Schraubverbindung ein Datensatz abgespeichert ist, der umfasst
    - eine individuelle Kennung der jeweiligen Schraubverbindung (10) und/oder die Position der jeweiligen Schraubverbindung (10) an der Flanschverbindung (7)
    - und/oder die verwendete Anzugskraft des Werkzeugs (5),
    - und/oder den zurückgelegten Drehwinkel der Mutter (12) relativ zu der Flanschverbindung (7).
  18. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Werkzeug ein bezüglich der jeweiligen Schraubverbindung axial arbeitender Schraubenspannzylinder (5) ist, mit einem einen hydraulischen Arbeitsraum (118) umgebenden Zylindergehäuse (100), einer in dem Zylindergehäuse (100) mittels eines elektrischen Antriebs (51) drehbaren Wechselbuchse (114) und einer durch Formschluss mit der Mutter (12) in Eingriff bringbaren Drehhülse (101).
  19. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, dass der Schraubenspannzylinder (5) mit einem zweiten elektrischen Antrieb (52) für die Drehhülse (110) versehen ist, welcher zusätzlich für ein vertikales Einstellen des Schraubenspannzylinders (5) relativ zu dem Werkzeugträger (20) ausgebildet ist.
  20. Vorrichtung nach einem der Ansprüche 18 oder 19, gekennzeichnet durch eine räumlich getrennt von dem Werkzeugträger (20) platzierbare Hydraulikpumpe (86) und eine von der Hydraulikpumpe (86) zu dem hydraulischen Arbeitsraum (118) des Schraubenspannzylinders (5) führende, zumindest auf einer Teillänge flexible Hydraulikleitung (87).
  21. Vorrichtung nach einem der vorangehenden Ansprüche, gekennzeichnet durch ein räumlich getrennt von dem Werkzeugträger (20) platzierbares Energiemodul (88) zur Energieversorgung des Fahrantriebs und des Werkzeugs (5), wobei eine zumindest auf einer Teillänge flexible Energieversorgungsleitung von dem Energiemodul (88) zu dem Werkzeugträger (20) führt.
  22. Vorrichtung nach Anspruch 21, dadurch gekennzeichnet, dass die Steuereinheit (4) an dem Energiemodul (88) angeordnet oder mit diesem gemeinsam auf einem Träger angeordnet ist, dass zur Übertragung der Fahrantrieb-Steuersignale und der Werkzeug-Steuersignale eine elektrische Signalleitung von der Steuereinheit (4) zu dem Werkzeugträger (20) führt, und dass die Signalleitung zumindest auf einer Teillänge mit der Energieversorgungsleitung mechanisch verbunden ist.
  23. Vorrichtung nach einem der Ansprüche 20 bis 22, dadurch gekennzeichnet, dass diese ferner ein schwenkbewegliches Gestell (95) mit einer oder mehreren senkrechten Schwenkachsen aufweist, dass das Gestell (95) zu seiner Befestigung mit Befestigungsmitteln versehen ist, und dass ein Längsabschnitt der Hydraulikleitung (87) oder der Energieversorgungsleitung in das Gestell (95) eingehängt ist.
  24. Vorrichtung nach Anspruch 23, dadurch gekennzeichnet, dass das schwenkbewegliche Gestell (95) ausgebildet ist, die Hydraulikleitung (87) oder die Energieversorgungsleitung über einen Drehwinkel von annähernd 360° zu stützen.
  25. Vorrichtung nach einem der Ansprüche 20 bis 24, dadurch gekennzeichnet, dass der Werkzeugträger (20) eine Hindurchführung für die Hydraulikleitung (87) oder die Energieversorgungsleitung aufweist und sich die Hindurchführung an einem Schieber (96) befindet, welcher beweglich an dem Werkzeugträger (20) angeordnet ist, vorzugsweise in Fahrtrichtung des Werkzeugträgers (20) beweglich.
EP19163027.6A 2018-03-29 2019-03-15 Vorrichtung zum anziehen von schraubverbindungen Active EP3550139B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018107653.3A DE102018107653A1 (de) 2018-03-29 2018-03-29 Vorrichtung zum Anziehen von Schraubverbindungen

Publications (2)

Publication Number Publication Date
EP3550139A1 EP3550139A1 (de) 2019-10-09
EP3550139B1 true EP3550139B1 (de) 2020-08-19

Family

ID=65817858

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19163027.6A Active EP3550139B1 (de) 2018-03-29 2019-03-15 Vorrichtung zum anziehen von schraubverbindungen

Country Status (6)

Country Link
US (1) US11148240B2 (de)
EP (1) EP3550139B1 (de)
JP (1) JP7412892B2 (de)
DE (1) DE102018107653A1 (de)
DK (1) DK3550139T3 (de)
ES (1) ES2827305T3 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2580102B (en) * 2018-12-21 2021-08-25 Caterpillar Energy Solutions Gmbh System for tensioning at least one connecting element
EP3973178B1 (de) * 2019-05-21 2024-04-24 Vestas Wind Systems A/S Verfahren zum aufrichten eines windturbinenturms mittels stiftschrauben
CN113048014B (zh) * 2019-12-27 2023-03-31 新疆金风科技股份有限公司 风力发电机组叶根螺栓紧固控制系统和控制方法
CN111571194A (zh) * 2020-06-04 2020-08-25 大连泰凯工业有限公司 一种快速连接自校正螺栓旋拧机构
CN112720473B (zh) * 2020-12-22 2022-04-19 河南科技大学 一种薄壁大螺纹件装配的九自由度机器人拧紧控制方法
CN112994772B (zh) * 2021-03-17 2022-12-02 南阳理工学院 可调式互联网信号中继器
CN113977248B (zh) * 2021-09-27 2022-06-14 广州东焊智能装备有限公司 拧紧装置及拧紧方法
NL1044234B1 (en) 2021-12-09 2023-06-26 Intomechanics B V Self-centering machine for manipulating nut and bolt assemblies
NL1044424B1 (en) 2022-09-26 2024-04-03 Intomechanics B V Movable bolting tool for manipulating nut and bolt assemblies of a bolted flange assembly

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3590846C2 (de) * 1985-08-28 1990-02-08 Hokkaido Electric Power Positioniereinrichtung eines Bolzenspanners
JPH1110461A (ja) * 1997-06-17 1999-01-19 Toshiba Corp ねじの締結装置
JPH1177451A (ja) * 1997-09-10 1999-03-23 Ngk Insulators Ltd ネジ部材の締付治具および締付装置
GB0406359D0 (en) * 2004-03-20 2004-04-21 Gunton Bruce S Drive arrangement
JP5132398B2 (ja) * 2008-04-10 2013-01-30 株式会社リコー パルスコードホイールの製造方法、パルスコードホイール、ロータリーエンコーダ、回転制御装置、ベルト搬送装置、及び画像形成装置
US8965619B2 (en) * 2010-12-15 2015-02-24 Symbotic, LLC Bot having high speed stability
JP2012157950A (ja) * 2011-02-01 2012-08-23 Mitsubishi Heavy Ind Ltd ボルトテンショナ
JP5777348B2 (ja) * 2011-02-01 2015-09-09 三菱重工業株式会社 締結弛緩装置
EP2607685B1 (de) 2011-12-21 2014-03-05 Kenneth Johst Roboter zum Anbringen und Festziehen von Schrauben für Windturbinen
DE102012009255A1 (de) * 2012-05-02 2013-11-07 Jörg Hohmann Hebe- und Transportvorrichtung
JP5650171B2 (ja) 2012-08-24 2015-01-07 株式会社日本製鋼所 ボルトテンショナ
DE102015116484A1 (de) * 2015-09-29 2017-03-30 Jörg Hohmann Spannvorrichtung für eine Schraubverbindung, Verfahren zum Anziehen einer Schraubverbindung sowie Gewindemutter
ES2733973T3 (es) * 2016-01-21 2019-12-03 Admede Ab Robot con medios de posicionamiento para mover una herramienta a lo largo de una conexión de brida
US10345119B2 (en) * 2017-01-05 2019-07-09 GM Global Technology Operations LLC Systems for observing a rotation of a wheel
CN107538210B (zh) * 2017-09-29 2020-01-31 新疆金风科技股份有限公司 螺栓紧固装置及其操作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2827305T3 (es) 2021-05-20
EP3550139A1 (de) 2019-10-09
US20190299346A1 (en) 2019-10-03
DE102018107653A1 (de) 2019-10-02
US11148240B2 (en) 2021-10-19
JP2019171565A (ja) 2019-10-10
DK3550139T3 (da) 2020-11-09
JP7412892B2 (ja) 2024-01-15

Similar Documents

Publication Publication Date Title
EP3550139B1 (de) Vorrichtung zum anziehen von schraubverbindungen
EP3546116B1 (de) Vorrichtung zum anziehen von schraubverbindungen
DE2258859C2 (de)
EP2580028B1 (de) Vorrichtung zum greifen und anheben von gegenständen
EP3871829B1 (de) Verfahren zum anziehen von schraubverbindungen, mehrfachschraubvorrichtung
DE4109888A1 (de) Vorrichtung zur halterung und fuehrung einer achse oder welle oder eines lagerrings
DE102009010280A1 (de) Mechanisches Bearbeitungsstations-Teileträger-Hubwerk
EP0593803B1 (de) Vorrichtung zum Positionieren von Lasten
DE2916312A1 (de) Greifzange fuer handhabungsgeraete
DE102007051472B4 (de) Montagevorrichtung
DE2442798C2 (de) Vorrichtung zum Ein- oder Ausschrauben von insbesondere schweren Schraubenbolzen
EP0320498A2 (de) Industrieroboter
EP0967172A2 (de) Handhabungsgerät mit Balancier-Hebeeinrichtung
DE2618877A1 (de) Vorrichtung zum kontern und brechen der gewindeverbindungen zwischen rohrkoerpern von rohr- und bohrstraengen sowie bohrwerkzeugen fuer tiefbohrungen
DE202013008325U1 (de) Messvorrichtung
DE102016108257A1 (de) Delta-Roboter mit Teleskopstange
DE102016108215A1 (de) Delta-Roboter mit Teleskopstange
EP2933219A1 (de) Spannvorrichtung für seile
DE4142990A1 (de) Schraubendrehgeraet fuer die deckelverschraubung von druckbehaeltern u. dgl., insbesondere von reaktordruckbehaeltern
DE202005021696U1 (de) Balancer zur Lastenbewegung
EP3838674A1 (de) Ausfahrbare trittstufe
DE19860703A1 (de) Transportsystem
DE202005004667U1 (de) Hubvorrichtung
DE20206078U1 (de) Allzweck-Deckelheber für Kanal- und Schachtdeckel o.dgl.
DE2229073A1 (de) Hydraulische spannvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20191028

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502019000152

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F03D0013200000

Ipc: B23P0019060000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: E04H 12/08 20060101ALI20191213BHEP

Ipc: B23P 19/06 20060101AFI20191213BHEP

Ipc: F03D 13/10 20160101ALI20191213BHEP

Ipc: F03D 13/20 20160101ALI20191213BHEP

Ipc: B25B 29/02 20060101ALI20191213BHEP

INTG Intention to grant announced

Effective date: 20200120

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502019000152

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1303394

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502019000152

Country of ref document: DE

Representative=s name: JANKE SCHOLL PATENTANWAELTE PARTG MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502019000152

Country of ref document: DE

Representative=s name: CHRISTOPHERSEN PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502019000152

Country of ref document: DE

Representative=s name: CHRISTOPHERSEN & PARTNER PARTNERSCHAFT MBB PAT, DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20201103

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201119

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201119

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201221

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2827305

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20210520

Ref country code: DE

Ref legal event code: R097

Ref document number: 502019000152

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

26N No opposition filed

Effective date: 20210520

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502019000152

Country of ref document: DE

Representative=s name: JANKE SCHOLL PATENTANWAELTE PARTG MBB, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210315

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210315

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20190315

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240320

Year of fee payment: 6

Ref country code: GB

Payment date: 20240320

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240326

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240429

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200819