NL1044234B1 - Self-centering machine for manipulating nut and bolt assemblies - Google Patents

Self-centering machine for manipulating nut and bolt assemblies Download PDF

Info

Publication number
NL1044234B1
NL1044234B1 NL1044234A NL1044234A NL1044234B1 NL 1044234 B1 NL1044234 B1 NL 1044234B1 NL 1044234 A NL1044234 A NL 1044234A NL 1044234 A NL1044234 A NL 1044234A NL 1044234 B1 NL1044234 B1 NL 1044234B1
Authority
NL
Netherlands
Prior art keywords
nut
bolt assembly
tool head
bolt
manipulated
Prior art date
Application number
NL1044234A
Other languages
Dutch (nl)
Inventor
Kristelijn Martin
Original Assignee
Intomechanics B V
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intomechanics B V filed Critical Intomechanics B V
Priority to NL1044234A priority Critical patent/NL1044234B1/en
Priority to PCT/NL2022/000009 priority patent/WO2023106911A1/en
Priority to EP22829930.1A priority patent/EP4444498A1/en
Application granted granted Critical
Publication of NL1044234B1 publication Critical patent/NL1044234B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • B23P19/06Screw or nut setting or loosening machines
    • B23P19/067Bolt tensioners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • B23P19/06Screw or nut setting or loosening machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B29/00Accessories
    • B25B29/02Bolt tensioners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/10Assembly of wind motors; Arrangements for erecting wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/60Assembly methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/30Retaining components in desired mutual position
    • F05B2260/301Retaining bolts or nuts

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Automatic Assembly (AREA)
  • Clamps And Clips (AREA)

Abstract

A self-centering machine (1) for manipulating a series of nut and bolt assemblies (5A-5N) for clamping together components of a mechanical structure, comprises: - a tool head (2) (rotatably connected to a tool head carrier body (3)) which can be removably arranged around a nut of a manipulated assembly (5H) and be rotated (see arrow 4) about an axis of rotation (14) relative to the carrier body (3) to manipulate the nut; - a traction mechanism (9) configured to sequentially release the tool head (2) from assembly (5H) and move it (2) towards a next to be manipulated assembly (51); and - a guide nose (13), connected to the traction mechanism and configured to guide, the axis of rotation (14) of tool head (2) into axial alignment with a central axis of the next to be manipulated assembly (51) and interrupt movement of the tool head (2).

Description

SELF-CENTERING MACHINE FOR MANIPULATING NUT AND BOLT
ASSEMBLIES
Background of the Invention
The invention relates to a self-centering machine for manipulating a series of nut and bolt assemblies for interconnecting components of a mechanical structure.
Manipulating a nut and bolt assembly can include, for example, tightening, inspecting, adjusting and/or releasing a nut, which is screwed on a bolt or wire end, also called stud of an already existing bolted flange connection, but also one or more steps in the placement of a bolted flange connection at the location of a bolt hole present for this purpose in a perforated flange.
When in the present specification and claims reference is made to a bolted connection it must be understood that, unless explicitly stated otherwise, this term also includes an intended bolt connection, which has not yet been realized, but for which, for example, a bolt hole has already been provided.
Accordingly, when used in this specification and claims, the term manipulating a nut and bolt assembly includes any rotation of the nut relative to the bolt, or bolt relative to the nut, for tightening, un tightening and/or re-tightening of the nut and bolt assembly, as well as stretching the bolt.
When used in this specification and claims the terms bolt, and nut and bolt assembly also include assemblies where a nut is screwed on a threaded end of a cylindrical rod or stud which is at another end screwed into a female screw thread in a flange or otherwise rigidly secured to one of the interconnected flanges or components and which rod or stud does not comprise a bolt head that can be clamped and turned by a wrench head, tongue or other mechanical tool head.
Furthermore the terms bolt, and nut and bolt assembly also include assemblies where a pair of nuts is screwed at opposite threaded ends of a cylindrical rod or stud which passes through a pair of aligned bolt holes in adjacent flanges or other components of a mechanical structure.
Bolted connections for interconnecting components of a mechanical structure typically comprise nut and bolt assemblies that are spaced at regular circumferential intervals along the circumference of a circular or curved flange assembly and are generally used to clamp together flanged components of a mechanical structure, such as flanged components interconnecting successive hull parts of a mast, in particular a mast for a wind turbine, transmission tower, oil platform, watchtowers or similar tall structures, or interconnecting successive flanged tubular sections of a pipeline or interconnecting parts of swing bearings of crane housings. These are relatively heavy constructions that often require working in hard-to-reach places to establish, maintain, inspect and/or control the intended bolted connection.
Wind turbines also comprise bolted flange connections between the rotor blades and a central rotor hub that is rotatably connected to a nacelle which is rotatably mounted on a tower to swing the rotor blades towards the wind. The nut and bolt assemblies between the rotor blades and the central hub may be subject to extremely high loads, vibrations and fatigue due to centrifugal loads induced by spinning of the turbine. This requires precise tightening and regular inspection, re-tightening and replacement of the nut and bolt assemblies.
The nut and bolt assemblies between the wings and a central hub of a wind turbine, and all other nut and bolt assemblies such as between tower or pipeline sections, must be tightened at an accurate prestressing to prevent bolt fatigue.
By mechanically checking and electronically registering the tightening process parameters and possibly checking the prestressing of the bolts ultrasonically, a conclusive and traceable registration of each bolt's tightening parameters in the flange connection can be obtained. Human errors such as, for example, skipping a bolt or inaccurate tightening has to be prevented. A more reliable connection made by an automatic or partially automatic or robot assisted bolting machine also results in cost savings on maintenance because bolt checks can be saved during the service life. In addition, a mechanization of the realization and contra! of flange connections limits the manpower required to handle the often heavy tools and man-hours can be saved for what will often be repetitive work.
Automation of the flange connection process can therefore save on both installation costs and maintenance costs.
Robotic bolting machines are known from European patent specifications
EP2607685, EP3163071, EP3195974, EF3195891, EP3550139 |, International patent applications WO2018183287, WO2019110081 and WO2020/212323, US patent application US2011/232071, US patents 9,457 439 and 11,148240,
Korean patent application KRZ0130028039 and Japanese patent application JP
HO1 103240.
The robotic bolting machines known from these prior art references generally are heavy and complex devices with complex robot motion mechanisms to move the machine along the circumference of the flanges, which mechanisms need to be adjusted to the curvature of the flanges and to the pitch or circumferential spacing between the circumferentially spaced nut and bolt assemblies.
The known robot motion mechanisms also require electronic positioning and navigation sensors to accurately align the tool head or tool heads to the manipulated nut and bolt assemblies. Such electronic positioning and navigation sensors need regular calibration and are fragile and damage prone components that can easily cause malfunctioning or even inhibit any further utilization of the faulty bolting machine.
For example, the robatic bolting machine known from EP 2807685 comprises a robot that allows a series of nuts to be tightened on a corresponding number of bolts of a bolted flange connection of a wind turbine. To this end, the robot is equipped with a drive to feed the robot over the flange connection along a series of bolt nuts and the robot has a tool with which a bolt nut can be tightened with a predefined tightening torque. By means of an optical position sensor, the robot must find its way to position the tool above the bolt nut in question. The position sensor exchanges such position information with a robot control system, which controls the tool and records bolt data.
Although this well-known robotic device thus offers a step forward in further automation and standardization of such a flange connection, the position sensors used therein are sensitive to contamination and disturbance which can lead to wrong positioning of the tool head misaligned with a bolt nut and inhibit any further uiilization of the faulty bolting machine. In addition, due to the stability of the applied wagon, the well-known robot device requires that a set of electromagnets from the drive system always together with a complicated roller assembly will be in contact with a wall of the relevant hull segment, which cannot always be achieved in practice.
The bolting robot known from US patent 11,148,240 and European patent
EP3550139 comprises a travel controller to stop a traction drive that moves the rotatable tool head to a next to be manipulated nut and bolt assembly after reaching a predefined travel length along the circumference of a flange, which length is a target variable and the positioning accuracy is dependent on a wheel, which may slip or be lifted from the flange if the flange has an irregular or slippery surface. In such case this known travel controller does not accurately align the tool head with the to be manipulated nut and bolt assembly and the tool cannot tighten the nut and bolt assembly.
The bolting robot known from WQ2020/212323 comprises a tool head that can be maneuvered into alignment with a to be manipulated nut and bolt assembly by a lift and swing mechanism, on the basis of navigation and positioning data acquired by electronic navigation and positioning sensors, which are fragile and require frequent maintenance, inspection, recalibration and replacement.
This known bolting robot comprises a tool head lifting crane with a vertical tower that is clamped around a nut and bolt assembly and a curved crane arm with a © guide rail from which the tool head carrier body and tool head are suspended, such that they can be ied up and down to move the tool head from an already tightened to a nearby nut and bolt assembly that is to be tightened. This crane arm and guide rail have a curvature which has to be identical to the curvature of the ring of dreumferentially spaced nut and boll assemblies. If this known robot is to be used to manipulate nut and bolt assemblies that are arranged in a ring with another curvature, then the crane am needs to be replaced by another arm with a guide rail that also has this other curvature.
This known crane is also a relatively tall structure since the tool head carrier body and tool head are suspended below the arm and need to be lifted up and down to successive nut and boll assemblies that are to be manipulated. Due to this tall configuration and long guide rail this known bolting robot is a relatively large and heavy structure that is rather unstable if i is temporarily clamped around a nut and bolt assembly and that is not suitable for use at non-horizontal flange assemblies in which case the robot will rotate about the tilted or horizontal axis of a bolt due fo gravity and loose the alignment of the curved arm with the curved bolt rows.
European patents EP3195974, EP3195991 disclose robotic bolting machines with guide rails that slide along opposite sides of already tightened nut and bolt assemblies and a chain wheel that rolls over these assemblies to monitor the circumferential position of the tool head. The tool head has a frusto-conical alignment section that is lowered onto a to be manipulated nut and bolt assembly when the rotation of the guide wheel indicates that the tool head is located in the vicinity of the to be manipulated nut and bolt assembly. A disadvantage of these known robotic bolting machines is that the distance between the guide rails and their orientation needs to be adjusted to different sizes and radii of nut and bolt assemblies and that the guide wheel needs to be replaced by a differently dimensioned guide wheel if the radii of and/or pitches between and/or sizes of adjacent nut and bolt assemblies are changed. A further disadvantage of these known bolting machines is that if nut and bolt assemblies are arranged within oversized bolt holes, they are arranged at slightly different circumferential pitches 5 and at slightly different radial distances from a central axis of the flange, in which case the guide rails and guide wheel will not accurately align the tool head with the next to be manipulated nut and bolt assembly.
Disadvantages of this and the other known bolting machines are that they are complex and heavy pieces of equipment with fragile components and sensors, which increase the chance of the known robots to misaligning the tool head with a to be manipulated nut and bolt assembly, leading to inhibit any further utilization of the robots and wrongly tightened nut and bolt assemblies which may lead to collapsing of the bolted structure.
Thus, there is a need for a more robust, reliable, compact, light-weight, portable and damage proof improved machine for manipulating a bolted connection in a flange connection, which machine is self-centering and can, without replacing components, be easily adapted to different flange diameters and to different pitches at which adjacent nut and bolt assemblies are mutually spaced and which machine is configured to steer itself to each of a series of nut and bolt assemblies that are to be manipulated, also at non-horizontal flange assemblies, and thereby alleviate disadvantages of the known bolting robots and which improved bolting machine can operate with a minimum of, and optionally without, position, navigation and other fragile wear and damage prong sensors.
Summary of the Invention in accordance with the invention there is provided a self-centering machine for manipulating a series of nut and bolt assemblies for clamping together components of a mechanical structure, the machine comprising: - a tool head which is rotatably connected to a tool head carrier body, such that, when in use, the tool head can be removably arranged around a nut of a manipulated nut and bolt assembly and be rotated about an axis of rotation relative to the tool head carrier body to manipulate the nut of the manipulated nut and bolt assembly; - a fraction mechanism, which is configured to, when in use, sequentially release the tool head from the manipulated nut and bolt assembly and to move the tool head towards a next to be manipulated nut and bolt assembly; and - a guide nose, which is connected to the traction mechanism and is configured to interrupt the movement of the tool head and to guide, prior to the interruption, the axis of rotation of the tool head into axial alignment with a central axis of the next to be manipulated nut and bolt assembly.
Suitable embodiments of the self-centering machine according to the invention are claimed in the accompanying sub-claims 2-14 and a method of using the self-centering machine according to the invention is claimed in the accompanying claim 15.
Brief Description of the Drawings
The invention will be explained in more detail below on the basis of a number of execution examples and accompanying drawings.
In the drawings:
Figure 1 shows the self-centering machine according to the invention during a step when the tool head is rotated to manipulate a to be manipulated nut and bolt assembly and a stepping shoe is positioned around a nearby nut and bolt assembly;
Figure 2 shows the self-centering machine of Figure 1 during a next step when, during or after manipulating of the selected nut and bolt assembly the stepping shoe is released from the nearby nut and bolt assembly;
Figures 2, 3 and 4 show how the stepping shoe is moved towards and lowered onto another nearby nut and bolt assembly;
Figure 5 shows how the tool head is subsequently lifted from the manipulated nut and bolt assembly for movement to another to be manipulated nut and bolt assembly; and
Figures 8-9 show an alternative embodiment of the self-centering machine according to the invention wherein the guide nose is pivotably or slidably connected to the tool head carrier body or stepping mechanism, and wherein:
Figure 6 is a side view of the pivotable guide nose, when it is pivoted down and faces the nut and bolt assembly which is to be manipulated;
Figure 7 is a top view of the guide nose in the pivoted down position shown in
Figure 6;
Figure 8 is a side view of the guide nose of Figures 6 and 7, after it has pivoted up and away from the nut and bolt assembly which is to be manipulated; and
Figure 9 is a top view of the guide nose in the pivoted up position shown in
Figure 8. incidentally, it should be noted that the figures are drawn purely schematically and not always on (the same) scale. In particular, for the sake of clarity, some dimensions in more or less exaggerated are displayed. Corresponding parts are identified in the figures with the same reference sign.
Detailed Description of the Depicted Embodiments
Figures 1-5 show an exemplary embodiment of the self-centering machine 1 for manipulating nut and bolt assemblies according to the invention, wherein a tool head 2 is rotatably mounted within a tubular tool head carrier body 3 and can be rotated relative to the tool head carrier body 3 as illustrated by arrow 4 in Figure 1 to manipulate a nut and bolt assembly 5H {shown in dotted lines Figures 1-4, and fully shown in Figure 5) of a series of circumferentially spaced nut and bolt assemblies, of which nut and bolt assemblies 5A-8N are shown in Figures 1-5.
The depicted nut and bolt assemblies 5A-5N and non-depicted nut and bolt assemblies are configured ta clamp together components, usually with adjacent flanges, of which flange segment 6 is shown in Figures 1-5, of flanged components of a mechanical structure, such as a tower section of a wind turbine or a blade to a hub. In Figures 1-5 the tool head 2 is shown in dotted lines since it is surrounded by the fubular tool head carrier body 3, which carrier body may be provided with a bolt tensioning device that manipulates the nut and bolt assembly by stretching the bolt to reduce friction during the tightening of the nut, such as a bolt tensioning device known from European patent EP 3894138 of
Tentec Lid, or a bolt torquing device which manipulates the nut and bolt assembly by rotating the nut {o stretch the bolt.
Figures 1-5 also show that the self-centering machine 1 furthermore comprises a stepping shoe 7 A-D with a lower part 7A that is rotatably connected to an upper part 78, which upper part comprises a pair of alignment toes 7C and 7D, and that the upper part 78 of the stepping shoe 7 is connected to the carrier body 3 by a traction mechanism comprising a stepping mechanism 9, which comprises a pair of parallel stepping legs 10A, 10B that are each at a lower end thereof pivotably connected to the stepping shoe 7 and at an upper end thereof pivotably connected to a horizontal lift arm 11B of an L-shaped lift body 11, which also comprises a vertical tower 11A that is slidably connected to a guide rail 12 at an outer surface of the tool head carrier body 3.
Figures 1-5 also show that a bifurcated, for example concave V- or U-shaped, guide nose 13 is slidably connected to the vertical tower 11A of the L-shaped lift body 11, such that during said one step the concave guide nose 13 is pressed by actuating legs 10A and 10B against the substantially cylindrical outer contour of the nut and bolt assembly 5G nearby the manipulated nut and bolt assembly 5H that is to be manipulated and the concave guide nose 13 thereby rotates, as illustrated by arrows 52 in Figure 5, the upper part 7B relative to the lower part 7A of the stepping shoe. The upper part 7B of the stepping shoe 7 thereby rotates the stepping mechanism 9, the tool head carrier body 3 and the tool head 2 relative to the nearby nut and bolt assembly around which the lower part 7A of the stepping shoe 7 is releasably positioned in such a manner that the tool head 2 is brought into axial alignment with the central axis 14 of the next nut and bolt assembly 5H that is to be manipulated.
Figures 1-5 furthermore show that the substantially parallel stepping legs 10A, i5 10B have substantially the same length, and thereby create a transformable stepping frame that can be transformed from parallelogrammical shape, as shown in Figures 1, 2, and 5 into a substantially rectangular shape as shown in
Figures 3 and 4, using some sort of actuation, which actuation may be manual robotic, robot-assisted and/or gravity assisted. 20 Figures 1-5 also show that the pair of alignment toes 70 and 7D are configured to be arranged, when in use, at opposite sides of a substantially cylindrical outer contour of a nut and bolt assembly 5D, which is located adjacent to the nut and bolt assembly 5E (not shown in Figure 1, but shown in Figures 2-4) to which the stepping shoe 7 is releasably positioned. Figure 2 shows that the alignment {oes 25 7C and 7D are mutually spaced at a spacing 8, which is larger than the diameter
D of the outer contour of the nut and bolt assemblies 5A-5N such that the pair of alignment toes 7C, 7D restrict the rotation of the stepping mechanism 2, the tool head carrier body 3 and the tool head 2 relative to the nut and bolt assembly 5E {not shown in Figure 1, but shown in Figures 2-4) around which the stepping 30 shoe 7 is releasably positioned, to prevent guide nose 13 coming out of reach from self-centering on the next nut and bolt assembly.
Figures 1-5 furthermore show that a power and/or signal transmission umbilical is connected to the tool head carrier body 3 for providing the machine 1 with electric, hydraulic and/or pneumatic power and for transmitting manipulation and stepping actuation signals to the machine 1 and for transmitiing manipulation and stepping monitoring signals to and from the machine 1 to and from an at least partially automated and computerized bolt manipulation monitoring and control unit (not shown).
Figure 1 shows the machine 1 in a nut manipulation mode, wherein the tool head 2 is arranged around the to be manipulated nut SH, which is not shown since it is surrounded by the tool head 2 and the tool head carrier body 3, and nut SH rotated about an axis of rotation 14 relative to tool head carrier body 3 as flustrated by arrow 4 to manipulate nut SH.
In Figure 1 the vertical tower 11A of the L-shaped lift body 11 is located near a lower end of the guide rail 12, such that the guide nose 13 faces and is pressed against the outer contour of the nut or bolt of the nut and bolt assembly 5G and the lower part 7A of the stepping shoe 7 surrounds and is optionally clamped to the nut and bolt assembly SE.
Figure 2 shows that, after completion of the nut manipulation operation shown in
Figure 1, the tower 11A of the L-shaped lift body 11 is induced by an actuator to slide upwards along the guide rail 12 as illustrated by arrow 20 and that as a result of the upward movement the guide nose 13 is lifted above the nut and bolt assembly 5G and the stepping shoe 7 is lifted from the nut and bolt assembly 5E.
Figure 3 shows that after lifting the L-shaped lift body 11 upwards the parallel stepping legs 10A and 10B are actuated, which actuation may be robotic, manual or robot- and/or gravity-assisted, and pivot from the parallelogrammical shape shown in Figure 2 towards the rectangular shape shown in Figure 3 thereby moving, as illustrated by arrow 31, the lower part 7A of the stepping shoe 7 above and in substantial alignment with a central axis of another nut and bolt assembly SF.
Figure 4 shows how the stepping shoe 7 is subsequently lowered onto and positioned around nut and bolt assembly SF, whereupon the tool head carrier body 3 is lifted upwards as illustrated by arrow 40 by sliding the tool head carrier body in upward direction by actuating guide rail 12 relative to the vertical tower 11A of the L-shaped lift body 11.
Figure § shows how subsequently the stepping legs 10A, 108 are pivoted relative to the stepping shoe 7 such that the stepping legs 10A, 108 pivot from the rectangular shape shown in Figures 3 and 4 into the paraliglogrammical shape shown in Figures 1, 2 and 5, thereby moving the L-shaped lift body 11 and the tool head carrier body 3 and tool head 2 in a substantially circumferential direction towards a next to be manipulated nut and bolt assembly 51 as illustrated by arrow 50.
During the substantially circumferential movement illustrated by arrow 50 the concave guide nose 13 is lowered relative {o the tower 11A of the lift body 11 as iJustrated by arrow 51 to press the guide nose 13 against the outer contour of nut and bolt assembly SH and to thereby rotate the stepping mechanism 3, the tool head carrier body 3 and the tool head 2 relative to nut and bolt assembly 5F to which the stepping shoe 7 is positioned as illustrated by arrows 52, allowed by a bearing between the lower part 7A and the upper part 7B of the stepping shoe 7.
After the substantially circumferential movement of the stepping mechanism 9, and the carrier body 3 illustrated by arrow 50 and the downward movement of the guide nose 13 illustrated by arrow 51 and subsequently of the too! carrier body 3 and tool head 2 along the guide rail 12 as illustrated by arrow 52 the self- centering machine 1 is brought into the same position as illustrated in Figure 1, but now with the stepping shoe positioned around nut and bolt assembly SF and with the tool head 2 positioned around nut and bolt assembly 51, which is subsequently to be manipulated. :
Figure 5 also shows that the bearing between the lower part 7A and the upper part 7B of the stepping shoe 7 allows the upper part 7B to rotate or swing relative to the nut and bolt assembly SE, wherein the alignment toes 7C and 7D, which are spaced at a larger spacing S than the diameter D of the nut and bolt assembly to restrict the rotation to a limited angle as illustrated by arrows 52. The swinging motion illustrated by arrows 52 is induced by the movement of the concave guide nose 13 along the outer contour of the nut and bolt assembly 5H and serves to align the tool head 2 with the next nut and bolt assembly 5] that is fo be manipulated without the necessity of using a complex and fragile electronic navigation and steering assembly or sensors, which can break down in a harsh environment such as a wind turbine, and stop the machine from functioning and potentially causing collapse of the to be bolted structure.
Figure 3 shows that also the carrier body 3 may be pivotably connected to the guide rail 12 such that the self-centering machine 1 can swing over a limited angle relative to the central axis 14 of the recently manipulated nut and bolt assembly 8H as illustrated by arrows 30. This swinging motion allows accurate alignment of the stepping shoe 7 with the central axis of the nut and bolt assembly 5F onto which the stepping shoe 7 is lowered during the step illustrated by arrow 31 in Figure 3. it will be understood that the concave guide nose 13 and the stepping mechanism 9 with a pivotable stepping shoe 7 with alignment toes 7C and 7D and a carrier body 3, which is slidably connected to the guide rail 12 can be easily adjusted to different diameters of the flange assembly 8 and to different mutual distances, or pitches, between adjacent nut and bolt assemblies 5A-5N, by having a stroke in the stepping legs 10A and 108, large enough to reach the next bolt, and having guide nose 13 wide enough to self-center onto the next nut and bolt assembly on varying diameters and allow sufficient rotation of arrows 52 and 30 to accommodate for varying flange diameters.
The guide nose 13 shown in Figures 1-5 provides a robust mechanical tool head steering, navigation and support assembly that does not require use of wear prone electronic tool head navigation and positioning sensors or any pre- programmed bolt to bolt distances as disclosed in EP3550139.
Figures 6-0 show an alternative embodiment of the guide nose 83 of the seif- centering machine 1 according to the invention, wherein the guide nose 83 faces the nut and bolt assembly 85 which is to be manipulated. The guide nose 63 is connected by a pivot 86, which pivot 66 may be replaced by a sliding element, to the carrier body 87 or stepping mechanism 70, which also carries the tool head 68 and which may be connected by a bearing assembly 89 fo a stepping mechanism 70, which may be substantially similar to the stepping mechanism 9 shown in Figures 1-5.
Figure 8 is a side view of the concave guide nose 63 when it faces the substantially tubular outer contour 71 of the nut and bolt assembly 85 which is to be manipulated and Figure 7 is a top view of the guide nose 83 in the position shown in Figure 8, and which shows that the concave guide nose 63 has a V- shaped bifurcated concave surface 72 that is shaped such that it guides a central axis 73 of the tool head 68 into axial alignment with a central axis 74 of the nut and bolt assembly 65 which is to be manipulated. in this way, the central axis 73 of tool head 68 is aligned first with the central axis 74 of the nut and bolt assembly, before lowering the tool head 88 onto the nut and bolt assembly, contrary to what is disclosed in EP3195991. There, the tool is aligned with the nut and bolt assembly by lowering it onto the nut and bolt assembly and thereby initiating a complex pivoting guide mechanism.
Figure 8 is a side view of the guide nose 83 of Figures 8 and 7, after it has pivoted, or slid away from the nut and bolt assembly 65 which is to be manipulated, as illustrated by arrow 75 and after the tool head 68 has been towered onto and around the nut and bolt assembly 85, which is to be manipulated as iflustrated by arrow 76.
Figure 9 is a top view of the guide nose 83 in the position shown in Figure 8.
Figures 6-9 also show that the nut and bolt assembly 85 comprises a pair of nuts
GSA and 65B with internal screw threads (not shown) and a cylindrical rod 85C which has a generally cylindrical outer contour 71 into which an external screw thread {not shown) has been machined. The nut and bolt assembly 65 is configured to clamp together a pair of flanges 80A and 80B of a flange assembly 80 that interconnects flanged components 81A and 81B of a mechanical structure 81, such as a wing and a central wing carrier hub or two tower sections of a wind turbine.
An advantage of the pivotable guide nose 83 shown in Figures 8-9 is that the stepping mechanism can be more compact, stable and light-weight than the stepping mechanism 9 shown in Figures 1-5 since there is no need to always maintain one nut and bolt assembly between the manipulated nut and bolt assembly 5H and the nut and bolt assembly BE around which the stepping shoe 7 is positioned. In addition, if nut and bolt assemblies are arranged within oversized bolt holes, they are arranged at slightly different circumferential pitches and at slightly different radial distances from a central axis of the flange, in which case the guide nose 63 aligns the tool head accurately onto the nut and bolt assembly.
Although the invention has been explained in more detail on the basis of only a few execution examples, it is clear that the invention is in no way limited to these examples.
On the contrary, many variations and appearances are stil! possible for an average craftsman within the framework of the invention. For example, the implementation examples are based on a linear step mechanism, but a curved step mechanism can also be used for this purpose that follows the contour of the flange connection. Also, bolt pre-tension measuring, inspection, manipulation and other tools other than those mentioned can similarly be self-centered with the nut and bolt assembly, including intended bolted connections and cavities.
When no nut and bolt assembly is present, the stepping shoe will then clamp or position itself inside a bolt hole. The stepping shoe may also be configured such that it can be adjusted to different sizes of nut and bolt assemblies.
The concave guide nose 13 shown in Figures 1-4 and the guide nose 63 shown in Figures 8-9 may also be configured to engage a nut of one of the nut and bolt assemblies. In such case the guide nose 13, 83 may have a concave surface 72 having a generally circular or otherwise rounded shape.
The guide nose 13, 83 may also be magnetic and/or be shaped and/or be provided with a surface with a high friction coefficient such that if prevents the bolt or stud from rotating when the nut is manipulated, thereby preventing inadequate manipulation of the nut and bolt assembly. jt is also observed that the guide nose 13, 83 may also be used to self-center a tool head of a robatic or manually operated machine where the tool head is moved manually and/or by a wheel supported carriage along the circumference of a flange.
Furthermore, it is observed that features and embodiments shown in the accompanying drawings and/or described in this specification, abstract and claims (and/or claimed embodiments) may be combined in several ways.
Claimed Embodiments (Claims). 1. A self-centering machine for manipulating a series of nut and bolt assemblies for clamping together components of a mechanical structure, the machine comprising: - a tool head which is rotatably connected to a tool head carrier body, such that, when in use, the tool head can be removably arranged around a nut of the manipulated nut and bolt assembly and be rotated about an axis of rotation relative to the tool head carrier body to manipulate the nut of the manipulated nut and bolt assembly; - a traction mechanism, which is configured, when in use, to sequentially release the tool head from the manipulated nut and bolt assembly and to move the tool head towards a next to be manipulated nut and bolt assembly,
- a guide nose, which is connected to the traction mechanism and is configured to interrupt the movement of the tool head and to guide, prior to the interruption, the axis of rotation of the tool head substantially into axial alignment with a central axis of the next to be manipulated nut and bolt assembly.
2. The seif-centering machine of claim 1, wherein the guide nose has a V- or U-
shaped, semi-circular or other bifurcated concave funneling surface, which is configured to slide prior to the interruption of the movement of the tool head along an outer contour of the next to be manipulated nut and bolt assembly or of another nut and bolt assembly nearby the next to be manipulated nut and bolt assembly and to thereby guide the axis of rotation of the tool head into substantial alignment with the central axis of the next to be manipulated nut and bolt assembly.
3 The self-centering machine of claim 1 or 2, wherein-the traction mechanism comprises: - a stepping shoe which is configured to be releasably positioned around another nut and bolt assembly that is located nearby the manipulated nut and bolt assembly; and - a stepping mechanism, which connects the stepping shoe to the tool head carrier body and which is configured to, when in use, alternatingly release the tool head from the manipulated nut and bolt assembly and the stepping shoe from the other nut and bolt assembly and to induce during one step the tool head to step towards a next to be manipulated nut and bolt assembly and to induce during another step the stepping shoe to be moved towards another nut and bolt assembly that is located nearby the next to be manipulated nut and bolt assembly; and
- wherein the stepping mechanism is configured to alternatingly vary during said ane step a distance between the stepping shoe and the tool head, and the guide nose is configured to rotate the carrier frame and the stepping mechanism and the tool head carrier body relative to the stepping shoe such that the tool head is directed into substantial alignment with the next to be manipulated nut and bolt assembly.
4 The self-centering machine of claim 3, wherein the stepping mechanism further comprises a lift mechanism, which is configured to alternatingly lift the tool head and the stepping shoe up from, and in a substantially vertical direction relative to, a surface of the flanges, which surface faces the nut of the manipulated nut and bolt assembly. 5. The self-centering machine of claim 4, wherein the lift mechanism is slidably connected to an outer surface of the tool head carrier body such that the tool head carrier body and lift mechanism can slide relative to each other in said substantially vertical direction. 8, The self-centering machine of claim 5, wherein the lift mechanism comprises an
L-shaped lift body with a vertical liff tower and a horizontal lift arm, which is oriented substantially orthogonal to said vertical direction and, when in use, substantially parallel to said surface of the flanges which faces the nut of the manipulated nut and bolt assembly, and wherein the vertical tower is slidably connected to a guide rail at an outer surface of the tool head carrier body and the horizontal arm is connected to the stepping shoe by a pair of substantially parallel stepping legs. 7. The self-centering machine of claim 6, wherein the guide nose is slidably or rotatably connected to the vertical tower of the L-shaped lift body, such that during said one step the concave guide nose is pressed against the substantially cylindrical outer contour of the nut or bolt of the next manipulated nut and bolt assembly or of a nut or bolt of a nut and bolt assembly nearby the next manipulated nut and bolt assembly and the concave guide nose thereby rotates the stepping mechanism and the tool head relative to the nearby nut and bolt assembly around which the stepping shoe is releasably positioned in such a manner that the tool head is brought into substantially axial alignment with the central axis of the next manipulated nut and bolt assembly. 8. The self-centering machine of claim 6 or 7, wherein the substantially parallel stepping legs are at one end thereof pivotably connected to the horizontal lift arm and at another end pivotably connected to an upper part of the stepping shoe. 3. The self-centering machine of claim 8, wherein the substantially parallel stepping legs have substantially the same length, thereby creating a transformable stepping frame, which frame can be transformed from a parallelogrammical shape into a rectangular shape upon pivoting of the stepping legs relative to the stepping shoe and horizontal lift arm. 18. The self-centering machine of claim 9, wherein the upper part of the stepping shoe is rotatably connected to a lower part of the stepping shoe, which the lower part is configured to be positionsd around a nut and bolt assembly and wherein the upper part comprises a pair of alignment toes, that are configured to be arranged, when in use, at opposite sides of an outer contour of another nut and bolt assembly, which is located adjacent to the nearby nut and bolt assembly around which the ower part of the stepping shoe is releasably positioned, and wherein the alignment toes are mutually spaced at a spacing which is larger than a width of the outer contour of said another nut and bolt assembly so that the palr of alignment toes permit a restricted rotation of the stepping mechanism and the tool head relative to the nut and bolt assembly around which the stepping shoe is releasably positioned.
11. The self-centering machine of any one of claims 1-10, wherein the machine is configured lo manipulate a series of nut and bolt assemblies that have central axes that reside in a substantially cylindrical plane and the alignment toes are configured to restrict the rotation of the machine relative to the nearby nut and bolt assembly around which the stepping shoe is releasably positioned in a direction substantially orthogonal to the ovlindrical plane; and wherein the machine comprises a manipulation registration module, which is configured to register bolt manipulation parameters of each of the series of nut and holt assemblies and to store the registered bolt manipulation parameters at an accessible location.
12. The self-centering machine of claim 11, wherein the alignment toes and the stepping shoe are configured such that, when in use, the tool head is brought into axial alignment with the next manipudated nut and bolt assembly without requiring position sensors and/or electronic navigation equipment.
13. The self-centering machine of any one of claims 1-12, wherein the mechanical structure is a wind turbine and the traction mechanism is configured to move machine in a circumferential direction ground adjacent cylindrical flanges of the wind turbine to tighten each of the circurnferentially spaced nut and bolt assemblies and the tool head carrier body is furthermore provided with a bolt tensioning device, which is configured to be screwed around a lip of, and to exert a tension force to, the bolt of the manipulated nut and bolt assembly during the tightening process. 14. The self-centering machine of claim 13, wherein the {ool head comprises a tensioning nut configured to be induced by hydraulic pressure to exert a predetermined tension force on the holt of the manipulated nut and bolt assembly which is lightened and to thereby reduce a torque required to rotate the tool head during the tightening process. 15. A method of manipulating a series of nut and bolt assembiies for clamping together components of a mechanical structure, wherein use is made of the self centering machine of any one of claims 1-14 to substantially align a central axis of the tool head with a central axis of the to be manipulated nut and bolt assembly by pressing the guide nose to the to be manipulated nut and bolt assembly or to a nut and bolt assembly which is located nearby the to be manipulated nut and bokt assembly.

Claims (15)

CONCLUSIESCONCLUSIONS 1. Een zelkcenterende machine voor het manipuleren van een reeks mosr- en boutsamenstelien voor het aan elkaar kiemmen van componenten van een mechanische constructie, welke machine omvat - gen gereedschapskop die roteerbaar is verbonden met een 1G gereedschapskopdrageriichaanm, zodat, wanneer in gebruik, de gereedschapskop verwijderbaar kan worden aangebracht rond een moer van het gemanipuleerde moer- en boutsamenstel en kan worden geroteerd om een rotatie-as ten opzichte van het gerssdschapskopdrageriichaam om de moer van het gemanipuleerde moer en bouisamenstel te manipuleren; - een tractiemechanisme dat, wanneer in gebruik, geconfigureerd is om de gereedschapskop achtereenvolgens los te nemen van het gemanipuleerde moer- en boutsamensiel en am de gereedschapskop te bewegen naar een volgende te manipuleren moer- en boutsamenstel, en - gan geleidingsneus, die is verbonden met het tractiemechanisme en is geconfigureerd om de beweging van de gereedschapskop te onderbreken en om, voorafgaand aan de onderbreking, de rolatie-as van de gereedschapskop in hoofdzaak in axiale uitlijning te brengen met een centrale as van het volgende te manipuleren moer- en boutsamenstelCLAIMS 1. A self-centering machine for manipulating a series of nut and bolt assemblies for bolting together components of a mechanical structure, the machine comprising a tool head rotatably connected to a 1G tool head carrier body so that, when in use, the tool head removably disposed about a nut of the engineered nut and bolt assembly and rotated about an axis of rotation relative to the tool head carrier body to manipulate the nut of the engineered nut and bolt assembly; - a traction mechanism, when in use, configured to sequentially detach the tool head from the manipulated nut and bolt assembly and move the tool head to a next nut and bolt assembly to be manipulated, and - a guide nose, which is connected to the traction mechanism and is configured to interrupt the movement of the tool head and, prior to the interruption, bring the axis of rotation of the tool head into substantial axial alignment with a central axis of the next nut and bolt assembly to be manipulated 2. Zeif-centrerende machine volgens conclusie 1, waarbij de geleidingsneus een V- of U-vormig, halfrond of ander gevorkt concaaf trechteroppervlak heeft, dat is geconfigureerd om te schuiven voorafgaand aan de onderbreking van de beweging van de gereedschapskop langs een buifencontour van het volgende 1e manipuleren bout- en moersamenstel of van een ander moer- en boutsamenstel! nabij het volgende te manipuleren moer- en boutsamenstel en om daardoor de rotatie-as van de gereedschapskop in substantiële uitlijning te brengen met de centrale as van het volgende te manipuleren moer- en boutsamenstel.The self-centering machine of claim 1, wherein the guide nose has a V- or U-shaped, hemispherical or other bifurcated concave funnel surface configured to slide prior to interruption of tool head movement along an outer contour of the tool. next 1st manipulate bolt and nut assembly or of any other nut and bolt assembly! proximate the next nut and bolt assembly to be manipulated and thereby to bring the axis of rotation of the tool head into substantial alignment with the central axis of the next nut and bolt assembly to be manipulated. 3. Zelf-centrerende machine volgens conclusie 1 of 2, waarbij het tactiemechanisme omvat:A self-centering machine according to claim 1 or 2, wherein the tactile mechanism comprises: - een stapschoen die is geconfigureerd om losneembaar te worden gepositioneerd rond een ander moer- en boutsamenstel dat zich dichtbij het gemanipuleerde moer- en bouisamensiel bevindt; en - een stapmechanisme dat de stapschoen verbindt met het dragerfichaam van de gereedschapskop en dat is geconfigureerd om, wanneer in gebruik, afwisselend de gereedschapskop los te nemen van het gemanipuleerde moer- en boutsamenstel en de stapschoen van het andere moer- en boutsamenste! en om tijdens een stap de gereedschapskop ertoe te brengen naar een volgende te manipuleren moer- en boutsamenstel te stappen en om tijdens een andere stap de stapschoen te bewegen naar een ander moer- en boutsamenstel die zich in de buurt van de volgende te manipuleren moer- en boutsamenstel bevindt, en - waarbij het stapmechanisme is geconfigureerd om tijdens de ene stap afwisselend een afstand tussen de stapschoen en de gereedschapskop te variëren, en de geleidingsneus is geconfigureerd om het draagframe en het stapmechanisme en het dragerlichaam van de gersedschapskop te roteren ten opzichte van de stapschoen zodanig dat de gereedschapskop is gericht in substantiële uitlijning met het volgende te manipuleren moer en boutsamenstel.a stepper shoe configured to be releasably positioned about another nut and bolt assembly proximate to the engineered nut and bolt assembly; and - a stepping mechanism which connects the stepper shoe to the tool head carrier body and is configured, when in use, to alternately disengage the tool head from the engineered nut and bolt assembly and the stepper shoe from the other nut and bolt assembly! and during one step to cause the tool head to step to a next nut and bolt assembly to be manipulated and during another step to move the stepping shoe to another nut and bolt assembly that is near the next nut and bolt assembly to be manipulated and bolt assembly, and - wherein the stepping mechanism is configured to alternately vary a distance between the stepping shoe and the tool head during one step, and the guide nose is configured to rotate the carrier frame and stepping mechanism and carrier body of the gersing head relative to the stepper shoe such that the tool head is oriented in substantial alignment with the next nut and bolt assembly to be manipulated. 4. Zelf-centrerende machine volgens conclusie 3, waarbij het stapmechanisme verder een hefmechanisme omvat, dat is geconfigureerd om afwisselend de gereedschapskop en de stapschoen op te tillen vanaf een oppervlak van de Henzen in hoofdzaak met verticale richting, welk oppervlak naar de moer van het gemanipuleerde moer- en boutsamenstel is gericht.The self-centering machine of claim 3, wherein the stepping mechanism further comprises a lifting mechanism configured to alternately lift the tool head and the stepping shoe from a surface of the Henzen substantially vertically directed toward the nut of the tool. engineered nut and bolt assembly is targeted. 5. Zelf-centrerende machine volgens conclusie 4, waarbij het hefmechanisme verschuithaar is verbonden met een buitenoppervlak van het gereedschapskopdragerlichaam, zodat het gereedschapskopdragerlichaam en hefmechanisme ten opzichte van elkaar kunnen schuiven.The self-centering machine of claim 4, wherein the lifting mechanism is slidingly connected to an outer surface of the tool head carrier body so that the tool head carrier body and lifting mechanism can slide relative to each other. 6. Zelf-centrerende machine volgens conclusie 5, waarbij het hefmechanisme een L-vormig heflichaam omvat met een verticale heftoren en een horizontale hefarm, die in hoofdzaak loodrecht op de verticale richting is georiënteerd en, wanneer in gebruik, in hoofdzaak evenwijdig aan het oppervlak van de flenzen dat naar de moer van het gemanipuleerde moer- en boutsamenstel is gekeerd, en waarbij de verticale toren verschuifbaar is verbonden met een geleiderall aan sen buitenoppervlak van het gereedschapskopdragerlichaam en de horizontale anm is verbonden met de stapschoen door een paar in hoofdzaak evenwijdige stapbenen.A self-centering machine according to claim 5, wherein the lifting mechanism comprises an L-shaped lifting body with a vertical lifting tower and a horizontal lifting arm, which is oriented substantially perpendicular to the vertical direction and, when in use, substantially parallel to the surface of the flanges facing the nut of the engineered nut and bolt assembly, and wherein the vertical turret is slidably connected to a guide all on an outer surface of the tool head carrier body and the horizontal arm is connected to the step shoe by a pair of substantially parallel step legs . 7. Zelf-centrerende machine volgens conclusie 8, waarbij de geleidingsneus verschuifbaar of roteerbaar is verbonden met de verticale toren van het L-vormige heflichaam, zodanig dat tijdens genoemde ene stap de concave geleidingsneus wordt gedrukt tegen de in hoofdzaak cilindrische buitenzijde van de moer of bout van het volgende gemanipuleerde moer- en boutsamenstel of van een moer of bout van een moer- en boutsamenstel nabij het volgende gemanipuleerde moer- en boutsamenstel en de concave geleidingsneus daarbij het stapmechanisme en de gereedschapskop roteert ten opzichte van het nabijgelegen moer- en boutsamenstel waaromheen de stapschoen gepositioneerd is op sen zodanige manier dat de gereedschapskop substantieel axiaal in lijn wordt gebracht met de centrale as van het volgende te manipuleren moer- en boutsamenstel.7. Self-centering machine according to claim 8, wherein the guide nose is slidably or rotatably connected to the vertical tower of the L-shaped lifting body, such that during said one step the concave guide nose is pressed against the substantially cylindrical outer side of the nut or bolt of the next engineered nut and bolt assembly or of a nut or bolt of a nut and bolt assembly near the next engineered nut and bolt assembly and the concave guide nose thereby the stepping mechanism and the tool head rotate relative to the nearby nut and bolt assembly around which the stepper shoe is positioned in such a manner as to bring the tool head substantially axially aligned with the central axis of the next nut and bolt assembly to be manipulated. 8. Zelf-centrerende machine volgens conclusie 8 of 7, waarbij de in hoofdzaak evenwijdige stapbenen aan een Uiteinde daarvan scharnierbaar zijn verbonden met de horizontale hefarm en aan een ander uiteinde scharnierbaar zijn verbonden met een bovenste deel van de stapschoen.A self-centering machine according to claim 8 or 7, wherein the substantially parallel step legs are pivotally connected at one end thereof to the horizontal lifting arm and at another end are pivotally connected to an upper part of the step shoe. 9. Zelf-centrerende machine volgens conclusie 8, waarbij de in hoofdzaak evenwijdige stapbenen in hoofdzaak dezelfde lengte hebben, waardoor een transformeerbaar stapframe ontstaat, welk frame bij het roteren van de stapbenen van een parallellogramvorm in een rechthoekige vorm kan worden omgezet ten opzichte van de stapschoen en de horizontale hefarm.9. Self-centering machine as claimed in claim 8, wherein the substantially parallel step legs have substantially the same length, resulting in a transformable step frame, which frame can be converted from a parallelogram shape to a rectangular shape when the step legs are rotated with respect to the step shoe and the horizontal lift arm. 10. Zelf-centrerende machine volgens conclusie 8, waarbij het bovenste deel van de stapschoen roteerbaar is verbonden met een onderste deel van de stapschoen, waarvan het onderste deel ís geconfigureerd om te worden geplaatst rond een moer en bout-samenstel en waarbij het bovenste deel een paar uitlijntenen omvat, die zijn geconfigureerd om, wanneer in gebruik, te worden aangebracht aan weerszijden van een buitencontour van sen ander moer- en boutsamenstel, dat grenst aan het nabijgelegen moer- en boutsamenstel rondom waarbij het onderste deel van de stapschoen losmaakbaar is gepositioneerd, en waarbij de uitlijntenen op onderlinge afstand zijn geplaatst op een afstand die groter is dan een breedte van de buitencontour van het andere moer- en boutsamenstel, zodat het paar uillijntenen een beperkte rotatie van het stapmechanisme en de gereedschapskop ten opzichte van het moer- en boutsamenstel toelaten waaromheen de stapschoen losneembaar is gepositioneerd.The self-centering machine of claim 8, wherein the upper portion of the stepper shoe is rotatably connected to a lower portion of the stepper shoe, the lower portion of which is configured to be disposed about a nut and bolt assembly, and wherein the upper portion is includes a pair of alignment lugs configured, when in use, to be disposed on either side of an outer contour of another nut and bolt assembly adjacent the adjacent nut and bolt assembly all around with the lower portion of the stepper shoe releasably positioned , and wherein the alignment toes are spaced apart at a distance greater than a width of the outer contour of the other nut and bolt assembly so that the pair of alignment toes provide limited rotation of the stepping mechanism and tool head relative to the nut and bolt assembly. bolt assembly around which the stepping shoe is releasably positioned. 11. Zelf-centrerende machine volgens een van de conclusies 1-10, waarbij de machine is geconfigureerd om een reeks moer- en boutsamenstslien te manipuleren die centrale assen hebben die in een in hoofdzaak cilindrisch vlak liggen en waarbij de uillijntenen zijn geconfigureerd om de rotatie te beperken van de bouimachine ten opzichte van het nabijgelegen moer- en boutsamenstel waaromheen de stapschoen losmaakbaar ís gepositioneerd in een richting die in hoofdzaak loodrecht staat op het cilindrische vlak, en waarbij de machine een module voor het registreren van manipulatie omvat, die is geconfigureerd om boutparameters van de manipulatie van elk van de reeksen moer- en boutsamenstelien te registreren en om de geregistreerde boutparameters op een toegankelijke locatie op te slaan.A self-centering machine as claimed in any one of claims 1 to 10 wherein the machine is configured to manipulate a series of nut and bolt assemblies having central axes lying in a substantially cylindrical plane and wherein the owl-shaped toes are configured to facilitate rotation. of the bolt machine relative to the adjacent nut and bolt assembly about which the step shoe is releasably positioned in a direction substantially perpendicular to the cylindrical plane, and wherein the machine includes a tamper sensing module configured to record bolt parameters from the manipulation of each of the series of nut and bolt assemblies and to store the recorded bolt parameters in an accessible location. 12. Zelf-centrerende machine volgens conclusie 11, waarbij de uitlijntenen en de stapschoen zodanig zijn geconfigureerd dat, wanneer in gebruik, de gereedschapskop van de boutmachine in substantiele axiale uitlijning wordt gebracht met de volgende gemanipuleerde moer-en boutsamenstel zonder dat er positiesensoren en/of elektronische navigatieapparatuur nodig zijn,A self-centering machine according to claim 11, wherein the alignment toes and stepping shoe are configured such that, when in use, the tool head of the bolt machine is brought into substantial axial alignment with the next engineered nut and bolt assembly without the need for position sensors and/or whether electronic navigation equipment is required, 13. Zelf-centrerende machine volgens een van de conclusies 1-12, waarbij de mechanische structuur een windturbine is en het tractiemechanisme is geconfigureerd om de machine in een omtreksrichting rond aangrenzende cilindrische flenzen van de windturbine om elk van de langs de omtrek uit elkaar geplaatste moer- en boutsamensteilen vast te draaien en het gereedschapskopdragerlichaam bovendien is voorzien van een boutspaninrichting, die is geconfigureerd om te worden geschroefd rond de schroefdraad van, en om sen spankracht uit te oefenen op, de bout van het gemanipuleerde moer- en boutsamenstel tijdens het manipulatieproces.A self-centering machine according to any one of claims 1 to 12, wherein the mechanical structure is a wind turbine and the traction mechanism is configured to rotate the machine circumferentially around adjacent cylindrical flanges of the wind turbine about each of the circumferentially spaced tightening nut and bolt assemblies and the tool head carrier body additionally includes a bolt tensioner configured to thread about the threads of, and apply a tension force to, the bolt of the engineered nut and bolt assembly during the manipulation process . 14. Zelf-centrerende machine volgens conclusie 13, waarbij de gereedschapskop is voorzien van een spanmoer geconfigureerd om te worden geïnduceerd door hydraulische druk om een vooraf bepaalde spankracht uit te oefenen op de bout van het gemanipuleerde moer- en boutsamenstel.The self-centering machine of claim 13, wherein the tool head includes a tension nut configured to be induced by hydraulic pressure to apply a predetermined tension force to the bolt of the engineered nut and bolt assembly. 15. Werkwijze voor het manipuleren van een reeks moer- en boutsamenstellen voor het aan elkaar klemmen van componenten van een mechanische constructie, waarbij gebruik wordt gemaakt van de zelf-centrerende machine volgens een van de conclusies 1-14 om een centrale as van de gereedschapskop substantieel uit te lijnen met sen centrale as van het te manipuleren moer- en boutsamenstel door de geleidingsneus tegen het te manipuleren moer- en boutsamenstel of tegen een moer- en boutsamenstel nabij het te manipuleren moer- en bouisamenstel te drukken.A method of manipulating a series of nut and bolt assemblies for clamping together components of a mechanical structure, using the self-centering machine of any one of claims 1-14 about a central axis of the tool head substantially align with a central axis of the nut and bolt assembly to be manipulated by pressing the guide nose against the nut and bolt assembly to be manipulated or against a nut and bolt assembly adjacent the nut and bolt assembly to be manipulated.
NL1044234A 2021-12-09 2021-12-09 Self-centering machine for manipulating nut and bolt assemblies NL1044234B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
NL1044234A NL1044234B1 (en) 2021-12-09 2021-12-09 Self-centering machine for manipulating nut and bolt assemblies
PCT/NL2022/000009 WO2023106911A1 (en) 2021-12-09 2022-12-09 Self-centering machine for manipulating nut and bolt assemblies
EP22829930.1A EP4444498A1 (en) 2021-12-09 2022-12-09 Self-centering machine for manipulating nut and bolt assemblies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NL1044234A NL1044234B1 (en) 2021-12-09 2021-12-09 Self-centering machine for manipulating nut and bolt assemblies

Publications (1)

Publication Number Publication Date
NL1044234B1 true NL1044234B1 (en) 2023-06-26

Family

ID=79831582

Family Applications (1)

Application Number Title Priority Date Filing Date
NL1044234A NL1044234B1 (en) 2021-12-09 2021-12-09 Self-centering machine for manipulating nut and bolt assemblies

Country Status (3)

Country Link
EP (1) EP4444498A1 (en)
NL (1) NL1044234B1 (en)
WO (1) WO2023106911A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116652549B (en) * 2023-07-31 2023-10-20 西安蓝天维特航空科技有限公司 Aeroengine assembly auxiliary assembly
CN117359276A (en) * 2023-10-17 2024-01-09 江西太空机器人科技有限公司 Industrial assembly robot

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103240A (en) 1987-10-16 1989-04-20 Mitsubishi Heavy Ind Ltd Automatic walking type fastening/loosening device for flange bolt
US20110232071A1 (en) 2008-04-02 2011-09-29 Frank Knoop Wind power plant having multiple construction sections
KR20130026039A (en) 2011-09-05 2013-03-13 삼성중공업 주식회사 Maintenance robot for wind power generator
EP2607685A1 (en) 2011-12-21 2013-06-26 Kenneth Johst Bolt mounting and tightening robot for wind turbines
US9457439B2 (en) 2011-02-01 2016-10-04 Mitsubishi Heavy Industries, Ltd. Fastening and loosening device
WO2016193297A1 (en) 2015-06-01 2016-12-08 Total Wind A/S Robot and working tool for performing assembly and maintenance operations in a sectioned tower
EP3163071A1 (en) 2015-10-29 2017-05-03 ALSTOM Renewables Technologies Wind B.V. Automatic tightening of bolts
EP3195974A1 (en) 2016-01-21 2017-07-26 Admede Ab Robot to move a support platform along a flange connection
EP3195991A1 (en) 2016-01-21 2017-07-26 Admede Ab Robot with positioning means to move a tool along a flange connection
WO2019110061A1 (en) 2017-12-06 2019-06-13 Vestas Wind Systems A/S Automated tightening of bolts
EP3550139A1 (en) 2018-03-29 2019-10-09 Hohmann, Frank Device for tightening screw joints
WO2020212323A1 (en) 2019-04-18 2020-10-22 Siemens Gamesa Renewable Energy A/S Automated bolt tensioning robot
EP3894138A1 (en) 2018-12-11 2021-10-20 Tentec Limited Hydraulic tensioning apparatus

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103240A (en) 1987-10-16 1989-04-20 Mitsubishi Heavy Ind Ltd Automatic walking type fastening/loosening device for flange bolt
US20110232071A1 (en) 2008-04-02 2011-09-29 Frank Knoop Wind power plant having multiple construction sections
US9457439B2 (en) 2011-02-01 2016-10-04 Mitsubishi Heavy Industries, Ltd. Fastening and loosening device
KR20130026039A (en) 2011-09-05 2013-03-13 삼성중공업 주식회사 Maintenance robot for wind power generator
EP2607685A1 (en) 2011-12-21 2013-06-26 Kenneth Johst Bolt mounting and tightening robot for wind turbines
WO2016193297A1 (en) 2015-06-01 2016-12-08 Total Wind A/S Robot and working tool for performing assembly and maintenance operations in a sectioned tower
EP3163071A1 (en) 2015-10-29 2017-05-03 ALSTOM Renewables Technologies Wind B.V. Automatic tightening of bolts
EP3195974A1 (en) 2016-01-21 2017-07-26 Admede Ab Robot to move a support platform along a flange connection
EP3195991A1 (en) 2016-01-21 2017-07-26 Admede Ab Robot with positioning means to move a tool along a flange connection
WO2019110061A1 (en) 2017-12-06 2019-06-13 Vestas Wind Systems A/S Automated tightening of bolts
EP3550139A1 (en) 2018-03-29 2019-10-09 Hohmann, Frank Device for tightening screw joints
US11148240B2 (en) 2018-03-29 2021-10-19 Jörg Hohmann Device for tightening screw connections
EP3894138A1 (en) 2018-12-11 2021-10-20 Tentec Limited Hydraulic tensioning apparatus
WO2020212323A1 (en) 2019-04-18 2020-10-22 Siemens Gamesa Renewable Energy A/S Automated bolt tensioning robot

Also Published As

Publication number Publication date
WO2023106911A1 (en) 2023-06-15
EP4444498A1 (en) 2024-10-16

Similar Documents

Publication Publication Date Title
NL1044234B1 (en) Self-centering machine for manipulating nut and bolt assemblies
KR101368670B1 (en) Maintenance robot for wind power generator
EP2607685B1 (en) Bolt mounting and tightening robot for wind turbines
US6016695A (en) Tire uniformity testing system
US4873760A (en) Vessel lid mounting and demounting apparatus
CN108789481B (en) Arm fixing device and speed reducer replacing method
CN111656009B (en) Method for automatically tensioning bolt and bolt tensioning system
CN113966261B (en) Automatic bolt tensioning robot
CN109968013A (en) Wind power hub assembly line system
WO2014081573A1 (en) Tool structure for changing large wheels of a vehicle
US20150151917A1 (en) System, Method And Apparatus For Facilitating The Repair Of A Conveyor Belt Roller Assembly
CN113670224B (en) Full-automatic hub three-dimensional scanning system for intelligent automobile hub production line
CN114072578B (en) Tool assembly for tensioning a tower bolt of a wind turbine tower
NL1044424B1 (en) Movable bolting tool for manipulating nut and bolt assemblies of a bolted flange assembly
US11498817B2 (en) Nut gap monitoring system
CN111571194A (en) Quick-connection self-correcting bolt screwing mechanism
CN115302235B (en) Wind-powered electricity generation bolt assembly robot system
US20220307477A1 (en) Tightening device
CN112734716B (en) Automatic bolt detection method and device
CN115026574A (en) Intelligent assembling station system for wheel brake disc
CN107127545A (en) Boom formula feed mechanism and Production of bearing equipment
CN112719839A (en) Maintenance equipment for middle section of blast furnace air supply corrugated pipe
CN112408195A (en) Power hanging beam capable of adjusting heavy object posture
CN220516824U (en) Fastening mechanism of wind power tower barrel bolt maintenance robot
JP2640952B2 (en) Automatic bolt tightener for prestressed concrete column mold