EP3544862A1 - Procédé et module paramétrique permettant de détecter le type et/ou la sévérité d'une collision entre un véhicule et un objet impliqué dans la collision - Google Patents

Procédé et module paramétrique permettant de détecter le type et/ou la sévérité d'une collision entre un véhicule et un objet impliqué dans la collision

Info

Publication number
EP3544862A1
EP3544862A1 EP17778284.4A EP17778284A EP3544862A1 EP 3544862 A1 EP3544862 A1 EP 3544862A1 EP 17778284 A EP17778284 A EP 17778284A EP 3544862 A1 EP3544862 A1 EP 3544862A1
Authority
EP
European Patent Office
Prior art keywords
collision
vehicle
mass
collision object
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP17778284.4A
Other languages
German (de)
English (en)
Inventor
Heiko Freienstein
Jochen Wieland
Josef Kolatschek
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3544862A1 publication Critical patent/EP3544862A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • B60R21/01332Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value by frequency or waveform analysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0134Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to imminent contact with an obstacle, e.g. using radar systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0136Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to actual contact with an obstacle, e.g. to vehicle deformation, bumper displacement or bumper velocity relative to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01558Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use monitoring crash strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R2021/0002Type of accident
    • B60R2021/0004Frontal collision

Definitions

  • the present invention relates to a method for detecting the type and / or severity of a collision of a vehicle, in particular of a motor vehicle, with a collision object for triggering suitable safety measures.
  • the invention also relates to a parameter module for estimating the absolute mass of a collision object in an early phase of a collision with a vehicle or the ratio of a mass of a vehicle to a mass of a collision object.
  • Modern motor vehicles are equipped with extensive sensors and monitoring equipment with the aim of increasing safety for the vehicle occupants. Even with the development of autonomous vehicles, which participate in the traffic without driver intervention, ever better systems have been developed for acquiring environmental data of the surroundings of the vehicle. In the present invention, it is assumed that a vehicle with extensive sensors and means for generating
  • Environment data of its environment is equipped.
  • these may be video cameras, radar systems, lidar systems and / or ultrasound systems. It is also known to use such systems, not (anymore)
  • a method according to claim 1 for detecting the type and / or severity of a collision of a vehicle with a collision object in an early phase of the collision to trigger appropriate security measures is provided according to the invention.
  • a parameter module according to claim 9 is also included in the invention.
  • a hitherto difficult parameter to consider in the collision of a vehicle with a collision object is the mass nri2 of the collision object or the ratio of mass rru of the vehicle to mass nri2 of the collision object.
  • the knowledge of the involved masses or of the mass ratio is of great importance for predicting the accident as accurately as possible, because this information can be used to make more accurate forecasts of expected loads on the vehicle occupants based on the physical laws of (plastic) impact.
  • the advantage which results from an approximate knowledge of the mass of the collision object, at least in relation to the mass of the own vehicle, is independent of the other accident occurrence, so that an application in principle for all types of collisions and all impact directions is advantageous.
  • an accident involving the front of the vehicle such as an impact directly from the front or obliquely from the front with full or partial overlap of the front of the vehicle and collision object.
  • Detection of environmental data in step a) of the method can be done for example via sensors. It is possible that the described method is carried out in a control unit which receives such environmental data via signal inputs from external (out-of-module) sensors.
  • an object with which a collision is to be expected should not only be detected and localized (step b), but the scanning system for acquiring environmental data should be at least one reference feature of the
  • step c Select a collision object (step c) to perform further observations using this feature (step d) and subsequent steps). Detection, localization and further observation of
  • the reference feature should lie in an area of the collision object that can be well observed before and even in the early phase of the collision, that is, for example, is not very deep on the front of the collision object. If the collision object is a vehicle, which will be the case in most cases, z. B. a lower lateral boundary of a windscreen (beginning of the A-pillar) as a reference feature. Many others for a safe Image processing suitable features can be stored in a security system.
  • a scanning system for acquiring environmental data may in this way be concentrated on one or more reference features, such that the relative speed between the vehicle and the collision object is determined by repeated distance measurement with reference to at least one
  • Speed of the vehicle from its sensors (eg, measurement of wheel speed or time integration of measured accelerations) known. This means that from the measured relative speed and the known speed of the vehicle, the speed of the collision object can be determined. As soon as the vehicle and the collision object touch each other, the deformation begins at both, so that in a first approximation one can physically speak of a plastic shock. The vehicle and the collision object become slower, in proportion to their masses.
  • the mass ratio between the two collision partners can be determined more accurately (with each repetition of the measurements or increasing time interval between the measurements increases the accuracy of
  • Initial speeds of the vehicle and collision object can thus also be determined the expected final speeds of both collision partners at the end of the collision and thus the severity of the accident from the perspective of the vehicle already in the early phase of the collision. This allows appropriate safety measures to be initiated in a suitable time sequence (or not to be triggered in the event of less serious accidents).
  • a measure of the type and / or severity of the collision from the perspective of the vehicle based on the determined
  • the environmental data is obtained by at least one of the following methods: video surveillance,
  • Lidar monitoring Lidar monitoring, radar monitoring, ultrasound monitoring. Such monitoring systems are used in modern vehicles
  • Video systems are suitable for extracting reference features and for measuring relative velocities. This can be done by
  • Image processing method and / or for example by measurements on the basis of the Doppler effect done.
  • the current speed of the vehicle can preferably be determined repeatedly before and during the collision from the sensors for speed, speed, acceleration and the like present in the vehicle. This allows to determine the absolute speeds of both vehicles from relative speed to the collision object and the vehicle's own speed and to draw further conclusions from this.
  • Mass ratio of vehicle and collision object at approximately known mass rru of the vehicle also calculates the absolute mass nri2 of the collision object, whereby the kinematics of the collision is calculated on the assumption of a plastic shock substantially according to the pulse conservation law and Determination of the measure of the nature and / or severity of the collision can be used. It is immediately obvious that the collision with an object of large mass can have more serious consequences for the occupants of a vehicle than the collision with a small-mass object. For this reason, the early determination of the mass ratio or the mass of the
  • Detection of the type and / or severity of the collision are needed. This provides additional computational capacity for the calculations to be performed before and during the early stages of the collision, allowing such complex tasks as extracting and tracking reference features and calculating deceleration speed of both collision partners to be performed so quickly that safety measures are triggered in a timely manner. Preference is given to the current speed of the vehicle (step d) and the
  • step e Determining the current relative speed between the reference feature and the vehicle (step e) performed several times at equal intervals during the collision, in each case also the changes of the two
  • Speeds are determined per unit time, so that with each measurement results in an increasingly accurate measure of the nature and / or severity of the collision from the vehicle's point of view. It should be noted that the entire observation takes place only in a short period of time, usually less than a second, which is why the time intervals for the speed measurements should be in the range of a few milliseconds. As far as metrologically possible, it is of particular advantage if at least two reference features are selected and observed on the collision object, because this increases the measurement accuracy and / or information about further parameters of the collision and a possible rotation of the
  • Collision object can be included in the determination of the degree of the type and / or severity of the collision. For example, when using the two lower ends of the A-pillars of a vehicle as reference features collision angle and / or rotation of the collision partners to each other can be determined.
  • step g an estimate of an effective mass mass ratio between mass of the vehicle and mass of the collision is first of all taken in document f)
  • target measures can be triggered in step h) based on the estimated severity of the collision.
  • Detection of the type and / or severity of the collision and the consequent measures are needed. This serves, in particular, to provide computing capacity for the invoices to be carried out before and during the early phase of the collision (described here).
  • Determining the current relative speed between reference feature and vehicle are preferably multiple, in particular in same
  • Time intervals performed during the collision in each case the change of the two speeds per unit time are determined.
  • step c) at least two reference features are preferably extracted at a collision object and observed in the subsequent steps. As a result, the measurement accuracy is increased and / or it is possible
  • Higher measurement accuracy can be achieved, for example, by taking into account two or more reference features for correction.
  • a rotation may be detected based on differences in the speeds of two reference features on a collision object.
  • a controller for estimating the absolute mass nri2 of a collision object in an early phase of a collision with a vehicle or the ratio a mass mi of a vehicle relative to a mass nri2 of a collision object in an early phase of a collision, wherein the module corresponds to a system in the
  • Vehicle is assigned to trigger appropriate safety measures in a collision, wherein further the module inputs for measured values of at least one first measuring device for repeatedly determining the relative
  • Such a controller is suitable as part of a security system of a
  • the second mass nri2 or the ratio determined by the parameter module The masses of motor vehicle and collision object are essential parameters for the expected course of a collision, so with Help the parameter module a more accurate prediction of expected loads on the occupants of the motor vehicle and on appropriate
  • Fig. 1 schematically a situation shortly before collision of a vehicle with a collision object
  • FIG. 2 shows an exemplary flow chart for the method.
  • the vehicle 1 shows a schematic representation of a constellation shortly before the collision of a motor vehicle 1 with a collision object 2.
  • the motor vehicle 1 has the initial speed Vi.o and the mass rru.
  • the collision object in the present case also exemplified as a motor vehicle, has the initial velocity V2, o and the mass nri2.
  • the two collision partners still have a certain distance and a spatial arrangement to each other.
  • the area directly affected by a collision (which thereby deforms) is referred to below as the collision area 5.
  • the vehicle 1 has at least one first measuring device 3 for acquiring surroundings data of the surroundings of the vehicle 1. Typically, this involves a camera, an ultrasound or laser system or a radar device.
  • a laser scanning system for detecting environmental data is used because it can also provide data on the relative movement between the vehicle 1 and collision object 2, for example by measuring the Doppler effect, simultaneously with data about the direction of an object.
  • the first measuring device 3 delivers extensive data about a potential collision object 2 even before a collision. It is assumed in the present considerations that driver assistance systems or systems for autonomous driving present in the vehicle 1 recognize potential collision objects 2 at an early stage and foresee a collision can. If a potential collision object 2 is detected, then Help the first measuring device 3 identified at least a first reference feature 4 on the collision object 2 and extracted for a more accurate observation. Since this first reference feature 4 should also be observed during the collision, it should not be located in the immediate collision area 5, which deforms first in a collision. As suitable
  • Reference feature offers, for example, a lower corner of a lateral boundary of a windshield, a so-called A-pillar of a motor vehicle.
  • A-pillar of a motor vehicle.
  • a second reference feature 12 and further reference features depending on the performance of the data processing in the vehicle 1 can be consulted.
  • the relative distance 6 between the first measuring device 3 and the first reference feature 4 can be measured quite accurately before and during the course of a collision. This is done before and especially during the collision in preferably the same time intervals.
  • a second measuring device 9 in the vehicle 1 allows at any time, the absolute
  • Measuring device 3 and first reference feature 4 available. In most cases, data about the relative velocity V r , o, V r , i, V r> 2 ... VR, n are already available or can be calculated from the temporal sequence of these data.
  • An essential objective of the described system is to assist the safety system of a vehicle 1 in assessing the severity of a collision with additional information so that safety measures can be initiated in a timely and appropriate manner.
  • it is not only important to be able to estimate the geometric data of a collision course, such as impact angle, impact velocity and impact time, but of great importance is also the mass m 2 of the collision object 2 and the ratio of the mass rru of the vehicle to the mass m 2 of the collision object 2
  • Triggering of safety measures whereby the course and consequences of the collision can be estimated more accurately and safety elements can be triggered in a suitable manner.
  • belt tensioners 10 and / or airbags 11 can be triggered.
  • Fig. 2 illustrates the sequence of the method in the control unit 7. From the first measuring device 3 ambient data are forwarded to the input 14 for environmental data, including data on the relative velocity V r , n between the vehicle 1 and collision object 2 too short consecutive time points 0th , 1, 2, ... n. Where V r , o is the last one measured before the collision
  • Vi, i, Vi, 2 .... Vi, n at the times 0, 1, 2 ... n are selected or calculated. From a relative velocity determination 16 and the
  • Absolute velocity V2 from the difference of relative velocity V r and Speed Vi results.
  • the acceleration determination 18 results in a negative acceleration for both collision partners, so that, assuming the physical laws of a plastic (or at least partially plastic) impact, the ratio mi / m2 of the masses involved is estimated in a mass (ratio) determination19 can.
  • This ratio is passed to the system 8 for triggering safety measures, whereby the mass ratio or, if the mass rru of the vehicle 1 is known, both absolute masses of the collision partners can be taken into account in the considerations of severity S of a collision.
  • the calculations described are made in a simplified representation according to the following formulas:
  • the method described makes it possible to obtain a system for triggering safety measures in a vehicle 1 with a collision object 2 in the early phase of a collision data that contains an estimate of the collision object 2 Enable mass ratio between the vehicle 1 and collision object 2, allowing a more accurate early estimation of the collision consequences for occupants of the vehicle 1, which is a better timing and coordination of security measures, in particular the triggering seat adjusters, seatbelt tensioners and / or airbags is enabled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Traffic Control Systems (AREA)

Abstract

L'invention concerne un procédé permettant de détecter le type et/ou la sévérité d'une collision entre un véhicule (1) présentant une première masse (m1) et un objet impliqué dans la collision (2) présentant une deuxième masse (m2) lors d'une phase initiale de la collision pour déclencher des mesures de sécurité appropriées, le procédé comprenant les étapes consistant à : détecter des données environnementales relatives à un environnement du véhicule (1), détecter et localiser l'objet impliqué dans la collision (2) à partir des données environnementales, extraire au moins une caractéristique de référence (4), ne se situant pas dans une zone de collision (5) directe, de l'objet impliqué dans la collision (2) pour le suivi d'une vitesse relative (Vr) entre la caractéristique de référence (4) de l'objet impliqué dans la collision (2) et le véhicule (1), déterminer successivement à plusieurs reprises une vitesse actuelle (V1,n) du véhicule (1) et déterminer un changement de la vitesse du véhicule (Delta V1), déterminer successivement à plusieurs reprises une vitesse relative actuelle (Vr,n) entre le véhicule (1) et la caractéristique de référence (4) et déterminer un changement de la vitesse de l'objet impliqué dans la collision (Delta Vr), estimer un rapport de masses (m1/m2), effectif lors de la collision, entre la masse (m1) du véhicule (1) et la masse (m2) de l'objet impliqué dans la collision (2) à partir des changements déterminés (Delta V1, Delta Vr) des vitesses du véhicule (1) et de l'objet impliqué dans la collision (2).
EP17778284.4A 2016-11-28 2017-10-04 Procédé et module paramétrique permettant de détecter le type et/ou la sévérité d'une collision entre un véhicule et un objet impliqué dans la collision Withdrawn EP3544862A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102016223541.9A DE102016223541A1 (de) 2016-11-28 2016-11-28 Verfahren und Parametermodul zur Erkennung von Art und/oder Schwere einer Kollision eines Fahrzeugs mit einem Kollisionsobjekt
PCT/EP2017/075154 WO2018095626A1 (fr) 2016-11-28 2017-10-04 Procédé et module paramétrique permettant de détecter le type et/ou la sévérité d'une collision entre un véhicule et un objet impliqué dans la collision

Publications (1)

Publication Number Publication Date
EP3544862A1 true EP3544862A1 (fr) 2019-10-02

Family

ID=60009633

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17778284.4A Withdrawn EP3544862A1 (fr) 2016-11-28 2017-10-04 Procédé et module paramétrique permettant de détecter le type et/ou la sévérité d'une collision entre un véhicule et un objet impliqué dans la collision

Country Status (6)

Country Link
US (1) US20190344739A1 (fr)
EP (1) EP3544862A1 (fr)
JP (1) JP2019535587A (fr)
CN (1) CN110023149A (fr)
DE (1) DE102016223541A1 (fr)
WO (1) WO2018095626A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108579080A (zh) * 2018-05-11 2018-09-28 杨晓春 混合现实环境下实体球拍与虚拟球的交互实现方法及系统
US11399137B2 (en) * 2018-08-10 2022-07-26 Aurora Flight Sciences Corporation Object-tracking system
TWI684780B (zh) * 2018-09-13 2020-02-11 為昇科科技股份有限公司 車速雷達偵測系統及其偵測方法
CN110481543B (zh) * 2019-08-22 2021-01-26 宝能汽车集团有限公司 一种应对行车碰撞的方法及装置
KR20210071616A (ko) * 2019-12-06 2021-06-16 현대자동차주식회사 에어백 제어 장치 및 방법
DE102020205511A1 (de) * 2020-04-30 2021-11-04 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zur Ermittlung eines Typs einer Kollision eines Fahrzeugs
CN116978257B (zh) * 2023-08-11 2024-05-24 山东大学 基于轨迹预测的公路合流区冲突预警方法及系统

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10100880B4 (de) * 2001-01-11 2006-05-11 Robert Bosch Gmbh Verfahren zur Aufprallerkennung bei einem Kraftfahrzeug
JP2003182508A (ja) * 2001-12-18 2003-07-03 Denso Corp 車両用乗員保護装置
JP4206741B2 (ja) * 2002-04-03 2009-01-14 タカタ株式会社 衝突検出装置及び安全装置
JP4306229B2 (ja) * 2002-04-03 2009-07-29 タカタ株式会社 衝突検出装置及び安全装置
DE10256956B4 (de) * 2002-12-05 2007-02-15 Peguform Gmbh Fußgängerschutzsystem und Verfahren zum Aktivieren eines Fußgängerschutzsystems in Abhängigkeit eines Aufpralls
DE10303146A1 (de) * 2003-01-28 2004-07-29 Robert Bosch Gmbh Vorrichtung zur Ansteuerung eines Rückhaltesystems in einem Fahrzeug
JP4148473B2 (ja) * 2003-10-29 2008-09-10 株式会社デンソー 車両用衝突物体判別装置
DE102005006763A1 (de) * 2005-02-15 2006-08-24 Robert Bosch Gmbh Verfahren und Vorrichtung zur Objekterkennung
JP2008247277A (ja) * 2007-03-30 2008-10-16 Takata Corp 乗員拘束装置の制御方法及び乗員拘束装置
DE102008005527A1 (de) * 2008-01-22 2009-07-23 Robert Bosch Gmbh Verfahren zur Erzeugung von Datensätzen und korrespondierendes Verfahren zur Crashklassifikation
JP4873068B2 (ja) * 2009-11-20 2012-02-08 株式会社デンソー 衝突被害軽減装置
DE102011012081B4 (de) * 2011-02-23 2014-11-06 Audi Ag Kraftfahrzeug
DE102012201646B4 (de) * 2012-02-03 2022-06-30 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bestimmung einer Kollisionsgeschwindigkeit bei einer Kollision eines Fahrzeugs
DE102012011077A1 (de) * 2012-06-02 2013-12-05 Daimler Ag Verfahren und Vorrichtung zum Schutz eines Insassen bei einerKollision eines Fahrzeuges mit einem Hindernis
DE102012022392B4 (de) * 2012-11-15 2016-02-04 Audi Ag Verfahren und Vorrichtung zur Steuerung einer mit einem Sicherheitsgurt verbundenen Sicherheitsgurt-Vorrichtung eines Fahrzeugs mit einer vorausschauenden Kollisionserkennungseinheit
DE102013212092B4 (de) * 2013-06-25 2024-01-25 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Fußgängerschutzeinrichtung eines Fahrzeugs, Fußgängerschutzeinrichtung
EP2883756B1 (fr) * 2013-12-12 2019-11-06 Volvo Car Corporation Système de sécurité et procédé de fonctionnement pour système de sécurité d'un véhicule
JP2015207049A (ja) * 2014-04-17 2015-11-19 株式会社デンソー 車両事故状況予測装置及び車両事故状況予測システム、車両事故通報装置

Also Published As

Publication number Publication date
DE102016223541A1 (de) 2018-05-30
WO2018095626A1 (fr) 2018-05-31
CN110023149A (zh) 2019-07-16
US20190344739A1 (en) 2019-11-14
JP2019535587A (ja) 2019-12-12

Similar Documents

Publication Publication Date Title
WO2018095626A1 (fr) Procédé et module paramétrique permettant de détecter le type et/ou la sévérité d'une collision entre un véhicule et un objet impliqué dans la collision
EP2242674B1 (fr) Procédé et système d'assistance pour détecter des objets au voisinage d'un véhicule
EP2285632B1 (fr) Système d'assistance à la conduite
WO2003006291A1 (fr) Procede et dispositif pour declencher et executer une deceleration d'un vehicule
DE102014103695A1 (de) Fahrzeuggestützte Kreuzungsbeurteilungsvorrichtung und -programm
DE102015016544A1 (de) Verfahren zum Finden einer Ausweichtrajektorie für ein Fahrzeug
EP2631147A2 (fr) Procédé et dispositif d'opération d'un véhicule
DE102019206178A1 (de) Verfahren und Vorrichtung zum Abschätzen einer Fahrspurwechselabsicht eines Fahrzeugs
DE102012201646B4 (de) Verfahren und Vorrichtung zur Bestimmung einer Kollisionsgeschwindigkeit bei einer Kollision eines Fahrzeugs
WO2011101014A1 (fr) Procédé permettant d'éviter des collisions ou de diminuer une force de collision d'un véhicule
WO2006094659A1 (fr) Procede et dispositif de commande d'un pretensionneur de ceinture reversible
DE102009045661A1 (de) Verfahren zur Bestimmung wenigstens eines befahrbaren Bereichs in der, insbesondere für die Fahrzeugführung relevanten Umgebung eines Kraftfahrzeugs
DE102010029223B4 (de) Bremsassistent für Kraftfahrzeuge mit verbesserter Bremswirkung
DE102005037961A1 (de) Verfahren und Vorrichtung zur Erkennung eines seitlichen Aufprallortes
DE102008046488B4 (de) Probabilistische Auslösestrategie
DE102008043637A1 (de) Verfahren zur Aktivierung und/oder Ansteuerung von mindestens einem Schutz-system in einem Fahrzeug
DE102013212360A1 (de) Vorhersage des zukünftigen Fahrpfades eines Fahrzeuges
EP3283343A1 (fr) Suivi d'objet avant et pendant une collision
WO2013068286A1 (fr) Procédé et dispositif pour analyser une collision d'un véhicule
DE102005003354B4 (de) Verfahren und Vorrichtung zur Erfassung der Relativgeschwindigkeit zwischen einem Kollisionsobjekt und einem Fahrzeug
DE102010001304A1 (de) Verfahren zum Kontrollieren einer Verkehrssituation
DE102013209660A1 (de) Verfahren und Vorrichtung zum Charakterisieren einer Kollision eines Fahrzeugs
WO2020038535A1 (fr) Procédé de détermination de paramètres liés à un accident au moyen d'un système radar d'un véhicule
EP3347739B1 (fr) Procédé de détermination d'une gravité d'une éventuelle collision entre un véhicule automobile et un autre véhicule automobile, dispositif de commande, système d'assistance à la conduite ainsi que véhicule automobile
DE102013222220A1 (de) Verfahren und Vorrichtung zur Erkennung von Fehlauslösungen einer automatisch ausgelösten Fahrzeugfunktion

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20190628

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20200703

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20201114